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Abstract: We consider numerical one-step approximations of ordinary differential equations and

present two results on the persistence of attractors appearing in the numerical system. First, we

show that the upper limit of a sequence of numerical attractors for a sequence of vanishing time

step is an attractor for the approximated system if and only if for all these time steps the numerical

one-step schemes admit attracting sets which approximate this upper limit set and attract with a

uniform rate. Second, we show that if these numerical attractors themselves attract with a uniformly

rate, then they converge to some set if and only if this set is an attractor for the approximated

system. In this case, we can also give an estimate for the rate of convergence depending on the rate

of attraction and on the order of the numerical scheme.
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1 Introduction

Attractors play an important role in the understanding of the behaviour of complex dy-
namical systems. It is therefore important to know about the effects of discretization
errors on attractors in order to give a reasonable interpretation to numerical experiments
and to justify numerical findings, which often are the only way to gather knowledge about
complicated systems as analytic solutions are rarely available.

For one-step discretizations of ordinary differential equations (ODEs) the basic result in
that direction has been obtained by Kloeden and Lorenz in 1986 [11]. In this paper it is
shown that if the ODE possesses an attractor then the numerical approximations possess
absorbing sets nearby, which converge to the attractor as the time step tends to 0. Later,
this result was established also for multi-step schemes by the same authors [12].
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One of the main contribution of these papers is the observation that the right approximat-
ing set for the attractor of an ODE in general is not an attractor but an absorbing set,
which in turn contains an attractor of the numerical approximation. This fact, however,
implies a major problem when looking at attractors of the numerical approximation: Even
the upper limit set for vanishing time step of these attractors can be strictly smaller than
the attractor of the approximated system, i.e. we only obtain semi-continuous convergence
(see e.g. [4, Example (2.12)] for an illustration and also [6] for related results for finite-
dimensional approximations of infinite dimensional systems). In other words, the existence
of “numerical attractors” does not imply the existence of a nearby attractor for the ap-
proximated ODE; one can only conclude that if the unperturbed system has an attractor
A then there exist attractors for the numerical approximations whose upper limit is con-
tained in A. Unfortunately, also the knowledge about the existence of the absorbing sets
close to the original attractor does not help in general, since in this case for each time step
there exist infinitely many absorbing sets, and thus it is difficult to single out those sets
approximating the attractor.

In Chapter 7 of the monograph [14] these results are discussed in detail, furthermore in
Section 7.7 of this reference several conditions for convergence are given. For example, it is
shown that convergence holds if both the continuous and the numerical attractors attract
exponentially (in this case also an estimate for the rate of convergence is given), or if the
continuous time attractor consists of the unstable manifolds of finitely many hyperbolic
equilibrium points (which is shown to be true for gradient systems with a bounded set of
hyperbolic equilibria). These conditions have in common that certain assumptions on the
dynamics of the approximated ODE are made.

In the present paper we take the converse point of view. We ask whether it is possible
to obtain criteria for convergence just by looking at the numerical approximations (this
approach is also taken in [9] for attracting sets of Galerkin approximations to Navier-Stokes
equations using, however, rather different techniques). And in fact we can give a positive
answer, at least under the assumption that we have information about the behaviour of
the numerical aproximations for arbitrarily small time steps. More precisely we prove that
the upper limit of the numerical attractors for vanishing time step is a “true” attractor if
and only if for arbitrarily small time steps the numerical one-step schemes admit attracting
sets with uniform attraction rate approximating this upper limit set (the suitable concept
of attraction rate is defined precisely in Section 2). Furthermore, we show that if the
numerical attractors themselves are attracting with uniform rate, then they converge to
some set A if and only if this set A is an attractor for the approximated ODE. In this case,
we can also give an estimate for the rate of convergence.

It is clear that an assumption “for arbitrarily small time steps” will be hard to check rig-
orously in practice. Nevertheless, the results suggest the following procedure for numerical
simulations: When an attractor is observed in a numerical system then redo the computa-
tion with different time steps and compare the rates of attraction. If these rates vary for
different time steps then the observed attractor is likely to be a numerical artefact and the
numerical results should be interpreted with care.

Concerning a rigorous verification, we expect that the relation of the assumed rates of at-
traction to Lyapunov functions (see Remark 2.6) might lead to practicable ways of checking
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the desired property. (The details are currently under investigation and will be addressed
in a later paper.) Furthermore, the assumptions are always satisfied in the presence of hy-
perbolicity, with the additional nice outcome that in this case the order of convergence of
the numerical attractors coincides with the order of convergence of the numerical scheme,
see Remark 2.9. In any case, the results precisely show what is theoretically possible, and
thus contribute to the understanding and interpretation of numerical results.

This paper is organized as follows: In Section 2 we fix the setup and notation and state the
main results. Section 3 provides some facts on attractors and attracting sets. In Section
4 two basic results on the stability of uniformly attracting sets are proved, and finally in
Section 5 we prove the main results.

2 Setup and Main Results

We consider the ordinary differential equation in Rd

ẋ = f(x) (2.1)

where f : Rd → Rd is assumed to satisfy ‖f(x)‖ ≤ M for all x ∈ Rd and ‖f(x)− f(y)‖ ≤
L‖x− y‖ for all x, y ∈ Rd and constants M , L > 0. (These global assumptions can easily
be weakened since we are only interested in the behaviour on compact subsets of the state
space.) The solutions of (2.1) with initial value x0 ∈ Rd for initial time t0 = 0 will be
denoted by ϕ(t, x0).

In order to provide a framework for numerical one-step approximations of (2.1) we fix some
h0 > 0 and consider difference equations for time steps h ∈ (0, h0]

x(t+ h) = Ψh(x(t)) (2.2)

where t ∈ hZ := {hk | k ∈ Z}, and Ψh : Rd → Rd satisfies ‖x − Ψh(x)‖ ≤ hM and
‖Ψh(x)−Ψh(y)‖ ≤ (1 + hL)‖x− y‖.

A special case of (2.2) is the time-h map of (2.1) given by

x(t+ h) = Φh(x(t)) := ϕ(h, x(t)). (2.3)

Note that L and M from (2.1) need to be slightly enlarged in order to meet the assumptions
on (2.2).

Our main object of interest are the numerical one-step approximations of (2.1) (or, more
precisely, of (2.3)) which we will denote by

x(t+ h) = Φ̃h(x(t)). (2.4)

Here we assume that (2.4) is of type (2.2) and, in addition,

‖Φ̃h(x)− Φh(x)‖ ≤ Kh
p+1

for some p ∈ N and some K > 0. The value p is called the order of the scheme. Typical
examples of these schemes are Runge-Kutta and Taylor schemes, which are described in
any textbook on numerical methods for ordinary differential equations, see e.g. [2, 8, 13].
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Each of these equations defines a (semi-)dynamical system either in continuous or discrete
time, which we denote by ϕ(t, ·), Ψh(t, ·), Φh(t, ·) and Φ̃h(t, ·). In what follows we will
sometimes write Φ(t, ·) which can be either a continuous or a discrete time system, and
set T = R for continuous time and T = hZ for discrete time systems, the proper meaning
being clear from the context. Furthermore, we abbreviate T+ := {t ∈ T | t > 0}, and for
subsets B ⊂ Rd we use the convention Φ(t, B) =

⋃
x∈B{Φ(t, x)}.

As we are going to derive estimates for distances between compact sets we briefly recall
basic definitions for several of these distances.

Definition 2.1 Let C, D ⊂ Rd be nonempty compact sets, x ∈ Rd, and let d be the
Euclidian metric on Rd. We define the distance from a point to a set by

d(x,D) := min
y∈D

d(x, y),

the nonsymmetric Hausdorff distance between two compact sets by

dist(C,D) := max
x∈C

min
y∈D

d(x, y),

the Hausdorff metric for compact sets by

dH(C,D) := max{dist(C,D), dist(D,C)},

and, if C ⊆ D, the minimal distance by

dmin(C,D) := inf
x 6∈D

min
y∈C

d(x, y).

For ε > 0 we denote the ε-ball around C by B(ε, C) := {y ∈ Rd | d(y, C) < ε}. If C = {x}
we also write B(ε, x).

Now we can define our objects of interest.

Definition 2.2 Let Φ = ϕ or Φ = Ψh for some h > 0.

A compact set B ⊂ Rd is called forward invariant, if Φ(t, B) ⊆ B for all t ∈ T+ and
invariant, if Φ(t, B) = B for all t ∈ T+.

Given two compact forward invariant sets A, B ⊂ Rd with A ⊂ intB we call A attracting
with attracted neighbourhood B, if

dist(Φ(t, B), A)→ 0

as t→∞.

A is called a attractor (with attracted neighbourhood B) if it is invariant and attracting
with attracted neigbourhood B.

Note that A is a local attractor here, i.e. it is not assumed that each compact set B ⊂ Rd

is an attracted neighbourhood.

The following definition, which is a slight variation of [5, Definition 2.8], is a tool to give
some structure to the attraction property.
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Definition 2.3 Let Φ = ϕ or Φ = Ψh for some h > 0, and consider two compact, forward
invariant sets A, B ⊂ Rd with A ⊂ intB, where A is attracting with attracted neighbour-
hood B.

A family of compact, forward invariant sets Bϑ, ϑ ∈ R+
0 , which depend continuously on

ϑ (w.r.t. the Hausdorff metric dH) and satisfy B ⊆ B0 is called a contracting family of
neighbourhoods if

(i) Bϑ′ ⊆ Bϑ for all ϑ, ϑ′ ∈ R+
0 , ϑ′ ≥ ϑ

(ii) A =
⋂
ϑ∈R+

0
Bϑ

(iii) Φ(t, Bϑ) ⊆ Bϑ+t for all ϑ ∈ R+
0 and all t ∈ T+.

The next definition introduces a measure for the rate of convergence of Bϑ to A as ϑ→∞.
As usual, we call a continuous function β : [0,∞) → [0,∞) of class K, if it is monotone
increasing and satisfies β(0) = 0.

Definition 2.4 Consider a contracting family of neighbourhoods Bϑ and some class K
function β. Then Bϑ is called β-shrinking , if

dH(Bϑ, A) ≤ β(1/ϑ)

for all ϑ > 0.

Throughout this paper the β-shrinking property will be used to give a uniformity condition
for contracting families.

Next we give the property which will turn out to be crucial for estimating rates of conver-
gence. Again, this is a slight variation of a concept from [5], namely of Definition 4.1 in
this reference.

Definition 2.5 Let Φ = ϕ or Φ = Ψh for some h > 0, and let γ be a class K function. We
say that an attracting set A with attracted neighbourhood B is γ-attracting if it admits a
contracting family of neighbourhoods Bϑ, ϑ ≥ 0, which for all ϑ ≥ 0 and all t ∈ [0, Tϑ] ∩ T
for some Tϑ ∈ T+ satisfies the inequality

dmin(Φ(t, Bϑ), Bϑ) ≥ tγ
−1(dH(Bϑ, A)),

and we call it (γ, β)-attracting if this contracting family can be chosen to be β-shrinking.

If, in addition, A is an attractor then we call A a γ-attractor or a (γ, β)-attractor, respec-
tively.

Remark 2.6 (i) Each attracting set is (γ, β)-contracting for suitable γ, β of class K,
which can be seen e.g. by taking the Bϑ as suitably parameterized sublevel sets of
Lyapunov functions V provided by [14, Theorem 1.7.6 and 2.7.6] (the construction
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in [14] actually goes back to [3] and [15, Theorem 22.1] and was also used in [11]):
Since V (Φ(t, x)) ≤ e−tV (x) we can pick some x0 ∈ B, x0 6∈ A and set Bϑ = {x ∈
Rd | V (x) ≤ e−ϑV (x0)}. Then the bounds on V and the Lipschitz continuity allow an
explicit computation of γ and β. It is, however, an open question whether we can
always find a Lyapunov function whose sublevel sets realize the optimal rates γ and
β.

(ii) In the case of exponential attraction, i.e. when there exists constants C, λ > 0 with
d(Φ(t, x), A)≤ Ce−λtd(x, A), we can choose γ(s) = cs for some suitable c > 0 which
follows from the fact that for each δ > 0 with eδt0Ce−λt0 < 1 for some t0 > 0 the
function

V (x) := sup
t≥0

eδtd(Φ(t, x), A) = sup
t∈[0,t0]

eδtd(Φ(t, x), A)

is easily verified as a Lipschitz continuous Lyapunov function (cf. [15, Theorem 19.2])
satisfying V (Φ(t, x))≤ e−δtV (x). The construction from (i) then gives the appropri-
ate sublevel sets. (For a direct construction of a contracting family of neighbourhoods
in the exponential case we refer to [5, Section 7].)

As an illustration of this concept consider the simple two-dimensional system

ẋ = −x, ẏ = −y

possessing A = {(0, 0)T} as exponential attractor. Then for each δ ∈ (0, 1] the family of
neighbourhoods

Bϑ = [−e−ϑ, e−ϑ]× [−e−δϑ, e−δϑ]

form a contracting family with β(1/ϑ) = e−δϑ. The function γ, however, has to be chosen
as γ(s) ≥ sδ. Thus exponential shrinking of the Bϑ does not necessarily imply γ(s) = cs,
however, a suitable choice of this family (i.e. δ = 1) guarantees linearity of γ. An interesting
(but to the author’s knowledge unsolved) question in this context is whether for a given
system one can always obtain a relation between β and γ by chosing a suitable family Bϑ.

Using the concept of (γ, β)-attraction we can now formulate our main results.

Theorem 2.7 Consider a positive sequence of time steps hn → 0 as n→∞. Let Ahn be
attractors for the numerical scheme Φ̃hn with attracted neighbourhood B and consider the
upper limit set

A :=
⋂
N>0

⋃
n≥N

Ahn .

Then A is an attractor for the continuous time system (2.1) if and only if there exist
functions γ, β of class K and n0 ∈ N such that for all n ≥ n0 there exist (γ, β)-attracting
sets Ãhn ⊇ Ahn for Φ̃hn with dH(ÃhN ,

⋃
n≥N Ahn)→ 0 as N →∞.

In this case A is a (2γ(5 ·), 2β(4 ·))-attractor.

The proof is given in Section 5.

In other words, the upper limit A is an attractor if and only if we find uniformly attracting
sets (i.e. all with the same rates γ and β) for vanishing time step which approximate A.
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Note that it is not necessary that the attractors Ahn themselves are (γ, β)-attracting. In
this case, however, further implications are possible, as formulated in the following theorem.

Theorem 2.8 Consider a positive sequence hn → 0 as n → ∞ and two functions γ, β
of class K. Assume there exist (γ, β)-attractors Ahn with attracted neighbourhood B for
the numerical scheme Φ̃hn and let A ⊂ intB be a compact set. Then the following four
statements are equivalent.

i) A is an attractor with attracted neighbourhood B for the continuous time system
(2.1).

ii) A is a (2γ(5 ·), 2β(4 ·))-attractor with attracted neighbourhood B for the continuous
time system (2.1).

iii) dH(A,Ahn)→ 0 as n→∞.

iv) dH(A,Ahn) ≤ 2γ(10Khpn) for all hn sufficiently small.

The proof can also be found in Section 5.

Remark 2.9 (i) This theorem generalizes [14, Theorem 7.7.1] to arbitrary rates of at-
traction and gives a better rate of convergence in the case of exponential attraction,
where we have γ(s) = cs for some c > 1, cf. Remark 2.6 (ii).

(ii) If the system (2.1) is uniformly hyperbolic in a neighbourhood of A, then also the
one-step approximations are uniformly hyperbolic for h > 0 sufficiently small. In
this case the attractors attract exponentially (see [7]), i.e. we obtain γ(s) = cs from
Remark 2.6 (ii). Thus hyperbolicity implies

dH(Ah, A) ≤ CKhp

for some suitable C > 0 without any additional assumptions on A and Ah.

3 Some facts on attractors and attracting sets

For the convenience of the reader in this section we provide some facts about attractors
and attracting sets for the system and its time-h map.

It is well known that each forward invariant attracting set contains an attractor (see e.g.
[14, Theorem 2.7.4(iii)], observing that our attracting sets are uniformly asymptotically
stable in the sense of [14, Definition 2.7.3]). In the next Lemma we closer investigate the
relation between these two concepts.

Lemma 3.1 Let Φ = ϕ or Φ = Ψh for some h > 0. Then a compact forward invariant
attracting set A for Φ with attracted neighbourhood B is an attractor with attracted
neighbourhood B if and only if it is the minimal compact forward invariant attracting set
(w.r.t. set inclusion) with attracted neighbourhood B. In particular for each compact set
B ⊂ Rd there exists at most one attractor with attracted neighbourhood B.
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Proof: Let A be an attractor with attracted neighbourhood B. Then in particular A is
invariant. Now assume that Ã ⊂ A, Ã 6= A, is a forward invariant attracting set. Then
there exists a neighbourhood N ⊃ Ã with A 6⊆ N , such that Φ(t, B) ⊂ N for some t ∈ T+,
i.e. in particular Φ(t, A) 6= A which contradicts the invariance of A.

Let conversely A be a minimal forward invariant attracting set. Then A contains an
attractor which again is a forward invariant attracting set. Hence by minimality it coincides
with A.

The next Lemma shows that the attractor is also the maximal compact invariant set
contained in intB.

Lemma 3.2 Let Φ = ϕ or Φ = Ψh for some h > 0 and let A be an attractor with attracted
neighbourhood B for Φ. Then each compact invariant set D ⊂ intB is contained in A.

Proof: Let D ⊂ intB be an invariant set. Then D = Φ(t, D) ⊂ Φ(t, B) for all t ∈ T+. On
the other hand, for each neighbourhood N ⊃ A we know that Φ(t, B) ⊂ N for all t ∈ T+

sufficiently large. Hence D ⊂ N which implies the assertion.

In the next two lemmas we investigate the relation between attracting sets and attractors
for the continuous time system and its time-h map.

Lemma 3.3 Consider system (2.1). Then a forward invariant set A is an attracting set
with attracted neighbourhood B if and only if there exists T > 0 such that

lim
i→∞,i∈N

dist(ϕ(iT, B), A) = 0. (3.1)

Proof: Obviously, if A is attracting then (3.1) holds for all T > 0. Now let conversely
(3.1) hold for some T > 0. Then forward invariance of A and continuous dependence on
the initial value imply that for each δ > 0 there exists ε > 0 with

dH(D,A) < ε ⇒ dH(ϕ(t, D), A)< δ

for all t ∈ [0, T ]. Thus the assumption implies limt→∞ dist(ϕ(t, B), A) = 0, hence A is an
attracting set.

Lemma 3.4 Let h > 0 and Ah be an attractor with attracted neighbourhood B for the
time-h map Φh of the continuous time system (2.1). Then Ah is also an attractor with
attracted neighbourhood B for system (2.1).

Proof: We first show that ϕ(t, Ah) ⊆ Ah for each t ∈ R. By invariance of Ah for Φh we
know Φh(ϕ(t, Ah)) = ϕ(t,Φh(Ah)) = ϕ(t, Ah), hence ϕ(t, Ah) is invariant for Φh, and by
Lemma 3.2 it is contained in Ah.

Thus we can conclude ϕ(t, Ah) ⊆ Ah for each t ∈ R, hence also Ah = ϕ(−t, ϕ(t, Ah)) ⊆
ϕ(−t, Ah) for each t ∈ R and consequently Ah is invariant for ϕ.

Finally, since Ah is invariant for ϕ and an attracting set for Φh, by Lemma 3.3 it is also
an attracting set for ϕ with attracted neighbourhood B, thus an attractor.
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4 Stability of attracting sets

In this section we provide two stability results for (γ, β)-attracting sets in the Propositions
4.2 and 4.6. The first considers stability under perturbation of a difference equation, the
second stability when passing to a limit of time-h maps as h→ 0.

Before formulating these result we introduce two auxiliary systems which will be useful for
the proofs. Consider the differential equation (2.1) and the difference equation (2.2). For
these equations we consider the α-perturbed systems

ẋ(t) = f(x(t)) + αu(t), x(t+ h) = Ψh(x(t)) + αhuh(t)

with solutions ϕα(t, x, u(·)) and Ψα
h (t, x, uh(·)), where u(·) ∈ U and uh(·) ∈ Uh with U :=

{u : R→ B(1, 0) | u measurable} and Uh := {uh : hZ→ B(1, 0)}. (Recall that B(1, 0) is the
ball with radius 1 around the origin in Rd). The set valued maps

ϕinfl(t, x, α) :=
⋃

u(·)∈U

ϕα(t, x, u(·)), Ψinfl
h (t, x, α) :=

⋃
uh(·)∈Uh

Ψα
h(t, x, uh(·))

are called the α-inflated dynamics (they can alternatively be defined via differential or dif-
ference inclusions, cf. [10]). Again for B ⊂ Rd we define ϕinfl(t, B, α) :=

⋃
x∈B ϕ

infl(t, x, α),
and analogously for Ψinfl

h . The following elementary Lemma follows e.g. from [5, Lemma
10.1 and 10.2] for the continuous time case and is easily extended also to the discrete time
case.

Lemma 4.1 Let B ⊂ Rd be a compact set and t ∈ T+. Then the inclusions

B(ϕ(t, B), αt/(Lt+ 1)) ⊆ ϕinfl(t, B, α) ⊆ B(ϕ(t, B), αteLt)

and
B(Ψh(t, B), αt/(Lt+ 1)) ⊆ Ψinfl

h (t, B, α) ⊆ B(Ψh(t, B), αteLt)

hold for the constant L from the Lipschitz estimates for (2.1) and (2.2), respectively.

We now turn to a more specific perturbation of difference equations which covers our
numerical one-step approximations. For the difference equation (2.2) given by Ψh we
consider the perturbed system Ψ̃2h with doubled time step 2h

x(t+ 2h) = Ψ̃2h(x(t)) (4.1)

In order to estimate the difference between Ψh and Ψ̃2h we make the following assumption
on the perturbed system

sup
x∈Rd
‖Ψh(2h, x)− Ψ̃2h(2h, x)‖ ≤ hα (4.2)

for some α > 0.

Note that we do not make any regularity assumptions on Ψ̃. The doubled time step 2h is
necessary in order to make a connection between attracting sets of Ψh and Ψ̃2h, which will
become clear in the proof of the following proposition. This provides a stability result for
(γ, β)-attracting sets under perturbations of type (4.1).



10 LARS GRÜNE

Proposition 4.2 Suppose for some h ∈ (0, h0] that Ah is a (γ, β)-attracting set with
attracted neighbourhood B for system (2.2). Then for each system Ψ̃2h satisfying (4.2) for
some α ∈ (0, α0], α0 = γ−1(dH(B,Ah))/2, there exists a (γ(4 ·), β(2 ·))-attracting set Aα2h
with attracted neighbourhood B and

dH(Aα2h, Ah) ≤ γ(2α).

In particular the constant α0 only depends on γ and dH(B,Ah) but not on h.

Proof: Consider the contracting family of neighbourhoods Bϑ realizing the assumed
attraction rate and fix some α ∈ (0, α0]. We choose ϑα minimal such that dH(Bϑα , Ah) =
γ(2α) which implies dH(Bϑ, Ah) ≥ γ(2α) for all ϑ ∈ [0, ϑα]. Now we set

Aα2h = Bϑα

and define a family of neighbourhoods B2h
ϑ of Aα2h by

Bαϑ = Bϑ/2 ϑ ≤ 2ϑα

Bαϑ = Bϑα ϑ ≥ 2ϑα

The continuity and β(2 ·)-shrinking w.r.t. Aα2h of this family follow immediately from the
construction. Furthermore,

dmin(Ψ̃2h(B
α
ϑ ), Bαϑ ) ≥ hγ−1(dH(Bαϑ , Ah))− hα

≥ hγ−1(dH(Bαϑ , Ah))/2 ≥ hγ−1(dH(Bαϑ , A
α
h))/2

which yields the desired estimate for the γ-contraction the Bαϑ . In addition, for each ϑ ≥ 0
with ϑ ≤ 2ϑα − 2h the construction implies

dmin(Ψ̃2h(B
α
ϑ ), Bαϑ+2h) ≥ dmin(Ψh(2h, Bϑ/2), Bϑ/2+h)− hα

≥ hγ−1(dH(Bϑ/2+h, Ah))− hα > 0

which implies Ψ̃2h(B
α
ϑ ) ⊂ Bαϑ+2h.

For ϑ ≥ 2ϑα − 2h we have Bϑ+2h = B2ϑα , hence we obtain

Ψ̃2h(B
α
ϑ ) ⊆ Ψ̃2h(B

α
2ϑα−2h) ⊆ B

α
2ϑα = Bαϑ+2h

which shows that the Bαϑ form a contracting family and thus finishes the proof.

We now turn to the question of (α, β)-attraction for the continuous time system (2.1) for
limits of (α, β)-attracting sets for its time-h map (2.3) as h→ 0. Before proving the desired
result in Proposition 4.6 we provide a series of lemmas necessary for the proof.

Lemma 4.3 Consider a compact set B satisfying dmin(ϕ(t, B), B) ≥ Ct for all t ∈ [0, T ]
and some T > 0. Then for each t ∈ R+ the inequality dmin(ϕ(t, B), B) ≥ tC/(Lt+1) holds
for the Lipschitz constant L of (2.1).
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Proof: From the assumption and Lemma 4.1 for each ε > 0 we can conclude ϕinfl(t, B, C−
ε) ⊂ B for all t ∈ [0, Tε] for some Tε > 0 sufficiently small. Since ϕinfl(t+ t1, B, C − ε) =
ϕinfl(t, ϕinfl(t1, B, C − ε), C − ε) this inclusion in fact holds for all t > 0. Thus again by
Lemma 4.1 this yields dmin(ϕ(t, B)), B) ≥ (C − ε)t/(Lt + 1) implying the assertion since
ε > 0 was arbitrary.

Lemma 4.4 Let Ah be a (γ, β)-attracting set for the time-h map (2.3) for some h > 0 and
attracted neighbourhood B. Then the set Ah admits a (eLhγ(eLh ·), eLhβ(2 ·))-contracting
family of neighbourhoods Bϑ for the time-2h map satisfying B ⊂ B0 and

ϕinfl(t, Bϑ, e
−Lhγ−1(e−LhdH(Bϑ, A))) ⊆ B̃ϑ

for all ϑ, t ∈ R+
0 where L is the Lipschitz constant for system (2.1).

Proof: Consider the contracting family B̃ϑ for Ah realizing the assumed rate of contrac-
tion. Then Lemma 4.1 implies ϕinfl(h, B̃ϑ, e

−Lhγ−1(dH(B̃ϑ, A))) ⊆ B̃ϑ. Hence defining

B2ϑ :=
⋃
t≥0

ϕinfl(t, B̃ϑ, e
−Lhγ−1(dH(B̃ϑ, A)))

we obtain
B2ϑ =

⋃
t∈[0,h]

ϕinfl(t, B̃ϑ, e
−Lhγ−1(dH(B̃ϑ, A))).

By construction this yields

ϕinfl(t, B2ϑ, e
−Lhγ−1(dH(B̃ϑ, A))) ⊆ B2ϑ and ϕ(h, B2ϑ) ⊆ B̃ϑ,

furthermore Lemma 4.1 implies dH(B2ϑ, A) ≤ eLhdH(B̃ϑ, A). Finally, since

ϕ(2h, Bϑ) = ϕ(h, ϕ(h, Bϑ)︸ ︷︷ ︸
⊆B̃ϑ/2

) ⊆ B̃ϑ/2+h ⊆ Bϑ+2h,

these sets indeed form a contracting family of neighbourhoods for the time-2h map.

We will make use of the following concept: Consider a family of compact sets Bi ⊂ Rd.
Then we define the limes inferior of these sets by

Liminfi→∞Bi := {x ∈ Rd | lim
i→∞

d(x, Bi) = 0}.

We refer to [1] for more information on this concept. The following Lemma summarizes
those properties of this set which we will need in what follows.

Lemma 4.5 Consider two families of compact sets Bi, Ci ⊂ Rd and let B = Liminfi→∞Bi
and C = Liminfi→∞Ci. Then the following assertions hold

(i) If there exists N > 0 with Bi ⊆ Ci for all i ≥ N , then B ⊆ C.

(ii) For all α ≥ 0 and all u(·) ∈ U we have ϕα(t, B, u(·))⊆ Liminfi→∞ϕ
α(t, Bi, u(·)).
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(iii) If for some α ≥ 0 there exists N > 0 with ϕinfl(t, Bi, α) ⊆ Ci for all i ≥ N , then
ϕinfl(t, B, α) ⊆ C.

(iv) If there exists N > 0 with Bi ⊆ Ci for all i ≥ N , and furthermore dH(Bi, B)→ 0 as
i→∞, then dH(B,C) ≤ lim infi→∞ dH(Bi, Ci).

Proof: Assertion (i) follows directly from the definition, (ii) follows from [1, Proposition
1.2.2(ii)] since ϕα(t, ·, u(·)) is continuous.

In order to prove (iii) let x ∈ ϕinfl(t, B, α). Then there exist y ∈ B and u(·) ∈ U such that
x = ϕα(t, y, u(·)). Hence using first (ii) and then the assumption and (i) we obtain

x ∈ ϕα(t, B, u(·))⊆ Liminfi→∞ ϕα(t, Bi, u(·))︸ ︷︷ ︸
⊆Ci

⊆ C

and hence the assertion.

For the proof of (iv) observe that by (i) the assumption implies B ⊆ C. Hence we obtain
the equalities

dH(B,C) = sup
x∈C

d(x, B), dH(Bi, Ci) = sup
x∈Ci

d(x, Bi)

for all i ∈ N sufficiently large and

d(x, B) ≤ lim inf
i→∞

(
d(x, xi) + d(xi, Bi) + dH(B,Bi)

)
= lim inf

i→∞
d(xi, Bi)

for each point x ∈ Rd and any sequence xi with xi → x as i → ∞. Now let x ∈ C. Then
by the definition of Liminf there exists a sequence xi ∈ Ci with xi → x as i→∞. Thus

d(x, B) ≤ lim inf
i→∞

d(xi, Bi) ≤ lim inf
i→∞

dH(Bi, Ci).

Since x was arbitrary in C this implies the assertion.

Now we have all necessary tools for proving the second stability result.

Proposition 4.6 Consider a sequence hn → 0, and assume that there exist functions γ, β
of class K and (γ, β)-attracting sets with attracted neighbourhood B for the time-hn map
Φhn of the continuous time system (2.1). Assume, furthermore, that there exists a set A
with dH(Ahn , A) → 0. Then for each C > 1 the set A is (Cγ(C ·), Cβ(2 ·))-attracting for
the continuous time system (2.1).

Proof: Fix some C > 1 and let C̃ ∈ (1, C). Assuming all hn to be sufficiently small
and to be monotone decreasing (by taking an appropriate subsequence) by Lemma 4.4 we
know that the Ahn are (C̃γ(C̃ ·), C̃β(2 ·)) attracting for Φ2hn, with contracting families Bnϑ
satisfying

ϕinfl(t, Bnϑ , γ
−1(dH(Bnϑ , Ahn)/C̃)/C̃) ⊆ Bnϑ . (4.3)

We claim that the family of sets

Bϑ := Liminfi→∞B
i
ϑ
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gives the desired contracting family of neighbourhoods.

Property (i) and (ii) of Definition 2.3 are immediate from Lemma 4.5 (i). We now prove
continuity of the family, i.e. dH(Bϑ, Bϑ′)→ 0 as ϑ′ → ϑ: Consider two values 0 ≤ ϑ1 ≤ ϑ2.
Then the assumption implies Φ2hn(t, B

n
ϑ1

) ⊆ Bnϑ2
for each t ∈ 2hnZ, t ≥ ϑ2 − ϑ1, and

consequently for each ε > 0 and each n with 2hn ≤ ε the inclusion ϕ(ϑ2−ϑ1+ε, Bnϑ1
) ⊆ Bnϑ2

holds. Thus by Lemma 4.5 (ii) and (i)

ϕ(ϑ2 − ϑ1 + ε, Bϑ1) ⊆ Liminfn→∞ϕ(ϑ2 − ϑ1 + ε, Bnϑ1
) ⊆ Liminfn→∞B

n
ϑ2

= Bϑ2 .

Since ε > 0 was arbitrary this yields dH(Bϑ1 , Bϑ2) ≤M(ϑ2 − ϑ1) implying continuity.

The same construction shows Property (iii) of Definition 2.3, and the desired distance from
A follows from Lemma 4.5 (iv).

Finally, from (4.3) and Lemma 4.5 (iii) we can conclude

ϕinfl(t, Bϑ, γ
−1(dH(Bnϑ , A)/C̃)/C̃) ⊆ Bϑ

which by Lemma 4.1 gives the desired contraction for any T ≤ (C − C̃)/(LC̃).

5 Proofs of Theorem 2.7 and Theorem 2.8

Proof of Theorem 2.7: Throughout the proof we fix the attracted neighbourhood B,
i.e. “attracting” is to be understood as “attracting with attracted neighbourhood B”.

Let A be an attractor. Then by Remark 2.6 there exist functions γ̃, β̃ such that A is
(γ̃, β̃)-attracting for the continuous time system, thus also for each time-hn/2 map. Hence
by Proposition 4.2 with h = hn/2, Ah = A, Ψh = Φh, Ψ̃2h = Φ̃2h and α = Khp, for
γ(r) = γ̃(4r), β(r) = β̃(2r) and all sufficiently small hn > 0 there exist (γ, β)-attracting
sets Ãhn for the one-step scheme converging to A as hn → 0. By Lemma 3.1 these sets
contain the attractors Ahn .

Let conversely Ãhn be sets as in the assertion of the theorem. Then the assumption on
(2.4) implies

‖Φhn(2hn, x)− Φ̃hn(2hn, x)‖ ≤ (1 + eLhn)Khp+1
n .

Thus by Proposition 4.2 with h = hn, Ah = Ãh, Ψh = Φ̃h, Ψ̃2h = Φ2h and α = (1 +
eLhn)Khpn, for each hn sufficiently small there exist (γ(4 ·), β(2 ·))-attracting sets A′2hn for
the time-2hn maps Φ2hn converging to A. By Proposition 4.6 (applied with C = 5/4)
this implies that A is a (2γ(5 ·), 2β(4 ·))-attracting set. It remains to show that A is an
attractor.

By Lemma 3.1 there exists an attractor Ā ⊆ A. Assume Ā 6= A, then there exists a
compact neighbourhood N ⊂ Rd with Ā ⊂ intN and A 6⊂ N . As in the first part of the
proof, by Remark 2.6 and Proposition 4.2 we can conclude the existence of attracting sets
Āh for Φ̃h converging to Ā. In particular this yields Āh ⊂ N for h > 0 sufficiently small.
Since the Ahn are attractors for Φ̃hn, by Lemma 3.1 they must be contained in the Āhn,
which implies Ahn ⊂ N , and hence ⋃

n≥N

Ahn ⊂ N
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for all N ∈ N sufficiently large implying

A 6⊂
⋃
n≥N

Ahn

which contradicts the definition of A.

Proof of Theorem 2.8: As in the proof of Theorem 2.7 we fix the attracted neigh-
bourhood B. Now “(iv) ⇒ (iii)” and “(ii) ⇒ (i)” are obvious and “(iii) ⇒ (ii)” follows
immediately from Theorem 2.7.

We now show “(ii) ⇒ (iv)”:

Since A is also a (2γ(5 ·), 2β(4 ·))-attractor for the time hn/2-map, by Proposition 4.2 with
h = hn/2, Ah = A, Ψh = Φh, Ψ̃2h = Φ̃2h and α = Khpn, we know the existence of
(2γ(20 ·), 2β(8 ·))-attracting sets Ãhn for the one-step scheme with

dH(A, Ãhn) ≤ 2γ(10Khpn),

and by Lemma 3.1 we know Ahn ⊆ Ãhn , hence

dist(Ahn , A) ≤ 2γ(10Khpn).

Conversely, the assumption on (2.4) implies

‖Φhn(2hn, x)− Φ̃hn(2hn, x)‖ ≤ (1 + eLhn)Khp+1
n .

Hence by the assumption on the Ahn and by Proposition 4.2 with h = hn, Ψh = Φ̃h,
Ψ̃2h = Φ2h and α = (1 + eLhn)Khpn we can conclude the existence of attracting sets Ā2hn

for the time-2hn map satisfying

dh(Ā2hn, Ahn) ≤ γ(10Khpn)

for all hn sufficiently small. By Lemma 3.1 and Lemma 3.4 we know A ⊂ Ā2hn, hence

dist(A,Ahn) ≤ γ(10Khpn)

which shows (iv).

Finally, we show “(i) ⇒ (iii)”, which finishes the proof:

Observe by Remark 2.6 that there exist class K functions γ̃, β̃ such that A is a (γ̃, β̃)-
attractor. Without loss of generality we may assume γ̃ ≥ γ and β̃ ≥ β. Hence also the Ahn
are (γ̃, β̃)-attractors, and by the same arguments as for “(ii)⇒ (iv)”, above, we obtain

dH(A,Ahn) ≤ γ̃(Ch
p
n)

for some suitable C > 0 implying (iii).
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