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ABSTRACT: The global-mean climate feedback quantifies howmuch the climate systemwill warm in response to a forcing

such as increased CO2 concentration. Under a constant forcing, this feedback becomes less negative (increasing) over time

in comprehensive climatemodels, which has been attributed to increases in cloud and lapse-rate feedbacks. However, out of

eight Earth system models of intermediate complexity (EMICs) not featuring interactive clouds, two also simulate such a

feedback increase: Bern3D-LPX and LOVECLIM. Using these two models, we investigate the causes of the global-mean

feedback increase in the absence of cloud feedbacks. In both models, the increase is predominantly driven by processes in

the Southern Ocean region. In LOVECLIM, the global-mean increase is mainly due to a local longwave feedback increase

in that region, which can be attributed to lapse-rate changes. It is enhanced by the slow atmospheric warming above the

Southern Ocean, which is delayed due to regional ocean heat uptake. In Bern3D-LPX, this delayed regional warming is the

main driver of the global-mean feedback increase. It acts on a near-constant local feedback pattern mainly determined by

the sea ice–albedo feedback. The global-mean feedback increase is limited by the availability of sea ice: faster Southern

Ocean sea ice melting due to either stronger forcing or higher equilibrium climate sensitivity (ECS) reduces the increase of

the globalmean feedback in Bern3D-LPX. In the highest-ECS simulationwith 43CO2 forcing, the feedback even becomes

more negative (decreasing) over time. This reduced ice–albedo feedback due to sea ice depletion is a plausible mechanism

for a decreasing feedback also in high-forcing simulations of other models.

KEYWORDS: Sea ice; Atmosphere-ocean interaction; Energy transport; Climate prediction; Climate models; Coupled

models

1. Introduction

Energy balance models (EBMs) are invaluable diagnostic

tools for assessing the behavior ofmore comprehensive climate

models and their differences (e.g., Gregory et al. 2004; Winton

et al. 2010; Geoffroy et al. 2013; Ceppi and Gregory 2019). The

simplest EBM describes Earth’s global mean energy budget

(Gregory et al. 2004):

2lDT(t)5R
eff

2N(t) . (1)

An effective radiative forcing Reff, caused for example by an

increased CO2 concentration, causes a warming DT(t) that is
reduced and delayed by the ocean heat uptake (OHU) N(t).

There are physical and biogeochemical processes that modify

an existing temperature perturbation both transiently and at

equilibrium. These processes are referred to as climate feed-

backs (IPCC 2013). Although these may be nonlinear with

temperature, their overall effect is approximated by the linear

feedback parameter l , 0 in the global EBM described

by Eq. (1).

The global-mean behavior of many comprehensive climate

models [general circulation models (GCMs)] can only be

reasonably emulated by Eq. (1) if a time dependence of the

feedback is assumed [l 5 l(t)]. Over time l(t) becomes less

negative in most GCMs (Geoffroy et al. 2013; Andrews et al.

2015; Gregory et al. 2015; Rugenstein et al. 2016a; Yoshimori

et al. 2016; Rose and Rayborn 2016; Proistosescu and Huybers

2017; Sherwood et al. 2020; Dong et al. 2020), indicating an

increasing climate sensitivity (5 21/l). This feedback time

dependence has been attributed mainly to contributions of

cloud and lapse-rate feedback changes (Rose et al. 2014;

Andrews et al. 2015; Rose and Rayborn 2016; Zhou et al. 2016;

Ceppi and Gregory 2017; Zhou et al. 2017; Andrews andWebb

2018; Dong et al. 2019).

In this study, we investigate the causes of the time dependence

in the global mean feedback in two Earth system models of in-

termediate complexity (EMICs). These models were selected

based on our earlier multimodel energy balance analysis (Pfister

and Stocker 2018). Out of the 14 EMICs considered in that study,

8 lack interactive clouds (Eby et al. 2013). In only two out of these

eight models, l becomes substantially less negative with time

(Pfister and Stocker 2018; Fig. S2 therein): in the Bern3D-LPX

model (Ritz et al. 2011) and the LOVECLIM model (Goosse

et al. 2010). As these models do not feature cloud feedbacks, and

only one of them has a lapse-rate feedback (LOVECLIM), the

dominant processes causing their global mean feedback time
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dependence must differ from those found in GCMs. It is the

purpose of this study to shed light on such additional processes in

the framework of these two EMICs.

Using a local rather than a global diagnostic EBM (section 4),

two kinds of processes could explain the global mean feedback

strengthening: 1) changing warming patterns acting on constant

local feedbacks (Armour et al. 2013) and 2) changing local feed-

backs (e.g., Rose et al. 2014; Rose and Rayborn 2016; Rugenstein

et al. 2016a; Ceppi and Gregory 2017). Both processes can operate

also in the absence of interactive clouds, and it is one of our aims to

investigate their relative importance in the two analyzed EMICs.

Both warming and feedback patterns interact with the pat-

tern of OHU. This interaction can be quantified by introducing

an additional EBM parameter, the OHU efficacy (Winton

et al. 2010). Alternatively to a time-dependent feedback, a

time-dependent OHU efficacy can also explain the time de-

pendence of the global mean climate sensitivity. Although the

two perspectives were shown to be equivalent (Haugstad et al.

2017), we will also analyze theOHUefficacy of our two EMICs

and its contributions from changing feedback patterns and

warming patterns following Rose et al. (2014).

This paper is structured as follows. Section 2 describes the two

models, performed simulations, and analysis. Our results are

presented in sections 3–7. We show the global mean feedback

time dependence in these EMICs (section 3) and investigate its

causes in a regional EBM framework (section 4), also testing the

assumption of constant local feedbacks (Armour et al. 2013)

(section 5).We discuss the OHU efficacy perspective (section 6)

and finally investigate the influence of higher forcings and cli-

mate sensitivities on the feedback time dependence (section 7).

We conclude with section 8.

2. Models and methods

a. Model descriptions

We analyze two EMICs, the Bern3D-LPXmodel (Ritz et al.

2011; Roth et al. 2014) and the LOVECLIMmodel version 1.2

(Goosse et al. 2010). Bothmodels feature a thermodynamic sea

ice component and a dynamic land vegetation model. The at-

mospheric and oceanic components are more comprehensive

in LOVECLIM than in Bern3D-LPX. Both ocean components

are three-dimensional dynamical models. The Bern3D-LPX

includes a frictional geostrophic ocean model, LOVECLIM

has a primitive equation, free surface ocean model.

The main difference between the two models is their at-

mospheric component. LOVECLIM features a three-level

quasigeostrophic dynamical atmosphere, while Bern3D-LPX

has a one-layer energy and moisture balance model (EMBM)

with prescribed seasonal wind fields.

A common feature of both atmospheric components is their

lack of interactive clouds. Cloud cover is prescribed seasonally in

both models, and layer-wise in LOVECLIM. Therefore, these

twomodels do not simulate a cloud feedback, which is theirmain

difference from GCMs with regard to feedback patterns.

The only spatially dependent feedbacks explicitly parame-

terized in Bern3D’s EMBM are the Planck, water vapor, and

albedo feedbacks. The top-of-atmosphere (TOA) longwave

radiation is parameterized as an empirical polynomial function

of both local temperature and local relative humidity (Ritz

et al. 2011), which determines the spatial pattern of the com-

bined Planck and water vapor feedback. The sum of the

feedbacks that are not explicitly resolved within the model

(e.g., lapse-rate and cloud feedbacks) is parameterized globally

as lEMBMDT, where DT is the global mean warming and

lEMBM 5 20.7Wm22 K21 is tuned to achieve an equilibrium

climate sensitivity (ECS) of 38C in the standard version of the

model, which is near the current best estimate based on mul-

tiple lines of observational evidence (Sherwood et al. 2020).

LOVECLIM does not feature such a global feedback pa-

rameterization, but explicitly simulates the Planck, water vapor,

and albedo feedbacks as well. In addition, it explicitly simulates

the lapse-rate feedback due to its multiple atmospheric layers.

LOVECLIM’s ECS is estimated at 2.18C (section 3).

Local feedbacks can change with time based on two general

mechanisms. First, there may be local nonlinearities in the feed-

backs, for example a higher-order temperature dependence of the

Planck and water vapor feedbacks, or local albedo feedback

changes due to vegetation shifts or sea ice loss. Such nonlinearities

may be simulated by both Bern3D-LPX and LOVECLIM.

Second, there may be nonlocal contributions due to local atmo-

spheric changes, such as lapse-rate changes due to atmospheric

heat transport in the absence of surface warming (Po-Chedley

et al. 2018;Dong et al. 2019). Such effects can only be simulated in

models with a dynamical atmosphere, like LOVECLIM.

In Bern3D-LPX, horizontal sensible heat transport is pa-

rameterized as purely diffusive, that is, proportional to the

atmospheric temperature gradient =T with a latitudinally

varying heat diffusivity. Simulated horizontal temperature

gradients are smaller than observed gradients (Ritz et al. 2011).

Latent heat transport is parameterized as a combination of

diffusion (based on a separate moisture diffusivity) and advection

(based on a fixed wind climatology). In LOVECLIM, both sen-

sible and latent heat fluxes are computed from estimates of tem-

perature, humidity, surface characteristics, and surface winds

using standard bulk formulas (Goosse et al. 2010).

b. Experimental design and analysis

Our analysis encompasses three simulations for each model:

Two perturbed simulations where the CO2 concentration is

abruptly doubled (2 3 CO2) or quadrupled (4 3 CO2) from the

preindustrial concentration, and one unperturbed control simu-

lation. Each simulation was run for 5000 years in Bern3D-LPX,

and for 1000 years in LOVECLIM. For Bern3D-LPX, all simu-

lations were carried out in three different model versions with the

following ECS values: 3.08C (standard version), 2.08C (low-ECS

version), and 6.08C (high-ECS version). The model was tuned to

these ECS values by varying the lEMBM parameter (see above).

Both models were analyzed analogously apart from three

necessary differences. First, the calculation of anomalies for

each quantity of interest between the abrupt simulations and

the control simulation is done differently for the two models.

We describe this by example of the temperature anomaly field

(i.e., the warming pattern due to CO2 forcing). For Bern3D-

LPX, the temperature field of the 5000-yr control simulation is

subtracted time step by time step from the temperature field of

756 JOURNAL OF CL IMATE VOLUME 34

Brought to you by UNIVERSITAT BERN | Unauthenticated | Downloaded 05/04/21 03:07 PM UTC



the perturbed simulation. This is done to remove the artificially

imposed variability that is equally present in all simulations,

induced by the land vegetation model’s 31-yr repeating climate

pattern scaling (Stocker et al. 2013). For LOVECLIM, the

mean temperature field of the 1000-yr control run is subtracted

from the time steps of the perturbed simulation.

Second, as the LOVECLIM simulates a substantial inter-

annual variability due to its dynamical atmosphere, a running

mean was computed for all analyzed quantities and anomalies,

to obtain the imprint of the idealized warming trend rather

than short-term variations. A 31-yr running mean window was

chosen for all visualizations except for Figs. 1 and 9, where an

11-yr window is used for better visibility of early changes. For

Bern3D-LPX, which has little interannual variability, annual

averages with no multiyear running mean are shown.

Finally, due to thedifferent simulation lengths, equilibriumvalues

are calculated differently in the two models. For Bern3D-LPX, the

last simulation year (year 5000) is used to read out all equilibrium

values. This is the true equilibrium, as equilibration takes roughly

4000 years (Fig. 7). For LOVECLIM, the last available 31-yr run-

ning mean (centered around year 985; i.e., the average over years

970–1000) is used to read out equilibrium patterns. As the model is

not fully equilibrated after the simulation duration, the global mean

warming has to be extrapolated to estimate ECS (section 3).

3. Time-dependent global feedback

In this section, we illustrate the diagnosis of parameters for

the global mean EBM given by Eq. (1), and show that the

global mean feedback becomes less negative over time in the

two analyzed EMICs. We only analyze the 2 3 CO2 simula-

tions in this section and the subsequent sections, and compare

them to the 4 3 CO2 simulations in section 7.

Figure 1 shows the global mean heat uptake N as a function

of the global mean warming DT in both models examined here.

This relation yields two important diagnostic quantities. First,

Reff is the global mean heat imbalance at the onset of warming,

that is, after fast radiative adjustments that do not affect DT
(e.g., Gregory et al. 2004). FollowingAndrews et al. (2015),Reff

is diagnosed for both models as the N intercept (i.e., DT5 0) of

the linear regression of simulation years 1–20. Second, the ECS

is the equilibrium warming caused by a doubling of the CO2

concentration (e.g., Sherwood et al. 2020).

For Bern3D-LPX, ECS5 3.08C is simply obtained asDT at the

end of the 5000-yr simulation. For LOVECLIM, an equilibrium is

not fully reached at the end of the 1000-yr simulation, as indicated

by a slight remaining heat imbalance (N . 0). Therefore, ECS is

diagnosed as theDT intercept (i.e.,N5 0) of the linear regression

of simulation years 300–1000. This period is chosen because the

regression slope is approximately constant after year 300. The

resulting ECS 5 2.18C is only 0.18C higher than the 1000-yr

warming, because the remaining heat imbalance is small.

It is evident from Fig. 1 that the global mean feedback is not

constant in either model [l 5 l(t)]; otherwise, the model output

should lie on the dotted line connecting Reff and ECS [Eq. (1)]. In

both models, l becomes less negative over time, which means that

climate sensitivity increaseswith time, in agreementwithGCMs (see

the introduction). In sections 4 and 5, we explore the characteristics

and causes of this time dependence in these two models.

4. Time-dependent warming patterns and regional
feedbacks

a. Local energy balance framework

The physical causes of the global mean time dependence can

be investigated by generalizing Eq. (1) to a localized EBM

FIG. 1. (a),(b) Global mean heat uptakeN plotted against global mean warmingDT in the 23CO2 simulations of

both models. The time-varying slope of the model output corresponds to the feedback parameter l. The quantities

ECS and Reff are explained in the text. Note that the continuous lines correspond to yearly data in (a), but to an

11-yr runningmean in (b) where the yearly data of the first 5 years are shown by dots. This visualization is consistent

with Fig. 9 and was chosen to minimize clutter in that figure. The dotted line indicates the hypothetical time-

independent feedback.
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(Crook et al. 2011; Armour et al. 2013; Feldl and Roe 2013a,b;

Rose et al. 2014; Rose and Rayborn 2016):

2l(r, t)DT(r, t)5R
eff

2DN
TOA

(r, t). (2)

Here r denotes the location on the sphere (longitude and lat-

itude); DT(r, t) is the local warming at time t with reference to

the preindustrial state; DNTOA(r, t) is the local anomaly in the

TOA energy imbalance (i.e., the difference from the prein-

dustrial TOA energy imbalance pattern). Note that this EBM

is equivalent to the one described by Rose et al. (2014), con-

sidering that DNTOA(r, t) 5 DNOHU(r, t) 1 D(= � Fatm)(r, t),

where DNOHU(r, t) is the bottom-of-atmosphere heat uptake

anomaly (dominated by OHU) and D(= � Fatm)(r, t) is the at-

mospheric heat flux divergence anomaly.

In the simulations analyzed here, Reff is constant over time. In

Bern3D-LPX, it is also globally uniform, as a global-mean forcing

following Myhre et al. (1998) is prescribed. In LOVECLIM, the

forcing is based on a Green’s function (Goosse et al. 2010) and is

spatially varying, that is, Reff(r). Unfortunately, LOVECLIM’s

CO2 forcing pattern has not been published, and a fixed-SST

simulation to obtain it was not available to us. Therefore, we di-

agnoseLOVECLIM’s feedback assuming a globally uniformReff.

To assess the influence a spatially varying feedback would have

on the global feedback, we use a zonal pattern from a GCM, as

described in section 4c.

To analyze the feedback pattern at a given time t, we cal-

culate l(r, t) using Eq. (2), given the global mean Reff

(section 2b) as well as DT(r, t) and DNTOA(r, t) from the model

output. The separate longwave and shortwave feedbacks, lLW
and lSW, are calculated similarly. DNTOA is replaced by the

contributions DNLW,TOA and DNSW,TOA, respectively. The

longwave radiative forcingReff is accounted for only in the lLW
calculation.

b. Analysis and comparison of Bern3D-LPX and
LOVECLIM

Figures 2 and 3 show the three patterns l(r, t), DT(r, t), and
DNTOA(r, t) relevant forEq. (2) forBern3D-LPXandLOVECLIM,

respectively. In addition, the longwave and shortwave feedback

patternslLW(r, t) andlLW(r, t) are also shown.Each pattern is given

at the end of the simulation (equilibrium or near-equilibrium; first

column)andat year 100 (transient; second column).Their difference

is shown in the third column (equilibrium minus transient). For

DNTOA(r, t), only thedifference is shown inFigs. 2oand3o,while the

first two columns show the corresponding sea ice extent (Figs. 2m,n

and 3m,n).

Figure 4 shows the zonal averages for the same quantities,

but with an additional panel row for OHU. Four different time

steps up to year 1000 are shown for both models, and for

Bern3D-LPX also the equilibrium (year 5000) is shown. In the

following, we describe effects seen in Figs. 2–4 simultaneously,

referencing the panels that best visualize these effects.

Bothmodels simulate a strong equilibriumwarming over the

Southern Ocean (Figs. 2b and 3b), which develops more slowly

than in the rest of the world (Figs. 4a,b). This delay in Southern

Ocean warming is due to the strong OHU in the Southern

Ocean (Figs. 4k,l). It is in agreement with observations

(Armour et al. 2016) andGCM simulations (Winton et al. 2010;

Armour et al. 2013; Andrews et al. 2015; Proistosescu and

Huybers 2017; Rugenstein et al. 2020; Dong et al. 2020).

The changes in local feedbacks l(r, t) are also strongest over

the Southern Ocean (Figs. 2f and 3f). It is evident that these

changes are dominated by shortwave effects in Bern3D-LPX

(Fig. 2l) and by longwave effects in LOVECLIM (Fig. 3i), as

detailed below.

In Bern3D-LPX, the feedback pattern is mainly determined

by the shortwave feedback pattern, which in turn reflects the

regions of sea ice melting. In equilibrium, the sea ice cover in

the Southern Ocean is almost entirely melted away (Fig. 2n).

Therefore, the feedback is strongest near the Antarctic coast

(Figs. 2e,k) where annual-mean preindustrial sea ice cover was

largest. In contrast, 100 years after the abrupt CO2 forcing, sea

ice melting has not yet progressed to the Ross and Weddell

Seas, but is strongest near the border of the Southern Ocean

sea ice extent (Fig. 2m). There, the feedback is much stronger

than in equilibrium (Figs. 2d,j), because temperature continues

to rise toward the equilibrium whereas sea ice is already vir-

tually gone after 100 years.

The Bern3D-LPX longwave feedback pattern is much more

uniform than the shortwave pattern (Figs. 2g,h) and is deter-

mined by the model’s empirically based longwave parameter-

ization that combines the Planck and water vapor feedbacks.

Local changes in lLW amount to 0.3Wm22 K21 or less, and

mostly follow a zonal structure (Fig. 2i). In the lower latitudes,

between roughly 408S and 608N, the longwave feedback be-

comes more negative toward equilibrium. This is what is ex-

pected from the Planck feedback: as Earth warms, more

longwave radiation is lost to space. This is reflected in a neg-

ative DNTOA apart from the sea ice regions (Fig. 2o). As this

increase in outgoing radiation is strongest in the high latitudes

because the warming is most pronounced there, we also expect

the Planck feedback to become more negative in this region.

Oppositely, the total longwave feedback becomes less negative

in the high latitudes (Fig. 2i), which must thus be due to the

water vapor feedback. Relative humidity increases over the

Arctic Ocean and (more pronouncedly) over Antarctica, while

decreasing over midlatitude continents (not shown). These

changes are in line with the lLW pattern changes, and appar-

ently dominate the temperature-induced (Planck) feedback

changes in the high latitudes.

In LOVECLIM, the longwave feedback pattern is much less

uniform (Figs. 3g,h) and defines the total feedback pattern in

combination with local shortwave feedback maxima in sea ice

regions, as well as some continental regions (Figs. 3j,k). The

strongest shortwave feedback peaks suggest snow and ice loss

in the Himalayas and vegetation losses or shifts in tropical

Africa and Australia, but this is not investigated further here.

Apart from local shortwave feedback changes in these regions

and overAntarctic sea ice (Fig. 3l), the changing local feedback

pattern is dominated by changes in the longwave feedback

(Fig. 3i). Most notable is a very strongly negative feedback

over the Southern Ocean (mainly in the Pacific sector), which

gets less negative toward equilibrium (Figs. 3f,i and 4d,f). This

is at least partially due to a lapse-rate effect, as investigated in

section 4c. In a small region in the Pacific sector of the Southern
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FIG. 2. (a)–(c) Local warming, (d)–(i) feedbacks (total, longwave, and shortwave), (m),(n) sea ice, and (o) TOA radiation change in the

23CO2 simulation of the Bern3D-LPXmodel. (left) Transient patterns (year 100), (center) equilibrium patterns (year 5000), and (right)

their difference (equilibrium2 transient). Note that the color range in (i) is much smaller than in (f) and (l). In white regions in (l), changes

are smaller than 0.01Wm22 K21.
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FIG. 3. As Fig. 2, but for the LOVECLIM model. Here, the center column is the last available 31-yr running mean (years 970–1000),

which is used as the forced equilibrium reference for LOVECLIM (see text). Note that the color ranges in (g), (h), (i), and (o) differ from

the corresponding Bern3D-LPX panels.
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Ocean, the feedback becomes strongly positive instead (yellow

in Fig. 3d), corresponding to a slight local cooling (see also

section 4c). However, this is unimportant for the zonal or re-

gional mean feedback (Figs. 4d,f).

In both models, the initial atmospheric warming has a min-

imum at roughly 408–608S (Figs. 4a,b), which has been simu-

lated in many models of different model generations (Kushner

et al. 2001; Andrews et al. 2015). This minimum is stronger in

LOVECLIM, due in part to its negative local feedback

(section 4c) and in part to its stronger local OHU (Figs. 4k,l),

which is enhanced by the dynamical atmosphere. As consis-

tently simulated in models with dynamical atmospheres (Fyfe

and Saenko 2006; Russell et al. 2006; SenGupta et al. 2009), the

wind stress over the Southern Ocean increases due to the

warming (by about 13% averaged over 408–808S), enhancing
the Ekman circulation. This delays the increase of the sea

surface temperature while the atmosphere above is warming

faster, leading to strong local OHU (e.g., Armour et al. 2016).

In turn, this strong OHUdelays the local atmospheric warming

DT(r, t). On another note, the temperature gradients in

Bern3D-LPX are generally smaller, suggesting that the diffu-

sive heat transport parameterization smooths out temperature

gradients faster than LOVECLIM’s dynamical atmosphere.

One of the striking differences between the two models’

warming patterns is the polar amplification in the Northern

Hemisphere (Figs. 2a, 3a, and 4a,b). This amplification is stronger

in LOVECLIM than in any other EMIC from the EMIC-AR5

intercomparison, while the amplification inBern3D-LPX is among

the lower half of those EMICs (Eby et al. 2013, their Fig. 4). Most

of the northern high-latitude warming of LOVECLIM occurs al-

ready during the first 20–150 simulation years (Fig. 4b). Itmay thus

contribute to the initial time dependence in the global mean

feedback of LOVECLIM (Fig. 7a, roughly up to year 150). But the

long-term feedback time dependence up to year 1000, which is the

main focus of this paper, is mainly explained by the aforemen-

tioned slower warming in the southern high latitudes. Therefore,

wedonot further investigate the northern polar amplificationhere.

Sea ice melting is stronger in the Bern3D-LPX than in

LOVECLIM, although the surface warming is weaker in the

northern high latitudes and comparable in the southern high

latitudes. This is because the high-latitude temperatures of the

preindustrial control simulation are much lower for LOVECLIM

than for Bern3D-LPX, and therefore not as close to the sea ice

melting point. Compared to the high-latitude temperatures from

present-day observations, the Bern3D-LPX and LOVECLIM

control simulations have a low and high bias, respectively.

Averaged over the latitudes;608–808S, where sea ice is located,
the bias amounts to 12.78C for Bern3D-LPX and 23.38C for

LOVECLIM. This comparison is not entirely accurate, as the

control simulations correspond to preindustrial conditions, while

we averaged years 1958–2001 of the ERA-40 reanalysis data

(Uppala et al. 2005) for the observational reference. The positive

(negative) bias of Bern3D-LPX/LOVECLIM would therefore

be somewhat larger (smaller), but this correction may be minor

because the Southern Ocean has warmed less than the global

mean over the observational period (Armour et al. 2016).

For a more direct comparison with LOVECLIM, we have

also analyzed the warming and radiative patterns in Bern3D-

LPX in year 1000 (gray lines in Fig. 4) instead of year 5000

(black lines). The patterns are qualitatively similar; the statements

made above would therefore also hold if year 1000 were used as

equilibrium reference, as in LOVECLIM. Nevertheless, we note

some differences: About 20% of the preindustrial Southern

Ocean sea ice cover remains until year 1000 (not shown), which

vanishes completely until year 5000. Consequently, the Southern

Ocean warming is further amplified compared to the rest of the

world (Fig. 4a), and the albedo-induced peak in DNTOA(r, t) and

l(r, t) extends to the highest latitudes bordering on Antarctica

(Figs. 4g,i). Furthermore, the enhanced OHU over the Southern

Ocean diminishes toward equilibrium. For LOVECLIM, it is

expected that some more sea ice would melt until equilibrium,

but a complete meltdown is highly unlikely as the extrapolated

additional global warming from year 1000 to equilibrium is

only 0.18C.

c. Local longwave feedback changes in LOVECLIM

In this subsection, we take a closer look at the aforemen-

tioned longwave feedback time dependence in LOVECLIM

(Fig. 3i).We investigate two questions: First, is the atmospheric

temperature evolution compatible with an increasing lapse-

rate feedback, which could account for the longwave feedback

becoming less negative? Note that the global-mean lapse-rate

feedback can be positive or negative; we refer to an ‘‘increas-

ing’’ lapse-rate feedback when the lapse-rate feedback changes

contribute to a less-negative total longwave feedback. Second,

how is the longwave feedback pattern affected by our as-

sumption of a uniform forcing Reff?

Greenhouse gas forcings do not only increase surface tem-

peratures globally, but also alter the vertical temperature

gradients in the atmosphere. The change in vertical tempera-

ture with height is referred to as the lapse rate. As the lapse rate

changes, the longwave radiation to space is different than what

we would expect if looking only at surface temperatures. For

example, if the upper atmosphere warms faster than the surface,

more radiation is lost to space—this is a negative feedback to

global warming, referred to as a negative lapse-rate feedback.

This feedback is nonlocal in nature: For example, atmospheric

heat transport propagates tropical surface warming toward the

poles, causing increased midtropospheric temperatures in the

high latitudes. This increases outgoing longwave radiation in

that region, which affects the local feedback magnitude even in

the absence of local surface warming (Po-Chedley et al. 2018;

Dong et al. 2019).

To investigate this effect in LOVECLIM, we look at the

deviation from vertically uniform warming, normalized by

global mean surface warming:

DT(z, r, t)2DT
surface

(r, t)

DT
surface

(t)
. (3)

The zonal mean of this quantity is shown in Fig. 5, for the

running means around year 100 (transient; Fig. 5a) and year

985 (near-equilibrium; Fig. 5b). Regions where this quantity is

positive (negative) contribute to a negative (positive) lapse-

rate feedback, as described in the previous paragraph. We

cannot provide a quantitative estimate for the lapse-rate
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FIG. 4. Zonal averages of warming, feedbacks, TOA radiation change, andOHU change in

the 2 3 CO2 simulation of the (left) Bern3D-LPX and (right) LOVECLIM models. Colors

denote different simulation years (see legend).
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feedback for LOVECLIM. Such an estimate could be obtained

based on the radiative kernel method (Soden et al. 2008), by

multiplying the data shown in Fig. 5 by a radiative kernel

matrix, which quantifies the change in radiation per change in

temperature. However, radiative kernels are not available for

LOVECLIM, and interpolating radiative kernels from high-

resolution models onto LOVECLIM’s four atmospheric layers

may lead to an erroneous quantification of the global mean

feedback. Therefore, we do not further decompose the long-

wave feedback into Planck, lapse rate, and water vapor con-

tributions, but discuss the simulated lapse-rate processes

qualitatively in the following.

LOVECLIM’s zonal mean profile of the deviation from

vertically uniform warming at year 100 (Fig. 5a) is in broad

agreement with more comprehensive models (Andrews and

Webb 2018; Po-Chedley et al. 2018; Dong et al. 2019), showing

enhanced upper tropospheric warming from the equator up to

around 608S and 508N. At higher latitudes, the upper tropo-

sphere warms less than the surface. The transition to the colder

highest layer (spanning from 200 to 0 mb; 1 mb 5 1 hPa) is

abrupt, because this layer represents the stratospheric layer at

LOVECLIM (close to 0 mb).

Toward equilibrium, the region of enhanced tropospheric

warming diminishes. Most notably, the difference between

equilibrium and transient warming deviation (Fig. 5c) is neg-

ative in themid- to upper troposphere between roughly 308 and
858S, with a minimum around 608S. This region thus contrib-

utes to an increasing lapse-rate feedback, and coincides with

the region where the total longwave feedback becomes sub-

stantially less negative (Fig. 3i). This in also agreement with

more comprehensive models, which show an increasing lapse-

rate feedback in the same region in the multimodel mean

(Ceppi and Gregory 2017). We conclude that the increasing

lapse-rate feedback is a plausible mechanism to explain, or at

least contribute to, LOVECLIM’s longwave feedback time

dependence above the Southern Ocean.

In the stratospheric layer and in the midtroposphere over

the northern high latitudes, Fig. 5c shows opposite lapse-rate

changes that contribute to a decrease in lapse-rate feedback.

Although the radiative impact of the stratospheric layer is

limited by its lower mass compared to the troposphere, it may

thus contribute to the longwave feedback becoming more

negative in the lower latitudes (Fig. 3i). However, no such

change in total longwave feedback is diagnosed in the northern

high latitudes. The weak influence of the lapse-rate changes on

the local longwave feedback in this region is in line with the

spatial pattern of the radiative kernel (Soden et al. 2008), which

shows aweaker radiative response to temperature changes in the

highest latitudes, compared to the midlatitudes. Nevertheless,

this may also indicate that there are other counteracting long-

wave feedbacks (Planck or water vapor). On the other hand, the

lack of local longwave feedback change could also be a conse-

quence of our assumption of a globally uniform Reff. This is in-

vestigated in the following.

The CO2 radiative forcing is not globally uniform in

LOVECLIM (Goosse et al. 2010) or in comprehensive models

(e.g., Huang et al. 2017; Nalam et al. 2018), but LOVECLIM’s

forcing pattern is not available to us (section 2). As a substitute,

we use the zonal mean forcing pattern from a 2 3 CO2 simu-

lation of a GCM, the Community Earth System Model

(CESM) version 1.2 (Hurrell et al. 2013). We have obtained

this zonal mean feedback by reading Fig. 1a) of Huang et al.

(2017), and approximating their values by a forcing function

that is piecewise linear with latitude u. We have scaled this to

match LOVECLIM’s global mean Reff, yielding the zonal

mean forcing pattern Rscaled(u) shown in Fig. 6a.

To assess the influence of a nonuniform forcing on the

feedback pattern, we have diagnosed LOVECLIM’s longwave

feedback pattern again, using Rscaled(u) instead of Reff in

Eq. (2) (Figs. 6b–e). The difference between this feedback

pattern l(Rscaled)(r, t) and the feedback pattern with uniform

forcing l(r, t) is not purely zonal, as it is scaled by 1/[DT(r, t)]
(Fig. 6c). The shortwave feedback is not affected by the forcing

pattern.

The longwave feedback change from transient to equilib-

rium looks very similar when diagnosed withRscaled (Fig. 6d) as

withReff (Fig. 3i), with a few notable differences (Fig. 6e). First,

the feedback change over the Arctic Ocean is now slightly

negative, compatible with the lapse-rate feedback decrease

expected from Fig. 5c. We cannot compare the magnitude of

the decrease, as explained above. Second, the diagnosed

feedback changes with Rscaled are less pronounced above the

FIG. 5. Zonal-mean profiles of the deviation from vertically uniform warming, normalized by global-mean surface temperature change

[Eq. (3)], in the 2 3 CO2 simulation of LOVECLIM: (a) transient, (b) near-equilibrium, and (c) the difference [(b) 2 (a)] (as in Fig. 3).

Black lines show LOVECLIM’s four temperature levels at 0, 350, 650, and 1000 mb. Negative (positive) regions in (c) contribute to an

increasing (decreasing) lapse-rate feedback.
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North Atlantic and in the most strongly changing region above

the Southern Ocean. This suggests that these strong changes,

including the transient positive feedback anomaly in the region

of slight transient cooling (section 4b), may be overestimated

by the assumption of a uniform forcing. However, the finding

that the overall feedback above the Southern Ocean becomes

less negative is robust.

5. Testing the approximation of constant local feedbacks

We have shown that the local feedback patterns of Bern3D-

LPX and LOVECLIM are time dependent. How does this time

dependence affect the global mean feedback? In this section,

we test how well the time dependence of the global feedback is

captured by the approximation of constant local feedbacks

suggested by Armour et al. (2013).

By definition, the global mean feedback l(t) can be calcu-

lated from the local feedbacks using a warming-weighted av-

eraging (Armour et al. 2013):

l(t)5l(r, t)
DT(r, t)

DT(t)
, (4)

where overbars denote global averages. If most of the time

dependence of l(t) stems from the warming pattern DT(r, t)
rather than changes in the feedback pattern l(r, t), it may be

reasonable to make the approximation of constant local feed-

backs l(r, t) ’ leq(r):

l(t)’l
eq
(r)

DT(r, t)

DT(t)
. (5)

Figure 7a shows the global l(t) time series for both models.

Solid lines are calculated from the exact Eq. (4), dashed lines

from its approximation given by Eq. (5). The magnitude of the

global-mean feedback change is roughly comparable among

the two models. However, the constant local feedback ap-

proximation closely captures the feedback time dependence

for Bern3D-LPX, but not at all for LOVECLIM.

The global-mean longwave and shortwave feedbacks (Figs. 7b,c)

confirm that LOVECLIM’s feedback time dependence is mainly

due to longwave effects. This can be attributed to an increasing

lapse-rate feedback in the Southern Ocean region (section 4c). As

described there, this feedback is nonlocal in nature, therefore the

assumption of constant local feedbacks does not capture the feed-

back time dependence in the global mean. On a side note, our as-

sumption of a globally uniform forcing pattern (section 4c) does not

bias the global-mean feedback estimate.

Increasing shortwave feedbacks contribute to LOVECLIM’s

feedback time dependence only in the first 50 years, due to rapid

initial melting and continental albedo shifts in response to

the abrupt CO2 forcing. The initial melting is stronger in the

Northern Hemisphere (NH; dashed line in Fig. 7d) than in the

SouthernHemisphere (SH; solid line), due to the rapid warming

over the Arctic Ocean (section 4b). However, like in Bern3D-

LPX, the long-term melting is stronger in the Southern

Hemisphere.

FIG. 6. Influence of a diagnostic zonal forcing profile on LOVECLIM’s longwave feedback pattern. (a) Diagnostic forcing Rscaled,

obtained from scaling LOVECLIM’s global-mean Reff by the zonal CO2 forcing pattern from a GCM (see text). (b) Near-equilibrium

longwave feedback pattern diagnosed using Rscaled. (c) Difference between (b) and the pattern diagnosed using uniform Reff. (d) As in

Fig. 3i, but usingRscaled instead ofReff. (e) Difference in the evolution of the longwave feedback pattern whenRscaled is used instead ofReff

[i.e., (d) minus Fig. 3i].
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FIG. 7. Global mean feedbacks: (a) net, (b) longwave, and (c) shortwave, as well as (d) normalized hemispheric

sea ice extent, in the 2 3 CO2 simulation of Bern3D-LPX (blue/cyan) and LOVECLIM (red/orange). In (a)–(c),

solid lines are calculated from the exact Eq. (4) and dashed lines from the approximation of constant local feed-

backs, Eq. (5). The gray line in (c) is calculated with Bern3D-LPX’s prescribed feedback Rpresc instead of Reff (see

text). In (d), anormice is the remaining fraction of the preindustrial sea ice extent in the Southern (solid) and Northern

(dashed) Hemisphere.
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In Bern3D-LPX, we have inferred from the feedback pat-

tern (Fig. 2f) that the feedback changes are dominated by

shortwave (albedo) feedback changes. Also in the global-mean

shortwave feedback (Fig. 7c), we see a strong increase up until

simulation year 3000.

Over the first 500 simulation years, only part of the lSW in-

crease is captured by the assumption of constant local feedbacks

(Fig. 7c). This is because this increase is mostly due to shifts in

sea ice melting regions toward higher latitudes, which changes

the magnitude of the local albedo feedback (section 4). This

includes a rapid increase during the first 10–50 years, where the

initial melting regions become established on both hemispheres,

but mainly in the Southern Ocean (Fig. 7d).

During the further increase between years 500 and 3000,

melting regions are fully established, and the global-mean

feedback is well described by the approximation that the in-

creasingly polar-amplified warming pattern acts on a constant

local feedback.

Also in the Arctic Ocean of Bern3D-LPX, the ice–albedo

feedback increases, mainly due to enhanced melting north of

Bering Strait (Figs. 2f,l–n). This increase takes place in the first

500 years (Fig. 4g shows that there is no further increase

thereafter). This is consistent with the fact that Northern

Hemispheric sea ice melting progresses only very little after

year 500, while about half of the Southern Ocean sea ice

melting occurs on a longer time scale (Fig. 7d).

To investigate how much this Arctic melting contributes to

the increase in global mean shortwave feedback (Fig. 7c), we

have performed simulations in which the albedo was fixed in

one hemisphere, and allowed to evolve freely in the other

hemisphere [as detailed in Pfister and Stocker (2017)]. In this

way, we have found that about 0.1Wm22 K21 of the lSW in-

crease during the first 500 years can be attributed to Arctic

contributions, while the remaining increase (including the full

increase after 500 years) is due to Southern Ocean contribu-

tions. Therefore, we focus on southern sea ice changes in

section 7.

Why does the approximation of constant local feedbacks

capture the total feedback evolution so well in Bern3D-LPX

(Fig. 7a), even though it does not capture the shifting sea ice

melting regions as described above? This is because global-

mean longwave feedback becomes more negative (Fig. 7b)

mainly during the first 500 years, which counteracts the initial

shortwave feedback increase. However, this longwave feed-

back time dependence is a purely diagnostic feature due to the

assumption that fast adjustments are reflected in the effective

radiative forcing Reff rather than in the feedbacks.

If Bern3D’s longwave feedback is diagnosed using the pre-

scribed forcing Rpresc 5 3.71Wm22 K21 (gray line in Fig. 7b)

rather than the effective forcing Reff 5 3.44Wm22 K21 (blue

line), the global-mean longwave feedback remains roughly

constant. This indicates that, in the global-mean feedback

calculation using Reff, some of the initial lSW increase is falsely

accounted for as a rapid adjustment rather than a shortwave

feedback increase. Sea ice, as well as snow and land ice, rapidly

absorbs some of the initial energy imbalance, loweringReff to a

smaller value than Rpresc.

Only because this initial perturbation is accounted for in Reff

rather than l(t), the approximation of constant local feedbacks

works well in Bern3D-LPX. This calls for caution when diag-

nosing global-mean longwave feedbacks using an effective ra-

diative forcing, also in more comprehensive models. Although

the fast adjustments in Bern3D-LPX are physically better de-

scribed as an increase in lSW, the processes causing fast adjust-

ments in comprehensive models may be distinct (Rugenstein

et al. 2016b), justifying the use of an effective radiative for-

cing—apart from the fact that the actual forcing before rapid

adjustments is more difficult to diagnose, as it is not directly

prescribed like in Bern3D-LPX. Nevertheless, rapid ice melting

may also influence the Reff diagnosis in comprehensive models.

We have used Reff for Bern3D-LPX throughout this study

mainly to be consistent with our LOVECLIM analysis, and

with comparable analyses of comprehensive models. Note that

the results discussed in section 4, including the change in

longwave feedback patterns (Fig. 2i), are robust to the choice

of forcing (Rpresc or Reff).

6. The ocean heat uptake efficacy perspective

Alternatively to a time-dependent l, the deviation from

linearity in Fig. 1 can also be explained by introducing an ad-

ditional factor « in the global EBM, accounting for the efficacy

of OHU (Winton et al. 2010):

2l
eq
DT(t)5R

eff
2 «N(t) , (6)

where leq is constant. An OHU efficacy «. 1 accounts for the

fact that the cooling caused by a global mean OHU of 1Wm22

is stronger than thewarming caused by a globalmean forcing of

1Wm22. The first-order explanation of this difference is that

the OHU takes place mainly in the high latitudes where local

feedbacks are strongest, while the forcing is more uniform

(Winton et al. 2010; Rose et al. 2014). An efficacy of « . 1 is

diagnosed for most comprehensive models (e.g., Winton et al.

2010), while « is close to 1 for most EMICs except for the two

studied here, which are more consistent with the comprehen-

sive models (Pfister and Stocker 2018).

Assuming a constant efficacy « exceeding 1 can account for

the fact that the model output lies below the dashed line in

Fig. 1 (i.e., for a less negative but constant slope of the N/DT
relation). However, to explain the changing slope with a con-

stant leq, we need a time-dependent «(t) (Armour et al. 2013;

Paynter and Frölicher 2015). To better understand this time

dependence, « can be decomposed into a contribution by

changing warming patterns and a contribution by changing

local feedbacks, following Rose et al. (2014):

«21
Rose(t)5 11

l
eq
(r)

l
eq

"
DT

ohu
(r, t)

DT
ohu

2
DT

eq
(r, t)

DT
eq

#
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

R1

1
l
ohu

(r, t)2l
eq
(r)

l
eq

DT
ohu

(r, t)

DT
ohu|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

R2

. (7)
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The termsDTeq andleq are the equilibriumwarming and feedback,

that is, the warming and feedback caused by the forcing once the

global mean OHU becomes zero. For LOVECLIM, we used

DTeq 5ECS, and therefore also had to scale the equilibrium

warming pattern to the extrapolated ECS for consistency:

DT
eq
(r, t)5

ECS

DT(t
end

)
DT(r, t

end
), (8)

where (tend) is shorthand for the average over the end of the

simulation (i.e., years 970–1000). Note that this scaling is mi-

nor, as the factor ECS/DT(tend)’ 1:05 is close to 1, but it is

required to obtain a global mean « consistent with Eq. (6).

The terms DTohu and lohu are the cooling and feedback

caused by theOHU. In contrast to Rose et al. (2014), we do not

perform separate prescribed-OHU simulations, and therefore

DTohu and lohu have to be diagnosed as the differences be-

tween transient and equilibrium values:

DT
ohu

(r, t)5DT(r, t)2DT
eq
(r) , (9)

l
ohu

(r, t)5
l(r, t)DT(r, t)2 l

eq
(r)DT

eq
(r)

DT
ohu

(r, t)
. (10)

The separate contributions of changing warming patterns

[«Rose(leq)(t)] and changing local feedbacks [«Rose(Dl)(t)] to
the time dependence of «(t) can be determined by omitting

either term R1 or R2 in Eq. (7):

«
Rose

(l
eq
)(t)5

1

11R
1

, (11)

«
Rose

(Dl)(t) 5
1

11R
2

. (12)

Figure 8 shows the total OHU efficacy, as well as the two ap-

proximations «Rose(leq)(t) and «Rose(Dl)(t). The total OHU

efficacy calculated from Eq. (7) is identical to the OHU effi-

cacy calculated from the global EBM, Eq. (6).

The OHU efficacy is larger than 1 for both models and in-

creases with time, reflecting the increasing deviation from line-

arity in Fig. 1.We do not showOHU efficacy after 500 simulation

years, because this quantity becomes noisy and hard to interpret

once the planetary heat imbalance NTOA becomes small.

The processes in Bern3D-LPX are consistent with the basic

understanding of an OHU efficacy that is greater than one

(Winton et al. 2010). The transient change in OHU is strongest

in the Southern Ocean (Figs. 4k,l), in agreement with GCMs

(Frölicher et al. 2015). Due to the sea ice–albedo feedback in

this region, the local feedback leq(r) is stronger than anywhere

else in Bern3D-LPX (Figs. 4c,g). Thus, the region of strongest

OHU change corresponds with the region of anomalously

strong feedbacks. This explains the stronger impact ofOHUon

temperature, compared to the uniform forcing.

The processes in LOVECLIM are comparable to a more

recent mechanistic interpretation of an OHU efficacy larger

than one, related to changing local feedbacks. In comprehensive

models, changes in both cloud and lapse-rate feedbacks are

linked to changes in atmospheric stability (Rose and Rayborn

2016; Rose and Rencurrel 2016; Ceppi and Gregory 2017, 2019).

Interactive cloud effects are missing in LOVECLIM. But we

have shown that the lapse-rate feedback can explain, or at least

contribute to, the feedback change toward less negative values in

the Southern Ocean (section 4c), which is the cause of the

nonunitary «. In the first 100 simulation years, even in the ab-

sence of cloud feedbacks, LOVECLIM’sOHUefficacy amounts

to roughly « 5 1.3, which is comparable to comprehensive

GCMs (e.g., Winton et al. 2010; Pfister and Stocker 2018).

For the first 500 years, the OHU efficacy is closely matched

by the contribution of changing warming patterns for Bern3D-

LPX (red line in Fig. 8a) and by the contribution of changing

local feedbacks for LOVECLIM (blue line in Fig. 8b). The

OHUefficacy decomposition thus yields consistent results with

the direct feedback analyses shown in sections 4 and 5. The

contributions from changing warming patterns become more

important for LOVECLIM after 300 years. This indicates that

FIG. 8. Time-dependent OHU efficacy in the 23 CO2 simulation Bern3D-LPX and LOVECLIM (purple line).

The contributions of changing warming patterns (red) and changing local feedbacks (blue) are also shown; see Eqs.

(7), (11), and (12) for the definition of «Rose.
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FIG. 9. Normalized global heat uptake (blue; left y axis), Southern Ocean sea ice area and Southern Ocean polar

amplification (red and purple; right y axis) compared to the realized warming fraction (RWF). Time series (lines)

and specific years (symbols; legend below the figure) are shown. Shown are the (left) 23 CO2 and (right) 43 CO2

simulations. (a),(b) LOVECLIM, and (c)–(h) three Bern3D-LPX versions with increasing ECS. The dashed grid

line marks zero on the right y axis.
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the long-term change in global mean feedback toward less

negative values may be a combination of two factors: 1) the

increasing local lapse-rate feedback and 2) the intensifying

polar amplification in the SouthernOcean, acting on a net local

feedback that is stronger than the global average (due to a

combination of the near-constant sea ice–albedo feedback, and

the increased lapse-rate feedback).

7. The influence of forcing magnitude, climate sensitivity,
and sea ice availability

So far, we have focused on the 2 3 CO2 scenario in the

standard versions of both models. In this section, we compare

this to the 4 3 CO2 scenario, and also to a low- and high ECS

version (section 2) of the Bern3D-LPX model.

To enable this comparison, each panel of Fig. 9 combines the

information from Fig. 1 with two quantities that were shown to

be influential in the sections above. These quantities are the

normalized Southern Ocean sea ice area anormice (Fig. 7b) and the

Southern Ocean polar amplification SPA, defined as

SPA5
DT(5282 908S)

DT
2 1, (13)

whereDT(528–908S) is themean atmospheric warming over the

southern polar cap (i.e., averaged both zonally and over lati-

tudes 528–908). SPA values above zero imply that warming is

stronger over the southern high latitudes than in the global

average. Values below zero indicate the opposite, which occurs

in the early years of all model versions due to faster polar

amplification in the Northern Hemisphere.

In contrast to Fig. 1, the axes in Fig. 9 are normalized: The x axis

corresponds to the realized warming fraction RWF(t) 5 DT(t)/
ECS (Frölicher and Paynter 2015; Pfister and Stocker 2018) and

the left y axis corresponds toN/Reff. This is done to enable direct

comparison of the different forcings and climate sensitivities. The

right y axis is shared between anormice and SPA. The time informa-

tion is contained in the different symbols, which correspond to

simulation years 50, 150, 300, 1000, and 2000.

For LOVECLIM, both forcings produce qualitatively similar

results (Figs. 9a,b). Although the global heat imbalance decays

to about 20% by year 300, half or more of the southern sea ice

melting and polar amplification takes place between years 300

and 1000. As discussed in the previous section, this is not the

main cause of the global-mean feedback time dependence in

LOVECLIM, but may act to enhance it. In LOVECLIM’s 4 3
CO2 simulation, about 25% of the preindustrial sea ice remains

in the Southern Ocean after 1000 simulation years. Due to the

doubled forcing, the plotted time series appears less noisy, as the

natural variability is relatively smaller compared to the forcing

response. Otherwise, the simulation closely corresponds to the

2 3 CO2 simulation.

In Bern3D-LPX, the different forcings and different ECS

produce qualitatively different results. We first compare the

2 3 CO2 and 4 3 CO2 simulations in the standard model

version (Figs. 9e,f). In the 2 3 CO2 simulation, about 60% of

the southern sea icemelting and 70%of the polar amplification

take place after year 300, although only about 10% of the

global heat imbalance remains. This delayed amplification

causes the increased climate sensitivity (shallower slope of the

blue line) after year 300.

In contrast, the climate sensitivity of the 43CO2 simulation is

almost constant over time (Fig. 9f, the blue line follows the

dashed black line). This is due to lack of sea ice availability in the

Southern Ocean. About 85% of the Southern Ocean sea ice has

already vanished by year 300 due to the stronger, near-uniform

warming in response to the stronger forcing. Therefore, the

delayed warming amplification in the SO is less than half com-

pared to the 2 3 CO2 simulation, because the ice–albedo feed-

back is much weaker with so little ice remaining.

Sea ice availability thus limits the delayed polar amplifica-

tion, and thereby the time dependence of the global mean

feedback, in Bern3D-LPX. In the low-ECS model version

(Figs. 9c,d), both forcings yield a qualitatively similar evolution

to the standard 23 CO2 simulation (Fig. 9e). The global mean

feedback is smaller due to the low-ECS tuning (section 2), and

therefore enough sea ice remains by year 300 to enable the late

polar amplification. Compared to the standard 2 3 CO2 simu-

lation, the late polar amplification is less pronounced in the low-

ECS 43CO2 simulation, and more pronounced in the low-ECS

2 3 CO2 simulation, which is the only simulation with no com-

pletemeltdown of the SouthernOcean sea ice within 5000 years.

For high ECS and high forcing (Fig. 9h), most of the Southern

Ocean sea icemelts within 150 years. For the remaining duration

of the simulation, warming continues at a lower total feedback

because the southern sea ice–albedo feedback is disabled by the

lack of sea ice. This leads to « , 1 if the curvature in the N/DT
relation is attributed to «. A similar but less pronounced

curvature is simulated by other climate models, mainly under

the abrupt 4 3 CO2 forcing. This includes all six EMIC-AR5

models apart from Bern3D-LPX and LOVECLIM that do

not feature interactive clouds, as well as one EMIC (the

CLIMBER-3a model) with interactive clouds (Pfister and

Stocker 2018, their Fig. S2). It also includes the comprehen-

sive ECHAM5 model (Li et al. 2013, their Fig. 11). Our re-

sults suggest that this could be due to a weakened albedo

feedback after the depletion of sea ice, although the depleted

region (Southern Ocean or Arctic Ocean) may differ between

models, or other effects could be prevalent. In the case of

ECHAM5, a strong Southern Ocean polar amplification (Li

et al. 2013, their Fig. 10) points toward a similar sea ice de-

pletion in the south; the simulated sea ice extent should be

investigated to confirm or reject this hypothesis.

8. Conclusions

We have investigated the causes of the time dependence of

the transient climate sensitivity in two EMICs: the Bern3D-LPX

and the LOVECLIM model. This time dependence can be un-

derstood from two different perspectives: First, the global mean

feedback becomes less negative due to a combination of in-

creasingly polar-amplified warming and changing local feedback

patterns; second, OHU efficacy increases due to strong OHU in

the Southern Ocean, where an anomalously strong local feed-

back dominates. This is not a contradiction: Haugstad et al.

(2017) have demonstrated in their aquaplanet simulations that

the two perspectives are equivalent.

15 JANUARY 2021 P F I S TER AND STOCKER 769

Brought to you by UNIVERSITAT BERN | Unauthenticated | Downloaded 05/04/21 03:07 PM UTC



These effects are in agreement with comprehensive models

(e.g., Armour et al. 2013; Andrews et al. 2015; Proistosescu

and Huybers 2017), and are in principle independent of the

mechanisms causing the polar-amplified feedback pattern.

However, mechanistic analyses of comprehensive models have

pointed toward a dominant influence of cloud and lapse-rate

feedbacks for the time dependence of l(t), as discussed in the

introduction. Here we have shown that a time dependence of

l(t) is also found in twomodels of intermediate complexity that

do not simulate cloud feedbacks.

In both models, the time dependence of the global-mean

feedback is dominantly driven by processes in the Southern

Ocean region. There are two main differences between the two

models. First, both the local and global-mean feedback changes

are dominated by longwave feedbacks in LOVECLIM, and by

shortwave feedbacks in Bern3D-LPX, as detailed below. Second,

the relative importance of changing warming patterns and

changing local feedbacks is opposite in the two models. This was

illustrated both in a regional feedback analysis and in an OHU

efficacy decomposition following Rose et al. (2014).

In LOVECLIM, the global-mean feedback becomes less

negative mostly because the local feedback in the Southern

Ocean region becomes less negative. In agreement with com-

prehensivemodels (e.g., Po-Chedley et al. 2018), LOVECLIM’s

atmospheric warming profile suggests that this can be attributed

to a lapse-rate feedback increase. Only on the multicentury time

scale, the change in the global-mean feedback toward less neg-

ative values is enhanced by the delayed warming over the

Southern Ocean. That is because this regional warming acts on

the local feedback that is higher than the globalmean, due to the

near-constant sea ice–albedo feedback and the increased lapse-

rate feedback.

In Bern3D-LPX, the global-mean feedback becomes less

negativemainly due to delayed polar-amplified warming acting

on near-constant local feedbacks (Armour et al. 2013). The

local feedback pattern is mainly determined by the sea ice–

albedo feedback, which is strongest in the Southern Ocean.

The delayed warming in this region acting on this strong local

feedback causes most of the global-mean feedback change.

However, the assumption of constant local feedbacks only

holds well if fast adjustments in sea ice melting are accounted

for in the effective radiative forcing Reff rather than the feed-

back. Otherwise, local shortwave feedback pattern changes

within the first 500 years (due to poleward shifts in sea ice

melting regions) contribute to a less-negative global-mean

feedback, in addition to the shifting warming pattern.

In summary, these results show that the assumption of

constant local feedbacks can hold well in models with a one-

layer atmosphere (like Bern3D-LPX). There, the only non-

constant feedback contributions are nonlinearities in the

Planck and water vapor feedbacks, as well as shifts in melting

regions. However, these shifts may strongly affect initial local

albedo feedback changes, such that the assumption holds true

only onmulticentury tomillennial time scales. In models with a

three-dimensional atmosphere, the assumption no longer holds

due to the nonlocal lapse-rate feedback changes (like in

LOVECLIM), and even less so if nonlocal cloud feedbacks are

resolved in addition (Ceppi and Gregory 2017).

Furthermore, we have shown that the feedback change

caused by delayed Southern Ocean warming is limited by sea

ice availability in Bern3D-LPX. In model simulations with low

global mean warming, due to low ECS tuning or low forcing or

both, the feedback becomes less negative over time due to the

effects described above. Contrarily, in simulations with a

higher global mean warming, the global mean feedback be-

comes time independent, because the delayed polar amplifi-

cation is inhibited by the faster loss of sea ice. In the simulation

with the highest ECS (6.08C) and forcing (4 3 CO2), the

feedback even becomes more negative over time.

There are some caveats to this finding. First, there is awarmbias

of around 38C in the Southern Ocean surface air temperature

of Bern3D-LPX compared to reanalysis data. Second, the ice–

albedo feedbackofBern3D-LPXamounts to0.75Wm22K21 in the

23CO2 simulation (estimatedby the feedbackdifference toafixed-

albedo simulation; Pfister and Stocker 2017), which is an overesti-

mation compared to themultimodel mean of 0.51Wm22K21 from

15 comprehensive models (with a minimum-to-maximum range of

0.29–0.69Wm22K21; Ceppi and Gregory 2017). Finally, in the

thermodynamic sea ice component of Bern3D-LPX, sea ice is only

advected following prescribed wind fields; wind changes and ice

dynamics are not simulated. More comprehensive models are thus

required to confirm this finding.

The global-mean feedback also becomes less negative over

time in some other EMICs (Pfister and Stocker 2018) and in the

4 3 CO2 simulation of the comprehensive ECHAM5 model

(Li et al. 2013; Rugenstein et al. 2020). We suggest that sea ice

depletion is a possible mechanism for the feedback time de-

pendence of these model simulations. In an intercomparison

of millennial simulations, the global-mean feedback becomes

less negative over time in most comprehensive models, but the

multimodel mean local feedback shows a robust decrease in

the Southern Ocean sea ice region (Rugenstein et al. 2020).

This indicates that the regional shift and/or depletion of sea

ice simulated in Bern3D-LPX are also relevant in compre-

hensive models. In the Community Climate System Model

version 3 (CCSM3), the Southern Ocean becomes ice-free

under a 4 3 CO2 forcing (Goosse et al. 2018). Recent ob-

servations by Parkinson (2019) show that the Southern

Ocean sea ice extent has decreased rapidly over the last 5

years, to levels unprecedented in at least 40 years. This un-

derlines the importance of understanding the climate feed-

back and warming response to strong sea ice melting in the

Southern Ocean.
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