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ABSTRACT: Advanced in vitro models called “organ-on-a-chip”
can mimic the specific cellular environment found in various
tissues. Many of these models include a thin, sometimes flexible,
membrane aimed at mimicking the extracellular matrix (ECM)
scaffold of in vivo barriers. These membranes are often made of
polydimethylsiloxane (PDMS), a silicone rubber that poorly
mimics the chemical and physical properties of the basal
membrane. However, the ECM and its mechanical properties
play a key role in the homeostasis of a tissue. Here, we report
about biological membranes with a composition and mechanical
properties similar to those found in vivo. Two types of collagen-
elastin (CE) membranes were produced: vitrified and nonvitrified
(called “hydrogel membrane”). Their mechanical properties were characterized using the bulge test method. The results were
compared using atomic force microscopy (AFM), a standard technique used to evaluate the Young’s modulus of soft materials at the
nanoscale. Our results show that CE membranes with stiffnesses ranging from several hundred of kPa down to 1 kPa can be
produced by tuning the CE ratio, the production mode (vitrified or not), and/or certain parameters such as temperature. The
Young’s modulus can easily be determined using the bulge test. This method is a robust and reproducible to determine membrane
stiffness, even for soft membranes, which are more difficult to assess by AFM. Assessment of the impact of substrate stiffness on the
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spread of human fibroblasts on these surfaces showed that cell spread is lower on softer surfaces than on stiffer surfaces.

KEYWORDS: ECM membrane, organ-on-a-chip, bulge test, atomic force microscopy, Young's modulus

Bl INTRODUCTION

In vivo, cells reside in a complex microenvironment that is
constantly exposed to endogenous and exogenous forces.
These forces are transferred to the cytoskeleton via integrins
and the extracellular matrix (ECM). The mechanical properties
of the ECM strongly influence cellular morphology, prolifer-
ation, and differentiation.'™® In the human body, the
mechanical properties of different tissues vary according to
composition and location. Most organs, such as the lungs,
brain, or kidneys, are compliant and have a stiffness lower than
15 kPa.* Therefore, soft materials are required to reproduce
the physiological microenvironment of cells in in vitro systems.

Organ-on-a-chip (OOC) technology often uses polydime-
thylsiloxane (PDMS) membranes to reproduce the in vivo
barrier. Because of the mechanical properties of this material,
OOC membranes can stretch to mimic breathing™® or
heartbeat”® motion. PDMS has several advantages: it can
easily be microstructured using soft lithography and is
permeable to oxygen, optically transparent, biocompatible,
and cost-effective.’” However, it also has several limitations, of
which an important one is a high propensity for ad- and
absorption of small molecules such as drugs.'”'" In addition, it

© XXXX The Authors. Published by
American Chemical Society
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is an artificial substance and thus does not mimic the chemical
composition of the ECM. To overcome these limitations,
researchers have recently developed collagen-based mem-
branes integrated in OOCs.'>~'® The biological and structural
properties of the membrane can be tuned by changing the
composition and concentration of the membrane materials to
mimic the ECM properties of a specific tissue.'” Collagen is
biocompatible, biodegradable, and can easily be structured into
a scaffold. Collagen-based membranes can mimic the chemical
composition and structure of the in vivo ECM, and unlike
PDMS, they do not show high ab- and adsorption capacity."
Combinations of collagen and elastin are used to develop living
tissues such as cardiovascular, skin, liver, and musculoskeletal
tissues.'®

Special Issue: Beyond PDMS and Membranes: New
Materials for Organ-on-a-Chip Devices
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Atomic force microscopy (AFM)-based testing is one of the
most commonly used methods to characterize biological
membranes.'”™>' However, although imaging and mechanical
sensing by AFM appear straightforward, several intricacies
complicate the acquisition of quantitative data, making the
method time- and labor-intensive.'” Furthermore, AFM
provides local stiffness values that do not necessarily reflect
the average stiffness of the material. Sheng et al.”* recently
reported the use of the bulge test, a method developed for rigid
thin films,”®> for the mechanical characterization of soft
membranes. In this nondestructive method, the mechanical
properties of the analyzed material are determined by
measuring the relationship between the deflection of free-
standing membranes and the applied pressures.”* ¢

In this study, we describe two types of biological membranes
made of collagen and elastin (CE) supported by a gold mesh,
namely, vitrified and nonvitrified (called “hydrogel”) CE
membranes. We report the mechanical characterization of
these membranes using AFM and the bulge test method. The
mechanical properties of the membranes were assessed as a
function of several parameters, such as the concentration of
collagen and the fabrication temperature. The effect of the
membrane’s stiffness on biological systems was assessed by
evaluating the morphological behavior of lung fibroblasts
cultured on the membranes.

B MATERIALS AND METHODS

Production of the CE Membrane and Chip Fabrication. The
production of the vitrified CE membrane and the chip fabrication
procedure were described earlier.'® In brief, the biological membranes
were made of rat-tail collagen type I, high concentration (Corning,
New York, NY, USA), and bovine neck elastin lyophilized powder
(Sigma-Aldrich, Buchs, Switzerland). The two molecules were mixed
at a ratio of 1:1 to a final concentration of 3.5 mg/mL in a pH 7.4
buffer. An 18 ym thin gold mesh (Plano GmbH, Wetzlar, Germany)
with hexagonal pores of 500 ym was used as a scaffold to create the
biological membrane. The CE solution was pipetted directly over the
gold mesh. After pipetting, the chip was immediately incubated at 37
°C, 100% humidity, and 5% CO, for 1 h to allow gelation of the
membrane. For membranes produced at 4 °C, the membrane was
placed in the refrigerator overnight. For the hydrogel CE membrane,
the membrane was immediately hydrated using cell culture medium.
For the vitrified CE membrane, the membrane was dried at room
temperature for 48 h before rehydration using cell culture medium for
2 h at 37 °C. The membrane was sandwiched between a PDMS top
layer and a polycarbonate bottom with double-sided tape (Figure S1).
Prior to the membrane fabrication, the microfluidic device was
sterilized with ozone (CoolCLAVE, Genlantis) and exposed to UV
light for 45 min. A 10 ym thin PDMS Sylgard 184 membrane
produced as described previously'® was used as a reference material.

Bulge Test. In the bulge test, uniform air pressure is applied to
one side of a freestanding membrane, and the resulting deflection,
called the bulge height, is measured. For a membrane with a circular
shape, the pressure (P) is expressed as a function of the bulge height
(h) as follows:

4o,t E
a 3a"(1 -v) (1)

where E and o are the Young’s modulus and the residual stress of the
membrane, resgectively; t is the thickness; a is the radius; and v is the
Poisson ratio.”” Equation 1 was applied to the hexagonal gold mesh,
and the radius was obtained by averaging the diameters of the circles
inscribing and circumscribing the hexagons. The membrane was
deflected using a homemade electropneumatic system that generates a
negative pressure that can be tuned up to 30 kPa. The deflection was
visualized with a 3D optical profiler (S neox, Sensofar, Spain),

whereas deflection measurements were obtained using an AxioPlan2
Zeiss microscope equipped with an incubator. The deflection values
were obtained by measuring the difference in height between the
stretched and unstretched membrane using focus variations on the
membrane surface at the center of a hexagon. The deflection of the
gold mesh itself was subtracted from the total deflection value. The
deflection values of the PDMS, the vitrified CE membrane, and the
hydrogel CE membrane were determined using the following pressure
ranges: 0—4 kPa for the PDMS and CE-vitrified membranes, and 0—2
kPa for the CE-hydrogel membrane, with increments of 0.5 and 0.3
kPa, respectively. At least three membranes were tested per condition.
The experimental pressure-deflection curves were analyzed using
MATLAB software and fitted to eq 1, from which the Young’s
modulus was extrapolated. The membrane was in contact with the cell
culture medium in the basolateral compartment during all deflection
measurements.

AFM. AFM stiffness measurements were performed in-liquid (cell
culture medium on the apical side of the membrane) using a
customized Dimension Icon AFM head (Bruker Nano Surface, Santa
Barbara, California, US) mounted on an inverted optical micro-
scope.”” For the measurement, a 70 um thick PDMS layer was
bonded on a glass slide and four layers of CE-vitrified membrane
(pipetted at 3.2 uL/mm?) were directly produced on this substrate.
Force—volume images were acquired within a square of 30 ym X 30
um at the center of the membrane. A minimum of 256 points were
measured per membrane. The bead cantilevers CP-qp-CONT-PS
(sQube) with a 3.6 ym radius bead were used for indenting the
membrane. Data analysis was performed using Nanoscope Analysis
software (Bruker), and the Young’s modulus was calculated using the
Hertzian model.

Thickness Measurement. The thickness of the vitrified CE
membrane was measured as described previously."’ In brief, the
membrane was cut at the center and imaged using the reflective light
microscopy mode of the AxioPlan2 Zeiss microscope. The thickness
was measured using Axiovision software. For the hydrogel membrane,
the thickness was measured with the same microscope as a Z-stack
between the bottom and the top of the gel. To help identify the
membrane surface and thus increase the accuracy of the measurement,
graphite powder (obtained by scratching a pencil tip with a scalpel)
was spread on the hydrogel CE membrane. Four samples were
measured for each condition.

Cell Culture. The human fetal lung fibroblast cell line HFL-1 was
obtained from ATCC (CCL-153) and cultured in F-12K medium
(Gibco) supplemented with 10% FBS (Sigma) and 1% p/s. Cells were
used between passages 25 and 27, and seeded on chips at a density of
8 X 10° cells/cm?. The PDMS membrane was coated overnight with a
solution of collagen I (Sigma-Aldrich) and fibronectin (Corning). The
membrane was washed and then dried under UV for 45 min. After 24
h, cells were fixed and analyzed by immunofluorescence. All cell
manipulations were performed in a sterile flow hood, and cells were
maintained at 37 °C, 100% humidity, and 5% CO,.

Immunofluorescence. The chips were washed three times with
PBS, fixed with 4% paraformaldehyde (Sigma-Aldrich) for 10 min,
and rinsed again three times with PBS. The cells were permeabilized
with 0.1% Triton X-100 (Sigma-Aldrich) for 10 min, washed three
times with PBS, blocked for 45 min in a 2% BSA (Sigma-Aldrich)
solution, and incubated in blocking solution containing Hoechst and
actin for 1 h. After the incubation, the chips were washed three times
with PBS. All immunostaining steps were performed at room
temperature. Images were acquired using a confocal microscope
(CLSM, Zeiss LSM 710) and Leica DMI400 (Leica Microsystems,
Buffalo Grove, IL, USA), and analyzed using Fiji software.

Cell Shape Analysis. To quantify the variation in cell
morphology, we calculated the cell shape index (CSI), a
dimensionless quantitative measure, using the following equation:

CSI = 471'i2
p ()
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Figure 1. Fabrication procedure of the hydrogel and vitrified CE membranes. Modified with permission from ref 13. CC-BY. A drop of collagen
and elastin is pipetted on a thin gold grid, which results in the spreading of the solution by surface tension force. Two membrane types were
investigated. After gelation, the hydrogel membranes (top) were left in cell culture medium, whereas the vitrified membranes (bottom) were dried
and rehydrated prior to characterization.
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Figure 2. Mechanical characterization of biological membranes. (A) Visualization of the vitrified CE membrane deflection under a negative
pressure of 0.5 kPa with an optical profiler. (B) Deflection of hydrogel and vitrified CE membranes as a function of applied pressure. Ten-
micrometer-thin PDMS membrane was used as a reference. (C) Young’s modulus of membranes extrapolated from the pressure—deflection curves.
(D) Comparison of Young’s modulus obtained via AFM and bulge test.

where S is the surface of the cell and p is the perimeter. The surface
and the perimeter were measured using Fiji software.
Statistics. Data are presented as the mean =+ standard deviation

procedures were evaluated to produce a vitrified membrane or
a hydrogel membrane. First, a gelation step was used to

(SD). The significance of differences was assessed using the two-tailed
unpaired Student’s t test. Statistical significance was defined as
follows: *p < 0.05, ¥*p < 0.01, ¥**p < 0.001, and ****p < 0.0001.
Statistical analysis was performed using GraphPad Prism 8 software.

B RESULTS

Formation of Vitrified and Hydrogel CE Membranes.
The biological membranes were generated using a simple
process based on surface tension (Figure 1). A drop of CE
solution was pipetted onto a thin gold mesh. Two fabrication

promote cross-linking of the CE molecules. This step created a
hydrogel CE membrane that could be used immediately as
support for cells. To generate the vitrified CE membrane, we
dried the CE solution at room temperature for 2 days. This
evaporation process created a vitrified CE membrane that was
12-fold thinner than the hydrogel CE membrane (Figure S2).
The thickness of the vitrified CE membrane was 8.2 & 2.0 ym,
whereas that of the hydrogel CE membrane was 100.1 + 28.8
um when 1.6 uL/mm?* of the CE solution was pipetted onto
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Figure 3. Mechanical characterization of biological membranes as a function of protein ratio. (A) Pressure—deflection curves of vitrified and
hydrogel CE membranes with varying ratios of collagen to elastin. (B) Young’s modulus extracted from pressure—deflection curves as a function of

chemical composition.
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Figure 4. Effect of the substrate stiffness on cell spreading. (A) HFL-1 on PDMS, CE 1:1 vitrified, and CE 1:1 hydrogel membrane. Scale bar: 20
um. (B) Cell shape index (CSI) and (C) cell surface of HFL-1 on PDMS, CE 1:1 vitrified, and CE 1:1 hydrogel membranes.

the mesh. The vitrified CE membranes were rehydrated in cell
culture medium for 2 h before characterization.

Mechanical Characterization of Thin Membranes:
AFM vs Bulge Test. The two types of developed biological
membrane were flexible and could be deflected when exposed
to negative pressure (Figure 2A and Figure S3). The
fabrication process affected the stretchability of the biological
membranes (Figure 2B). At 0.5 kPa, the deflection was 51.4 +
3.1 pum for the hydrogel CE membrane and 20.4 + 3.8 ym for
the vitrified CE membrane. Deflection was 2- to 3-fold higher
for biological membranes than for the 10 pgm PDMS
membrane used as reference (Figure 2B). At 2 kPa, the
deflection was 156.6 + 9.2 um for the hydrogel CE membrane,
65.0 + 5.0 um for the vitrified CE membrane, and 46.7 + 2.0
um for the PDMS membrane. Young’s modulus was
extrapolated from the relation between the deflection of the

membrane and the pressure applied (Figure S4). The Young’s
modulus of the PDMS membrane (Eppys = 380 + 46 kPa)
evaluated using the bulge test method was approximately 2-
fold higher than that of the vitrified CE membrane (Ecg , =
173 + 37 kPa), and approximately 200-fold higher than that of
the hydrogel CE membrane (Ecg, }, = 0.79 + 0.36 kPa) (Figure
2C). A slight, but not significant, increase in stiffness was
observed after storing the vitrified CE membrane at room
temperature for 14 days (Figure SS). However, the membrane
stiffness did not change after immersion in cell culture medium
for 2 weeks at 37 °C (Figure S6). The Young’s moduli were
also determined by AFM via the acquisition of force volume
images (Figure S7). Layers of the respective materials were
produced on a glass slide to avoid the geometric effects one
would have when measuring directly the suspended mem-
branes. The stiffness for the PDMS was of 630 + 78 kPa, and
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86 + 19 kPa for the vitrified CE layer. The variation of the
AFM data is shown in Figure S8. The thicknesses of the layers
were chosen so that the stiffness of the glass would not affect
the measurement. The stiffness of the hydrogel CE membrane
was only evaluated with the bulge test because of the difficulty
in identifying the contact point between the cantilever tip and
the surface of the hydrogel using AFM.

Impact of CE Ratio and Gelation Temperature on the
Mechanical Properties of the Membranes. The mechan-
ical properties of the vitrified CE membranes varied according
to the composition of the solution pipetted onto the gold
mesh. At lower collagen concentrations, the vitrified CE
membrane was softer, which resulted in larger deflection
values. For example, at 1 kPa, the deflection was 83.2 & 8.9 um
at a 1:3 ratio and 37.5 + 5.2 ym at a 1:1 ratio of collagen to
elastin (Figure 3A). The resulting Young’s modulus for the
vitrified CE membrane 1:3 (Ecg, 15 = 75 * 43 kPa) was
approximately one-half of that for the 1:1 membrane (Ecg,, 1,
=173 + 37 kPa) (Figure 3B). However, the protein ratio (1:1
or 1:3) had no significant effect on the mechanical properties
of the hydrogel CE membranes. Another factor affecting the
stiffness of CE membranes is the gelation temperature. The
Young’s modulus of the hydrogel CE membrane produced at
37 °C (Ecgp, 37 °c = 0.79 + 0.36 kPa) was approximately 2-fold
lower than that of the membrane produced at 4 °C (Ecg, 4c
= 2.0 + 0.54 kPa) (Figure S9). h

Impact of Stiffness on Cell Spreading. To determine
the effect of substrate stiffness on cell spreading, human lung
fibroblasts were cultured on PDMS, vitrified CE, and hydrogel
CE membranes. As shown in Figure 4A, the substrate type
directly affected the shape and the cell surface characteristics.
The fibroblasts on the hydrogel CE membrane have a circular
shape characterized by a CSI of 0.62 + 0.27, whereas on
PDMS and on the vitrified CE membrane, the cells are
elongated (CSIppys = 0.21 & 0.13 and CSIy ¢ = 0.25 + 0.2)
(Figure 4B). Additionally, the surface area of fibroblasts grown
on PDMS and vitrified CE membranes was similar (2153 +
1479 pum? on PDMS and 1883 + 1041 um? on the vitrified CE
membrane), whereas that of cells grown on the hydrogel CE
membrane was approximately 4-fold smaller (517 + 333 ym?®)
(Figure 4C). These data indicate that the stiffness of the
surrounding ECM affects cell morphology.

B DISCUSSION

The structure, stiffness, elasticity, and composition of the ECM
are important for the maintenance of tissue homeostasis in
health and disease.””” Therefore, reproducing ECM charac-
teristics in advanced in vitro models is critical. In OOC
devices, thin and flexible membranes made of PDMS (Sylgard
184) mimic the basal membrane and act as a substrate for
cells.>® However, despite several advantages for cell culture,
the composition and mechanical properties of PDMS differ
from those of soft tissues. To achieve better simulation of
physiological systems, researchers developed biological vitri-
fied'”™"° and hydrogel’”®" membranes and integrated them
into in vitro models. Collagen I has been used extensively in
this context because of its capacity to form a stable gel rapidly
at the physiological temperature. In this study, we report the
mechanical characterization of biological membranes produced
with or without vitrification. The simple fabrication process
based on surface tension reported earlier'” was extended and
used for hydrogel membranes enabling the reproduction of
stiffnesses, with elastic moduli in the low kilopascal range,

typically found in soft tissues. The membranes are composed
of collagen I and elastin, two of the most abundant ECM
proteins.”® The mechanical characterization of the membranes
is carried out by AFM and compared with the bulge technique,
which is reported here for the first time to the best of our
knowledge.

The mechanical characterization of a cell—substrate,
particularly the measurement of stiffness, is important because
this parameter strongly affects cellular behavior.”” The AFM
indentation technique is a widely used method to characterize
the stiffness of soft biological materials at the nanoscale.
However, it only provides a local value of the stiffness, whereas
the global stiffness of a tissue—here of a membrane—is often of
interest. In addition, the fine-tuning of the indentation
parameters is sample-specific and time-consuming.” In terms
of instrumentation, the AFM method requires a specific setup
for each biological material to be tested, particularly the
cantilevers used. The bulge test is an alternative method for the
determination of the average stiffness of freestanding
membranes.”” In this study, we demonstrate that this
nondestructive technique is a valuable tool to determine the
Young’s modulus of thin and soft membranes, in particular
those with low stiffness (in the kPa range). The Young’s
modulus determined for the collagen-elastin hydrogel mem-
brane (0.79 + 0.36 kPa) is in the range of the values found in
the literature for collagen based hydrogel (about 0.5-2.4
kPa***%¢ of similar concentration (about 3 mg/mL)). Very
few studies have estimated the Young’s modulus of reswollen
vitrified collagen-based membrane. Mondrinos et al.'” reported
a value of 660 kPa for a collagen vitrified membrane, which
decreased to 429 kPa when mixed with Matrigel. In the present
case, elastin made it possible to increase the flexibility of the
biological membrane and reduced its Young’s modulus (173 +
37 kPa). Both methods, the bulge test and the AFM, have their
own limitations and operating challenges. On one hand,
Young’s moduli obtained with the bulge test depend on the
accuracy of the membrane thickness measurement, often
difficult to determine for hydrogel membranes. The accurate
estimation of the deflection amplitude is an additional
challenge, due to the not well-defined membrane-liquid
interface. On the other hand, the assessment of mechanical
properties of thin, soft and suspended membrane is challenging
with the AFM technique. In fact, the interaction of the tip with
the membrane leads to local deformations that are linked to
the mechanical properties of the material but also induces the
membrane to deflect, creating a measurement artifact.
Complex set-ups’*® are needed to circumvent this problem.
In the present case, thick layers of the respective materials were
produced on glass slides and measured for their stiffness. The
Young’s moduli obtained using the bulge test were on the same
order of magnitude than those determined by AFM.

The properties of collagen scaffolds, especially their
mechanical and transport properties, depend on several
parameters, such as the protein source and concentration,
gelation pH, temperature, and other parameters of the
fabrication process. Each of these factors can dramatically
affect the mechanical properties of membranes.”” In this study,
we identified protein concentration as a key parameter
affecting the Young’s modulus of membranes. The flexibility
of the vitrified CE membrane was directly dependent on the
ratio between collagen and elastin, and an increase in elastin
concentration over collagen led to larger deflections. However,
decreasing the concentration of collagen could prevent gelation
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and the complete formation of hydrogel CE membranes.
Another parameter affecting the mechanical properties of
biological membranes is the gelation temperature. The self-
assembly process occurs at a faster rate at higher temperatures,
which can reduce the diameter of fibrils.*’~** In this study,
lower gelation temperatures (4 °C vs 37 °C in the normal
procedure) increased the gelation time and potentially the size
of the fibers. That may explain the difference in Young’s
modulus for the hydrogel CE membrane obtained at 4 °C and
at 37 °C. These results suggest that membranes with a wide
range of stiffness values (i.e., 0.8—200 kPa) can be generated
by modifying the fabrication procedure and certain parameters
such as protein concentration and gelation temperature, thus
reproducing the stiffness of healthy tissues such as the brain
(0.5—1 kPa),” lung (1—5 kPa),** and skin (50 kPa),* as well
as fibrotic tissues (20—100 kPa).*®

The mechanical properties of the surrounding substrate
greatly influence cell morphology,””*® proliferation,” adhe-
sion,>" migration,51 and differentiation.”>* In particular, the
stiffness of the ECM critically determines cell morphology and
specifically cell spreading. We observed that fibroblasts
cultured on stiff membranes (PDMS and CE-vitrified) have a
significantly larger surface and lower CSI than those grown on
soft materials (hydrogel CE membrane), which is in agreement
with similar studies.”>* However, the surface area did not differ
between substrates exposed to 200 kPa and those exposed to
400 kPa. Unlike the process for PDMS membranes, the
biological membranes did not require any preliminary
treatment for cell culture.

B CONCLUSION

This study describes the mechanical characterization of new
flexible biological membranes using the bulge test method
compared with AFM. The results obtained with the non-
destructive bulge technique were on the same order of
magnitude as those obtained by AFM. The results showed that
the bulge test is a robust and reproducible technique to
determine the Young’s modulus of thin biological suspended
membranes. Stiffnesses as low as 1 kPa could be assessed in an
uncomplicated manner. The membranes presented in this
study can be modified to reproduce the physiological or
pathophysiological microenvironments of various tissues. In
addition, these biological membranes fabricated out of natural
materials are not subject to the limitations of synthetic
materials regarding composition and functionalization. How-
ever, in contrast to synthetic membranes with very well-defined
micropores, such as microfabricated PDMS membranes, the
porosity of biological membranes is not well-defined and may
be a limitation for instance to block the migration of cells.
Nevertheless, biological membranes present other advantages,
such as a simple production process. These membranes can be
stored for long periods of time (at least 2 weeks) without
significant effects on stiffness. In summary, biological
membranes provide the organs-on-chip and the tissue
engineering communities with a powerful tool that can be
tuned at will to modify its composition and mechanical
properties to reproduce the in vivo ECM. Their integration
into organ-on-a-chip devices has already started as reported by
several groups.'”~'"*! Given the new possibilities provided by
such membranes, there is little doubt that they will increasingly
replace synthetic ones in organs-on-chips in the years to come.
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