
December 22, 2000 11:28 WorldScientific/ws-b8-5x6-0 grune

Chapter 1

Adaptive grid generation for evolutive
Hamilton-Jacobi-Bellman equations

Lars Grüne, Fachbereich Mathematik, J.W. Goethe–Universität, Postfach

111932, 60054 Frankfurt, Germany, gruene@math.uni-frankfurt.de

Abstract: We present an adaptive grid generation for a class of evo-

lutive Hamilton-Jacobi-Bellman equations. Using a two step (semi–La-

grangian) discretization of the underlying optimal control problem we de-

fine a–posteriori local error estimates for the discretization error in space.

Based on these estimates we present an iterative procedure for the gener-

ation of adaptive grids and discuss implementational details for a suitable

hierarchical data structure.

Keywords: adaptive space discretization, Hamilton-Jacobi-Bellman

equation, semi-Lagrangian scheme

1.1 Introduction

In the numerical approximation of partial differential equations one of the

main sources of computational cost is the number of nodes used for the

space discretization, which determines the dimension of the finite dimen-

sional problem to be solved. Two basic strategies are used in order to

minimize the number of nodes needed for an accurate computation: high–

order interpolation techniques in space and adaptive gridding techniques

(and, of course, combinations of both).

In this paper we focus on the adaptive gridding technique for the fol-
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lowing nonlinear first order Hamilton-Jacobi-Bellman equation

∂

∂t
v(x, t) + λv(x, t) + sup

u∈U
{−f(x, u) · ∇v(x, t)− g(x, u)} = 0

v(x, 0) = v0(x)

(1.1)

for (x, t) ∈ Ω× [0, T ] where Ω is an open and bounded subset of Rn.

This equation is related to a finite horizon optimal control problem (see
[1] for an extensive discussion of this relation), and it is well known that in

general one has to consider viscosity solutions of (1.1) as smooth solutions

do not exist in general. The scheme we are going to use has its origins in

the numerical approximation of the infinite horizon problem. Based on a

discrete time approximation of the underlying optimal control problem [2;

3] a subsequent space discretization [4; 9] yields the fully discrete scheme.

This scheme is easily adapted to the evolutive equation and for equidistant

space discretization a convergence analysis was carried out in [7].

A particular subclass of (1.1) are the linear advection equations which

are obtained if the functions f and g do not depend on u. In this case, the

resulting scheme is also known as “semi–Lagrangian approximation” which

was introduced in [12] and has been extensively used in the simulation of

models for weather forecast and oceanography, see e.g. the review [13]. Al-

though this scheme has been applied for quite a while, a rigorous error

analysis appeared only recently in [6]. In this reference high–order approx-

imations are investigated, and it is remarked (see [6, Example 5]) that for

nonsmooth solutions these high–order approximations in space in general

only yield first order convergence rates. It is primarily this situation where

we expect an adaptive approach based on a first–order approximation to

be advantageous and the numerical tests in the last section confirm this

expectation.

This paper is organized as follows. First, we introduce the time and

space discretization in Section 1.2, and prove a useful regularity result for

the fully discrete approximation. After that, in Section 1.3 we turn to

the definition of local error estimates and prove a number of properties of

these values. The basic idea in this part stems from [9] where the analo-

gous results are given for the stationary equation, which corresponds to the

infinite horizon optimal control problem. In Section 1.4 we turn to the im-

plementation of the scheme exploiting in particular properties of a suitable

hierarchical data structure. Finally, we end this paper with two numerical

examples in Section 1.5.
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1.2 Discretization in time and space

In this section we describe the discretization for equation (1.1). Let us

first state the assumption on the data of the problem. We assume that

U ⊂ Rm is compact, v0 is Lipschitz with constant L0 and the functions

f : Ω × U → Rn and g : Ω × U → R are norm–bounded by constants Mf

and Mg for all u ∈ U , continuous in both variables and Lipschitz in x with

constants Lf and Lg uniformly in u ∈ U .

Let ϕ(t, x, u) denote the (unique) solution of the initial value problem

ẋ(t) = f(x(t), u(t)), x(0) = x,

where u ∈ U := {u : R→ U | u measurable}. For simplicity of presentation

we assume that Ω is forward invariant under f , i.e. ϕ(t, x, u) ∈ Ω for all

x ∈ Ω, all t ≥ 0 and all u ∈ U . Note that this assumption can be relaxed by

imposing a suitable boundary condition on the inflowing part of Ω, see [6,

Section 1]. Furthermore, our setup is easily extended to min–max problems.

A standard dynamic programming argument (see e.g. [1]) shows that

for each τ > 0 and each t ∈ [0, T − τ ] the solution v is uniquely determined

by the dynamic programming principle

v(x, t+ τ) = inf
u∈U

{∫ τ

0

eλsg(ϕ(s, x, u), u(s))ds+ eλτv(ϕ(τ, x, u), t)

}
(1.2)

The discretization of (1.1) now relies on a discretization of (1.2). For

positive time steps h > 0 we pick a family of finite sets of control values

Uh, and a numerical one step scheme Φh (satisfying the usual consistency

and stability conditions) as well as a numerical integration scheme Ih such

that for each u ∈ U there exists uh ∈ Uh, and for each uh ∈ Uh there exists

u ∈ U with

‖ϕ(h, x, u)−Φh(x, uh)‖ ≤ Chp+1

and ∣∣∣∣∣
∫ h

0

eλsg(ϕ(s, x, u), u(s))ds− Ih(x, u)

∣∣∣∣∣ ≤ Chp+1

for some C > 0 which is independent of h.

In the case where f and g do not depend on u this can be done e.g.

by a Runge–Kutta scheme and an associated quadrature rule, cfr. [6], for

explicitly u–dependent data several schemes are presented e.g. in [5], [8] or
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[10] (note that although [5] deals with the stationary equation the results

are easily adapted to our setup here).

Again, for simplicity, we assume forward invariance of Ω with respect

to the discretized dynamics, i.e. Φh(x, u) ∈ Ω for all u ∈ Uh, all x ∈ Ω and

all h > 0.

Using these schemes we can replace (1.2) by the discrete time approxi-

mation

vh(x, ti+1) = Th(vh)(x, ti) (1.3)

with ti = ih and i ≥ 0, where for any function w : Ω × hN0 → R the

operator Th is given by

Th(w)(x, t) := inf
u∈Uh

{
Ih(x, u) + eλhw(Φh(x, u), t)

}
(1.4)

We will also refer to (1.3) as the discrete evolutive Hamilton–Jacobi–Bell-

man equation.

Standard arguments (see [5] or [6]) imply the existence of a constant

K > 0 such that

sup
x∈Ω
|vh(x, ti) − v(x, ti)| ≤ Kh

p for all ti ∈ [0, T ].

Our main concern in this paper is the discretization of (1.3) in space.

Instead of an equidistant high–order space discretization as considered e.g.

in [6] here we are going to use a first order approximation along with a

suitable locally refined grid. In the remainder of this section we introduce

the class of approximations we are going to use and prove a useful regularity

result for these approximations.

Since for the problems under consideration the domain Ω usually has

a rather simple shape (or the problem can be transformed to some simply

shaped Ω), for the discretization in space we use a partition of Ω into cubic

elements. This structure has several implementational advantages (e.g. for

a given point x the surrounding element is easily determined by integer

computations, the gridding procedure works for arbitrary dimensions with-

out extra effort, no linear equations have to be solved for the interpolation),

and a certain built in regularity which is exploited in Lemma 1.1, below.

Nevertheless, most of the following considerations also apply to triangular

grids, see e.g. [9] where Lemma 1.1 is proved for triangular grids under

suitable regularity conditions.
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Formally, the cubic elements are of the form

Qj := {x = (x1, . . . , xn)T ∈ Rn | xi ∈ [aij, b
i
j] for all i = 1, . . . , n} (1.5)

for real values aij < bij for all i = 1, . . . , n. The nodes of an element are

given by the set

nodes(Qj) := {x ∈ Rn | xi = aij or xi = bij for all i = 1, . . . , n}

A grid Γ is a collection of P cubic elements Qj such that clΩ =
⋃
j=1,...,P Qj

and intQj ∩ intQk = ∅ for all j 6= k. The nodes xl of Γ are given by

nodes(Γ) :=
⋃

j=1,...,P

nodes(Qj),

and N denotes the number of nodes.

A node xl is called regular if xl ∈ nodes(Qj) for all j with xl ∈ Qj,

otherwise it is called hanging. We denote the set of regular nodes of Γ by

reg(Γ). Figure 1.1 show a 2d grid in which the hanging nodes are marked.
            

Fig. 1.1 Hanging nodes in a 2d grid

On a grid Γ we consider the space of multilinear functions

W := {w ∈ C(clΩ) |w(x+ αek) is linear in α on each Qj for each k}

where the ek, k = 1, . . . , n denote the standard basis vectors of Rn.

Note that the the assumption w ∈ C(clΩ) (i.e. w continuous) implies

that w is uniquely determined by its values in the regular nodes reg(Γ),

and the values in the hanging nodes have to be determined by linear in-

terpolation. For some element Qj of Γ with nodes xl = (x1
l , . . . , x

n
l )T ,
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l = 1, . . . , 2n and coordinates aij < bij, i = 1, . . . , n, the value w(x) for

x = (x1, . . . , xn)T ∈ Qj is given by the multilinear interpolation

w(x) =
2n∑
l=1

µl(x)w(xl)

where

µl(x) =
n∏
i=1

gli(x
i) with gli(x

i) =

{
(xi − aij)/(b

i
j − a

i
j), if xil = bij

(bij − x
i)/(bij − a

i
j), if xil = aij

Remark 1.1 For dimensions n ≥ 3 a grid needs to satisfy some regularity

conditions in order to ensure the existence of a continuous function w ∈W
for arbitrary given values in the regular nodes. Consider, for example, a

three dimensional grid with two touching elements as in Figure 1.2.            

Fig. 1.2 Two touching elements in a 3d grid

In the situation of Figure 1.2 the value in the central node of the touching

faces could either be determinated by interpolating the values in its vertical

neighbors (which one would do by looking at the right cube) or by interpolat-

ing the values in its horizontal neighbors (as one would do in the left cube).

Since these values in general do not coincide, one needs some condition to

avoid these situations.

A sufficient regularity condition for this purpose is for instance given by

(nodes(Qj) ∪ nodes(Qk)) ∩ (Qj ∩Qk) ⊂ nodes(Ql) for l = j or l = k

for all j, k = 1, . . . , P with j 6= k, which means that for each two touching

elements there is a unique finer one.

Furthermore, in order to reduce the number of hanging nodes it is useful

to avoid large differences in size of each two neighboring elements.
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Using the space W we can now define a finite dimensional approximation

to vh. For a sequence of grids Γi, i ≥ 0 we set

vΓ0

h (xl, 0) = v0(xl), vΓi

h (xl, ti) = Th(vΓi−1

h )(xl, ti−1) (1.6)

for i ≥ 1, ti = ih ≤ T , and all regular nodes xl ∈ reg(Γi). Note that the

evaluation of Th needs the values of vΓi−1

h at the points Φh(xl, u), which

in general will not be nodes of the grid; hence these values have to be

determined by interpolation.

The discretization error of this approximation will be investigated in

the next section. Before turning to this analysis, we will investigate the

continuity properties of vΓi

h in x. For this we need the following Lemma,

whose proof is straightforward using the definition of W .

Lemma 1.1 Let w ∈ W be an arbitrary function on some grid Γ. Then

the estimate

|w(x)− w(y)|

‖x− y‖1
≤ max

x̃,ỹ∈nodes(Γ)
x̃ 6=ỹ

|w(x̃)− w(ỹ)|

‖x̃− ỹ‖1

for all x, y ∈ Ω with x 6= y. Here ‖ · ‖1 denotes the 1–norm given by

‖x‖1 :=
∑n
i=1 |x

i|.

Based on this Lemma we can now derive a Lipschitz estimate for the

approximations vΓi

h . For this we have to make the following assumption on

the numerical schemes Ih and Φh: There exist constants LIh , LΦh > 0 such

that

|Ih(x, u)− Ih(y, u)| ≤ LIh‖x−y‖1 and |Φh(x, u)−Φh(y, u)| ≤ LΦh‖x−y‖1
(1.7)

for all x, y ∈ Ω and all u ∈ Uh. Note that if f and g in (1.1) are Lipschitz

in x ∈ Ω uniformly in u ∈ U then most reasonable numerical schemes (like

quadrature rules for Ih and Runge–Kutta schemes for Φh) satisfy (1.7)

for suitable constants. Recall that we also assumed v0 to be Lipschitz

with constant L0, without loss of generality we may assume this Lipschitz

estimate to be valid in the 1–norm.

Proposition 1.1 Assume (1.7), let Γi be a sequence of grids and consider

the functions vΓi

h defined by (1.6). Then the estimate

|vΓi

h (x, ti)− v
Γi

h (y, ti)| ≤ Li‖x− y‖1
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holds, where Li is defined inductively by Li+1 = LIh + eλhLΦhLi, and L0

is the Lipschitz constant of v0 with respect to the 1–norm.

Proof. Let w : Ω×hN0 → R be a function which for some t = ih, i ∈ N0,

is Lipschitz in the first argument with constant L. Then the operator Th
satisfies

|Th(w)(x, t)− Th(w)(y, t)|

=
∣∣∣ inf
u∈Uh

{
Ih(x, u) + eλhw(Φh(x, u), t)

}
− inf
u∈Uh

{
Ih(y, u) + eλhw(Φh(y, u), t)

} ∣∣∣
≤ sup

u∈Uh

∣∣Ih(x, u) + eλhw(Φh(x, u), t)− Ih(y, u)− eλhw(Φh(y, u), t)
∣∣

≤ sup
u∈Uh

|Ih(x, u)− Ih(y, u)|+ eλh|w(Φh(x, u), t)−w(Φh(y, u), t)|

≤ LIh‖x− y‖1 + eλhLΦhL‖x− y‖1 = (LIh + eλhLΦhL)‖x− y‖1

for all points x, y ∈ Ω. Hence the assertion follows by induction using

Lemma 1.1. �

1.3 Error estimation

In this section we present an a–posteriori error estimator for the space dis-

cretization (1.6) of the discrete evolutive Hamilton–Jacobi equation (1.3).

We define the following errors for the approximations vΓi

h (·, ti) on a

sequence of grids Γi.

Definition 1.1 We define the local error for each time ti = ih, i ≥ 1 by

ηiloc := sup
x∈Ω
|vΓi

h (x, ti)− Th(vΓi−1

h )(x, ti−1)|

and for i = 0 by

η0
loc := sup

x∈Ω
|vΓ0

h (x, t0) − v0(x)|

The global error for each time ti = ih, i ≥ 0 is defined by

ηiglob := sup
x∈Ω
|vΓi

h (x, ti)− vh(x, ti)|.
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Note that while these expressions measure the error in space, the terms

“local” and “global” here refer to time, i.e., ηiloc measures the spatial error

introduced in one time–step, while ηiglob measures the accumulated error

over the whole time interval. The following definition refines this concept

to local error estimates in space.

Definition 1.2 For each x ∈ Ω we define the pointwise local error by

η0(x) :=
∣∣∣vΓ0

h (x, 0)− v0(x)
∣∣∣ , ηi(x) :=

∣∣∣vΓi

h (x, ti)− Th(vΓi−1

h )(x, ti−1)
∣∣∣

and for each element Qj of Γi we define the elementwise local error by

ηij := sup
x∈Qj

ηi(x).

The following Theorem shows the relation of this value to the errors

from Definitions 1.1 and 1.2.

Theorem 1.1 Let Γi be a sequence of grids with P i elements and let

vΓi

h (·, ti) denote the corresponding solutions. Then the following inequalities

hold

ηiloc = sup
j=1,...,P i

ηij

ηiglob ≤
i∑

k=0

eλh(i−k)ηkloc

=
i∑

k=0

eλh(i−k) sup
j=1,...,Pk

ηkj

≤ C(λ, h, i) sup
k=0,...,i, j=1,...,Pk

ηkj ,

where C(λ, h, i) = i+ 1 if λ = 0 and C(λ, h, i) = (1− eλh(i+1))/(1− eλh) if

λ 6= 0.

Proof. Similarly to the proof of Proposition 1.1 one sees that for each

two continuous functions w1, w2 : Ω× hN0 → R the operator Th satisfies

|Th(w1)(x, t)− Th(w2)(x, t)| ≤ eλh sup
x∈Ω
|w1(x, t)−w2(x, t)|
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for all x ∈ Ω and all t > 0. Hence the assertion follows immediately

by induction from the definition of the errors and the identity vh(x, ti) =

Th(vh)(x, ti−1). �

A natural guess for an adaptive strategy is now the following procedure:

For i ≥ 0, given some grid Γi with P i elements, and some tolerance

tol > 0 for the local error, compute vΓi

h (·, ti) (based on vΓi−1

h (·, ti−1) or v0)

and the errors ηij , j = 1, . . . , P i, refine all elementsQj with ηij > tol. Repeat

this procedure iteratively until ηij ≤ tol for all j = 1, . . . , P i. (A more

detailed description of this procedure which also incorporates coarsening of

those elements with small errors is given below in Section 1.4.)

In order to ensure that the local error estimates ηij eventually become

small (i.e. to ensure termination of this iteration), we need a relation be-

tween the size of the element Qj and the size of the local error ηij. The

following lemma gives the necessary estimate

Lemma 1.2 Assume (1.7). Then

|ηi(x)− ηi(y)| ≤ Li‖x− y‖1

for all x, y ∈ Ω with Li from Proposition 1.1.

Proof. By the definition of the error estimator we have that

|ηi(x)− ηi(y)|

≤ |vΓi

h (x, ti)− v
Γi

h (y, ti)|+ |Th(vΓi−1

h )(x, ti−1)− Th(vΓi−1

h )(x, ti−1)|.

Since the second term can be estimated as in the proof of Proposition

1.1, the assertion follows from the Lipschitz estimates of vΓi

h (·, ti) and

vΓi−1

h (·, ti−1) provided by Proposition 1.1. �

The relation between the size of Qj and ηij is now given by the following

proposition.

Proposition 1.2 Assume (1.7). Then

ηij ≤ Li sup
x,y∈Qj

‖x− y‖1

with Li from Proposition 1.1.

Proof. Since ηi(x) = 0 for all nodes of the element Qj we immediately

obtain the desired inequality by Lemma 1.2. �
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Remark 1.2 In particular, these estimates show the convergence of the

scheme as the size of the elements tends to 0. More precisely, defining

∆x := maxj=1,...,P diam(Qj) (where the diameter diam is measured in the

1–norm), and assuming the grid to be constant, we obtain

ηiglob ≤ C(λ, h, i) max
j=0,...,i

Lj∆x

for the constant C(λ, h, i) from Theorem 1.1. Note, however, that for the

full discretization error (i.e., the error between vΓ
h and v) refined estimates

based on viscosity techniques have been obtained in [7].

When looking at the definition of ηij one sees that the computation of

this value involves the evaluation of Th(vΓi−1

h ) at infinitely many points. Of

course, this is no feasible task, however, again exploiting Lemma 1.2 we can

see that ηij can be approximated by some value η̄ij which is computable. For

this task consider an element Qk and a collection of test points x̄l ∈ Qj,
l = 1, . . . , p. Defining

η̄ij := max
l=1,...,p

η(x̄l),

the following lemma shows that this value indeed gives a good approxima-

tion to ηij.

Lemma 1.3 Assume (1.7), and consider a finite set of points x̄l ∈ Qj,
l = 1, . . . , p satisfying

sup
x∈Qj

min
l=1,...,p

‖x− xl‖1 ≤ α

for some α > 0. Then

|η̄ij − η
i
j| ≤ Liα

for Li from Proposition 1.1.

Proof. Using Lemma 1.2 we obtain

|η̄ij − η
i
j| ≤ sup

x∈Qj

min
l=1,...,p

|η(x)− η(xl)|

≤ Li sup
x∈Qj

min
l=1,...,p

‖x− xl‖1 ≤ Liα

which shows the assertion. �
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1.4 Implementation details

In this section we will describe several implementational issues of our adap-

tive scheme in greater detail. Our main focus will be the choice of the test

points xl for the numerical evaluation of the local error.

As already mentioned in the last section, the exact evaluation of the

local errors ηij is in general not possible; instead by Lemma 1.3 it is justified

to use an approximation η̄ij by an evaluation in finitely many test points x̄l
per cuboid.

In what follows we will indicate how a suitable choice of these test

points can lead to an efficient implementation. Before going into details,

we briefly recall some facts about hierarchical grids which form the basis

for our particular choice.

The idea of a hierarchical grid is based on a successive local refinement

of an equidistant (and coarse) grid. A locally refined grid is obtained by

subdividing an element Q in one coordinate direction xi0, i0 ∈ {1, . . . , n}.
We denote this refinement by ref(Q, i0). More precisely, if Q is given by

(1.5) with coordinates ai < bi, i = 1, . . . , n then ref(Q, i0) consists of the

two elements Q1 and Q2 with coordinates

ai1 = ai for i = 1, . . . , n,

bi1 = bi for i = 1, . . . , n with i 6= i0,

bi01 = ai0 + (bi0 − ai0)/2

and

bi2 = ai for i = 1, . . . , n,

ai2 = ai for i = 1, . . . , n with i 6= i0,

ai02 = ai0 + (bi0 − ai0)/2.

For any element Q̃ of the refinement ref(Q, i0) we call Q the coarsening of

Q̃, formally coarse(Q̃) = Q. For a refinement in all coordinate directions we

write ref(Q) (i.e. for an n–dimensional grid ref(Q) consists of 2n elements).

The refinement of the whole grid is denoted by ref(Γ), and the m–th refine-

ment by refm(Γ), i.e., ref1(Γ) = ref(Γ), refm+1(Γ) = ref(refm(Γ)). Figure

1.3 shows the representation of this structure in a binary tree data struc-

ture, for more informations on this data structure and hierarchical grids we

refer to [11].
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Fig. 1.3 Representation of a 3d refinement in a binary tree

The idea of an efficient choice of the test points is now, that along with

some grid Γ we consider its m–th refinement ref(Γ, m) for some m ≥ 1 and

choose the test points nodes(ref(Γ, m)) \ nodes(Γ). Figure 1.4 shows the

resulting points for m = 1 and m = 2 for a 2d element.

Fig. 1.4 Testpoints for m = 1 (black) and m = 2 (black and white) in 2d

Doing so, the values in the test points evaluated for the computation

of η̄ij can be used in the next iteration and hence are not “lost” after η̄ij
has been evaluated. More precisely, once a solution vΓi−1

h (·, ti−1) is known

the grid generation for the next iteration i is described in the following

algorithm:

Step 1: Choose an initial grid Γi0 and parameters m ≥ 1 and tol > 0;

let Γ̃i0 := ref(Γi0, m) and k = 0

Step 2: Compute the solution v
Γ̃ik
h (·, ti) on Γ̃ik
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Step 3: Compute η(xl) for all xl ∈ nodes(Γ̃ik) \ nodes(Γik); if η(xl) ≤ tol
for all xl go to Step 5

Step 4: Choose a refinement Γik+1 of Γik such that xl ∈ nodes(Γik+1) for

all xl with η(xl) > tol, and let Γ̃ik+1 := ref(Γik+1, m), k = k + 1 and go to

Step 2

Step 5: Coarsen all elements Q of Γik with η̄(coarse(Q)) ≤ tol, regularize

the grid if necessary (cf. Remark 1.1), and let Γi be the resulting grid and

Γ̃i := ref(Γi, m).

The condition η̄(coarse(Q)) ≤ tol used for the coarsening in Step 5

ensures that all those nodes are removed from the grid which do not increase

the accuracy by more than tol. In other words, all elements Q of the first

refined and then coarsened grid satisfy η̄(Q) ≤ tol and thus fulfill the desired

local accuracy bound.

The refinement iteration in the Steps 2–4 can be implemented very

efficiently when the following facts are taken into account:

(i) Since the hierarchical data structure allows direct access to all sub-

grids of a given grid, all the operations can be done directly on Γ̃ik,

i.e. Γik does not need to be stored seperately

(ii) After Step 4 is performed, the computation in Step 2 only involves

the computation of v
Γ̃ik
h in those nodes added in the preceding Step

4.

(iii) The evaluation of η(xl) can be done by comparing v
Γ̃ik
h and v

Γik
h ,

which are both already computed. In particular, no additional

evaluations of Th (i.e. of f and g) are needed.

(iv) The function vΓ̃i−1

h (instead of vΓi−1

h ) can be used in the computa-

tion in Step 2, giving additional accuracy.

(v) Γ0 can be constructed the same way, where in Step 2 we use the

initial value v0 for the computation of v
Γ̃0
k

h (and omit the coarsening

in Step 5).

Note that the choice of new nodes in this algorithm results in an aniso-

tropic refinement, i.e. it is not required that an element is refined in all

coordinate directions. For the choice of the initial grid Γi0 there are several

possibilities. In the numerical tests in the next section we have chosen

the grid Γi−1 from the last time step. A different possibility would be to

start off from a given coarse initial grid in each iteration. In this case no
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coarsening is necessary in Step 5.

1.5 Numerical examples

For our first numerical tests we consider the classical “rotating cone” bench-

mark problem, see e.g. [6]. The equation is given by

∂

∂t
v(x, t)− f(x)

∂

∂x
v(x, t) = 0 (1.8)

for x = (x1, x2)T ∈ R2 with f(x1, x2) = (−x2, x1)T .

The initial value was chosen as the “cut” paraboloid

v0(x) = max

{
0.08−

∥∥∥∥x−( 0.5

0.5

)∥∥∥∥2

, 0

}
.

Note that v0 is Lipschitz, but not differentiable, and so is v(·, t) for each

t > 0.

The system was discretized in time by a first order explicit Euler scheme

with h = 0.5 and the initial grid Γ0
0 was chosen to be equidistant with

∆x = 0.2 (in the 1–norm), which results in N = 441 nodes. The parameter

m determining the number of test nodes was set to 1.

tol = 0.1 tol = 0.01 tol = 0.001 tol = 0.0001

i N i η̃iglob N i η̃iglob N i η̃iglob N i η̃iglob

0 441 0.000000 537 0.000000 2187 0.000000 20889 0.000000

1 441 0.008798 514 0.008164 2246 0.001403 18919 0.000182

2 441 0.012077 479 0.012468 1928 0.001985 17338 0.000230

3 441 0.015598 477 0.013425 1921 0.001999 16725 0.000665

4 441 0.015028 475 0.014007 1844 0.002912 15644 0.000678

5 441 0.018611 463 0.014441 1802 0.004038 15076 0.000670

6 441 0.021677 449 0.013832 1785 0.003452 14410 0.000632

7 441 0.025200 451 0.016434 1768 0.003091 14059 0.000673

8 441 0.027362 459 0.016546 1614 0.005015 13561 0.000596

9 441 0.029064 459 0.021947 1628 0.005061 13880 0.001849

10 441 0.032706 459 0.021727 1698 0.005242 13583 0.001829

Table 1.1 Number of nodes N i and global node error η̃i
glob

for example (1.8)

Table 1.1 shows the resulting number of nodes N i and the global error
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η̃iglob in the nodes of the grid Γi defined by

η̃iglob := max
x∈nodes(Γi)

|vΓi

h (x, ti) − vh(x, ti)|

for the iterations i = 0, 1, . . . , 10 (i.e. up to t = 5) and different values

of tol. As expected for the first order scheme the number of nodes grows

approximately like 1/tol, which shows the efficiency of the estimate. Fur-

thermore, for all tolerances the global error is of the order of the expected

bound 10tol, which indicates that the choice of the test points in this ex-

ample gives satisfactory results. One can observe that the number of nodes

tends to decrease during the iteration. This is mainly due to a “numeri-

cal diffusion” effect: During the iteration the steep regions tend to flatten

(within the given accuracy bounds) and thus the number of nodes needed

to ensure the given error tolerance becomes smaller.
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Fig. 1.5 Solution and grid after 10 iterations for example (1.8) with tol = 0.1

The Figures 1.5–1.8 show the solution vΓ10

h (·, 5) and the corresponding

grid Γ10 after the last iteration for the different values of tol. In addition,

Figure 1.9 shows the evolution of the grid during the computation for tol =

0.001. Observe that the effect of the usage of the preceding grid Γi−1 in

the construction of Γi is clearly visible.
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Fig. 1.6 Solution and grid after 10 iterations for example (1.8) with tol = 0.01
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Fig. 1.7 Solution and grid after 10 iterations for example (1.8) with tol = 0.001

For our second test we consider a nonlinear variation of the first example.

Here the equation is given by

∂

∂t
v(x, t) + inf

u∈U

{
−f(x, u)

∂

∂x
v(x, t)

}
= 0 (1.9)

for x = (x1, x2)T ∈ R2 with f(x1, x2, u) = (−ux2, ux1)T and one–dimen-

sional control range U = [0, 1]. The initial value v0 is chosen as before.

Here the cone is not only rotating but also remains everywhere it has been

before, i.e., is is “stretched” along the vectorfield.

For this test we used the same discretization in time as above, where the

discrete set of control values Uh was chosen as Uh = {0, 1/9, . . . , 8/9, 1}.
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Fig. 1.8 Solution and grid after 10 iterations for example (1.8) with tol = 0.0001

Like for our first test, we show the results in Table 1.2, where we omit

the error η̃iglob for the smallest tolerance since the evaluation of the exact

discrete time solution vh(x, ti) for this nonlinear problem was not feasible

for such a large number of nodes.

tol = 0.1 tol = 0.01 tol = 0.001 tol = 0.0001

i N i η̃iglob N i η̃iglob N i η̃iglob N i

0 441 0.000000 537 0.000000 2187 0.000000 25762

1 441 0.008798 578 0.008164 3627 0.001406 47293

2 441 0.012077 568 0.012468 4116 0.003712 55915

3 441 0.015598 575 0.012970 4524 0.004612 65767

4 441 0.014353 573 0.014990 4948 0.006488 75826

5 441 0.019241 549 0.020617 5283 0.007623 81893

6 441 0.022455 557 0.023129 5741 0.009144 90022

7 441 0.024617 543 0.025428 6279 0.010843 98775

8 441 0.026374 539 0.027224 6616 0.012378 105077

9 441 0.027804 539 0.028628 6944 0.013855 112625

10 441 0.029047 539 0.029883 7274 0.015125 122600

Table 1.2 Number of nodes N i and global node error η̃i
glob

for example (1.9)

The Figures 1.10–1.12 show the solutions after 10 iterations and the

corresponding grid for tol = 0.01, 0.001 and 0.0001.
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Fig. 1.9 Grid after 0, 2, 4, 6, 8, 10 iterations for example (1.8) with tol = 0.001
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Fig. 1.10 Solution and grid after 10 iterations for example (1.9) with tol = 0.01
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Fig. 1.11 Solution and grid after 10 iterations for example (1.9) with tol = 0.001
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Fig. 1.12 Solution and grid after 10 iterations for example (1.9) with tol = 0.0001
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303.

8. R. Ferretti, High-order approximations of linear control systems via Runge-
Kutta schemes, Computing, 58 (1997), pp. 351–364.
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