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SUMMARY

Delineating the cell type–specific expression of hepatic tight
junction genes showed that claudin-3 is the predominant
tight junction protein on hepatocytes and cholangiocytes.
In vivo study of claudin-3 knockout mice showed that
claudin-3 is necessary to maintain lipid metabolism, biliary-
barrier function, and optimal liver regeneration.

BACKGROUND & AIMS: Tight junctions in the liver are essential
to maintain the blood-biliary barrier, however, the functional
contribution of individual tight junction proteins to barrier and
metabolic homeostasis remains largely unexplored. Here, we
describe the cell type–specific expression of tight junction genes
in the murine liver, and explore the regulation and functional
importance of the transmembrane protein claudin-3 in liver
metabolism, barrier function, and cell proliferation.

METHODS: The cell type–specific expression of hepatic tight
junction genes is described using our mouse liver single-cell
sequencing data set. Differential gene expression in Cldn3-/-

and Cldn3þ/þ livers was assessed in young and aged mice by
RNA sequencing (RNA-seq), and hepatic tissue was analyzed for
FLA 5.6.0 DTD � JCMGH784 proof �
lipid content and bile acid composition. A surgical model of
partial hepatectomy was used to induce liver cell proliferation.

RESULTS: Claudin-3 is a highly expressed tight junction protein found
in the liver and is expressed predominantly in hepatocytes and chol-
angiocytes. The histology of Cldn3-/- livers showed no overt phenotype,
and the canalicular tight junctions appeared intact. Nevertheless, by
RNA-seq we detected a down-regulation of metabolic pathways in the
livers of Cldn3-/- young and aged mice, as well as a decrease in lipid
content and a weakened biliary barrier for primary bile acids, such as
taurocholic acid, taurochenodeoxycholic acid, and taurine-conjugated
muricholic acid. Coinciding with defects in the biliary barrier and
lower lipid metabolism, there was a diminished hepatocyte prolifera-
tive response in Cldn3-/- mice after partial hepatectomy.

CONCLUSIONS: Our data show that, in the liver, claudin-3 is
necessary to maintain metabolic homeostasis, retention of bile
acids, and optimal hepatocyte proliferation during liver
regeneration. The RNA-seq data set can be accessed Qat: https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc¼GSE159914
(token: wrmhoaccjrgrjyz). (Cell Mol Gastroenterol Hepatol
2021;-:-–-; https://doi.org/10.1016/j.jcmgh.2021.04.003)

Keywords: Tight Junction; Bile Acid; Liver Regeneration; Clau-
din; Single-Cell RNA Sequencing.
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ight junction (TJ) proteins can be found in almost every
13

Abbreviations used in this paper: ALP, alkaline phosphatase; ALT,
alanine-aminotransferase; AST, aspartate-aminotransferase; CA,
cholic acid; DAPI, 40,6-diamidino-2-phenylindole; mRNA, messenger
RNA; PBS, phosphate-buffered saline; pHH3, phosphohistone H3;
PHx, partial hepatectomy; qPCR, quantitative polymerase chain re-
action; scRNA-seq, single-cell RNA sequencing; TCA, taurocholic
acid; TJ, tight junction; UMI, unique molecular identifiers.
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Torgan of the body, where their primary function is to
create a semipermeable paracellular barrier that restricts
passage of ions and solutes.1 TJ protein expression is highly
organ-specific.2,3 In the liver, TJs act as a separator of bile
and blood circulation in hepatocytes and cholangiocytes.4

The molecular components of hepatic TJs comprise a num-
ber of different transmembrane and cytoplasmic proteins
that have varying expression intensity and localization
within the tissue.4 Thus far, the cell type–specific expression
of hepatic TJ proteins has remained largely unexplored.

The protein family that best defines the barrier and sealing
properties of a TJ are the claudins.5 Claudins are trans-
membrane proteins that have 27 known family members in
human beings.6 Structurally, claudins consist of 4 trans-
membrane segments, 2 extracellular loops, and 1 intracellular
loop, with the N-terminus and C-terminus facing the cytosol.
The C-terminal end also harbors the PDZ binding motif, which
is the binding site for other proteins of the TJ complex.7–9 The
extracellular loops of some claudins may serve as binding
sites for hepatitis C virus or Clostridium perfringens enter-
otoxin.10–13 Sealing-type claudin-1, -3, -5, -11, -14, and -19
form a tightly closed paracellular barrier, whereas the pore-
forming claudin-2, -10a/b, -15,-17, and -21 enable the selec-
tive passage of ions and solutes.6,14,15 Previous reports have
shown that claudins of both sealing and pore-forming types
can be found in liver tissue.4 Mutations and/or abnormal
expression of claudin proteins is associated with multiple
hepatic morbidities such as hepatomegaly, jaundice, portal
hypertension, restricted bile flow, or cirrhosis.16–19 For
example, absence of sealing claudin-1 may cause the rare
genetic disease neonatal ichthyosis and sclerosing cholangitis,
in which patients present with cholestasis and increased
serum levels of y-glutamyltransferase, transaminase activity,
and bilirubin.16,17 Knockout of pore-forming claudin-2 on the
other hand reduces bile flow and concentrates lipids and acids
within the hepatic bile of mice.18 Claudin-3 is another sealing-
type claudin20,21 that controls the barrier for calcium phos-
phate ions.22 Intestinal studies have shown that claudin-3
expression changes in high-fat or inflammatory environ-
ments, suggesting a role for metabolic regulation.23–25 Until
now, it was not known if claudin-3 contributed to liver lipid
metabolism or regenerative recovery after tissue loss.

Using data from single-cell RNA sequencing, we delin-
eate the cell type–specific TJ gene expression of a mouse
liver. We identified Cldn3 as one of the most abundant
transmembrane TJ genes in the liver with expression in
hepatocytes and cholangiocytes. Using Cldn3-/- mice, we
found that claudin-3 is essential for the liver’s metabolic
homeostasis and that loss of claudin-3 impairs hepatocyte
proliferation after partial hepatectomy (PHx).

Results
Expression Profile of TJ Genes in Hepatic Cells

To describe the hepatic expression of TJ genes, we used
our recently published single-cell RNA sequencing (scRNA-
seq) data set of parenchymal and nonparenchymal cells from
a C57BL/6 liver.26 Unsupervised clustering identified 14
FLA 5.6.0 DTD � JCMGH784 proof �
unique cell clusters (Figure 1A). A defined set of marker genes
and clustering for cell classification identified the populations
of hepatocytes, cholangiocytes, endothelial cells, immune cells,
and stellate cells (Figure 1B). Expression of TJ genes within
these 5 populations is shown in the heatmap, with hepato-
cytes expressing Cldn3, Cldn5, Cldn12, Jam-a, and Pard3.
Cholangiocytes expressed high levels of Cldn3, Cldn6, Cldn7,
and Jam-a. Endothelial and stellate cells expressed mostly
Cldn5, but also Jam-a, Jam-b, and others. TJ messenger RNA
(mRNA) also could be detected in immune cells, including
Cldn5, Jam-a, Sympk, and Ybx3 (Figure 1C). Some TJ genes,
such as Jam-a and Ybx3, were expressed over several cell
populations. We observed that Cldn3 is the TJ gene with the
highest mRNA expression in hepatocytes and cholangiocytes
(Figure 1C and D). Confocal Z-stack imaging showed that
claudin-3 protein was localized with particularly high abun-
dance at the hepatocyte canalicular membrane (Figure 1E and
Supplementary Video 1) and had strong expression on the
luminal membranes of cholangiocytes (Figure 1F). By immu-
nofluorescence, we observed that claudin-3 protein has a
zonated expression pattern in the liver, with the highest
staining intensity in the pericentral region (Figure 1G). In
summary, our scRNA-seq and immunofluorescence data show
that claudin-3 is a prominent hepatic TJ protein that is found
predominantly on canalicular membranes of pericentral he-
patocytes and on the membranes of ductular cholangiocytes.

Effect of Claudin-3 Deletion on Liver Histology
and TJ Integrity

We next assessed if claudin-3 contributes to normal liver
homeostasis and function by studying mice with global
claudin-3 knockout.27 We first verified that Cldn3-/- mice
had no claudin-3 protein expression and confirmed the
specificity of the claudin-3 antibody by Western blot and by
immunostaining of liver tissue (Figure 2A and B). The livers
of Cldn3-/- mice had no macroscopic anatomic abnormalities
(Figure 2C) and the liver’s histology was unremarkable
compared with age-matched littermate controls (Figure 2D).
Furthermore, we could not detect gaps or discontinuations
at TJs by electron microscopy (Figure 2E). There was also no
difference in collagen deposition in male compared with
female Cldn3-/- livers (Figure 2F and G). Serum analysis
showed no difference in alanine aminotransferase (ALT Q)
and aspartate aminotransferase (AST) levels, but slightly
higher levels of alkaline phosphatase (ALP) in Cldn3-/- livers,
with 142.3 ± 15.8 U/L compared with 117.8 ± 23.3 U/L in
Cldn3þ/þ livers (Figure 2H). It has been described that loss
4 May 2021 � 3:59 am � ce DVC
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Figure 1. Cell type–specific analysis of TJ gene expression in a native mouse liver shows high expression of
claudin-3 in hepatocytes and cholangiocytes. (A) Unsupervised clustering of the scRNA-seq data used for cell classifica-
tion. (B) t-Distributed stochastic neighbor embedding (tSNE) plots depicting the expression of marker genes to define different
hepatic cell populations: hepatocytes (HC), cholangiocytes (CC), stellate cells (SC), immune cells (IC), endothelial cells (EC).
(C) Heatmap of scRNA-seq data depicting cell type–specific expression of hepatic TJ genes. Expression was normalized by
cell type. (D) tSNE plot depicting the expression of Cldn3. (E) Three-dimensional reconstruction of a 30-mm–thick confocal z-
stack section stained for claudin-3 immunofluorescence (green), DAPI (blue) in mouse liver tissue. (F) Anti–claudin-3 centered
on a bile duct. (G) Lower-magnification image showing zonated claudin-3 expression in the murine liver. (E–G) The microscope
used for fluorescent image acquisition was a panoramic 250 Flash III, 3DHISTECH, panoramic scanner software, with a
40� objective. BC, bile canaliculus; BD, bile duct; NE, normalized expression; PC, pericentral zone; PP, periportal zone.
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of TJ integrity may cause inflammation and ductular re-
actions as a result of the cytotoxic effect of bile acid
leakage.28 Confirming our observation of intact TJ structures
in Cldn3-/- livers, we did not observe an increase in CK7, a
marker for ductular reactions (Figure 2I and J) or an in-
crease in the frequency of innate or adaptive immune cells
in the livers (Figure 2K). In summary, we did not observe
any gross alterations in liver histology or signs of loss of TJ
integrity in Cldn3-/- mice.
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Claudin-3 Deletion Represses Metabolism and
Bile Synthesis Gene Expression

Questioning the absence of an overt phenotype by loss of
claudin-3, we next checked if there were any overall
changes in gene expression in Cldn3-/- livers. RNA-seq
analysis showed that there were 705 differentially
expressed genes between wild-type and Cldn3-/- livers, of
which 337 genes were up-regulated, and 368 genes were
down-regulated (Figure 3A). Genes related to cell adhesion
and cell junctions were up-regulated significantly in Cldn3-/-

livers, for example, there was higher expression of Ocln
(Occludin), Tricellulin (Marveld2), Cldn7, Cldn23, and Cgn
(Figure 3A and B). The most important changes were veri-
fied by comparative real-time quantitative polymerase chain
reaction (qPCR) (Figure 3D). From the RNA-seq data, we
also observed a significant down-regulation of genes and
pathways related to metabolism, including fatty acid–,
amino acid–, bile acid–, and lipid-related gene expression in
Cldn3-/- livers (Figure 3A and C). This observation was
consistent with the low amount of lipid droplets in Cldn3-/-

hepatocytes, as seen by electron microscopic and quantified
Oil-red-O staining (Figure 3E–G). We next questioned the
possible cause for repressed lipid metabolism in Cldn3-/-

livers. Glucose is one of the main drivers of de novo lipo-
genesis in the liver, which requires its efficient absorption in
the intestine.29 Because past reports have shown that
Claudin-3 also is expressed in the intestine,30 we hypothe-
sized that an inefficient baseline glucose absorption within
the intestine may explain the down-regulation in lipid
metabolism in Cldn3-/- mice. However, baseline blood
Figure 2. (See previous page). Effect of claudin-3 loss on liv
claudin-3 knockout were generated as described in the Methods
lysates of Cldn3þ/þ and Cldn3-/- mice. b-actin for loading contro
single specific band was seen in Cldn3þ/þ mice (n ¼ 3). (B) A
immunohistochemistry in Cldn3þ/þ and Cldn3-/- liver tissue.
Photographs of native Cldn3þ/þ and Cldn3-/- livers. (D) H&E s
centered on bile canaliculi. (F and G) Masson trichrome staining
levels in Cldn3-/- vs Cldn3þ/þ mice (n ¼ 10, means ± SD, *P <
tissue of native Cldn3þ/þ and Cldn3-/- mice. Band intensities w
tensities were compared with their group average). (J) Anti-CK7 i
blue. Representative images were taken. Quantification of the
unpaired t test). (K) Fluorescence-activated cell sorting analysis o
of immune cells was not different in Cldn3þ/þ and Cldn3-/- nat
image acquisition in this figure were an immunofluorescence
fluorescence software, and an immunohistochemistry panoramic
a 20� objective; electron microscopy, Philips CM 12. BC, bile ca
monocytes; NK, _____; NKT, _____; PC, pericentral area; PP, p

FLA 5.6.0 DTD � JCMGH784 proof �
glucose levels did not differ significantly, and Cldn3-/- mice
showed a similar absorption and clearance after oral
glucose challenge (2 mg/g bodyweight) when compared
with Cldn3þ/þ mice (Figure 3H). Accordingly, serum insulin
levels were not significantly different between Cldn3þ/þ and
Cldn3-/- in the oral glucose tolerance test (Figure 3I). Taken
together, we observed many deregulated genes in Cldn3-/-

livers, including a compensatory increase of TJ gene
expression and a repressive effect on metabolic processes in
the liver.
Effect of Claudin-3 Deletion in Aged Animals
Because we observed a repression of lipid metabolism in

Cldn3-/- mice, we next questioned how they respond to the
metabolic challenge of aging. It has been well described that
senescence-related events that come with advanced age lead
to increased accumulation of lipids and triglycerides in the
liver.31–33 We first compared liver tissue of 12-week-old and
52-week-old mice and did not observe a change in hepatic
claudin-3 protein levels resulting from age (Figure 4A). The
bodyweight of Cldn3þ/þ vs Cldn3-/- mice was similar over
time, while the liver-to-bodyweight ratio of 52-week-old
Cldn3-/- mice was slightly higher (Figure 4B and C). Liver
damage markers ALT and AST did not differ (Figure 4D),
however, we observed the same trend of increased ALP in
aged Cldn3-/- that was present in young animals (Figures 4D
and 2H). In aged mice, there was no difference in collagen
deposition owing to loss of claudin-3 expression
(Figure 4E). We next compared the transcriptomic profile of
young vs aged Cld3þ/þ and Cldn3-/- mice by RNA-seq. In
young animals there were differences owing to the loss of
claudin-3 expression, however, the metabolic challenge of
age was stronger than the effect of the loss of claudin-3 in
aged animals (Figure 4F). Analysis of differentially
expressed genes showed that in both Cldn3þ/þ and Cldn3-/-

aged animals there was a profound down-regulation of
metabolic pathways including fatty acid metabolism and
catabolic processes and an up-regulation of inflammation
and immune responses (Figure 4G and H). However, when
aged Cldn3þ/þ and Cldn3-/- were compared, only a few genes
er morphology and TJ structure integrity. Mice with global
section. (A) Anti–claudin-3 Western blot on whole-liver tissue
l. No claudin-3 was detected in Cldn3-/- samples, and only a

nti–claudin-3 immunofluorescence (green; DAPI in blue), and
Claudin-3 staining was absent in the Cldn3-/- samples. (C)
taining. (E) Transmission electron microscopy (TEM) images
of female and male liver tissue. (H) Serum AST, ALT, and ALP
.05, unpaired t test). (I) Anti-CK7 Western blot on whole-liver
ere normalized to b-actin (n ¼ 5, t test, Cldn3þ/þ band in-

mmunofluorescence (red) in periportal liver tissue, and DAPI in
Western blot below (n ¼ 5, bars represent means ± SEM,
f innate and adaptive immune cell populations. The frequency
ive livers (n ¼ 5, unpaired t test). The microscopes used for
Leica DMI4000B with a 20� objective with Leica advance
250 Flash III, 3DHISTECH, panoramic scanner software, with
naliculus; CK7 Q62, _____; ILC, _____; Inflam. Mono., inflammatory
eriportal area.
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were significantly different, particularly Apol9a, Apol9b, and
Cyp26a1, genes related to cholesterol and lipid metabolism,
which were lower in Cldn3-/- mice (Figure 4I).

Following results from our RNA-seq data and reports
that age leads to impaired lipid metabolism,31–33 we were
able to confirm a significant increase of lipid content in aged
livers, however, Cldn3-/- mice had a lower lipid content
compared with Cldn3þ/þ mice (Figure 4J) as we observed
previously in young animals (Figure 3E–G). For further
validation of the inflammatory phenotype that our gene
expression data indicated (Figure 4G and H), we showed
that the frequency of total hepatic lymphocytes increased
with age in both groups (Figure 4K). In summary, all aged
animals had higher amounts of hepatic lipids and liver
inflammation compared with young animals, and aged
Cldn3-/- mice retained lower hepatic lipid levels compared
with wild-type controls.

Impairment of the Blood-Biliary Barrier in Cldn3-/-

Livers
Our RNA-seq analysis showed that genes involved in bile

acid metabolism such as Cyp27a1, Ces1b, and Akr1c6 were
down-regulated in Cldn3-/- mice (Figure 3A). We therefore
questioned if there are lower bile acid levels in Cldn3-/- mice
by measuring their abundance in liver tissue and serum by
liquid chromatography–tandem mass spectrometry. Lower
total bile acid levels were measured in the liver tissue, while
total bile acids were higher in the serum of Cldn3-/- mice
compared with Cldn3þ/þ mice (Figure 5A and B). The pro-
portion of primary bile acids was higher in the serum of
Cldn3-/- mice (Figure 5B). Importantly, individual bile acids
were significantly less concentrated in the liver (Figure 5C),
and more highly concentrated in the serum (Figure 5D).
This included cholic acid (CA), taurocholic acid (TCA),
taurochenodeoxycholic acid, conjugated forms of muricholic
acids and the secondary bile acid tauro-7-oxolithocholic acid
(Figure 5C and D). The other individual bile acids did not
significantly differ between Cldn3þ/þ and Cldn3-/- in the
liver or serum (Figure 5E and F). The change in bile
composition prompted us to check the appearance of the
gallbladders. We did not find any incidence of gallstones in
the gallbladders and observed that Cldn3-/- gallbladders
were lighter in color compared with wild-type organs
Figure 3. (See previous page). Repressed lipid metabolism i
down-regulated genes (red circles and blue circles, respectively
seq analysis was performed by DESeq2 (n ¼ 3 for Cldn3-/- a
threshold: P value adjusted < .05). A total of 15,148 nonsignifica
significantly regulated genes related to TJs, metabolism, or bile
up-regulated and (C) top 10 down-regulated gene pathways with
native liver tissue. The fold change in mRNA expression of Cldn
unpaired t test, ***P < .001, Cldn3þ/þ control DDCT values ¼ D
means ± SEM). (E) Transmission electron microscopy (TEM) ima
less in number and size in Cldn3-/- hepatocytes. (F) Oil-red-O st
liver tissue. (G) Quantification of images from randomly chosen
represent means ± SEM, ***P < .001, Mann–Whitney test). (H) Or
given by oral gavage and blood glucose levels were determin
Cldn3-/-, exception for t ¼ 15 min Cldn3þ/þ n ¼ 5, unpaired St
serum insulin levels at the indicated times after oral glucose cha
15 min, n ¼ 7; 90 min, n ¼ 5 [Cldn3þ/þ] and n ¼ 6 [Cldn3-/-], unpa
this figure for Oil-red-O staining: panoramic 250 Flash III, 3DH
electron microscopy, Philips CM 12. ND, nondetectable.
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(Figure 6A). As a possible contributing factor to the change
in circulating bile acid composition, we checked in the RNA-
seq data if the expression of transporters is altered in
Cldn3-/- mice (Figure 6B). The expression of transporter
transcripts that showed a trend in the RNA-seq results were
verified by real-time qPCR (Figure 6C). We observed higher
expression of Ost1-b (Slc51b), and a trend for higher Asbt
(Slc10a2) levels in Cldn3-/- mice (Figure 6B and C). Because
the nuclear transcription factor Farnesoid X-receptor is a
regulator of bile transporters,34 we checked Fxr and
downstream target expression (Figure 6D). However, we
found only a modest alteration of the Farnesoid X-receptor
targets Bacs (Slc27a5) and Apoa1 (Figure 6D). Finally, we
tested the expression of Fgf15 in the ileum (Figure 6E), but
did not observe a difference in Cldn3-/- when compared with
Cldn3þ/þ animals. In conclusion, our results suggest that the
biliary barrier of Cldn3-/- mice is partially impaired and al-
terations in bile acid transporter expression also may
contribute to the change in hepatic bile acid levels.

Hepatic Proliferation Is Impaired in Cldn3-/- Mice
After Partial Hepatectomy

The observations that loss of claudin-3 expression af-
fects liver metabolism, particularly lipid metabolism and
hepatic bile acid content, raised the question of whether
claudin-3 is important for the liver’s response to injury.
Therefore, we tested if the loss of claudin-3 expression
altered the liver’s ability to regenerate after PHx. We
observed a time-dependent regulation of claudin-3 mRNA
and protein in wild-type animals in response to PHx. Cldn3
expression was decreased after 3 and 6 hours and increased
above baseline levels starting at 24 hours (Figure 7A). We
validated this observation by immunofluorescent staining
(Figure 7B) and Western blot (Figure 7C and D). The
zonated expression pattern that was present in native liver
tissue was lost at 48 hours after PHx (Figure 7B). PHx leads
to high pressure and mechanical stress within the first
hours after resection,35 therefore, we checked if the
increased stress affected the integrity of TJs in Cldn3-/- mice.
However, by electron microscopy, we did not find any gaps
or other obvious membrane impairments after 6 hours after
PHx in either Cldn3þ/þ or Cldn3-/- (Figure 7E). In agreement,
there were no signs of an inflammatory reaction based on
n Cldn3-/- mice. (A) Volcano plot showing up-regulated and
) in Cldn3-/- compared with Cldn3þ/þ native liver tissue. RNA-
nd n ¼ 4 for Cldn3þ/þ, differential expression significance
ntly regulated genes are shown as grey circles. A selection of
synthesis is annotated. Metascape analysis of the (B) top 10
in the data set of panel A. (D) Comparative real-time qPCR in
3-/- was obtained by comparison with Cldn3þ/þ mice (n ¼ 4,
CT(individual) minus DCT(group average), bars represent the
ges of representative hepatocytes. Lipid droplets (L) appeared
aining showing a lower amount of lipid droplets (L) in Cldn3-/-

regions of Oil-red-O–stained native liver tissue (n ¼ 10, bars
al glucose tolerance test. D-glucose (2 mg/g bodyweight) was
ed at the indicated times (n ¼ 7 for Cldn3þ/þ and n ¼ 6 for
udent t test). (I) Enzyme-linked immunosorbent assay test for
llenge. No significant differences were observed (0 min, n ¼ 4;
ired Student t test). Microscopes used for image acquisition in
ISTECH, panoramic scanner software, with a 40� objective;
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cytokine secretion or CK7 expression (Figure 7F–H), and the
frequencies of immune cells were not significantly different
in regenerating Cldn3-/- livers (Figure 7I).

We next determined the proliferative scores 48 hours
after PHx. The percentage of Ki67-positive hepatocytes was
76% ± 4% in Cldn3þ/þ mice compared with 49% ± 5% in
Cldn3-/- mice (P < .01) (Figure 8A). For the mitosis marker
phosphohistone H3 (pHH3), Cldn3þ/þ livers had 32% ± 3%
pHH3-positive nuclei, compared with only 15% ± 1% in
Cldn3-/- livers (P < .01) (Figure 8B). Supporting these re-
sults, the transcription of Foxm1 increased 43- ± 3-fold over
controls in Cldn3þ/þ, and only 16- ± 2-fold in Cldn3-/- livers
(P < .001) (Figure 8C). Similarly, Ccnb1 and Birc5 were
significantly less transcribed in Cldn3-/- mice at 48 hours
after PHx. The proliferation inhibitor p21 (Cdkn1a), on the
other hand, was expressed higher in Cldn3-/- mice at 24 and
48 hours after PHx (P < .05 and P < .01, respectively)
(Figure 8C). At 72 hours after PHx, the proliferation scores
and the expression of genes regulating cell proliferation did
not differ between Cldn3þ/þ and Cldn3-/- mice. RNA-seq
data of liver tissue 48 hours after PHx supported the
immunofluorescence and real-time qPCR data (Figure 8D).
Genes associated with cell division, cell-cycle regulation,
cholesterol synthesis, and glucose metabolism were
expressed at a lower level in regenerating Cldn3-/- livers
(Figure 8D and F), whereas genes related to circadian
rhythm, negative regulation of metabolism, lipid catabolism,
and calcium ion binding, as well as others, were found to be
up-regulated (Figure 8D and E). Taken together, we saw that
Cldn3-/- mice had an impairment in proliferation after PHx.
1032

1033

1034

1035

1036

1037

1038
Discussion
Several studies have described hepatic TJ proteins and

their function within the blood-biliary barrier.4,14,16,18,22 By
using scRNA-seq, we expanded the available information on
hepatic TJ gene expression by describing their abundance in
Figure 4. (See previous page). Metabolic challenging by a
(A) Anti–claudin-3 Western blot on whole-liver tissue lysate of yo
actin was used as loading control (n ¼ 5). (B) Body weight meas
the indicated age of life (12 weeks, n ¼ 7 [Cldn3þ/þ] and n ¼ 11
weeks, n ¼ 5 [Cldn3þ/þ] and n ¼ 7 [Cldn3-/-], 22–24 weeks, n ¼
n ¼ 3 [Cldn3þ/þ] and n ¼ 5 [Cldn3-/-]). No significant differenc
bodyweight ratio was measured (12 weeks, n ¼ 7 [Cldn3þ/þ] a
[Cldn3-/-]; 15 weeks, n ¼ 5 [Cldn3þ/þ] and n ¼ 6 [Cldn3-/-]; 22–24
39 weeks, n ¼ 3; 52 weeks, n ¼ 3 [Cldn3þ/þ] and n ¼ 5 [Cldn3-/-];
in mice 1 to 2 years old. Cldn3-/- vs Cldn3þ/þ mice (n ¼ 11 fo
unpaired t test). (E) Masson trichrome staining in aged mice. Rep
Cldn3-/-, respectively). (F) Principal component analysis plot ba
young (diamonds) Cldn3þ/þ (blue) and Cldn3-/- (red) mice (n ¼ 3
young Cldn3þ/þ group). (G and H) Volcano plots and metascap
and the top 10 up-regulated and down-regulated pathways in y
and (H) Cldn3-/- mice. RNA-seq analysis was performed by DES
n ¼ 4 for young Cldn3þ/þ group, differential expression signific
with low expression in aged mice are shown in blue, and with h
showing differential gene expression in aged Cldn3þ/þ vs age
Parameters of the differential gene expression as shown in pa
Quantification of images from randomly chosen regions below
Fluorescence-activated cell sorting analysis comparing young a
aged Cldn3þ/þ and n ¼ 5 in aged Cldn3-/-, unpaired t test, *P <
figure: Masson trichrome staining and Oil-red-O staining, panor
with a 40� objective. KO, knockout; PC, ______; WT, wild-type
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the various cell populations of the liver. We found the ex-
pected expression pattern for some genes, for example,
Cldn1, Cldn2, Cldn5, and Cldn7,18,36–40 and, interestingly, we
observed expression of Cldn5, Jam-a, Jam-b, Afdn, Sympk,
and Ybx3 in stellate and immune cells, suggesting a role of TJ
genes outside the blood-biliary barrier. Our scRNA-seq data
support that Cldn3 is one of the most highly expressed TJ
genes in the mouse liver with its mRNA and protein
expressed predominantly in hepatocytes and chol-
angiocytes.18,22,41–43 Within a liver lobule, there is a
discernable metabolic zonation,44,45 and bile acid synthesis
is highest in the first 3 hepatocyte cell layers around the
central veins.46 This correlates with the high level claudin-3
expression we observed in the pericentral region, suggest-
ing that the liver may express higher levels of claudin-3 to
ensure a tightly sealed blood-biliary barrier in the location
of higher bile acid concentrations.

To study the consequence of loss of claudin-3 expres-
sion, we used Cldn3-/- mice, however, the phenotype we
observed was milder than what was reported originally.22

For example, in our study, there was a very moderate in-
crease of total serum bile acids and no gallstones were
found even in aged animals.22 A possible explanation could
be differences in environmental factors such as nutrition or
microbiota.47 Our transmission electron microscopy images
support that hepatic TJs in Cldn3-/- mice are intact because
the membranes of adjacent cells are tightly sealed.22

Consequently, we could not detect morphologic changes or
signs of inflammation or fibrosis owing to loss of claudin-3
expression. This lack of phenotype may be explained by the
higher expression of other TJ-forming genes such as occlu-
din and tricellulin, which may have functionally compen-
sated for the loss of claudin-3.

However, by sequencing the livers of Cldn3-/- mice we
found significant repression in hepatic metabolism. There
was a lower amount of lipid droplets in Cldn3-/- livers and
down-regulation of key genes related to lipogenesis
ging leads to lower lipid accumulation in Cldn3-/- liver.
ung (12 weeks) and aged (52 weeks) wild-type mouse livers. b-
urements in Cldn3þ/þ (gray line) vs Cldn3-/- (black line) mice at
[Cldn3-/-]; 13 weeks, n ¼ 6 [Cldn3þ/þ] and n ¼ 4 [Cldn3-/-]; 15
5; 39 weeks, n ¼ 3 [Cldn3þ/þ] and n ¼ 4 [Cldn3-/-], 52 weeks,
es were observed at any age (unpaired t test). (C) Liver-to-
nd n ¼ 11 [Cldn3-/-]; 13 weeks, n ¼ 6 [Cldn3þ/þ] and n ¼ 4
weeks, n ¼ 5; 39 weeks, n ¼ 3 [Cldn3þ/þ] and n ¼ 4 [Cldn3-/-];
*P < .05, unpaired t test). (D) Serum AST, ALT, and ALP levels
r Cldn3þ/þ and n ¼ 18 for Cldn3-/-, means ± SD, *P < .05,
resentative image is shown (n ¼ 3 and n ¼ 4 for Cldn3þ/þ and
sed on RNA-seq gene expression data of aged (circles) and
for both aged groups, n ¼ 3 for young Cldn3-/- and n ¼ 4 for
e analysis showing up-regulated and down-regulated genes
oung (12 weeks) and aged (1.5–2 years) (G) C57BL/6 J mice
eq2 (n ¼ 3 for both aged groups, n ¼ 3 for young Cldn3-/- and
ance threshold: P value adjusted < .05). Genes or pathways
igh expression in aged mice are shown in red. (I) Volcano plot
d Cldn3-/- mice, with regulated genes annotated next to it.
nels G and H. (J) Oil-red-O staining on liver tissue sections.
(n ¼ 6, bars represent means ± SD, unpaired t test). (K)

nd aged Cldn3þ/þ and Cldn3-/- mice (n ¼ 4 in young, n ¼ 3 in
.05, **P < .01). Microscopes used for image acquisition in this
amic 250 Flash III, 3DHISTECH, panoramic scanner software,
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including Srebf1.48 A main activator of SREBF1 and its
downstream targets is glucose.29 We therefore tested if
glucose uptake and insulin secretion are affected in Cldn3-/-

mice, which was not the case. However, we observed
decreased expression of bile acid synthesis–involved genes
including Cyp27a149 and Akr1c6.50 In combination with the
changed composition of the circulating bile acid pool in
Cldn3-/- mice, it is possible that altered bile metabolism
negatively influenced the energy metabolism of the liver,
because bile acids are important regulators of lipogen-
esis.51,52 The altered lipid metabolism in Cldn3-/- prompted
us to question how the mice respond to a metabolic chal-
lenge, which we induced by letting the mice age for up to 2
years. Of note, we did not observe a decrease in expression
of claudin-3 protein in aged wild-type mice, as previously
suggested.43 In aged livers, we observed the expected
accumulation of hepatic lipids as well as inflammation and
immune cell infiltrations. These events took place in Cldn3-/-

mice as well. When comparing the gene expression in aged
Cldn3-/- vs aged Cldn3þ/þ mice by RNA-seq, we found a
lower expression of lipid metabolism–related genes Apol9a/
b53 and Cyp26a154 in the knockout animals. In conjunction,
we also observed a lower amount of lipids in aged Cldn3-/-

compared with aged Cldn3þ/þ liver. This implies that
Cldn3-/- mice respond differently to the metabolic challenge
of age, accumulating fewer hepatic lipids. Both Cldn3þ/þ and
Cldn3-/- mice showed a high lipid and inflammatory
phenotype upon metabolic challenge by age, however, aged
Cldn3-/- mice again showed a phenotype of repressed lipid
metabolism.

Because our differential gene expression data showed
repression of bile acid synthesis–involved genes including
Cyp27a149 and Akr1c6,50 we also questioned if the compo-
sition of bile acids differs in Cldn3-/- mice. Our results
showed that Cldn3-/- mice have a reduction in the concen-
tration of hepatic CA, and its conjugated form TCA. In
contrast, serum levels of TCA were higher in Cldn3-/- mice,
and there was a trend toward higher CA serum levels.
Similarly, conjugated subtypes of a mouse-specific bile acid,
muricholic acid, were decreased in the Cldn3-/- liver, and
increased in the serum. The cause for the higher amount of
serum bile acids could be owing to leaks of TJ barrier that
are not visible by electron microscopy, or were owing to the
slightly higher expression of the biliary exporter Ost1-b.
Because bile acids are important for efficient nutrient
digestion and lipid uptake,55 we may speculate that the
change in bile acid composition was a contributing factor to
the repression in lipid metabolism of Cldn3-/- livers. We next
questioned whether the alterations in lipid metabolism and
biliary barrier influenced the ability of the liver to
Figure 5. (See previous page). Partial impairment of the Cld
chromatography–mass spectrometry (LC-MS) analysis of liver b
unpaired t test). (B) LC-MS analysis of serum bile acids (n ¼ 11,
showing individual bile acid types in the liver (n ¼ 12/Cldn3þ

Mann–Whitney test). (D) LC-MS analysis showing individual bile
Mann–Whitney test). (E and F) Bile acids that were not changed
11, means ± SD, Mann–Whitney test). Allo, _____; CDCA, _____
MCA, ______; oxoLCA, ______; TCDCA, _____; TDCA, _____; T
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regenerate. In fact, both efficient lipid supply56,57 and bile
acid accumulation49,58 are required to settle the increased
energy demand of hepatocytes during cell division. Inter-
estingly, we observed an up-regulation of claudin-3
expression between 24 and 48 hours after PHx, which is
in agreement with previous observations made in rats.59

The increase of claudin-3 expression suggests that the
biliary barrier needs to be tightened at this particular time
after surgery. Possibly, claudin-3 retains bile acids to pre-
vent hepatocellular damage, and/or to keep bile acids as
liver regeneration–promoting signals.58,60,61 Our results
showed that cell proliferation was decreased significantly in
regenerating Cldn3-/- livers, with approximately one-third
less Ki67-positive and only half the amount of pHH3-
positive cells at 48 hours after PHx. Because liver regener-
ation has high clinical relevance for treatment of hepatic
malignancies and the repair of trauma,62,63 our results
might be of interest for further investigations on the role of
TJ proteins for optimal recovery after tissue loss.

Taken together, our data suggest that loss of claudin-3
leads to an impairment in lipid metabolism and an
impaired biliary barrier in mice. Both of these phenotypes
likely contribute to the suboptimal hepatic proliferation
after PHx. However, we cannot exclude the possibility that
claudin-3 is associated with signaling pathways that regu-
late the cell cycle. For example, claudin-3 is in direct and
indirect contact with TJ adapter proteins that are upstream
of transcription factors, including ZONAB Q, C-MYC, b-catenin,
YAP, and others.64–67 It will be of future interest to inves-
tigate the potential role of claudin-3 in the context of
signaling pathways that control cell proliferation.

Materials and Methods
Generation of Cldn3-/- Mice

We described the generation of this strain with global
claudin-3 knockout in detail in a previous publication.27 In
embryonic stem cells, we used a PGK neo cassette to replace
most of the claudin-3 coding region, except for the last 30
nucleotides of the ORF Q. This created a knockout allele and
prevented claudin-3 peptide formation, which we confirmed
by Western blot and immunofluorescence (Figure 2A and
B). By interbreeding heterozygous parents, we created ho-
mozygous Cldn3-/- mice at almost Mendelian ratios (23.5%).
To homogenize the C57BL/6J genetic background, we
backcrossed for more than 10 generations.

Animal Housing and PHx Surgery
Both experimental C57BL/6J Cldn3-/- and control

C57BL/6J Cldn3þ/þ mice were born and raised within the
n3-/- biliary barrier alters bile acid homeostasis. (A) Liquid
ile acids (n ¼ 12/Cldn3þ/þ and n ¼ 11/Cldn3-/-, means ± SEM,
means ± SEM, *P < .05, unpaired t test). (C) LC-MS analysis
/þ and n ¼ 11/Cldn3-/-, means ± SD, *P < .05, **P < .01
acids in the serum (n ¼ 11, means ± SD, *P < .05, **P < .01
significantly in Cldn3þ/þ vs Cldn3-/- liver tissue or serum (n ¼

Q64_; DCA, _______; GCA, _____; GUDCA, _____; HDCA, _____;
LCA, _____; TUDCA, _____; UDCA, _____.
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same animal housing facility. Mice were housed under
specific pathogen-free conditions at 22�C, 55% relative hu-
midity, with free access to chow and water, and in a 12-
hour, light-cycle controlled room. Green Line individually
vented cages (Tecniplast) were used at positive pressure.
Safe Aspen (S-Aspen-09322; JRS) cage bedding was used.
Animal cages contained enrichment and activation tools
such as plastic mouse house (Tecniplast), Nestlet or Sizzle
nests (Plexx), and Pura Crinkle Brown Kraft Paper (Labo-
dia). Mice were fed a standard dry pellet cereal-based diet
(10343200PXV20; Kliba Nafag). Interventions were per-
formed during the light phase in 12- to 18-week-old male
and female mice (weight, w18–22 g). Liver regeneration
was studied using a standard model of PHx by removing the
left and medial liver lobes as previously described.68 Mice
were killed by exsanguination under deep anesthesia. All
mouse experiments were performed with the approval of
the Veterinary Office of the Canton Bern (permit BE51/18),
according to the guidelines of good animal practice as
defined by the Office of Laboratory Animal Welfare, and
adhering to the standards of the nc3rs guidelines (https://
www.nc3rs.org.uk/arrive-guidelines).

Single-Cell RNA Sequencing
The unique molecular identified (UMI) matrix of our

recently published scRNA-seq was downloaded (GEO
accession number: GSE134134).26 We removed cells with
more than 15% UMIs coming from mitochondrial genes and
cells with more than 25% UMIs coming from globin genes.
In addition, a cell containing an abnormally high number of
UMIs (110270) was excluded. Next, we removed genes that
were not expressing at least 2 reads in 2 genes. After data
preprocessing, the UMI matrix was processed as previously
described.26 Shortly, we transformed the UMI matrix into a
Seurat object with Seurat 2 (PMID: 31178118). The data of
the Seurat object were log-normalized, the variable genes
were identified, and the data were scaled. Next, we
computed the principal component analysis with the R
function RunPCA, we identified the clusters with the R
function FindClusters with dims.use¼1 and resolution¼1.
Finally, we computed the t-distributed stochastic neighbor
embedding coordinates with the R function RunTSNE with
dims.use¼1:8.
Cell identification. In Figure 1B, we show the expression
of the following cell population markers (Figure 1B shows
markers in bold font): hepatocytes: Alb (marker), Apoa1,
G6pc, Hnf4a, Asgr1, Mup3, Pck1; cholangiocytes: Krt7
(marker), Krt19, Muc1, St14; endothelial cells: Pecam1
(marker), Dpp4, Oit3, Gpr182, Lyve1, Ushbp1, Tek; stellate
cells: Des (marker), Reln, Rbp1, Prnp, Vcl, Hhip, Col1A1; and
immune cells: Ptprc (Cd45) (marker). Based on clustering
Figure 6. (See previous page). Loss of claudin-3 increases h
Photographs of Cldn3þ/þ and Cldn3-/- gallbladders (n ¼ 7). (B) R
means ± SD, *P<.05, unpaired t test). (C) Comparative real-time
(Slc51b), Asbt (Slc10a2), and Mdr3 (Abcb4) (n ¼ 6, means ± SD
expression of Fxr and its downstream targets (n ¼ 3, means ± S
determining the transcriptional levels of Fgf15 in the ileum (n ¼
test). FXR, farnesoid X-receptor; NE, not expressed.
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and gene expression, we defined cluster 9 as hepatocytes;
cluster 7 as cholangiocytes; clusters 2, 4, 5, 8, 11, and 12 as
immune cells; clusters 0, 1, 3, 10, and 13 as endothelial cells;
and cluster 6 as stellate cells (Figure 1A).
Data visualization. To display the gene expression, the
preprocessed UMI matrix was normalized with the function
library.size.normalization of the R package Magic.69

The dropout correction was performed with the R
function magic with parameters genes¼”all_genes”. The
dropout corrected data were displayed on the t-distributed
stochastic neighbor embedding plots.
Heatmap. The unsupervised clusters containing the same
cell types were merged and we averaged the UMI expres-
sion in each cell type, the average expression of each gene
was normalized from 0 to 1, f(x) ¼ (x-min(x)/(max(x)-
min(x)), and represented as a heatmap with the R package
gplots.

Histology
Immunohistochemistry and immuno-
fluorescence. Paraffin-embedded liver tissue was
sectioned at a thickness of 6 mm for conventional imaging or
30 mm for confocal z-stack imaging. Slides were deparaffi-
nized and hydrated in a xylol and ethanol series. For nuclear
staining, membrane permeabilization was performed by 20-
minute incubation in phosphate-buffered saline (PBS)–
Triton X-100 (0.4%) (1.09468.0100 and 108603; Merck Q,
Germany).

Antigen retrieval was performed by heat-induced
epitope retrieval for 10 minutes at 95�C in citrate buffer,
pH 6.0 (C9999; Sigma Q-Aldrich). Nonspecific antibody bind-
ing was blocked at room temperature for 1 hour using a
protein-blocking solution (X0909; Dako). Antibodies were
prepared in antibody diluent (S3022; Dako) at the following
dilutions. Primary antibodies were as follows: Ki67 (RM-
9106-S1, 1:300; Thermo Fisher Scientific); anti–phospho-
histone H3 (06-570, 1:250; Merck Millipore); claudin-3
(NBP1-35668, 1:50; Novus Biologicals); and cytokeratin 7
(NBP1-88080, 1:200; Novus Biologicals). Secondary anti-
bodies were as follows: anti-rabbit-Cy5 (A10523, 1:300; Life
Sciences); anti-mouse Alexa 488 (A-11001, 1:300; Life Sci-
ences); and polyclonal rabbit anti-goat immunoglobulins/
horseradish peroxidase (P0449; Dako). For the development
of immunohistochemistry staining, streptavidin-peroxidase
(71-00-38; BioConcept) and 3,30-diaminobenzidine tetra
hydrochloride (D4293-50SET; Sigma-Aldrich) were used.
Primary antibodies were incubated with gentle agitation
inside a wet chamber overnight at 4�C. Slides were washed
for 20 minutes in PBS–Tween-20 (0.5%, P1379; Sigma-
Aldrich) and incubated in darkness for 90 minutes with
the secondary antibodies and 40,6-diamidino-2-phenylindole
epatic expression of the bile acid transporter Ost1-b. (A)
NA-seq data showing expression of bile transporters (n ¼ 3,
qPCR determining the transcriptional levels of hepatic Ost1-b
, *P < .05, unpaired t test). (D) RNA-seq data showing hepatic
D, *P < .05, unpaired t test). (E) Comparative real-time qPCR
5 for Cldn3þ/þ and n ¼ 9 for Cldn3-/-, means ± SD, unpaired t
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(DAPI) (D9542, diluted 1:2000; Sigma-Aldrich). After a final
wash in PBS–Tween-20 (0.5%), slides were mounted with
fluorescence mounting medium (H-1000; Vectorlabs) and
the coverslip was fixed with nail polish. For immunohisto-
chemistry staining, erythrocytes were lysed in 5% H2O2 for
10 minutes before the first antibody incubation, and the
staining was developed after the secondary antibody
application by incubation with streptavidin-peroxidase for
30 minutes and 3,30-diaminobenzidine tetra hydrochloride
for 1 minute. Representative images that were selected for
display in the publication were moderately adjusted in
brightness and color intensity with the help of image editing
software. Importantly, adjustments were always made in
the same way for all samples.

For image acquisition, sections with 6-mm or 10-mm
thickness were imaged using a fluorescent and bright-field
microscope (panoramic 250 Flash III, 3DHISTECH, pano-
ramic scanner software). Sections (30 mm) were imaged
with a confocal microscope (LSM 710; Zeiss), and 3-
dimensional reconstructions from z-stack images were
made using the Zeiss Zen software (Black edition, release
version 8.1). Quantification of staining intensity and auto-
mated counting of Ki67-/pHH3-positive nuclei was per-
formed exclusively on unmodified raw images.
H&E staining. Liver paraffin sections were stained with
hematoxylin (HX43078349; Merck) for 6 minutes and
differentiated in HCL-ALC (1:1) performing 3 dips. Slides
were incubated in eosin (45240; Fluka Chemical Corp) for 3
minutes, followed by dehydration and mounting with Eukitt
(Kindler, Germany).

Hepatic proliferation was quantified by imaging of 4
randomly chosen regions per liver, containing approxi-
mately 1000 DAPI-positive nuclei per region. Ki67- and
pHH3-positive nuclei were counted and normalized as the
percentage of all DAPI-positive cells with the help of ImageJ
software (version 1.48; National Institutes of Health,
Bethesda, MD).
Oil-red-O staining and quantification. Liver tissue was
embedded in Tissue-Tek O.C.T. medium (4583; Sakura
Finetek, Germany), and 5-mm cryosections were cut
(CM3050S Cryostat; Leica). Slides subsequently were
Figure 7. (See previous page). Cldn3 expression is regulated
in regenerating livers. Comparative real-time qPCR determining
after PHx (n ¼ 3, **P < .01, unpaired t test). (B) Anti–claudin-3 im
in blue. Representative images were taken. (C) Liver tissue We
daltons) at the indicated time points after PHx (n ¼ 3/0–6 h, n ¼
in panel C. (E) Transmission electron microscopy images in liv
located at Cldn3þ/þ and Cldn3-/- bile canaliculi (BC). (F and G
protein was isolated 48 hours after PHx and used for anti-CK
Expression of hepatic CK7 was similar in Cldn3þ/þ and Cldn3-/

compared with their group average). (H) Serum cytokine levels 4
MIP1a concentration in Cldn3-/- mice, there were no significant d
6 for Cldn3-/-, means ± SEM, *P < .05, unpaired t test). (I) Fluore
frequencies at the indicated times after PHx. Despite a slightly h
no significant differences compared with Cldn3þ/þ mice (at 0 h a
72 h, n ¼ 8; unpaired t test). Microscopes used for image acq
panoramic 250 Flash III, 3DHISTECH, panoramic scanner softwa
CK7, ____; GM-CSF, _____; IFNg, interferon g; IL, interleukin; L
central; PP, periportal; TNF-a, tumor necrosis factor a.
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stained with Oil-Red-O (O0625; Sigma-Aldrich): frozen sec-
tions were brought to room temperature, rinsed briefly in
60% triethyl phosphate (538728; Sigma-Aldrich), and sub-
sequently stained in 0.5% Oil-red-O for 20 minutes. After a
wash in distilled water, sections were counterstained in
filtered hematoxylin (HX43078349; Merck) for 90 seconds,
and nuclei were blued in saturated lithium carbonate
(1.05680.0250; VWR) for 15 seconds. Slides then were
rinsed with a flow of water for 5 minutes and mounted with
glycerin jelly.

For staining quantification, a method based on pre-
viously published quantification techniques was
used.72,73 QThe image analyzing software Fiji was used.74

Magnified images (40�) with areas of the exact same
sizes of 4 randomly chosen areas per sample were taken.
Color deconvolution was performed (with the pre-set “H
AEC”) to separate the hematoxylin and the Oil-red-O
staining. The lipid droplet contained in the red channel
was selected, and the threshold was adjusted to the same
level for each image (values, 0 and 200). The threshold-
adjusted image then was converted to a black-and-
white 8-bit image (“apply”). The intensity of the stain-
ing then was measured with the analyze -> measure
option. Staining intensities are given as integrated
density.
Masson trichrome staining. Paraffin-embedded liver
tissue was dewaxed and placed in Bouin’s fixative (HT10-1-
32; Sigma-Aldrich) at 56�C for 10 minutes. After washing
slides in tap water and distilled H2O, slides were stained
with hematoxylin (HT10-79; Sigma-Aldrich) for 5 minutes.
After washing in running tap water and distilled H2O, slides
were destained once with HCl-alcohol (1:1) and rinsed again
in distilled H2O. Next, slides were put in Biebrich scarlet-
scid fuchsin (HT151-250ML Q; Sigma-Aldrich) diluted 1:2 in
1% acetic acid (K45741563 425; Dr. Grogg Chemie Q) for 1
minute. Slides were rinsed and stained with
phosphomolybdic-phosphotungstic acid (HT153-250ML and
HT152-250ML; Sigma) 1:1 for 5 minutes. Slides then were
stained with Aniline Blue (HT154-250ML; Sigma) for 20
minutes. After a last rinse, slides were put in 0.75% acetic
acid, dehydrated, and mounted with Eukitt (Kindler).
after PHx and claudin-3 loss does not induce inflammation
the transcriptional levels of Cldn3 during a 7-day time course
munofluorescent stainings (green) in liver after PHx, and DAPI
stern blot for claudin-3 (20 kilodaltons) and b-actin (42 kilo-
4/0–24 h, n ¼ 4/0–48 h). (D) Quantification of the Western blot
er tissue 6 hours after PHx. Arrowheads point to intact TJs
) Quantification of ductular reaction in liver tissue. Total liver
7 Western blot. Band intensities were normalized to b-actin.
- mice (n ¼ 5, unpaired t test, Cldn3þ/þ band intensities were
8 hours after PHx. With the exception of a slightly decreased
ifferences comparing the groups (n ¼ 7 for Cldn3þ/þ and n ¼
scence-activated cell sorting analysis of hepatic immune cell
igher B-cell frequency at 24 hours in Cldn3-/- mice, there were
nd 24 h: n ¼ 5 for Cldn3þ/þ and n ¼ 4 for Cldn3-/-; 48 h, n ¼ 5;
uisition in this figure were as follows: immune fluorescence,
re, with a 20� objective; electron microscopy, Philips CM 12.

Q65IF, _____; MIP1a, _____; NK, ______; NKT, ______; PC, peri-
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Measurement of ALT, AST, and ALP in Serum
The liver injury markers ALT and AST were measured on

the Cobas 8000 modular analyzer using the module C502
(Roche, Switzerland). ALP likewise was measured on the
Cobas 8000, using the module C702 (Roche, Switzerland).
All measurements were performed following the manufac-
turer’s instructions.

Electron Microscopy
Sample preparation and electron microscopy were per-

formed as published previously.75 A variance in the cited
protocol was used. In the lanthanide fixation step, samples
were incubated in a water bath for 15 minutes at 50�C,
without a prior incubation at room temperature. Trans-
mission electron microscopy images were acquired using a
Philips CM 12 microscope (Philips/Fei, The Netherlands).

Flow Cytometry
Antibodies used for fluorescence-activated cell sorting

can be found in Table 1. Livers were perfused with PBS via
the portal vein until blanched and then put in Iscove’s
modified Dulbecco’s medium (Gibco), supplemented with
10% fetal bovine serum. Whole livers were passed through
a metal spleen screen and digested with 0.05% collagenase
IV (Worthington Biochemical) and DNase I (Sigma-Aldrich)
for 30 minutes at 37�C. Intrahepatic mononuclear cells were
purified on a Percoll gradient after centrifugation at 1250 �
g for 20 minutes without braking. Cells subsequently were
washed twice with PBS, and then resuspended in PBS con-
taining 3% fetal bovine serum. Aliquots of 106 cells/100 mL
of staining buffer per well were incubated each with 1 mg of
purified anti-CD16/CD32 for 20 minutes in the dark to
block nonspecific binding of antibodies to the FcgIII and
FcgII receptors. Cell suspensions were incubated with cell
viability dye eFluor 506 (Thermo Fisher Scientific) for 20
minutes at 4�C in the dark to exclude dead cells. Subse-
quently, these cells were stained separately with the
following surface markers for 15 minutes with 1 mg of pri-
mary antibodies (Table 1). For cytokines and transcription
factors, cells first were stained with antibodies to surface
antigens, subsequently fixed, and permeabilized according
to the manufacturer’s instructions (Foxp3/Transcription
Factor Staining Buffer Set; eBioscience). Corresponding
fluorochrome-labeled isotype control antibodies were used
for staining controls. Cells resuspended in 250 mL of buffer
Figure 8. (See previous page). Claudin-3 contributes to optim
of anti-Ki67 (green) or anti-pHH3 (red) in liver tissue after PHx,
tification of the proliferation scores below (0 h and 48 h: n ¼ 7 fo
the means ± SEM, **P < .01, unpaired t test). Representative ima
the cell-cycle–related gene expression after PHx (24 h: n ¼ 5 for
n ¼ 6 for Cldn3-/-; 72 h: n ¼ 8, bars represent means ± SEM, *P
showing up-regulated and down-regulated genes (red circles an
þ liver tissue at 48 hours after PHx. RNA-seq analysis is perfo
threshold: P value adjusted < .05). Genes with low expression
circles. Genes with high significance and genes part in the regu
top 10 up-regulated and (F) top 10 down-regulated gene pathwa
acquisition in this figure were as follows: panoramic 250 Flas
objective. ECM, _____.

FLA 5.6.0 DTD � JCMGH784 proof �
(0.15 mol/L NaCl, 1 mmol/L NaH2PO4 H2O, 10 mmol/L
Na2HPO4 2H2O, and 3 mmol/L NaN3) were analyzed in a
flow cytometer (BD LSR II; BD Pharmingen, Inc, San Diego,
CA) using the corresponding BD FACSDiva software. Flow
cytometric analysis was performed using FlowJo software
(Treestar, Inc, Ashland, OR).

Western Blot
Total protein was extracted from liver tissue or cultured

cells using RIPA lysis buffer and a TissueLyser II (Qiagen Q).
Lysates were centrifuged for 15 minutes at 20,000 � g, and
the supernatant was aliquoted. Protein concentrations were
quantified by Bradford assay (5000006; Bio-Rad) and a
microplate reader. Precast gels (456-1094; Bio-Rad) were
used to separate equalized amounts of protein per sample
by sodium dodecyl sulfate–polyacrylamide gel electropho-
resis, under reducing conditions. Proteins then were trans-
ferred on nitrocellulose membranes (170-4158; Bio-Rad).
Membranes were blocked with 5% w/v nonfat dry milk in
PBS for 1 hour at room temperature. Primary antibodies
were diluted in the blocking medium and incubated over-
night at 4�C. Primary antibodies were as follows: claudin-3
(NBP1-35668, 1:500–1:1000; Novus Biologicals); cytoker-
atin 7 (NBP1-88080, 1:200; Novus Biologicals); and anti–b-
actin�peroxidase (A3854, 1:50,000; Sigma-Aldrich); the
secondary antibody used was anti-rabbit–horseradish
peroxidase (P0448, 1:2000; Dako).

After primary antibody incubation, membranes were
washed 3 times for 5 minutes in PBS–Tween-20 (0.1%).
Secondary antibodies were diluted with 5% w/v nonfat dry
milk in PBS, and the membranes were incubated for 1 hour
at room temperature, followed by 3 washing steps for 30
minutes in total. Enhanced chemiluminescence solution
(NEL105001EA; Perkin QElmer) was added for 1 minute to
develop the signal. Films in combination with a developer
(AGFA, CURIX 60 Q) were used to visualize the bands. The
correct band size was estimated with the help of a standard
protein ladder (161-0374; Bio-Rad).

Real-Time qPCR mRNA Expression Analysis
RNA from snap-frozen tissue has been extracted using

NucleoZOL (740404.200; Macherey-Nagel Q). Complementary
DNA was made from 500 ng of tissue RNA using the
Omniscript reverse-transcriptase kit (205113; Qiagen). Per
reaction, 11.25 ng complementary DNA was used. Real-time
al liver regeneration. (A and B) Immunofluorescent staining
comparing Cldn3þ/þ and Cldn3-/- livers. DAPI in blue. Quan-
r Cldn3þ/þ and n ¼ 6 for Cldn3-/-; 72 h: n ¼ 8, bars represent
ges were taken. (C) Comparative real-time qPCR determining
Cldn3þ/þ and n ¼ 4 for Cldn3-/-; 48 h: n ¼ 7 for Cldn3þ/þ and
< .05, **P < .01, ***P < .001, unpaired t test). (D) Volcano plot
d blue circles, respectively) in Cldn3-/- compared with Cldn3þ/

rmed by DESeq2 (n ¼ 3, differential expression significance
in Cldn3-/- are shown in blue, and with high expression in red
lated pathways Q66are annotated. Metascape analysis of the (E)
ys within the data set of panel D. Microscopes used for image
h III, 3DHISTECH, panoramic scanner software, with a 20�
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Table 1.Antibodies Used for Fluorescence-Activated Cell Sorting

Fluorescence Cell marker Clone Company Catalog no.

Alexa Fluor 700 NK1.1 PK136 BioLegend Q68108730

PE-cy5 NK1.1 PK136 BioLegend 108716

PE-efluor-610 Eomes Dan11mag eBioscience 61-4875-82

APC Roryt AFKJS-9 eBioscience 17-6988-80

APC-efluor780 PD-1 J43 eBioscience 47-9985-82

eFluor450 PD-1 J43 eBioscience 48-9985-82

PE IL-22 Poly5164 BioLegend 516404

Percp-efluor710 IL-22 1H8PWSR eBioscience 46-7221-80

PE-cy7 CD49b DX5 BioLegend 108922

PE-cy7 CD4 GK1.5 eBioscience 25-0041-81

APC CD4 RM4-4 BioLegend 116014

BV570 CD8 53-6.7 BioLegend 301038

Alexa Fluor 700 CD11b M1/70 BioLegend 101222

BV421 CD49a Ha31/8 BD Biosciences 740046

APC-efluor780 INF-g XMG1.2 eBioscience 47-7311-82

FITC INF-g XMG1.2 BioLegend 505806

PE INF-g XMG1.2 eBioscience 12-7311-41

PE CD19 SJ25C1 eBioscience 12-0198-41

PE-Dazzle 594 CD19 6D5 BioLegend 115554

BUV395 CD45 30-F11(Ruo) BD Biosciences 564279

Percp cy.5.5 FoxP3 FJK-16s eBioscience 45-5773-80

PE FoxP3 FJK-16s eBioscience 12-5773-80

PE-Dazzle 594 CD152 UC10-4B9 BioLegend 106318

APC IL-10 JES5-16E3 BioLegend 505010

PE IL-10 JES3-9D7 eBioscience 12-7108-41

FITC CD69 H1.2F3 BioLegend 104506

PE Ly6G RB6-8C5 eBioscience 12-8931-81

PE-cy7 Ly6G RB6-8C5 eBioscience 25-5931-81

APC F4/80 BM8 eBioscience 17-4801-82

eFluor450 CD11c N418 eBioscience 48-0114-82

FITC TNFa MP6-XT22 BioLegend 506304

eFluor506 Viability dye – eBioscience 65-0866-18

– CD16/CD32 2.4 G2 BioLegend 101302
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qPCRs have been performed on an ABI 7500 thermocycler
(Applied Biosystems) using TaqMan and on an ABI 7900 HT
thermocycler (Applied Biosystems) for the SYBR
green–based assays. The corresponding reaction mixtures
(TaqMan, 4914058001 and SYBR green,
000000004913914001; both Sigma-Aldrich) were used.
Cycling conditions were chosen according to the vendor
instructions of the DNA polymerase master mixes. TaqMan
real-time qPCR primers used were as follows: Ccnb1
(Mm03053893_gH; Thermo Fisher Scientific), Birc5
(Mm00599749_m1; Thermo Fisher Scientific), Foxm1
(Mm00514924_m1; Thermo Fisher Scientific), Cdkn1a (p21)
(Mm00432448_m1; Thermo Fisher Scientific), Tbp
(Mm00446971-m1; Thermo Fisher Scientific), Mdr3
(4448892; Thermo Fisher Scientific), Ost1-b
(Mm01175040_m1; Thermo Fisher Scientific), and Asbt
(Mm00488258_m1; Thermo Fisher Scientific). SYBR real-
FLA 5.6.0 DTD � JCMGH784 proof �
time qPCR primers used were as follows: Cldn3 forward:
GCACCCACCAAGATCCTCTA, Cldn3 reverse: TCGTCTGTCAC-
CATCTGGAA (Cldn3 SYBR primer has been published76),
Fgf15 forward: CCAACTGCTTCCTCCGAATCC, Fgf15 reverse:
TACAGTCTTCCTCCGAGTAGC, Eef1a1 forward:
CGTTCTTTTTCGCAACGGGT, Eef1a1 reverse:
TTGCCGGAATCTACGTGTCC (designed with NCBI Primer-
BLAST). Fold- and log2-fold changes in gene expression
were calculated using the DDCT Qmethod.
RNA Sequencing
Total RNA was extracted from the liver with NucleoZOL

(740404.200; Macherey-Nagel), and quantified by a bio-
analyzer (Bio-Rad). Sequencing was prepared with paired-
end reads of 50 bp, TruSeq Stranded mRNA (Illumina Q).
Sequencing was performed on a NovaSeq6000 (Illumina).
2122
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RNA-seq alignment. Fastq files were aligned to the
mouse reference genome mm10 ENSEMBL release 10277

with hisat2 v. 2.2.1,78 and transformed into bam files with
SAMtools v. 1.10.79 The read count matrix was produced
from the bam files via featureCount shell version 2.0.1.80

Dimensionality reduction. For the principal component
analysis, the read count matrix was variance-stabilizing–-
transformed using vst(), then principal components were
computed and visualized using plotPCA() functions from the
DESeq2 R package,79 with default parameters.
RNA-seq differential expression. Differentially
expressed genes were computed with R package DESeq2.
Two technical replicates of control sample 5 were analyzed
together by collapsing them using the DESeq2 collapseR-
eplicates function. Genes with a P value less than .05
adjusted by false discovery rate were considered statisti-
cally significant for further analysis. For volcano plot visu-
alization, log2-fold changes obtained from DESeq2 analysis
were shrunk using the apeglm shrinkage estimator.82

Enrichment analysis. Metascape81 was used to deter-
mine the pathways to which genes were associated.

Oral Glucose Tolerance Test, Glucose, and
Insulin Measurements

Before the oral glucose tolerance test, mice were fasted
overnight (16 hours), followed by baseline blood glucose
and insulin levels measurements. A bodyweight–adjusted
amount of glucose was given by oral gavage (2 mg/g
bodyweight). Glucose and insulin levels subsequently were
determined. Blood for glucose was obtained by blood
collection from the left and right saphenous vein (<1 mL).
Blood/serum for insulin measurements was obtained by
exsanguination (under anesthesia) via cardiac puncture.
Glucose levels were determined with the use of a com-
mercial glucometer (Accu-chek Aviva; Roche, Switzerland).
Serum insulin levels were determined with the Ultra-
Sensitive Mouse Insulin ELISA Kit (90080; Crystal Chem),
according to the manufacturer’s instructions.

Bile Acid Quantification
The method applied was described recently.82 Briefly,

for quantification of bile acids, 25-mL serum samples diluted
1:4 with water, and calibrators, were subjected to protein
precipitation by adding 900 mL of 2-propanol and a mixture
of deuterated internal standards. Extraction was performed
for 30 minutes at 4�C with continuous shaking, followed by
centrifuging at 16,000 � g for 10 minutes. Supernatants
were transferred to new tubes, evaporated to dryness, and
reconstituted with 100 mL methanol:water (1:1, v/v). For
the extraction of liver samples, 900 mL of chlor-
oform:methanol:water (1:3:1, v/v/v) and 100 mL internal
standard mixture were added to a Precellys tube containing
beads and 30 ± 5 mg of liver tissue. Samples were ho-
mogenized with a Precellys tissue homogenizer, and
centrifuged at 16,000 � g for 10 minutes at 20�C. The su-
pernatant was transferred to a new tube and the procedure
was repeated by adding 800 mL extraction solvent. After
evaporation to dryness, samples were resuspended with
FLA 5.6.0 DTD � JCMGH784 proof �
200 mL methanol:water (1:1, v/v). The injection volume in
both cases was 3 mL. Liquid chromatography–tandem mass
spectrometry consisted of an Agilent 1290 UPLC Qcoupled to
an Agilent 6490 triple quadrupole mass spectrometer
equipped with an electrospray ionization source (Agilent
Technologies, Basel, Switzerland). Chromatographic sepa-
ration of bile acids was achieved using a reversed-phase
column (Acquity UPLC BEH C18, 1.7 mm, 2.1 mm, 150
mm; Waters, Wexford, Ireland).84 Q
Measurement of Serum Proinflammatory
Cytokines

Serum cytokines were determined on a Millipore Milli-
plex (Merck) based cytokine array. The array was per-
formed by Eve technologies (Calgary, Canada), using the
following application: Chemokine Array 31-Plex Q(MD31).
Statistical Tests Used to Analyze Data
The statistical tests used to analyze the data are fitted for

each experiment and are described within each figure
legend.

All authors had access to the study data and have
reviewed and approved the final manuscript.
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