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be inhibited with the anti-emetic drug

metoclopramide.

Riether et al., 2021, Cell Reports 34, 108663
January 26, 2021 ª 2020 The Author(s).
https://doi.org/10.1016/j.celrep.2020.108663 ll

mailto:carsten.riether@dbmr.unibe.ch
mailto:adrian.ochsenbein@insel.ch
https://doi.org/10.1016/j.celrep.2020.108663
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2020.108663&domain=pdf


OPEN ACCESS

ll
Article

Metoclopramide treatment blocks
CD93-signaling-mediated self-renewal
of chronic myeloid leukemia stem cells
Carsten Riether,1,2,9,* Ramin Radpour,1,2,8 Nils M. Kallen,1,2,8 Damian T. B€urgin,1,2,8 Chantal Bachmann,1,2,3

Christian M. Sch€urch,4 Ursina L€uthi,1,2 Miroslav Arambasic,1,2 Sven Hoppe,5,6 Christoph E. Albers,6

Gabriela M. Baerlocher,2,7 and Adrian F. Ochsenbein1,2,*
1Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
2Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
3Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
4Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford,

CA, USA
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SUMMARY
Self-renewal is a key characteristic of leukemia stem cells (LSCs) responsible for the development and main-
tenance of leukemia. In this study, we identify CD93 as an important regulator of self-renewal and prolifera-
tion of murine and human LSCs, but not hematopoietic stem cells (HSCs). The intracellular domain of CD93
promotes gene transcription via the transcriptional regulator SCY1-like pseudokinase 1 independently of
ligation of the extracellular domain. In a drug library screen, we identify the anti-emetic agentmetoclopramide
as an efficient blocker of CD93 signaling. Metoclopramide treatment reducesmurine and human LSCs in vitro
and prolongs survival of chronic myeloid leukemia (CML) mice through downregulation of pathways related
to stemness and proliferation in LSCs. Overall, these results identify CD93 signaling as an LSC-specific regu-
lator of self-renewal and proliferation and a targetable pathway to eliminate LSCs in CML.
INTRODUCTION

Leukemia stem cells (LSCs) have been characterized as the leu-

kemia-initiating cells in acute myeloid leukemia (AML), chronic

myeloid leukemia (CML), and other hematological neoplasms

(Holyoake and Vetrie, 2017; Lapidot et al., 1994). In CML,

LSCs are found in the majority of patients in the lineage-negative

(Lin�) CD34+CD38� fraction of bone marrow (BM) cells, which is

phenotypically similar to normal hematopoietic stem cells

(HSCs) (Holyoake and Vetrie, 2017; Riether et al., 2015a). The

introduction of BCR-ABL1-targeting tyrosine kinase inhibitors

(TKIs) has revolutionized the treatment of CML. In chronic

phase, CML patients often reach deep molecular remissions

by treatment with first- or second-generation TKIs (Bhatia

et al., 2003; Chu et al., 2011). A subgroup of these patients

can successfully discontinue TKI therapy and maintain a treat-

ment-free remission (Laneuville, 2017). However, TKI-insensitive

LSCs persist in the majority of patients over a prolonged time

period (Holyoake and Vetrie, 2017). These quiescent, self-re-

newing LSCs in the BM are the major cause of relapse after

drug discontinuation or by the acquisition of mutations leading
C
This is an open access article under the CC BY-N
to TKI resistance (Holyoake and Vetrie, 2017; Jabbour et al.,

2013; Savona and Talpaz, 2008).

CD93 (C1qRp) is a C-type lectin-like type I transmembrane

protein (Greenlee et al., 2008; Dean et al., 2000; Nepomuceno

et al., 1997). Cleavage products of the intracellular domain

(ICD) of CD93 have been detected in the cytoplasm of human

monocytes after activation of protein kinase C (PKC) signaling

(Bohlson et al., 2005a; Greenlee et al., 2009). The ICD of CD93

contains a nuclear localization signal that is thought to regulate

gene expression by acting as a transcription factor in complex

with other transcription factors (Cokol et al., 2000). CD93 is pref-

erentially expressed on endothelial cells (ECs), platelets, myeloid

cells, and early B cell precursors, but not lymphoid cells (Dean

et al., 2000, 2001; Løvik et al., 2000; McKearn et al., 1985; Nepo-

muceno et al., 1997). In addition, CD93 is expressed on multipo-

tent HSCs of the fetal liver and yolk sac (Huang and Auerbach,

1993) but is absent or very low on normal adult HSCs (Kinstrie

et al., 2020). CD93 signaling is involved in many biological pro-

cesses such as angiogenesis (Khan et al., 2017; Lorenzon

et al., 2012; Petrenko et al., 1999), antibody production, and

maintenance of long-lived plasma cells (Chevrier et al., 2009),
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C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:carsten.riether@dbmr.unibe.ch
mailto:adrian.ochsenbein@insel.ch
https://doi.org/10.1016/j.celrep.2020.108663
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2020.108663&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Article
ll

OPEN ACCESS
as well as the engulfment of apoptotic cells in vivo (Norsworthy

et al., 2004). CD93 was identified as a marker for human CML

LSCs that persist after TKI therapy (Kinstrie et al., 2020). In addi-

tion, CD93 signaling has been shown to induce proliferation and

disease progression in AML LSCs carrying the MLL gene rear-

rangement (Iwasaki et al., 2015; Saito et al., 2010).

The ligands for CD93 are largely unknown. Initially, CD93 was

thought to be a receptor for the complement factor C1q (Nepo-

muceno et al., 1997; Norsworthy et al., 2004). However, McGreal

et al. reported that the CD93 receptor does not bind to C1q

(McGreal and Gasque, 2002; McGreal et al., 2002). Instead,

the EC-specific extracellular matrix protein multimerin 2

(MMRN2) has been recently identified as a potential ligand for

CD93 and other receptors such as C-type lectin-domain-con-

taining 14A (CLEC14A) and CD248 in HEK293 T cells (Khan

et al., 2017).

Based on the documented expression of CD93 on LSCs, the

aim of this study was to define its function in CML. CD93 is ex-

pressed on leukemia stem/progenitor cells (LSPCs), but not on

more differentiated leukemia granulocytes. CD93 signaling pro-

motes self-renewal and proliferation of LSCs, leading to disease

progression in amurine CMLmodel. RNA sequencing (RNA-seq)

analysis reveals that CD93 signaling induces a stem-cell-mainte-

nance- and proliferation-promoting gene expression program.

Interestingly, the ICD of CD93 promotes gene transcription via

the transcriptional regulator SCY1-like pseudo-kinase 1

(SCYL1) independently of ligand binding to the extracellular

domain of CD93. Genetic ablation of CD93 signaling reduces

the frequency of LSCs and prevents CML disease development

in mice. Comparable to the results in murine CML, CD93 is ex-

pressed on human CML LSPCs, triggers the expression of genes

involved in self-renewal and proliferation, and promotes colony

formation in vitro. In a drug library screen, we identify metoclo-

pramide (MCP) as an inhibitor of CD93-signaling in LSCs. MCP

treatment reduces murine and human LSCs and prolongs sur-

vival of CML mice. These results identify CD93 as an important

regulator of stemness of CML LSCs and a potential therapeutic

target and the anti-emetic agent MCP as a drug that blocks

CD93 signaling in CML.

RESULTS

CD93 signaling regulates self-renewal of LSCs
We analyzed the expression of CD93 on LSCs and leukemia pro-

genitor cell populations in a murine retroviral transduction/trans-

plantation CML model (Neering et al., 2007; Riether et al.,

2015b). All LSC subsets (long-term LSCs [LT-LSCs], short-term

LSCs [ST-LSCs], leukemia multipotent progenitor 1 [L-MPP1],

and L-MPP 2) express CD93. In contrast, CD93 expression is

lost onmoredifferentiatedLin�Sca-1�c-kithi leukemicprogenitors

and leukemicGR-1+granulocytes (Figures1A,1B, andS1A). Simi-

larly, all subpopulations of the Lin�Sca-1+c-kithi (LSK) fraction in

the BM of naive mice (HSCs, multipotent progenitors [MPPs],

and hematopoietic progenitor cells [HPCs]) expressed CD93 (Fig-

ure S1B). Lin�c-kithi BM cells also express CD93, while more

differentiated GR-1+ granulocytes in the BM stain negative for

CD93 (Figure S1B). Functionally,Cd93�/� LSCs form significantly

fewer and smaller colonies in methylcellulose compared to con-
2 Cell Reports 34, 108663, January 26, 2021
trols (Figures 1C and 1D). The colony-forming capacity of LSCs

is further reduced in secondary and tertiary replatings, suggesting

thatCD93signalingpromotesself-renewal ofLT-LSCs (Figure1E).

In contrast, the clonogenic potential and cell numbers per colony

ofBL/6andCd93�/� LSKsare comparable (Figures1F–1H).Over-

expression of Cd93 in BL/6 LSKs does not further increase their

clonogenic potential in vitro (Figures S1C–S1F). The reduced col-

ony-formation capacity ofCd93-deficient LSCs in vitro is indepen-

dently confirmed in knockdown experiments using Cd93-target-

ing small hairpin RNA (shRNA) (Figures 1I–1L and S2A). Extreme

limiting-dilution analysis (ELDA) reveals that knockdown of Cd93

by shRNA reduces the frequency of LSCs in limiting-dilution ex-

periments in vitroatbya factor ofR100 (Figures1Kand1L). These

data suggest that CD93 signaling is required for self-renewal of

LSCs, but not of HSCs.

CD93 signaling in LSCs promotes CML development
in vivo

To study the functional relevance of CD93 signaling in LSCs

in vivo, we transplanted BCR-ABL1-GFP transduced Cd93-pro-

ficient and deficient LSKs into nonirradiated BL/6 mice (BL/6

CML and Cd93�/� CML, respectively). Transplantation of BCR-

ABL1-GFP+ Cd93�/� LSKs into nonirradiated BL/6 recipient

mice does not induce CML and results in a long-term survival,

whereas Cd93-proficient BL/6 CML mice all die within 30 days

(Figures 2A and 2B). No residual BCR-ABL1-GFP+ cells are de-

tected in blood, spleen, andBMofCd93�/�CMLmiceby fluores-

cence-activated cell sorting (FACS) 90 days post-transplantation

(data not shown). To determine residual disease with the most

sensitive assay,we transplanted53106BMcells of surviving pri-

maryCd93�/�CMLmice into lethally irradiated secondary recip-

ients. All secondary recipients survive up to 90 days without any

signs of leukemia (Figure 2C). In complementary experiments, we

silenced Cd93 in FACS-sorted BL/6 LSCs by shRNA before sec-

ondary transplantation into nonirradiated BL/6 mice (Figure 2D).

shCd93 knockdown results in an up to 70% reduction of Cd93

mRNA compared to control scrambled (scr) shRNA-treated

LSCs (Figure S2B). Similar to the results obtained in primary

CML (Figures 2A and 2B), nonirradiated BL/6 mice injected with

shCd93LSCsdonot developCML, survive long-term, andharbor

no detectable disease 90 days after transplantation (Figures 2E

and 2F; data not shown).

Since nonirradiated BL/6 mice transplanted with Cd93�/�

CML did not develop the disease, we transplanted BCR-ABL1-

GFP-transduced Cd93�/� and BL/6 LSKs into lethally irradiated

BL/6 recipient mice. Theoretically, only a few functional LSCs are

required to induce leukemia in lethally irradiated recipients

(Neering et al., 2007). Indeed, BCR-ABL1-GFP-transduced

Cd93�/� LSKs are able to engraft in lethally irradiated BL/6 recip-

ients. However, the number of Cd93�/� LSCs in BM is reduced

by a factor of 2 compared to BL/6 LSCs (Figure S2C).

To analyze the capacity of Cd93�/� LSCs to induce CML in

immunocompetent hosts when injected at higher numbers,

FACS-purified BL/6 andCd93�/� LSCs from primary lethally irra-

diated CML mice were transplanted at titrated numbers into

nonirradiated BL/6 mice, and survival was monitored (Figures

2G and 2H). All except one animal receiving BL/6 LSCs devel-

oped CML and succumbed to the disease (Figures 2G and 2H;



Figure 1. CD93 signaling regulates self-renewal of LSCs in vitro

(A and B) Representative histograms (A) and mean fluorescence intensities (MFIs) (B) for the expression of CD93 on LSCs, L-MPPs, leukemic progenitors, and

leukemic granulocytes in the BM of CML mice. Isotype is depicted in gray and CD93 staining in black. DMFI: MFI staining � MFI isotype (n = 7 mice). Repre-

sentative data from three independent experiments are shown.

(C) Myeloid colony-forming units (CFUs) per 103 plated BL/6 and Cd93�/� BM LSCs.

(D) Cells per colony.

(E) Serial replating capacity of BL/6 and Cd93�/� LSCs in vitro (n = 4 mice/group). One representative experiment out of two experiments is shown. For (C)–(E),

significance was determined using a Student’s t test (two-tailed).

(F) Myeloid CFUs per 103 plated BL/6 and Cd93�/� BM LSKs.

(G) Cells per colony from plated LSKs (n = 6 mice/group). One representative experiments out of two independent experiments is shown.

(H) Serial replating capacity of BL/6 and Cd93�/� LSKs in vitro (n = 9 mice/group). Pooled data from two independent experiments are shown. For (F)–(H),

significance was determined using a Student’s t test (two-tailed).

(I–L) Experimental setup. FACS-purified BL/6 LSCs from three different mice (n = 3 mice) were transduced with shCd93 or scrambled (scr) control RNA particles

and positively selected LSCs were plated in triplicates in methylcellulose at limiting dilution. (J) CFUs per 103 plated shCd93- or scr vector-transduced LSCs.

Significance was determined using a Student’s t test (two-tailed). (K and L) ELDA analysis. Significance was determined using a c2 test.

Data are represented as mean ± SD. *p < 0.05; **p < 0.01; ***p < 0.001.
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data not shown). None of the mice receiving titrated numbers of

Cd93�/� LSCs developed CML, and all recipient mice survived

long-term, without signs of leukemia (data not shown). ELDA re-

vealed that CD93 deficiency substantially reduced the number of

functional LSCs capable of inducing leukemia in immunocompe-

tent mice (Figure 2H).

To determine the contribution of CD93 signaling in host cells,

BL/6 and Cd93�/� LSCs were additionally transferred into

Cd93�/� recipient mice. While BL/6 LSCs induced leukemia in

Cd93�/� mice with similar kinetics as in BL/6 mice, Cd93�/�

LSCs were not able to promote leukemia development indepen-
dently of the expression of CD93 on host cells (Figures S2D and

S2E). These data indicate that CD93 signaling expands LSCs

and promotes CML development in murine leukemia models.

CD93 signaling regulates self-renewal of LSCs
independently of extracellular ligand binding
CD93 has previously been described as a receptor for the com-

plement factor C1q, although these findings are controversial

(Greenlee et al., 2009; McGreal and Gasque, 2002; McGreal

et al., 2002). Heat inactivation destroys complement compo-

nents (Soltis et al., 1979). To determine whether complement
Cell Reports 34, 108663, January 26, 2021 3



Figure 2. CD93 signaling in LSCs promotes CML development

(A and B) Numbers of BCR-ABL1-GFP+ granulocytes/ml in blood (A) and Kaplan-Meier survival curves (B) resulting from primary transplantations of BCR-ABL1-

GFP-transduced BL/6 (BL/6 CML) orCd93�/� LSKs into naive, nonirradiated BL/6 recipients (n = 10mice/group). Pooled data from two independent experiments

are shown. Significance was determined using a two-way ANOVA followed by Bonferroni post-test (A) and a log-rank test (B).

(C) 53 106 whole BM cells from primaryCd93�/�CMLmice 90 days after transplantation were transferred into lethally irradiated (23 6.5 Gy) secondary recipient

mice, and survival was monitored (n = 10 mice).

(D–F) Pooled FACS-purified BL/6 LSCs were transduced with shCd93 or scr control RNA lentiviral particles (n = 5 mice). shRNA-positive LSCs were selected by

culture in puromycin-containing medium for 3 days and then transplanted into naive, nonirradiated BL/6 recipients, and survival was monitored (n = 6 mice per

group). Pooled data from two independent experiments with n = 3 mice per group are shown. (D) Experimental setup. (E) Kaplan-Meier survival curves of

transplanted mice (n = 6 mice per group). Pooled data from two independent experiments with n = 3 mice per group are shown. (F) 53 106 whole BM cells from

primary shCd93 CML mice 90 days after primary transplantation were injected into lethally irradiated (2 3 6.5 Gy) recipient mice (n = 6), and survival was

monitored. Pooled data from two independent experiments with n = 3mice per group are shown. Significance for (E) and (F) was determined using a log-rank test.

(G and H) BCR-ABL1-GFP-transduced BL/6 or Cd93�/� LSKs were transplanted into lethally irradiated (2 3 6.5 Gy) BL/6 recipients. After establishment of the

disease, BL/6 or Cd93�/� LSCs were FACS purified and injected at limiting dilution into naive, nonirradiated BL/6 mice, and survival was monitored (n = 3 mice/

dilution). (H) ELDA analysis. #, LSCs needed to induce CML in immunocompetent hosts. INF, infinity. One representative experiment out of two independent

experiments is shown. Significance was determined by c2 test.

Data are represented as mean ± SD. *p < 0.05; ***p < 0.001; ****p < 0.0001.
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factors, including C1q, trigger CD93 signaling in CML LSCs, we

performed colony assays of Cd93-proficient and deficient

LSCs in the presence of heat-inactivated (HI; no complement)

and non-heat-inactivated (NHI; complement) fetal calf serum

(FCS). BL/6 LSCs generate significantly more colonies than

Cd93�/� LSCs independent of complement (Figure S2F).

To studywhether CD93 signaling in LSCs relies on ligand bind-

ing to the extracellular domain of CD93, we generated retroviral
4 Cell Reports 34, 108663, January 26, 2021
vectors expressing either the complete murine Cd93 (mCd93) or

a mutant with extracellular domain deletion of CD93 (mCd93intra;

Figures 3A and S3A–S3F). FACS analysis revealed that CD93

protein was detectable on mCd93-transduced Cd93�/� LSCs

at a similar level as on empty vector (mock)-transduced BL/6

LSCs (Figure 3C). Interestingly, transduction of Cd93�/� LSCs

with both mCD93 and mCd93intra restored colony formation of

Cd93�/� LSCs in vitro (Figures 3D and 3E). These data indicate



Figure 3. CD93 signaling regulates self-renewal of LSCs independent of extracellular ligand binding

(A–E) FACS-purified Cd93�/� CFP+ LSCs were transduced with an empty-GFP (mock)-, mCd93-GFP-, or mCd93intra-GFP-expressing retroviral particles in

triplicate. GFP+ LSCs were plated in methylcellulose in triplicate, and colony formation was assessed. (A) Domain structure of mCd93 and mCd93intra. (B)

Experimental setup. (C) CD93 expression on CFP+ GFP+ LSCs (gray, Cd93�/� LSCs; black, BL/6 LSC: blue, mCd93 LSCs). (D) CFUs per 103 plated CFP+ GFP+

LSCs (n = 3 in triplicate/group). Significance was determined using a one-way ANOVA followed by Dunnett’s post-test (versus Cd93�/� mock). (E) Colony

formation of FACS-purifiedCd93�/�CFP+ LSCs transduced with mock,mCd93, ormCd93intra retrovirus. One representative experiment out of two independent

experiments is shown. Significance was determined using a one-way ANOVA followed by Dunnett’s post-test (versus Cd93�/� mock).

(F–I) The BCR-ABL-1-positive cell line K562 and the BCR-ABL-1-negative cell lines EL-4 and STR-4 were transfected with the mammalian expression plasmid

pAcGFP1-N1-mCd93 encoding for AcGFP1-N1-mCd93 in triplicate. 48 h later, cells were analyzed for the subcellular localization of CD93. (F) Subcellular

localization of CD93 in K562 cells analyzed by ImageStream. Two representative images of non-nuclear and nuclear CD93-GFP expression are shown. A

minimum 1,200 GFP+ cells pre-sample were analyzed. (G) Percentage of nuclear and non-nuclear CD93-GFP localization analyzed by ImageStream. One

representative experiment out of two independent experiments is shown. Significance was determined using a one-way ANOVA followed by Dunnett’s post-test

(versus K562). (H) Nuclear and cytosolic CD93-GFP determined bywestern blot. (I) Subcellular localization of CD93 in K562 cells treated with nilotinib (NIL; 70 mM)

or vehicle for 72 h in triplicate. One representative experiment out of two independent experiments performed in triplicate is shown. Significance was determined

using a Student’s t test (two tailed).

(J) Subcellular localization of CD93 in K562 cells treated with PKC 20-28 (PKC; 50 mM) or vehicle for 72 h. One representative out of two independent experiments

performed in triplicate is shown. Significance was determined using a Student’s t test.

Data are represented as mean ± SD. **p < 0.01; ***p < 0.001.
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that intracellular CD93 signaling promotes colony formation of

LSCs independent of an extracellular ligand-receptor

interaction.

The ICD of CD93 contains a nuclear localization signal that is

thought to regulate gene transcription (Cokol et al., 2000). To

investigate the subcellular localization of CD93 in CML, we

cloned mCd93 to the N terminus of a mammalian expression

plasmid, AcGFP1 (pAcGFP1-N1-mCd93), which leads to the

expression of mCD93 protein fused to GFP (Figure S3G).
pAcGFP1-N1-mCd93 was introduced into K562 CML cells

(Chen, 1985), and the localization of the GFP-CD93 fusion pro-

tein was assessed by ImageStream (Figure 3F). The CD93-

GFP fusion protein was detected at the cell membrane of all cells

expressing pAcGFP1-N1-mCd93 (non-nuclear). Approximately

25% of these cells also expressed the fusion protein in the nu-

cleus (Figures 3F and 3G). Cells transfected with pAcGFP1-

N1-empty did not show a nuclear CD93-GFP signal (data not

shown). These results are confirmed independently using a
Cell Reports 34, 108663, January 26, 2021 5
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lentiviral expression vector encoding for AcGFP1-N1-mCd93

(pLVX-AcGFP1-N1-mCd93) or AcGFP1-N1-empty (Figures

S3H and S3I). To further confirm the nuclear localization of

CD93, nuclear and cytosolic extracts of K562 cells transduced

with AcGFP1-N1-mCd93 (CD93-GFP) or pAcGFP1-N1-empty

(eGFP) were analyzed by western blot for the expression of

GFP. CD93-GFP is detected in the cytosolic and in nuclear frac-

tion of the cell extract (Figure 3H).

To investigate whether the subcellular distribution of CD93 is

dependent on the expression of the BCR-ABL1 oncogene, we

assessed the localization of CD93-GFP in BCR-ABL1-negative

CD93-expressing EL-4 lymphoma (Gorer, 1950) and STR-4

endothelial BM cells (Aizawa et al., 1991) after transfection with

pAcGFP1-N1-mCd93. In contrast to BCR-ABL1-expressing

K562 CML cells, the CD93-GFP fusion protein was detected at

the cell membrane, but not in the nucleus of EL-4 and STR-4

cells (Figure 3G). Based on these findings, we hypothesized

that the expression of nuclear CD93 is dependent on BCR-

ABL1 activity. To analyze this, we inhibited BCR-ABL1 activity

in K562 CML cells using half maximal inhibitory concentrations

(IC50) of the TKI nilotinib. Pharmacological blockade of BCR-

ABL1 activity significantly reduced the nuclear localization of

CD93-GFP compared to vehicle-treated K562 cells (Figure 3I).

These findings were confirmed using an intracellular antibody

staining combined with ImageStream analysis (Figures S4A

and S4B). In addition, we overexpressed mCd93 in BL/6 LSCs.

Overexpression of CD93 in LSCs did not result in increased clo-

nogenic potential and did not affect their responsiveness to nilo-

tinib treatment (Figures S4C–S4F).

In monocytes, the generation of CD93 ICD has been previ-

ously shown to depend on protein kinase C (PKC) activity to pro-

mote their phagocytic activity (Bohlson et al., 2005a; Greenlee

et al., 2009). Thus, we addressed whether a pharmacological in-

hibitor of PKC-a/b activity affects the subcellular localization of

CD93-GFP in CML cells by ImageStream. Incubation of K562

cells with PKC 20–28 at an IC50 concentration of 50 mM reduced

�40% of the subcellular localization of CD93 compared to

vehicle-treated control cells (Figure 3J). Overall, these results

demonstrate that nuclear localization of CD93 depends on

PKC-a/b- and BCR-ABL1.

CD93 signaling triggers stem-cell-maintenance- and
cell proliferation-promoting signaling pathways in CML
LSCs
The nuclear localization of the ICD of CD93 in CML suggests that

CD93 might act as a transcription factor and regulate gene

expression. Thus, we performed RNA-seq analysis of BL/6 and

Cd93�/� LSCs 48 h after transfer into nonirradiated secondary
Figure 4. CD93 triggers stemness- and proliferation-promoting genes

(A) Experimental setup. BCR-ABL1-GFP-transduced BL/6 or Cd93�/� LSKs we

disease, BL/6 LSCs or Cd93�/� LSCs were purified, and 53 104 LSCs were injec

was analyzed by RNA sequencing (RNA-seq).

(B) PCA of BL/6 and Cd93�/� LSKs (n = 2 mice/group) as well as BL/6 and Cd93

(C) Venn diagram showing up- and downregulated genes in Cd93�/� versus BL/

(D) GO analysis (BL/6 versus Cd93�/� LSCs). A GO enrichment score of R3 indi

(E–J) GSEA of significantly enriched genes in BL/6 versus Cd93�/� LSCs.

(K) Heatmap of 70 differentially expressed genes promoting stem cell maintenan
BL/6 recipients (Figure 4A). To investigate whether different

gene expression profiles already exist in naive LSKs, we also

included Cd93-proficient and deficient LSKs in the analysis. All

samples had a similar number of reads (Figure S4G). BL/6 and

Cd93�/� HSCs closely clustered together in the principal-

component analysis (PCA), and only 170 genes were differently

expressed. BL/6 and Cd93�/� LSCs clearly separated from

LSKs based on the expression of the BCR-ABL1 oncogene (prin-

cipal component 1 [PC1]). Importantly, BL/6 and Cd93�/� LSCs

were very different from each other (Figure 4B, PC2 and PC3), as

reflected by differential expression of 1,120 genes in Cd93�/�

versus BL/6 LSCs (Figure 4C; Table S1). Of note, Cd93�/�

LSKs shared only two differentially expressed genes with

Cd93�/� LSCs (Figures 4C and S5A).

Gene Ontology (GO) analysis assigned the 1,120 differently

expressed genes in Cd93�/� LSCs mainly into 14 different GO

categories (Figure 4D). Gene set enrichment analysis (GSEA)

revealed a significant downregulation of genes involved in pro-

moting stem cell maintenance and myeloid differentiation, cell

proliferation and survival, response to cytokine signaling, and

gene expression (Figures 4E–4K). RNA-seq results were inde-

pendently confirmed by qRT-PCR for a set of selected genes

(Figure S5I). In contrast, GSEA of naive BL/6 and Cd93�/�

HSCs did not reveal a dysregulation in these pathways (Figures

S5C–S5H; Table S1). In summary, our data suggest that CD93

signaling triggers a defined stemness- and proliferation-associ-

ated gene expression signature in CML LSCs, but not in normal

HSCs.

CD93 signaling regulates gene transcription in CML
LSCs via Scyl1
To further determine the mechanism how CD93 affects gene

expression in CML LSCs, we performed an in silico pathway

analysis for proteins with a predicted physical interaction with

CD93. The analysis identified six functional interaction partners

for CD93. Among these six interaction partners, we identified

one protein, SCYL1, with a reported role as a regulator of gene

transcription (Figure 5A) (Burman et al., 2008). SCYL1 alias

P105 was shown to interact directly with the highly charged

juxta-membrane domain of the cytoplasmic tail of CD93 using

a yeast-two-hybrid screen (Bohlson et al., 2005b). Scyl1 was

comparably expressed inBL/6 LSKs andBL/6 LSCs (FigureS5J).

However, Scyl1 expression was strongly reduced in Cd93�/�

LSCs compared to BL/6 LSCs (Figure 5B). SCYL1 activated tran-

scription of the telomerase reverse transcriptase (Tert) and DNA

polymerase beta (Polb), two DNA polymerases that are overex-

pressed in many different cancer types with a reported role in

the regulation of cell immortalization and tumorigenesis (Deville
in CML LSCs

re transplanted into lethally irradiated BL/6 recipients. After establishment of

ted into naive BL/6 mice. 48 h later, LSCs were isolated, and gene expression

�/� LSCs (n = 3 mice per group).

6 LSCs compared to Cd93�/� versus BL/6 LSKs.

cates significant changes in gene expression.

ce and myeloid differentiation.
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Figure 5. CD93 signaling triggers regulation of gene transcription in via SCYL1 in CML LSCs

(A) In silico analysis of predicted CD93 interaction partners using the GeneMANIA database (http://www.genemania.org/) (Warde-Farley et al., 2010).

(B) Scyl1, Tert, and Polb mRNA expression in CD93�/� and BL/6 LSKs and LSCs (n = 3 mice/group). Significance was determined using a Student’s t test.

(C) Pooled FACS-purified BL/6 and Cd93�/� LSCs (n = 5 mice/group) were transduced with esiScyl1 or scr control esiRNA particles in triplicate, and gene

expression was determined 48 h later. mRNA expression of Cd93, Scyl1, Polb, Tert, CCnd2, Id2,Myb, and Rela 48 after gene silencing of Scyl1 by esiRNA. KD,

knockdown efficiency (esiRNA versus scr).

(D) Colony formation. BL/6 andCd93�/� LSCs were transduced esiScyl1 or scr control esiRNA particles as described in (C) followed by plating in methylcellulose

in triplicate. Colony formation was assessed 7 days later. Significance was determined using a one-way ANOVA followed by Tukey’s post-test.

(E–G) Pooled BCR-ABL1 CFP+ BL/6 and Cd93�/� LSCs (n = 5 mice/group) were transduced with a retrovirus expressing empty-GFP or Scyl1-GFP. 2 days later,

CFP+GFP+ LSCs were FACS purified, 103 cells were plated in methylcellulose in triplicate, and 104 cells were used for qRT-PCR analysis of Scyl1. Colony

formation was assessed 7 days later. (E) Scyl1, CD93, Tert, and PolB mRNA expression, (F) colony formation, and (G) colony size of BL/6 and Cd93�/� LSCs

expressing empty-GFP or Scyl1-GFP. Significance was determined using a one-way ANOVA followed by Tukey’s post-test.

Data are represented as mean ± SD. **p < 0.01; ***p < 0.001.
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et al., 2009; Zhao et al., 2005). Polb and Tert expression was

significantly reduced in Cd93�/� LSCs (Figure 5B). To analyze

the role of Scyl1 in CML LSCs, we silenced Scyl1 in Cd93�/�

and BL/6 LSCs by endoribonuclease-prepared siRNA (esiRNA).

esiScyl1 knockdown resulted in�70% reduction of Scyl1mRNA

in BL/6 LSCs compared to scr esiRNA-treated LSCs (Figure 5C).

Silencing of Scyl1 in BL/6 LSCs reduced the expression of the

target genes Polb and Tert and selected genes related to self-

renewal and proliferation (Figure 5C). Importantly, silencing

Scyl1 significantly reduced colony formation of BL/6, but not

Cd93�/�, LSCs in vitro (Figure 5D). Vice versa, overexpression

of Scyl1 in Cd93�/� LSCs increased mRNA expression of Tert

and PolB and restored the clonogenic and differentiation poten-

tial of Cd93�/� LSCs to levels of empty-vector-transduced BL/6

LSCs (Figures 5E–5G). In contrast, overexpression of Scyl1 in

BL/6 LSCs did not affect Tert and PolB mRNA expression and

their capacity to form colonies in vitro (Figure 5F, G). Overall,

these findings indicate that the ICD of CD93 regulates gene tran-

scription via Scyl1 and its downstream genes, Polb and Tert, in

CML LSCs.

CD93 signaling regulates proliferation of CML LSCs
Next, we analyzed the cellular processes by which CD93

signaling affects LSC function in more detail. Because CD93 is

thought to be involved in cell adhesion and migration (Zhang

et al., 2005), we first assessed the homing capacity of LSCs

into the BM. Transplanted Cd93�/� and BL/6 LSCs similarly

homed to the BM of lethally irradiated as well as nonirradiated
Figure 6. CD93 signaling induces proliferation of LSCs and is blocked

(A) Experimental setup. FACS-purified BL/6 and Cd93�/� LSCs from lethally irradi

as well as lethally irradiated BL/6 secondary recipient mice (n = 4 mice/group).

(B) Representative FACS plots of BCR-ABL1-GFP+ BL/6 and Cd93/� LSCs in the

mice/group).

(C) Frequencies of BCR-ABL1-GFP+ BL/6 and Cd93�/� LSCs (n = 4 mice/group)

(D) BCR-ABL1-GFP+ CFU capacity of total Lin� cells (n = 4 mice/group). Signific

experiment out of two independent experiments is shown.

(E) Experimental setup. FACS-purified BL/6 andCd93�/� LSCs from lethally irradi

(n = 5 mice/group). After 24 h, animals were treated intraperitoneally (i.p.) with 1

(F) Frequency of BrdU+ LSCs (n = 5 mice/group). Significance was determined u

(G) LSC viability as determined by viability dye staining (n = 5mice/group). Significa

experiment out of two independent experiments is shown.

(H) LSCs derived fromBL/6 andCd93�/�CMLmice (n = 3mice/group) were cultur

Colony formation was assessed 7 days later. Significance was determined using

independent experiments is shown.

(I) LSCs derived from BL/6 and Cd93�/� CML mice (n = 3 mice/group) were cultu

was determined 48 h later.

(J) K562CML cells were transfectedwith themammalian expression plasmid pAcG

or absence of 1 mMMCP. After 72 h, cells were analyzed for the subcellular locali

are shown. Significance was determined using a Student’s t test.

(K and L) Numbers of BCR-ABL1-GFP+ granulocytes/ml in blood (K) and Kaplan-M

GFP-transduced BL/6 LSKs into naive, nonirradiated BL/6 recipients. Starting a

(10 mg/kg; n = 10mice/group) for a period of 20 days. Significance was determine

Pooled data from independent experiments are shown.

(M) Summary of the RNA-seq results. Volcano plot representation of differentially e

Blue and red points mark the genes with significantly increased or decreased exp

mice (false discovery rate [FDR] < 0.05). The x axis shows fold changes in gene e

expressed. Only genes with a fold change >�10 and <10 are shown.

(N) GO analysis (MCP versus vehicle). A GO enrichment score of R3 indicates s

(O–Q) GSEA of LSCs derived from CML mice treated with vehicle or MCP (n = 3

Data are represented as mean ± SD. *p < 0.05; **p < 0.01; ***p < 0.001.
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BL/6 recipients (Figures 6A–6C). To confirm a similar frequency

of functional LSCs in the BM 14 h after transplantation, total

Lin� cells were plated in methylcellulose, and BCR-ABL1-GFP+

colonies were assessed 7 days later. Lin� cells from mice

receiving Cd93�/� and BL/6 LSCs formed similar numbers of

BCR-ABL1-GFP+ colonies (Figure 6D). These results indicate

that CD93 signaling does not affect homing of LSCs in vivo.

Next, we assessed whether CD93 signaling affects prolifera-

tion and cell survival of LSCs. We injected Cd93-proficient and

deficient LSCs into nonirradiated BL/6 mice (Figure 6E). Bromo-

deoxyuridine (BrdU)+ incorporation is �40% lower in Cd93�/�

LSCs than in BL/6 LSCs, indicating a reduced proliferation of

LSCs in the absence of CD93 (Figure 6F). Viability of BL/6 and

Cd93�/� LSCs was comparable (Figure 6G). Overall, and in line

with the data obtained in the gene enrichment analysis, these

data suggest that Cd93�/� signaling promotes proliferation but

does not affect apoptosis or homing of LSCs in vivo.

MCP blocks CD93 signaling and reduces LSC function
in vitro.
To discover compounds that potentially block CD93 signaling,

we performed a compound screen using the US Food and

Drug Administration (FDA)-approved drug library V2 (Lago

et al., 2019) (Table S2). Cd93-proficient and deficient LSCs

were incubated overnight with 1 mM of the respective com-

pounds, followed by plating in methylcellulose. Out of the 240

compounds tested, 10 compounds blocked CD93 signaling (Ta-

ble S2). One interesting candidate that we identified in the
by metoclopramide (MCP) treatment

ated (23 6.5 Gy) primary CMLmice were injected intravenously (i.v.) into naive

BM of naive BL/6 secondary recipients 14 h after transplantation mice (n = 4

. Significance was determined using a Student’s t test.

ance was determined using a Student’s t test. For (A)–(D), one representative

ated primary CMLmice were transplanted into naive BL/6 secondary recipients

mg BrdU and sacrificed 14 h later.

sing a Student’s t test.

ncewas determined using a Student’s t test. For (F) and (G), one representative

ed overnight in duplicate with 1 mMMCP followed by plating in methylcellulose.

a one-way ANOVA followed by Tukey’s post-test. One representative out two

red in duplicate with 1 mM MCP, and mRNA expression of the indicated genes

FP1-N1-mCd93 encoding for AcGFP1-N1-mCd93 in triplicate in the presence

zation of CD93 by ImageStream. Pooled data of two independent experiments

eier survival curves (L) resulting from primary transplantations of BCR-ABL1-

t the day of transplantation, mice were treated p.o. with vehicle (Veh) or MCP

d by two-way ANOVA followed by Bonferroni post-test (K) and log-rank test (L).

xpressed genes in LSCs derived fromMCP- versus vehicle-treated CMLmice.

ression, respectively, in LSCs derived from MCP- versus vehicle-treated CML

xpression, and the y axis shows the FDR p value of a gene being differentially

ignificant ontology enrichment.

mice/group).
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compound screen is the anti-emetic agent MCP. MCP treatment

reduced colony formation of BL/6 LSCs to comparable levels as

Cd93�/� LSCs without further affecting colony formation of

Cd93�/� LSCs (Figure 6H). Comparable to blockade of CD93

signaling (Figure 4), MCP treatment reduced the expression of

stem-cell-related genes as well as Scyl1, Polb, and Tert in BL/

6 LSCs (Figure 6I). Overexpression of CD93 did not rescue the

effect of MCP treatment on colony-formation capacity, indi-

cating that the observed effect is dependent not on total CD93

expression but on the nuclear localization of the cleaved intracel-

lular part of CD93 (Figure S6A).

To investigate whether MCP treatment directly affects CD93

signaling through modulation of the subcellular localization of

CD93 in CML, we cultured CD93-GFP-transfected K562 cells

in the presence or absence of 1 mM of MCP. CD93-GFP nuclear

localization in MCP-treated K562 cells was significantly reduced

compared to vehicle-treated cells (Figure 6J). Overall, these data

suggest that MCP treatment reduces the function of CML LSCs

through modulation of CD93 signaling.

MCP treatment prolongs survival of CML mice through
downregulation of stem-cell-maintenance- and cell-
proliferation-promoting signaling pathways in CML
LSCs
To validate our findings in vivo, BL/6micewere treated once daily

with vehicle or 10 mg/kg MCP orally (p.o.) (Shalaby et al., 2013)

starting at the day of leukemia transplantation for a period of

20 days. MCP treatment significantly delayed leukemia develop-

ment and prolonged survival compared to the vehicle-treated

group independent of the route of administration (Figures 6K

and 6L).

To determine which signaling cascades are altered in LSCs

upon MCP treatment, we performed RNA-seq analysis of LSCs

isolated from the BM of CML mice that were previously treated

with vehicle or MCP for 3 days starting at day 13 after CML in-

duction. MCP treatment significantly reduced the leukemia

load, as indicated by a decrease in BCR-ABL1-GFP+ granulo-

cyte numbers in peripheral blood and spleen weight as well as

lower numbers of LSCs in the BM (Figures S6B–S6D).

LSCs derived from CML mice treated with MCP clearly sepa-

rated from control LSCs (Figure S6E). RNA-seq analysis identified

105 genes that are differentially expressed between the two treat-

ment conditions (Figure 6M; Table S1). Similar to Cd93�/� LSCs

(Figure 4C), the vast majority of genes in LSCs fromMCP-treated

CML mice were downregulated compared to controls. GO anal-

ysis assigned the 105 differently expressed genes mainly into 11

different GO categories (Figure 6N). GSEA revealed a significant

downregulation of genes involved in promoting stem cell mainte-

nance and myeloid differentiation, cell proliferation and survival,

response to cytokine signaling, and gene expression (Figures

6O–6Q and S6F–S6H). These data suggest that MCP treatment,

similar to blockade of CD93 signaling, reduces the expression

genes associated with stemness and proliferation in LSCs.

CD93 is expressed on the surface and in the nucleus of
primary human CML stem/progenitor cells
To determine the relevance of our findings for human CML, we

analyzed mRNA expression of CD93 and its downstream target,
SCYL1, in BM, CD34+CD38+ leukemia progenitors, and

CD34+CD38� LSCs of chronic-phase CML patients using two

publicly available microarray datasets (GSE4170 and

GSE43754) (Gerber et al., 2013; Radich et al., 2006). We identi-

fied CD93 and SCYL1 expression in chronic-phase CML BM

and CML stem/progenitor cells, but not in CD34+ stem/progen-

itor cells from healthy donors (Figures 7A and 7B).

Immunohistochemistry (IHC) of BM sections of CML patients

revealed CD93 protein expression on CD34+ LSCs and BM

vascular ECs (Table S3; Figures 7C and 7D). Similarly, CD93

was detected on BM Lin�CD34+ and Lin�CD34+CD38� CML

stem/progenitor cells by FACS (Figures 7E and S6I). In line

with previous findings (Iwasaki et al., 2015; Kinstrie et al.,

2020; Saito et al., 2010), CD93 expression cannot be detected

on the surface of stem and progenitor cells from healthy donor

BM by FACS (Figure 7F).

Next, we addressed the subcellular distribution of CD93 in pri-

mary CD34+ CML stem/progenitor cells by ImageStream anal-

ysis. CD93 was detectable in the nucleus of primary CD34+

CML stem/progenitor cells (Figure 7G). In line with our findings

derived in K562 CML cells, nilotinib treatment significantly

reduced the frequency of cells expressing CD93 in the nucleus.

In contrast, total CD93 expression was not affected by nilotinib

treatment (Figure S6J). Overall, these data suggest that the local-

ization of the cleaved intracellular part of CD93 is dependent of

BCR-ABL1 activity (Figure 7H).

CD93 signaling regulates the colony-formation capacity
of human CML stem/progenitor cells in vitro

To analyze the role of CD93 signaling, we treated FACS-purified

Lin�CD34+ CML stem/progenitor cells with CD93-targeting

(siCD93) or control small interfering RNA (siRNA) (siCTRL)

followed by plating in methylcellulose and gene expression anal-

ysis using qRT-PCR (Figures 7I–7L). Silencing of CD93 signifi-

cantly reduced the expression of stem cell self-renewal- (ID2,

MYB, PAK2, and REL) and proliferation-promoting genes (CK1,

CDK4, and CCND2), as well as genes associated with genome

maintenance (TERT and POLB) (Figure 7J). These transcriptomic

changes were functionally confirmed by a significantly reduced

colony-formation capacity in the absence of CD93 signaling

(Figure 7K). In contrast, CD93 signaling did not affect colony for-

mation of normal BM stem/progenitor cells (Figure 7L). To deter-

mine the effect of MCP treatment on human CML, we incubated

FACS-purified CD34+ BM CML stem/progenitor cells with two

different concentrations ofMCP followed by plating inmethylcel-

lulose. The plasma concentrations reached in humans treated

with MCP is between 0.1 and 0.2 mM (Magueur et al., 1991).

Comparable to blockade of CD93 signaling (Figure 7J), MCP

treatment reduced the expression of SCYL1, POLB, and TERT

in CML stem/progenitor cells (Figure 7M). In addition, colony for-

mation in semi-solid cultures was significantly impaired by MCP

treatment. This effect is maintained in subsequent replatings,

even in the absence of MCP (Figure 7N). Importantly, the clono-

genic potential of hematopoietic stem/progenitor cells from

healthy donor BM was not affected by the treatment (Figures

S6K–S6M).

We next investigated whether a treatment combination with

MCP and nilotinib results in further reduction in colony formation
Cell Reports 34, 108663, January 26, 2021 11



Figure 7. CD93 regulates colony-forming capacity of CD34+ BM stem/progenitor cells from CML patients in vitro

(A) A publicly available microarray dataset (GSE4170) that assessed gene expression profiles in CML was analyzed for CD93 and SCYL1 using the Gene

Expression Omnibus GEO2R tool. Expression values of patients in chronic-phase CML (n = 42; green bars) and CD34+ stem/progenitor cells from healthy donor

BM (n = 5; black bars) are shown.

(B) Expression of CD93 and SCYL1 mRNA in CD34+CD38+ leukemia progenitor cells (Prog.) and CD34+CD38� LSCs from chronic-phase CML patients

(GSE43754, n = 5 patients/group).

(C and D) CD93+CD34+ stem/progenitor cells in the BM of healthy donors (n = 3) and untreated CML patients (n = 4) were determined by immunohistochemistry

(IHC) and cell morphology. (C) Representative IHC image for CD34 and CD93 in BM of CML (n = 4 CML patients). Slides were stained with a rabbit anti-human

CD93 antibody, and staining was visualized with a 3,3’-diaminobenzidine (DAB) detection kit. Slides were subsequently counterstained and visualized with a

mouse anti-human CD34 antibody and a red detection kit, respectively, followed by a counterstain with hematoxylin. CD93 is stained in brown and CD34 in red.

Scale bar, 20 mm. Black arrows indicate CD93+CD34+ double-positive stem/progenitor cells. (D) Percentage of CD93-expressing CD34+ cells in CML and normal

healthy donor BM (H) as analyzed by IHC. 145–328 CD34+ BM cells were analyzed per trephine biopsy. Significance was determined using a Student’s t test (two

tailed).

(E) Representative FACS histograms (left panel) and the MFI (right panel) of CD93 expression versus isotype control on Lin�CD34+ BM cells from CML patients.

DMFI: MFI staining � MFI isotype.

(F) Histograms of CD93 expression on CD34+ BM stem/progenitor cells from healthy donors (H4–H6) as analyzed by FACS. Black lines, CD93 staining; gray lines,

isotype controls.

(G) Subcellular localization of CD93 ICD in Lin�CD34+ CML stem/progenitor cells (CML 1 and 8–10). A minimum 5 3 103 cells pre-sample were analyzed. K562

and STR-4 cells served as positive and negative controls for nuclear CD93 expression, respectively. Numbers indicate patient IDs (Table S3).

(H) Subcellular localization of ICD of CD93 in Lin�CD34+ CML stem/progenitor cells (CML 1, 8, 10, and 11) treated with nilotinib (NIL; 5 mM) or vehicle for 24 h. A

minimum of 103 cells per sample were analyzed. Numbers indicate patient IDs (Table S3). Significance was determined by paired Student’s t test (two tailed).

(I–L) Lin�CD34+ BM stem/progenitor cells from CML patients 8–10 (Table S3) were treated with siCD93 RNA (siCD93) or control siRNA (siCTRL) for 48 h in

triplicate, followed by plating in methylcellulose or RNA isolation. (I) Experimental setup. (J) Heatmap for the expression of CD93 and selected genes involved in

self-renewal and cell proliferation in siCTRL versus siCD93 cells. (K) Colony formation per 2,000 plated CD34+ BM stem/progenitor cells. Significance was

determined using a Student’s t test (two tailed). (L) Colony formation of 1,000 plated normal CD34+ BM stem/progenitor cells (H1 and H2) after silencing of CD93

by siRNA. Significance was determined using a Student’s t test.

(M) CD34+ BM CML stem/progenitor cells (CML 8, 10, and 11) were treated 1 mMor vehicle overnight in triplicate followed by mRNA isolation. Heatmap of CD93,

SCYL1, POLB, and TERT expression.

(N) CD34+ BM CML stem/progenitor cells (CML 8, 10, and 11) were treated with titrated concentrations of MCP or vehicle overnight in triplicate, followed by

plating in methylcellulose. Colony formation of 2,000 plated cells for primary platings is shown. For secondary platings, 23 104 cells isolated from primary colony

assays were replated in methylcellulose in the absence of the compound.

(O) CD34+ BMCML stem/progenitor cells (CML 8, 10 and 11) were treated withMCP (1 mM) and/or nilotinib (NIL; 5 mM) overnight in triplicate, followed by plating in

methylcellulose. Colony formation of 2,000 plated cells for primary platings is shown. Significance was determined using a one-way ANOVA followed by Tukey’s

post-test.

Data are represented as mean ± SD. *p < 0.05; **p < 0.01; ***p < 0.001.
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of CML stem/progenitor cells. We incubated FACS-purified

CD34+ BM CML stem/progenitor cells with 5 mM nilotinib and

1 mM MCP alone or in combination followed by plating in meth-

ylcellulose. The clonogenic potential in semi-solid cultures was

significantly impaired by co-treatment compared to single treat-

ments (Figure 7O). In summary, CD93 signaling expands human

LSCs, a process that is efficiently blocked by MCP treatment.

DISCUSSION

The cancer stem cell (CSC) model suggests that leukemia may

only be eradicated long-term by targeting disease-initiating

and disease-maintaining LSCs (Holyoake and Vetrie, 2017;

Riether et al., 2015a). LSCs frequently activate self-renewal

and proliferation pathways to resist cytotoxic drugs and propa-

gate the disease. These self-renewal pathways developed dur-

ing evolution to maintain normal HSCs, the cell of origin for

CML LSCs (Horne and Copland, 2017; Huntly and Gilliland,

2005). The selective elimination of LSCs requires the exploitation

and targeting of unique signaling pathways that promote the

self-renewal of LSCs, but not normal HSCs.

In the present study, we describe CD93 as an important regu-

lator of self-renewal and proliferation of human and murine LSCs

in CML. CD93 is expressed on many different cells, including

ECs, plasma cells, B cell precursor cells, and hematopoietic cells

(Dean et al., 2000, 2001; Løvik et al., 2000; McKearn et al., 1985;

Nepomuceno et al., 1997). Interestingly, CD93 expression has

been documented on CML LSCs and non-quiescent human

MLL-rearranged AML LSCs, but not humans HSCs (Herrmann

et al., 2020; Iwasaki et al., 2015; Kinstrie et al., 2020). In line

with these findings, we document CD93 expression on all CML

LSC subsets. CD93 deficiency in LSCs resulted in a severe

impairment of proliferation and self-renewal of LSCs. As a

consequence, CD93-deficient LSCs did not propagate the

disease in immune-competent recipients. In contrast, although

murine HSCs express CD93, self-renewal of HSCs was indepen-

dent of CD93. Cd93�/� LSCs have a silenced gene expression

signature, particularly for genes involved in cell proliferation

and division as well as stem cell maintenance andmyeloid differ-

entiation. Out of the 1,120 genes differentially expressed

between BL/6 and Cd93�/� LSCs, 1,108 genes were downregu-

lated. Similarly, knockdown of CD93 in human CML stem/pro-

genitor cells reduced the expression of selected genes involved

in stem cell self-renewal (ID2,MYB, PAK2,MEIS1, and REL) and

proliferation (CK1, CDK4, and CCND2), confirming our results

obtained in the murine CML model. These transcriptional

changes resulted in a reduced colony-formation capacity

in vitro, suggesting a similar regulation of CML stem/progenitor

cells by CD93 in humans.

It is well documented that LSC self-renewal pathways are

regulated by cell-autonomous signaling through interactions be-

tween LSCs and cells of the BMmicroenvironment or via altered

intracellular signaling cascades mediated by the expression of

the oncogene itself (Holyoake and Vetrie, 2017; Riether et al.,

2015a). We demonstrate that LSCs regulate their function by

promoting intracellular CD93 signaling via the ICD of CD93 inde-

pendent of an extracellular ligand-receptor interaction. The for-

mation of the CD93 ICD in leukemia cells was dependent on
PKC activity. Similarly, in monocytes, the generation of CD93

ICD depends on PKC activity to promote their phagocytic activ-

ity (Bohlson et al., 2005a; Greenlee et al., 2009).

The ICD of CD93 contains a nuclear localization signal that is

thought to regulate gene expression by acting as a transcription

factor (Cokol et al., 2000). Genes involved in the regulation of

gene expression were significantly silenced in LSCs in the

absence of CD93 signaling. Our data suggest that signaling via

the ICD of CD93 regulates gene expression in CML LSCs

through interaction with the transcriptional regulator SCYL1

(Burman et al., 2008; Kato et al., 2002; Liu et al., 2000). SCYL1

has been previously identified to bind the ICD of CD93 through

interaction with the juxta membrane domain of CD93 (Bohlson

et al., 2005b). This signaling pathway is comparable to several

other surface receptors regulating self-renewal in CML LSCs

such as Notch, CD44, and others where the ICD fragment relo-

cates to the nucleus and regulates gene transcription (Medina

and Dotti, 2003; Okamoto et al., 2001; Schroeter et al., 1998).

The ICDs of Notch1 and CD44 act as a co-transcription factors

to trigger their own production and potentiate Notch1- and

CD44 signaling (Okamoto et al., 2001; Sjöqvist et al., 2014). Simi-

larly, CD93 deficiency resulted in a downregulation of SCYL1

suggesting a similar positive feedback loop for CD93 signaling.

Similar to CD93, the nuclear localization of ICD of Notch1 and

CD44 proteins is regulated by the activation of PKCs (Okamoto

et al., 1999; Sjöqvist et al., 2014)

The promoters of both TERT and POLB belong to the promoter

of TATA- orCAAT-lessGC-rich genes, suggesting that some tran-

scription factorsmight be involved in the transcriptional regulation

of both polymerases (Kanamoto et al., 2004;Wick et al., 1999). As

an example, SCYL1 binds to the promoters of DNA polymerases

TERT and POLB, resulting in their transcription and activation

(Deville et al., 2009; Zhao et al., 2005). TERT and POLB are active

in normal stem cells and most cancer cells, including CSCs, but

not in more differentiated cells (Deville et al., 2009; Zhao et al.,

2005). POLB expression and activity are significantly higher in pe-

ripheral blood mononuclear cells (PBMCs) of CML patients

compared to healthy donors (Canitrot et al., 2006). Similarly, telo-

merase expression and activity has been shown to increase in un-

fractionated BM cells of patients with CML during disease pro-

gression (Ohyashiki et al., 1997; Tatematsu et al., 1996;

Verstovsek et al., 2003).

Our data indicate that silencing of CD93 or SCYL1 genes in

LSCs reduces the expression of TERT and POLB in CML

LSCs, resulting in the loss of proliferation and stem cell function.

In line with these findings, studies on glioblastoma, neuroblas-

toma, breast cancer, prostate cancer, and pancreatic cancer

documented increased telomerase activity in CSCs compared

to non-CSCs. Inhibition of telomerase activity reduced self-

renewal of CSCs, documenting a role of TERT in the regulation

of stemness in CSCs (Castelo-Branco et al., 2011; Marian

et al., 2010b, 2010a; Shay and Wright, 2010).

Due to its broad expression on different cell types, including

ECs, targeting CD93 with antibodies, antibody conjugates, or

chimeric antigen receptor (CAR)-T cells is difficult. However,

the fact that the ICD of CD93 regulates gene expression and

self-renewal exclusively in BCR-ABL1-transformed cells offers

a selective targeting of this pathway in CML. We therefore
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performed a compound screen using the FDA-approved drug li-

brary and identified 10 compounds that inhibit colony formation

of BL/6, but not Cd93�/�, LSCs. MCP was tested in vitro and

in vivo and inhibited the expression of the target genes SCYL1,

TERT, and POLB and colony formation of murine and human

LSCs. In addition, MCP treatment, similar to blockade of CD93

signaling, prolonged survival of CML mice and reduced the

expression of genes related to stemness and myeloid differenti-

ation in LSCs. Because MCP is a very well-tolerated and cheap

anti-emetic drug, its efficacy to eliminate LSCs in CML patients

can be directly tested in clinical drug repurposing studies (e.g.,

in a TKI stop trial). In summary, CD93 signaling is a targetable

pathway to eliminate LSCs in CML.
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Bacterial and virus strains
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293FT Thermo Fisher Scientific Cat# R7007

Biological samples

BM aspirates from untreated, newly diagnosed
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Department of Hematology and

Central Hematology Laboratory,

Inselspital, Bern University
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N/A
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who underwent Vertebroplasty)

Inselspital, Bern University

Hospital and University of Bern

N/A

Chemicals, peptides, and recombinant proteins

Methylcellulose STEMCELL Technologies Cat# 03134

Screen-Well� FDA Approved Drug Library V2

version 1.2

Enzo Cat# BML-2843-0100

Metoclopramide Sigma Cat# M0763. CAS: 7232-21-5 (hydrochloride)
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Puromycin Sigma Cat# P8833. CAS: 58-58-2 (dihydrochloride)

Nilotinib Novartis Sigma
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Streptavidin-BD Horizon V500 BD PharMingen Cat# 561419, RRID:AB_10611863

Fixable viability dye-eFluor450 Thermo Fisher Scientific Cat# 65-0863-14

Fixable viability dye-eFluor780 Thermo Fisher Scientific Cat# 65-0865-14
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NucRed Live 647 ReadyProbes Thermo Fisher Scientific Cat# R37106

EcoRI New England BioLabs Cat# R0101M

XhoI New England BioLabs Cat# R0146M

NP40 Thermo Fisher Scientific Cat# 28324

Laemmli buffer Biorad Cat# 610747

Mini-PROTEAN� TGX Stain-Free

Protein Gels

Biorad Cat# 4568096

Trans-Blot� Turbo RTA Mini PVDF

Transfer Kit

Biorad Cat# 1704272

Clarity Western ECL Substrate Biorad Cat# 1705060

Aquatex Merck Millipore Cat# 108562

BrDU Sigma Cat# B5002. CAS Number 59-14-3

Critical commercial assays

DAB Detection kit Leica Biosystems Cat# DS9800

SuperScript III Reverse Transcriptase kit Thermo Fisher Scientific Cat# 18080085

Bond Polymer Refine Red Detection kit Leica Biosystems Cat# DS9390

TruSeq ChIP Sample Prep Kit Illumina IP-202-1012

RNA Easy Micro Kit QIAGEN Cat# 74004

Quantifluor RNA System Kit Promega Cat# E3310

SMART-Seq v4 Ultra Low Input RNA Kit Takara Bio Cat# 634894

High Sensitivity NGS Fragment Analysis Kit Agilent Cat# DNF-474-0500

BD PharMingen BrdU Flow Kit BD PharMingen Cat# 552598

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw and analyzed data This paper GEO: GSE149358

Primer sequences This paper Tables S4 and S6

Experimental models: cell lines

K562 ATCC ATCC CCL-243. RRID:CVCL_0004

EL4 ATCC ATCC TIB-39. RRID:CVCL_0255

STR-4 Aizawa et al., 1991 N/A

Experimental models: organisms/strains

Mouse: C57BL/6J Charles River Strain Code 632

Mouse: CD93�/� Norsworthy et al., 2004 N/A

Oligonucleotides

siRNA targeting human CD93 Santa Cruz Biotechnolgy Cat#: sc-105157

esiRNA targeting murine Scyl1 Sigma Cat#: EMU022211

shRNA targeting murine CD93 Santa Cruz Biotechnolgy Cat#: sc-106980-V

Control scrambled shRNA lentiviral particles Santa Cruz Biotechnolgy Cat#: sc-108080

Actb, FW: AGATGACCCAGATCAT

GTTTGAG

This paper N/A

Actb, RV: GTACGACCAGAGGCATACAG This paper N/A

Ccnd2, FW: TGGATGCTAGAGGTC

TGTGAG

This paper N/A

CCnd2, RV: GGATGGTCTCTTTCAG

CTTGG

This paper N/A

Cd93, FW: CAGTACAGCCCAACACCAG This paper N/A

Cd93, RV: GAGAGTCCAGTCAAGTCA

TTCAG

This paper N/A

Cdk4, FW: AATGTTGTACGGCTGATGG This paper N/A

Cdk4, RV: GTGCTTTGTCCAGGTATGTC This paper N/A

Gapdh, FW: AGAACATCATCCCTGCATCC This paper N/A

Gapdh, FW: TCATCATACTTGGCAGGT

TTCTC

This paper N/A

Additional primer sequences for qRT-PCR This paper Table S4

Recombinant DNA

pLVX-AcGFP1-N1 Clontech Cat#: 632154

pMSCV-IRES-GFP II Addgene, Holst et al., 2006 Cat#: 52107

pMSCV-IRES-CFP II Addgene, Holst et al., 2006 Cat#: 52109

pMDLg/pRRE Addgene, Dull et al., 1998 Cat#: 12251

pRSV-Rev Addgene, Dull et al., 1998 Cat#: 12253

pCMV-VSV-G Addgene, (Stewart et al., 2003) Cat#: 8454

pLVX-AcGFP1-N1-Cd93 This paper N/A

pMSCV-IRES-GFP-Cd93 This paper N/A

pMSCV-IRES-GFP-Scyl1 This paper N/A

pMSCV-IRES-GFP-BCR-ABL1 This paper, Riether et al., 2015b N/A

pMSCV-IRES-CFP-BCR-ABL1 This paper N/A

SCYL1 Gene ORF cDNA clone Sino Biological Cat#: MG51756-NM

Software and algorithms

FlowJo software v.10.6 TreeStar N/A

Phobius database Stockholm Bioinformatics

Center

https://phobius.sbc.su.se/

IDEAS image analysis software Merck Millipore N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Illumina RTA version 2.4.11 Illumina N/A

bcl2fastq v2.20.0.422. Illumina N/A

SeqMan NGen software v.15 DNASTAR N/A

ArrayStar software v.15 DNASTAR N/A

Partek� Genomics SuiteTM software, v.7 Partek N/A

GSEA software v.3.0 Broad Institute https://software.broadinstitute.org/cancer/

software/gsea/wiki/index.php/GSEA_v3.

0_Release_Notes

Pathcards database Weizmann Institute

of Science

https://pathcards.genecards.org/

RAMALHO_STEMNESS_UP Ramalho-Santos, 2002 https://www.gsea-msigdb.org/gsea/msigdb/

cards/RAMALHO_STEMNESS_UP

MA_MYELOID_DIFFERENTIATION_UP Ma et al., 2002 https://www.gsea-msigdb.org/gsea/msigdb/

cards/MA_MYELOID_DIFFERENTIATION_UP

ELDA software Hu and Smyth, 2009 http://bioinf.wehi.edu.au/software/elda/)

GraphPad Prism� software v7.0 GraphPad N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Carsten

Riether (carsten.riether@dbmr.unibe.ch).

Materials availability
All unique reagent generated in this study are available from the Lead Contact without restriction.

Data and code availability
All RNA-seq data compiled for this study is made publicly available on the Gene Expression Omnibus (GEO) website (https://www.

ncbi.nlm.nih.gov/geo/) under the accession number GSE149358. This study does not include the development of new code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient samples
BM aspirates from untreated, newly diagnosed CML patients at the Department of Hematology and Central Hematology Laboratory,

Inselspital, Bern University Hospital and University of Bern, Switzerland, were obtained after written informed consent. BM from

healthy donors was collected from orthopedic patients who underwent Vertebroplasty. Patient characteristics are listed in Table

S3. Analysis of BM samples was approved by the local ethical committee of the Canton of Bern, Switzerland (KEK 122/14 and

2019-01627).

Cell lines
The leukemia cell line BCR-ABL1-expressing leukemia cell lines K562 (Chen, 1985) and EL-4 (Gorer, 1950) were purchased from

ATCC, the Platinum-E (Plat-E) Packaging Cell Line from Cell Biolabs (cat. RV-10) and the 293FT packaging cell line from Ther-

moFisher (cat. R70007). Therefore, no additional authentication was performed. The BM endothelial cell line STR-4 (Aizawa

et al., 1991) was kindly provided by Prof. M. Manz (University Hospital Z€urich, Switzerland). The cells line were tested myco-

plasma-free and was were grown in FCS-containing medium recommended by ATCC (http://www.atcc.org/?

geo_country=us) or by Cell Biolabs and ThermoFisher supplemented with 100U/ml penicillin, and 100 mg/ml of streptomycin

in a humidified atmosphere of 95% air and 5% CO2 at 37�C at a low passage number. Media were routinely changed every

3 days (Chen, 1985).

Mice
C57BL/6J (BL/6) mice were from Charles Rivers (Sulzfeld, Germany). Cd93�/� on BL/6 background were provided by Prof. Hans

Acha-Orbea (University of Lausanne). BL/6 background was confirmed by SNP analysis performed at Taconic. Experiments were

performed with age- (6-8 weeks) and sex-matched animals of both genders. Mice were housed under specific pathogen–free
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conditions in individually ventilated cages with food and water ad libitum and were regularly monitored for pathogens. Animal exper-

iments were approved by the local experimental animal committee of the Canton of Bern and performed according to Swiss laws for

animal protection.

METHOD DETAILS

Study design
In hypothesis-driven experimental designs, we addressed themolecular mechanisms ofCd93-signaling in LSCs in amurinemodel of

CML using BL/6 and Cd93�/� mice and how Cd93-signaling can be pharmacologically targeted. In addition, leukemia development,

survival, LSC proliferation and LSC functionality was assessed. All experiments were performedwith 6- to 8-week-oldmice housed in

a specific pathogen-free facility in individually ventilated cages. Food was provided ad libitum. Mice were assigned randomly to

different treatment groups. These investigations were extended to CML cell lines and primary BM and leukapheresis samples

from newly diagnosed CML patients to further investigate the molecular mechanisms and demonstrate the human relevance of

the findings.

All experiments were conducted and analyzed in a non-blinded fashion. Information on biological and technical replicates are indi-

cated in figure legends.

Antibodies
Mouse: ac-kit-PE-Cy7 (cat. 105813, clone 2B8, 1:600), and -APC-Cy7 (cat. 105826, clone 2B8, 1:300), aSca-1-PerCP-Cy5.5 (cat.

108123, clone D7, 1:600), aCD16/32-PE-Cy7 (cat. 101318, clone 93, 1:200), aCD90.2-AlexaFluor 700 (cat. 105320, clone 30-H12,

1:100), aCD150-Pacific Blue (cat. 115923, clone TC15-12.2, 1:100), aCD127-PE (cat. 121111, clone SB/199, 1:100), aCD48-Alexa-

Fluor 700 (cat. 103425, clone HM48-1, 1:100), aGr-1-PE (cat. 108407, clone: RB6-8C5, 1:400), aGr-1-biotin (cat. 108404, clone RB6-

8C5, 1:300), aCD135-PE (cat. 135306, clone A2F10, 1:100), aCD19-APC-Cy7 (cat. 115530, clone 6D5, 1:300) and CD19-biotin (cat.

115503, clone 6D5, 1:300), aCD11b-PE-Cy7 (cat. 101216, clone M1/70, 1:200), aCD3ε-biotin (cat. 100304, clone 145-2C11, 1:300),

aTer119-biotin (cat. 116203, clone Ter-119, 1:300), aCD93-APC (cat. 136509, clone AA4.1, 1:200) and the corresponding isotype

control (cat. 400611, clone RTK4530) were from BioLegend. aCD34-eFluor 450 (cat. 48-0341-82, clone RAM34, 1:100) was from

Thermo Fisher. Streptavidin-BD Horizon V500 was from BD PharMingen (cat. 561419, 1:1000). Lineage depletion was performed

with a cocktail of lineage-specific antibodies (aCD3a-biotin, aCD19-biotin, aGr-1-biotin, aTer119-biotin, listed above in detail) using

abiotin microbeads and autoMACS system (Miltenyi Biotec).

Human: aCD34-APC (cat. 343608, clone 561, 1:80) and aCD34-APC-Cy7 (cat. 343513, clone 561, 1:100), aCD45-Pacific-Blue (cat.

304022, cloneHI30, 1:300),aCD38-PE-Cy7 (cat. 303515, cloneHIT2, 1:50) and aCD90-PerCP-Cy5.5 (cat. 328118, clone 5E10, 1:100)

were fromBioLegend. Lineage-positive cells were excluded by staining using biotinylated aCD2 (cat. 300204, clone RPA2.10, 1:100),

aCD3 (cat. 317320, clone OKT3, 1:100), aCD14 (cat. 325624, clone HCD14, 1:100), aCD16 (cat. 302004, clone 3G8, 1:100), aCD19

(cat. 302203, clone HIB19, 1:100), aCD56 (cat. 318320, clone HCD56, 1:100) and aCD235ab (cat. 306618, clone HIR2, 1:100) (Bio-

Legend), followed by a second step using streptavidin-BD-Horizon-V500 (cat. 561419, 1:1000, BD PharMingen). aCD93 (cat.

HPA009300, 1:50) was from Sigma. aCD93 (cat. ab134079, 1:1000) was from Abcam. Anti-rabbit IgG (H+L), F(ab’)2 Fragment Alex

Fluor 488 was from Cell signaling (cat. 4412, 1:1000). Goat-anti-rabbit Alexa647 secondary antibody was from Thermo Fisher Scien-

tific (cat. A32733, 1:2000). Fixable viability dye-eFluor450 (cat. 65-0863-14, 1:4000) and eFluor780 (cat. 65-0865-14, 1:5000)was from

Thermo Fisher Scientific

Samples were acquired on a BD LSRFortessa and sorting procedures were conducted using a BD FACS Aria III (BD Biosciences).

Data were analyzed using FlowJo software v.10.6 (TreeStar).

All primary antibodies for Western Blot were purchased from Abcam: aGFP (cat. ab290, 1:1000), a-lamin B1 (cat. Ab16048,

1:1000), a-alpha tubulin (DM1A) (cat. ab7291, 1:1000). All secondary antibodies were purchased from Cell signaling: a-mouse IgG

(cat. 7076, 1:10000), a�rabbit IgG (cat. 7074, 1:10000).

Colony assays
Colony assays from BM lin- cells of CML and naive mice and CD34+ stem/progenitor cells of human CML patients were performed as

described before (Riether et al., 2015c).

For mouse colony assays 103 FACS-purified LSKs or LSCs were plated in methylcellulose (cat. 03134, STEMCELL Technologies)

and colonies were enumerated 7 days later. For serial re-plating experiments, 104 cells were collected from preceding colony assays

and replated in methylcellulose. Colonies were enumerated after seven days.

For the drug library screen, we used compounds from the Screen-Well� FDA Approved Drug Library V2 version 1.2 (cat. BML-

2843-0100, Enzo, Table S2). For this assay, 103 FACS-purified murine LSCs were incubated overnight in 96 well V-bottom plates

in the presence of 1 mM compound (Table S2) or vehicle followed by plating methylcellulose. Colonies were enumerated after seven

days.

For experiments using metoclopramide (cat. M0763, Sigma), 103 FACS-purified murine LSCs or 2x103 human CD34+ stem/pro-

genitor cells were incubated overnight in 96 well V-bottom plates in the presence of 0.1 and 1 mM metoclopramide, 5 mM nilotinib

or vehicle followed by plating methylcellulose. Colonies were enumerated 7 days and 14 days later, respectively.
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For re-plating assays 104 or 2x104 cells isolated from primary mouse and human colony assays, respectively, were subsequently

replated in methylcellulose in the absence of any compound. Colony were enumerated 7 days and 14 days later.

Gene silencing of CD93, Cd93 and Scyl1
siRNA: HumanCD93 andmurine Scyl1 genes were silenced in human lin-CD90+CD34+ BM cells and murine LSCs respectively using

siRNA and esiRNA according to the manufacturer’s instructions (Santa Cruz Biotechnology (cat. sc-105157) and Sigma (cat.

EMU022211), respectively) with minor modifications to increase silencing efficiency. Briefly, siRNA, esiRNA or scrambled controls

were mixed with transfection medium and Lipofectamine LTX (cat. 15338500, Thermo Fisher Scientific) in serum-free transfection

media. Cells were subsequently treated with transfection complexes in the presence of antibiotic-free growth medium overnight

and were further used for functional assays and determination of the expression for selected genes of interest.

shRNA: Cd93 mRNA was silenced in murine LSCs using ready-to-use lentiviral particles (shCd93: cat. sc-106980-V; scr: cat. sc-

108080, Santa Cruz Biotechnology). Briefly, 5x104 LSCs cells were transduced overnight by spin-transfection at 37�C and 5% CO2

with virus of shCd93 lentiviral particles or the respective control scrambled RNA lentiviral particles (MOI: 5, Santa Cruz Biotechnology

Inc.) in the presence of 5 mg/ml polybrene (cat. H9268, Sigma). After spin transfection, mediumwas removed, and cells were cultured

in medium supplemented with 1 mg/ml puromycin (cat. P8833, Sigma) for 48h to select for stable expression of shCd93 or scrambled

(scr) RNA.

Overexpression of mCd93
The mouse Cd93 gene (ENSMUSG00000027435; mCd93) was cloned from FACS-purified B cell precursors. cDNA synthesis was

carried out using SuperScript III Reverse Transcriptase kit (cat. 18080085, Thermo Fisher Scientific). The open reading frame

(ORF) of Cd93 with a total length of 1.932kb (644aa) was amplified by PCR using tagged primes for the restriction enzymes (EcoRI

and XhoI, cat. R0101M and R0146M, New England BioLabs). In addition, the forward primer harbored the Kozak consensus

sequence (GCCACC) before the start codon to enhance the protein translation. Next, the Cd93 ORF was cloned into pMSCV-

IRES-GFP II (pMIG II) plasmid (Holst et al., 2006)(cat. 52107, Addgene).

TheCd93intra construct, lacking the sequence encoding for the extracellular domain of Cd93was designed by cloning of the signal

peptide (1-22aa), transmembrane (574-598aa) and cytoplasmic (599-644aa) domains of the Cd93 ORF (total length of 282bp) into a

pMIG II plasmid. To predict and select the different Cd93 protein domains prior to cloning we used the Phobius database (https://

phobius.sbc.su.se/).

Retroviral vectors expressing Cd93 or Cd93intra were generated using Platinum-E (Plat-E) Packaging Cell Line (Cell Biolabs). Next,

FACS-purified murine LSKs or CML LSCs derived from BL/6 and/or Cd93-/- mice were transduced with retroviral vectors expressing

Cd93, Cd93intra or an empty vector as a control (mock). Two days after transduction, LSCs or LSKs expressing Cd93, Cd93intra or

mock GFP were FACS-purified and plated in methylcellulose.

Overexpression of Scyl1
The mouse Scyl1 gene (ENSMUSG00000024941;mScyl1) was sub-cloned from the SCYL1 Gene ORF cDNA clone (cat. MG51756-

NM, Sino Biological). cDNA synthesis was carried out using SuperScript III Reverse Transcriptase kit (cat. 18080085, Thermo Fisher

Scientific). The open reading frame (ORF) of Scyl1 with a total length of 2.4kb (289aa) was amplified by PCR using tagged primes for

the restriction enzymes (EcoRI and XhoI, cat. R0101M and R0146M, New England BioLabs). In addition, the forward primer harbored

the Kozak consensus sequence (GCCACC) before the start codon to enhance the protein translation. Next, the mScyl1 ORF was

cloned into pMSCV-IRES-GFP II (pMIG II) plasmid (cat. 52107, Addgene).

Retroviral vectors expressing Scyl1 were generated using Platinum-E (Plat-E) Packaging Cell Line (Cell Biolabs). Next, FACS-pu-

rifiedmurine CML LSCs derived from BL/6 and/orCd93-/- mice were transduced with retroviral vectors expressing Scyl1 or an empty

vector as a control (mock). Two days after transduction, LSCs expressingScyl1 ormockGFPwere FACS-purified and plated inmeth-

ylcellulose. Successful overexpression of Scyl1 was assessed by qRT-PCR analysis.

Sub-cellular localization of mCd93
ThemouseCd93 gene was cloned in pAcGFP1-N1mammalian expressing plasmid and as the lentiviral construct pLVX-AcGFP1-N1

(cat. 632154, Clontech). Lentiviral particles (3rd generation) were generated into the 293FT packaging cell line (cat. R70007, Thermo

Fisher Scientific) using pMDLg/pRRE, pRSV-Rev and pCMV-VSV-G plasmids (Dull et al., 1998)(Addgene). For transfection, adherent

STR-4 cells were seeded at density 105 cells/well in antibiotics-free medium and left to adhere for 5h. Cells growing in suspension

(K562 and EL4 cells) were seeded at a density 105 cells/well in antibiotics-free medium shortly before transfection. Liposomal trans-

fection was performed with Lipofectamine LTX according to the manufacturers’ instructions (cat. 15338500, Thermo Fisher Scien-

tific), using the previously optimized conditions (per 105 cells: 0.25 mg plasmid DNA, 2.5 mL Lipofectamine LTX, and for K562 addi-

tionally 0.25 mL PLUS reagent). 48h post transfection/transduction, the expression of mCD93-GFP fusion protein was analyzed by

ImageStream or Western Blot. For experiments with nilotinib, 70 mM of nilotinib or vehicle (DMSO) were added to the culture for

72h. For experiments using the PKC-a/b inhibitor PKC 20-28 (cat. 476480, Merck Millipore) or metoclopramide (cat. M0763, Sigma),

50 mM and 0.1 mM of compound or vehicle (H20) were added to the culture for 72h, respectively.
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ImageStream data acquisition and analysis
Briefly, cells expressing CD93-GFP were stained with fixable viability dye eFluor780 (cat. 65-0865-14, 1:5000, Thermo Fisher Scien-

tific) for 30 min at 4�C. Cells were subsequently fixed with 4% paraformaldehyde for 10 min at room temperature and then permea-

bilized for 5 min at room temperature with DAKO Wash (cat. S300685-2, Dako) diluted in DAKO diluent (cat. S0809, Dako). After

washing, nuclei were stained with 10 mg/ml DAPI (cat. D1306, Thermo Fisher Scientific) or NucRed Live 647 ReadyProbes (cat.

R37106, Thermo Fisher Scientific) according to the manufacturers’ instructions. Data was acquired on the Amnis ImageStreamX

Mark II instrument (Merck Millipore). Spectral compensation, background correction and adaption of the nuclear mask was per-

formed, and images were analyzed with the IDEAS image analysis software by calculating nuclear translocation of GFP-labeled

CD93. A minimum 1200 GFP+ cells were analyzed per sample unless otherwise specified in the Figure legends.

To address nuclear CD93 expression in human CD34+ CML stem/progenitor cells and K562 and STR-4 cell lines, cells were

sequentially stained after fixation and permeabilization prior to staining with aCD93 (cat. ab134079, 1:1000) and anti-rabbit IgG

(H+L), F(ab’)2 Fragment Alex Fluor 488 was from Cell signaling (cat. 4412, 1:1000) both diluted in DAKO diluent (cat. S0809, Dako).

Sub-cellular fractionation and Western Blot
After the FACS-sorting, K562 cells expressing pLVX-AcGFP1-N1 or pLVX-AcGFP1-N1-Cd93were washed twice with ice-cold PBS.

The cell pellet was re-suspended in 0.1%NP40 (cat. 28324, Thermo Fisher Scientific)-PBS. An aliquot was removed as the whole cell

lysate. The remaining lysate was centrifuged for 10 s. and the supernatant was transferred to a new tube as the cytoplasmic fraction.

The pellet was re-suspended in ice-cold NP40-PBS followed by the centrifugation. The supernatant was discarded, and the remain-

ing pellet was kept as a nuclear fraction. The whole cell lysate and the nuclear fraction were re-suspended in 1x Laemmli buffer (cat.

610747, Biorad) containing b- mercaptoethanol followed by sonication using microprobes 5x for 2 s. at 40% intensity. The cyto-

plasmic fraction was resuspended in Laemmli buffer; all samples were boiled for 5min and loaded on the 4%–20%Mini-PROTEAN�
TGXStain-Free Protein Gels (cat. 4568096, Biorad). The transfer was performed using Trans-Blot� Turbo RTAMini PVDF Transfer Kit

(cat. 1704272, Biorad). The membranes were blocked for 2h in 5% BSA and incubated overnight, at 4�C, with the following anti-

bodies: aGFP (cat. ab290, abcam, 1:1000), a-lamin B1 (cat. Ab16048, Abcam, 1:1000) and a-alpha tubulin (DM1A) (cat. ab7291, Ab-

cam, 1:1000). The membranes were incubated with HRP conjugated secondary antibodies: a-mouse IgG (cat. 7076, Cell signaling,

1:10000) or a-rabbit IgG (cat. 7074, Cell signaling, 1:1000). Proteins were detected with ClarityWestern ECL Substrate (cat. 1705060,

Biorad) and visualized on ChemiDoc Imaging Systems.

Immunohistochemistry (IHC)
IHC stainings were performed on a Leica BONDRX automated immunostainer (Leica Biosystems). Thin sections (1-2 mm) of formalin-

fixed paraffin-embedded (FFPE) tissue were pre-treated by boiling at 100�C in citrate buffer, pH 6.0 for 30min. Double stainings were

performed sequentially: First, slides were stained with rabbit anti-human CD93 (polyclonal, Sigma #HPA012368; dilution 1:50) for

30 min, followed by visualization using the Bond Polymer Refine DAB Detection kit (cat. DS9800, Leica Biosystems). Then, slides

were counterstained usingmouse anti-human CD34 (clone QBEnd/10, Cell Marque cat. 134M-16; dilution 1:200) for 15min, followed

by visualization using the Bond Polymer Refine RedDetection kit (cat. DS9390, Leica Biosystems). Finally, the sampleswere counter-

stained with hematoxylin and mounted with Aquatex� (cat. 108562, Merck Millipore). Slides were digitized using a Pannoramic 250

Flash III scanner (3DHistech). Analysis and quantification of the stainings was performed under the supervision of a board-certified

surgical pathologist (C.M.S.).

High-throughput transcriptome analysis using next generation RNA sequencing (RNA-Seq)
Total RNA was extracted from naive BL/6 and CD93�/� LSKs (n = 2/group) and BL/6 LSCs isolated from primary CML mice (n = 3/

group) that were subjected to in vivo treatment with either vehicle or MCP (10mg/kg) using the RNeasy Micro Kit (cat. 74004,

QIAGEN). Total RNA quality was determined by a Bioanalyzer using the RNA 6000 Nano Chip (Agilent Technologies) and quantified

by fluorometry using the Quantifluor RNA System Kit (cat. E3310, Promega) on a Quantus Fluorometer Instrument (Promega).

Library preparation was performed from total RNA using the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (Takara Bio).

Libraries were quality-checked on the Fragment Analyzer using the High Sensitivity NGS Fragment Analysis Kit (Agilent). Samples

were pooled to equal molarity and the pool was quantified by fluorometry, in order to be loaded at a final concentration of 2pM

on the NextSeq 500 instrument (Illumina). Samples were sequenced SR76 using the NextSeq 500 High Output Kit 75-cycles (Illumina)

and primary data analysis was performed using the Illumina RTA version 2.4.11 and bcl2fastq v2.20.0.422.

RNA-Seq data analysis
The RNA-Seq data was assembled by SeqMan NGen software v.15 and analyzed using ArrayStar software v.15 (DNASTAR, USA).

The level of gene expression was assessed after normalization and log2 transformation. The dataset was analyzed by two-way

ANOVA. Genes with significant difference in their expression at FDR-p < 0.05 and fold differences R 1.5 were selected. Data

were clustered using standard Euclidean’s method based on the average linkage and heatmaps were generated according to the

standard normal distribution of the values.
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Gene ontology (GO) and gene set enrichment analysis (GSEA).
GO enrichment was assessed using Partek� Genomics SuiteTM software, v.7 (Partek). The list of differently expressed genes was

grouped into functional hierarchies. Enrichment scores were calculated using a chi-square test comparing the proportion of the

gene list in a group to the proportion of the background genes. A value of 3 or higher corresponded to a significant overexpression

(p < 0.05). GSEA was performed using GSEA software v.3.0 (Broad Institute). Enrichment analysis was assessed for all pathway-

related genes acquired from pathcards database (https://pathcards.genecards.org/) and the gene sets RAMALHO_STEMNESS_UP

(Ramalho-Santos, 2002) and MA_MYELOID_DIFFERENTIATION_UP (Ma et al., 2002).

qRT-PCR
Total RNA was extracted from FACS-sorted human CD34+ LSCs, murine LSCs or LSKs using the RNeasy Micro Kit (cat. 74004,

QIAGEN). For each sample, cDNA synthesis was assessed using High Capacity cDNAReverse Transcription Kit (cat. 4368814, Ther-

moFisher). Primers were designed for each gene using Primerquest Software (Integrated DNA Technologies). For qRT-PCR analysis,

synthesized cDNAs amplified with specific primers using FastStart Universal SYBR� Green 2X PCR Master Mix (cat. 04913850001,

Roche). Raw values were normalized using geometric mean of reference genes (ACTB and GAPDH). Real-time PCR reactions were

performed in replicates and included no-template controls using ABI Prism 7500 Sequence Detection System (Applied Biosystems).

The fold difference for each sample was calculated using the comparative Ct method. The following primer pairs were used to deter-

mine mRNA expression of respective genes in human CD34+ LSCs, murine LSCs or LSKs are depicted in Table S4.

CML model
FACS-purified LSKs were harvested and transduced twice with BCR-ABL1-GFP or -CFP retrovirus by spin infection at a multiplicity

of infection (MOI) of 0.5. 3x104 cells were injected intravenously (i.v.) into the tail vein of non-irradiated syngeneic recipients. To deter-

mine residual disease in survivingmice, CMLmice were sacrificed 90 days after transplantation and 5x106 BM cells were injected i.v.

into lethally irradiated (2 3 6.5 Gy) recipient mice.

For MCP treatment (prophylactic setting), CMLmice were treated daily once p.o. with MCP (Sigma) at a concentration of 10mg/kg

(Shalaby et al., 2013) starting at the day of CML induction.

ForMCP treatment (therapeutic setting), BL/6 CMLmicewere randomized at day 13 after leukemia induction andwere treatedwith

either vehicle or MCP (10mg/kg) for 3 days. At day 16, mice were sacrificed, and BM LSCs of individual mice were FACS-purified and

subjected to RNA sequencing analysis.

LSPC and HSPC analysis
LSCP numbers in CMLmice anHSCP numbers in naivemicewere analyzed as described before (Riether et al., 2015b; Sch€urch et al.,

2014).

LSC homing experiments
5x104 BL/6 or Cd93�/� LSCs were transplanted i.v. into lethally irradiated (2 3 6.5Gy) or non-irradiated BL/6 mice. 14h later mice

were sacrificed, and BM was analyzed for the presence of GFP+ LSCs.

BrdU incorporation in vivo

CML mice were injected i.p. with 1 mg BrdU (cat. B5002, Sigma). 14 h later, mice were sacrificed and BrdU staining was performed

using the BD PharMingen BrdU Flow Kit according to the manufacturer’s instructions (cat. 552598).

QUANTIFICATION AND STATISTICAL ANALYSIS

All flow cytometry, in vitro and in vivo datawere analyzed and plotted usingGraphPad Prism� software v7.0 (GraphPad). Bars and error

bars indicatemeans and standard deviations of the indicated number of independent biological replicates, respectively, if not otherwise

specified. Two-tailed Student’s t test, one-way-ANOVA followed by Dunnett’s or Tukey’s post-test, two-way ANOVA followed by Bon-

ferroni post-test were used as indicated in the legends. LSC frequencies with 95% confidence intervals (CI) were estimated with ELDA

software (http://bioinf.wehi.edu.au/software/elda/) andsignificantdifferences inLSCfrequencywerecalculatedbyc2 test in limitingdilu-

tionassaysaccording to (HuandSmyth, 2009).Significanceofdifferences inKaplan-Meier survival curveswasdeterminedusing the log-

rank test (two-tailed). p < 0.05 was considered significant. Details on the quantification, normalization and statistical tests used in every

experiment can be found in the corresponding figure legend. n represents the number of independent replicates in each experiment.
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