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Abstract. A general framework for proving an order of convergence for
set-valued Runge Kutta methods is given in the case of linear differen-
tial inclusions, if the attainable set at a given time should be approxi-
mated. The set-valued method is interpreted as a (set-valued) quadrature
method with disturbed values for the fundamental solution at the nodes
of the quadrature method. If the precision of the quadrature method and
the order of the disturbances fit together, then an overall order of con-
vergence could be guaranteed. The results are applied to modified Euler
method to emphasize the dependence on a suitable selection strategy
(one strategy leads to an order breakdown).
Keywords: set-valued Runge-Kutta methods, linear differential inclu-
sions, selection strategies, modified Euler

1 Introduction

In this article we restrict our attention to the case of linear differential inclusions
(LDI). For motivations and connections to other areas, see e.g. [8].

Problem 1.1. Consider the linear differential inclusion (LDI)

x′(t) ∈ A(t)x(t) + B(t)U (f. a. e. t ∈ I = [t0, T ] ) , (1)
x(t0) ∈ X0 (2)

with matrix functions A : I → IRn×n, B : I → IRn×m and sets X0 ∈ C(IRn), U ∈
C(IRm). Hereby, C(IRn) denotes the set of nonempty, convex, compact subsets of
IRn.

The fundamental solution of the corresponding matrix differential equation

X ′(t) = A(t)X(t) (f. a. e. t ∈ I ) ,

X(τ) = I .

is denoted by Φ(·, τ) for τ ∈ I, where I ∈ IRn×n is the unit matrix.

Definition 1.2. The attainable set R(t, t0, X0) at a given time t ∈ I for Prob-
lem 1.1 is defined as

R(t, t0, X0) = {x(t) | x : I → IRn is an absolutely continuous
solution of (1)–(2)} .



The Aumann integral introduced in [1] is an important tool for the following.

Definition 1.3. Consider a set-valued function F : I → IRn with images in
C(IRn) which is measurable and integrably bounded (see [1]).

Then, Aumann’s integral is defined as

T∫
t0

F (t)dt :=
{ T∫

t0

f(t)dt | f(·) is an integrable selection of F (·)
}

.

It serves as a tool for reducing the approximation of the attainable set at
time T to a problem of studying a set-valued quadrature method (see (7)).

Notation 1.4. The arithmetic operations of sets

λ · C := {λ · c | c ∈ C } (scalar multiple) ,

C + D :={ c + d | c ∈ C, d ∈ D } (Minkowski sum) ,

A · C := {Ac | c ∈ C } (image under a linear mapping)

are defined as usual for C,D ∈ C(IRn), λ ∈ IR, A ∈ IRk×n.
We denote with dH(C,D) the Hausdorff-distance of these two sets. The support
function for C in direction l ∈ IRn is defined as

δ∗(l, C) := max
c∈C

〈l, c〉.

Lemma 1.5. Let C,D ∈ C(IRn), l ∈ IRn, λ ≥ 0 and A,B ∈ IRm×n. Then,

δ∗(l, C + D) = δ∗(l, C) + δ∗(l,D), δ∗(l, λC) = λδ∗(l, C) , (3)
dH(C,D) = sup

‖l‖2=1

|δ∗(l, C)− δ∗(l,D)| , (4)

dH(AU,BU) ≤ ‖A−B‖ · ‖U‖ with ‖U‖ := sup
u∈U

‖u‖2 , (5)

dH((A + B)U,AU + BU) ≤ ‖A−B‖ · ‖U‖ . (6)

In Problem 1.1, the attainable set at time T

R(T, t0, X0) = Φ(T, t0)X0 +

T∫
t0

Φ(T, t)B(t)Udt (7)

could be rewritten as a sum of the transformed starting set and Aumann’s inte-
gral of Φ(T, ·)B(·)U (cf. e.g. [6]), where Φ(T, t) is the corresponding fundamental
solution. Scalarization of (7) by support functions and applying the calculus rules
in (3) and [4] yields for l ∈ Sn−1 (i.e., l ∈ IRn with ‖l‖2 = 1)

δ∗(l,R(T, t0, X0)) = δ∗(l, Φ(T, t0)X0) +

T∫
t0

δ∗(l, Φ(T, t)B(t)U)dt . (8)
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2 Quadrature and Combination Methods

Notation 2.1. For a given interval I := [t0, T ] and a function f : I → IRn

consider the point-wise quadrature formula

Q(f ; [t0, T ]) :=
s∑

µ=1

bµf(t0 + cµ(T − t0))

for the approximation of
∫

I
f(t)dt, where bµ ∈ IR are the weights and cµ ∈

[0, 1] determine the nodes (µ = 1, . . . , s). Introducing the step-size h = T−t0
N for

N ∈ IN and applying the quadrature formula on each sub-interval [tj , tj+1] with
tj = t0 + jh, j = 0, . . . , N − 1, we arrive at the iterated quadrature formula

QN (f ; [t0, T ]) := h

N−1∑
j=0

Q(f ; [tj , tj+1]) = h

N−1∑
j=0

s∑
µ=1

bµf(tj + cµh) .

Definition 2.2. Consider a point-wise quadrature formula of Notation 2.1. Us-
ing the arithmetic operations of Notation 1.4, we introduce for a set-valued func-
tion F : I ⇒ IRn with images in C(IRn) the iterated set-valued quadrature formula

QN (F ; [t0, T ]) := h

N−1∑
j=0

s∑
µ=1

bµF (tj + cµh). (9)

These set-valued quadrature methods are studied by several authors, cf. e.g.
[12,6,4,9,2]. Essential for reaching the same order of convergence as in the point-
wise case is the smoothness of the function t 7→ δ∗(l, F (t)) uniformly in l ∈ Sn−1

due to the scalarization as in (8). To express the smoothness in a weaker sense,
the averaged modulus of smoothness τk(f ;h), presented e.g. in [11], is used which
is a L1-norm of the local modulus of smoothness expressed as a certain supre-
mum of the k-th finite difference of the function f(·).

Theorem 2.3. Let F : I ⇒ IRn with images in C(IRn) be measurable and
bounded. Consider a point-wise quadrature formula with precision p− 1, p ∈ IN
(cf. [11]) and the set-valued iterated form (9) with step-size h = T−t0

N , N ∈ IN.
Then, the set-valued quadrature formula fulfills

dH(
∫

I

F (t)dt,QN (F ; I)) ≤ (1 +
s∑

µ=1

bµ

T − t0
) ·Wp · sup

‖l‖2=1

τp(δ∗(l, F (·)), 2
p
h) .

Proof. For the point-wise result see [2, Satz 1.2.11] which is based on [11, Theo-
rem 3.4]. Apply this result for the function t 7→ δ∗(l, F (t)) for each l ∈ Sn−1 and
use the equivalent expression (4) in Lemma 1.5 for the Hausdorff distance. ut

Set-valued quadrature methods could be used to approximate attainable set
at the time T , if the values of the fundamental solution are known at the inte-
gration nodes tj + cµh, µ = 1, . . . , s, j = 0, . . . , N − 1. Otherwise, these values of
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the fundamental solution needs to be approximated carefully so that the order
of convergence of the quadrature method is not destroyed. Compare the next
proposition with a result in [4] formulated with global disturbances.

Proposition 2.4. Let us consider Problem 1.1, set h := T−t0
N , N ∈ IN and the

set-valued quadrature method with precision p−1, p ∈ IN, studied in Theorem 2.3
with τp(δ∗(l, Φ(T, ·)B(·)U), h) ≤ Chp uniformly in l ∈ Sn−1. For j = 0, . . . , N−1
let the approximations Φ̃(tj+1, tj) of the values of the fundamental solution resp.
Ũµ(·) of the images of Φ(tj+1, ·)B(·)U for t = tj + cµh fulfill:

Φ̃(tj+1, tj) = Φ(tj+1, tj) +O(hp+1) ,

dH(Ũµ(tj + cµh), Φ(tj+1, tj + cµh)B(tj + cµh)U) = O(hp) (µ = 1, . . . , s) .

[O(hq) is understood uniformly in j and µ.] Then, the combination method

XN
j+1 = Φ̃(tj+1, tj)XN

j + h

s∑
µ=1

bµŨµ(tj + cµh) (j = 0, . . . , N − 1) , (10)

XN
0 ∈ C(IRn) with dH(X0, X

N
0 ) = O(hp) (11)

defined above satisfies the global estimate

dH(R(T, t0, X0), XN
N ) = O(hp) . (12)

Especially, if approximations of the values of the fundamental solution

Φ̃µ(tj+1, tj + cµh) = Φ(tj+1, tj + cµh) +O(hp) (µ = 1, . . . , s) ,

then the estimation (12) above also holds with the following setting:

Ũµ(tj + cµh) = Φ̃µ(tj+1, tj + cµh)B(tj + cµh)U (µ = 1, . . . , s) .

3 Set-Valued Runge-Kutta Methods

Explicit Runge-Kutta methods could be expressed by the Butcher array (cf. [5])

c1 0 0 . . . 0 0 0
c2 a21 0 . . . 0 0 0
...

...
... . . .

...
...

...
cs−1 as−1,1 as−1,2 . . . as−1,s−2 0 0
cs as,1 as,2 . . . as,s−2 as,s−1 0 with c1 := 0 .

b1 b2 . . . bs−2 bs−1 bs

For a starting value ηN
0 ∈ XN

0 and j = 0, . . . , N − 1, ν = 1, . . . , s let us define

ηN
j+1 = ηN

j + h

s∑
ν=1

bνξ
(ν)
j , (13)

ξ
(ν)
j = A(tj + cνh)

(
ηN

j + h

ν−1∑
µ=1

aν,µξ
(µ)
j

)
+ B(tj + cνh)u(ν)

j , u
(ν)
j ∈ U . (14)
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XN
j+1 and XN

0 consist of all possible iterates ηN
j+1 in (13)–(14) resp. chosen

starting values ηN
0 and form the set-valued Runge-Kutta method. Additional

restrictions on the selections u
(ν)
j ∈ U for ν = 1, . . . , s need to be imposed

on each subinterval Ij = [tj , tj+1] to increase the order of convergence in the
set-valued case. These restrictions define different selection strategies.

Modified Euler Method

The modified Euler method resp. the method of Euler-Cauchy/Heun could be
described by the Butcher array as

0 0 0
1
2

1
2 0
0 1

resp.
0 0 0
1 1 0

1
2

1
2

.

In [14], the method of Euler-Cauchy is discussed in detail with the result that
for this method, one could use either constant selections or two free selections
at each subinterval [tj , tj+1] and reach order of convergence 2 under suitable
smoothness conditions. In [13], the proofs are presented for the same method
even in the case of strongly convex nonlinear differential inclusions.

Lemma 3.1. If we consider Problem 1.1, then the modified Euler method could
be rewritten for the constant selection strategy ”u

(1)
j = u

(2)
j ” as the combination

method (10) of Proposition 2.4 with the iterated midpoint rule and

Q(Φ(tj+1, ·)B(·)U ; [tj , tj+1]) := hΦ(tj+1, tj +
h

2
)B(tj +

h

2
)U ,

Φ̃(tj+1, tj) := I + hA(tj +
h

2
) +

h2

2
A(tj +

h

2
)A(tj) ,

Ũ1(tj +
h

2
) :=

(
B(tj +

h

2
) +

h

2
A(tj +

h

2
)B(tj)

)
U .

For two free selections u
(1)
j , u

(2)
j ∈ U we have the iterated trapezoidal rule and

Q(Φ(tj+1, ·)B(·)U ; Ij) :=
h

2
(
Φ(tj+1, tj)B(tj)U + Φ(tj+1, tj+1)B(tj+1)U

)
,

Φ̃(tj+1, tj) := I + hA(tj +
h

2
) +

h2

2
A(tj +

h

2
)A(tj) ,

Ũ1(tj) := B(tj +
h

2
)U + hA(tj +

h

2
)B(tj)U , Ũ2(tj+1) := B(tj +

h

2
)U .

Proposition 3.2. Assume that A′(·) and B(·) are Lipschitz in Problem 1.1 and
that δ∗(l, Φ(T, ·)B(·)U) is absolutely continuous with a L1-representative of the
derivative with bounded variation uniformly in l ∈ Sn−1.

Then, the modified Euler method in Lemma 3.1 with p = 2 in (11) and
constant selection converges at least with order 2, whereas the modified Euler
method with two independent selections converges at least with order 1.
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Proof. Both quadrature methods have precision 1 (cf. [2], [12]), yielding order
of convergence 2 in Theorem 2.3, if the disturbances would be of order O(h2).
For constant selections the result follows from Proposition 2.4 together with (5)
and careful Taylor expansions in the estimations below:

Φ̃(tj+1, tj) = Φ(tj+1, tj) +O(h3),

dH(Ũ1(tj +
h

2
),

(
I +

h

2
A(tj +

h

2
)
)
B(tj +

h

2
)U) = O(h2) ,

dH(
(
I +

h

2
A(tj +

h

2
)
)
B(tj +

h

2
)U, Φ(tj+1, tj +

h

2
)B(tj +

h

2
)U) = O(h2)

In the case of two free selections, the reasoning is similar, but only accuracy
O(h) is possible in general (due to (15) and (16)):

dH(Ũ1(tj), (I + hA(tj))B(tj)U) ≤ dH(B(tj +
h

2
)U, (I + hA(tj))B(tj)U)

+ dH(hA(tj +
h

2
)B(tj)U, {0IRn}) = O(h) , (15)

dH((I + hA(tj))B(tj)U,Φ(tj+1, tj)B(tj)U) = O(h2) ,

dH(Ũ2(tj+1), Φ(tj+1, tj+1)B(tj+1)U) = O(h) . ut (16)

The assumptions in Proposition 3.2 could be weakened by demanding only
the bounded variation of A′(·) and B(·). Clearly, for the strategy with two
free selections, only A(·) needs to be Lipschitz, B(·) should be bounded and
δ∗(l, Φ(T, ·)B(·)U) be of bounded variation uniformly in l ∈ Sn−1.

Since in general (even for the time-independent case, compare also (6)),

(B +
h

2
AB)U 6=

(
BU +

h

2
ABU

)
=

1
2
(
BU + hABU + BU

)
, (17)

dH

(
(B +

h

2
AB)U,

1
2
(
BU + (BU + hABU)

))
= O(h) , (18)

both selection strategies for modified Euler differ. The proof of (18) uses a similar
trick as in (15). This phenomena is also observed in the context of discretization
by Runge-Kutta methods of nonlinear optimal control problems in [7]. In this
work, additional assumptions on the coercitivity (not fulfilled in Problem 1.1)
and on the smoothness of the optimal control leads to the accuracy up to O(h2)
for state and control variables using different proof ideas.

Scalarization as in (8) or direct methods for optimal control problems in [3]
lead to numerical implementations of both selection strategies. For the scalar-
ization approach, support functions of left-hand and right-hand sides of the
equation (10) are calculated. This leads to an iterative method (cf. [2] for more
details), if one restricts the computation of the support functions (or points) to
a finite number of normed directions l(j) ∈ IRn, j = 1, . . . ,M .

Example 3.3. (cf. [4]) Let n = 2, m = 1, I = [0, 1], set A(t) =
(

0 1
0 0

)
, B(t) =(

0
1

)
and U = [−1, 1]. Since (17) is fulfilled here, both selection strategies for
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modified Euler differ (cf. Figure 1). In Figure 1, the reference set (the combi-

−0.5 0 0.5

−1

−0.5

0

0.5

1

−0.5 0 0.5

−1

−0.5

0

0.5

1

Fig. 1. modified Euler with constant (left picture) resp. 2 free selections (right one)
(step sizes h = 1, 0.5, 0.25, 0.125, 0.0625)

nation method ”iterated trapezoidal rule and Euler/Cauchy” with N = 10000
in [2]) is plotted with supporting points in M = 200 directions with a thicker
solid line, whereas the result for each calculated step size is depicted with dotted
(h = 1, 0.125), dashed-dotted (h = 0.5, 0.0625) and dashed lines (h = 0.25). One
may recognize the different speed of convergence (2 resp. 1) even by the picture.
This is underlined by the computed estimations of the order of convergence in
Table 1. Hence, the possible order breakdown to O(h) in Proposition 3.2 for
modified Euler with two free selections can occur for certain examples.

Table 1. convergence estimation of modified Euler for both selection strategies

Hausdorff distance estimated order Hausdorff distance estimated order
N to reference set of convergence to reference set of convergence

1 0.21434524 0.75039466
2 0.05730861 1.90311 0.36454336 1.04156
4 0.01517382 1.91717 0.17953522 1.02182
8 0.00384698 1.97979 0.08841414 1.02192

16 0.00096510 1.99498 0.04419417 1.00042

(constant selections) (2 free selections)

4 Conclusions

The presented framework may give a structural outline to proofs for linear differ-
ential inclusions with possibly non-optimal order of convergence for a set-valued
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Runge-Kutta method with a chosen selection strategy. For the modified Euler
method, the better selection strategy is formed by the constant selections which
fits to the underlying (set-valued) quadrature method (i.e., the midpoint rule).

For the (classical) Runge-Kutta method of order 4 with Butcher array

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

first experiments show that the selection strategy with three free selections u
(ν)
j ,

ν = 1, 2, 4 and u
(2)
j = u

(3)
j lead to a set-valued method of at least order 3

under sufficient smoothness conditions. This fits best to the Simpson’s rule as
the underlying set-valued quadrature method. All presented selection strategies
can be carried over to the case of nonlinear differential inclusions.

References

1. R. J. Aumann. Integrals of Set-Valued Functions. J. Math. Anal. Appl., 12(1):1–
12, 1965.

2. R. Baier. Mengenwertige Integration und die diskrete Approximation erreichbarer
Mengen. Bayreuth. Math. Schr., 50:xxii + 248 S., 1995.
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