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Abstract Convex compact sets can be embedded into the Banach space of directed sets.
Directed sets allow a visualization as possibly non-convex, compact sets in R™
and hence, this space could be used to visualize differences of embedded convex
compact sets. The main application is the visualization as well as the theoretical
and numerical calculation of set-valued derivatives. Known notions of affine,
semi-affine and quasi-affine maps and their derivatives are studied.
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1. INTRODUCTION
Directed sets in R presented in [1, 2, 3] form a Banach space D(R") in
which the convex cone of all compact, convex, nonempty sets can be embedded.

Adirected set X is parametrized by unit vectors ! € S,,_1 and consists of two
components, a describing continuous function a,(-) and a (n — 1)-dimensional

directed set function An_l(-; which is uniformly bounded. The hyperplane
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H(l,a,(") ={z e R"| <l,z>=an(l)} (1.1)

is fixed by a,(-) and contains the reprojection of the visualization of An,l(l;.

This image forms the boundary part of the visualized 7 in direction [.
For an embedded convex compact set C, the hyperplane is determined by

the value of its support function in direction [ and A,_1(l) is the embedded
projection of its supporting face C* (seen as a (n — 1)-dimensional set) into
D(R"~1). Generalized intervals in [6, 7, 9] are equivalent to one-dimensional
directed sets and form the basis of the recursive definition of directed sets.

The proposed embedding is different to other approaches and is not minimal
in the sense that Hormander’s embedding in [5] uses only the second component
of our embedding. Nevertheless, we focus here on visualization of differences
of convex, compact sets as eventually non-convex, compact sets in R™, not as
real-valued functions with arguments in S,, 1 resp. R™. For further references
on embeddings and related articles see [2].

The visualization of directed sets consists of three parts, namely the convex
part, the concave part (both are convex sets, one of them being empty, if they
don’t equal the same point) and the (non-convex) mixed-type part. The main
application studies the visualization of derivatives of simple convex compact-
valued mappings such as affine, semi-affine and quasi-affine maps.

Further on, the following notations are used throughout this paper:

The set of convex, compact, nonempty sets in R is denoted by C(R™). S,,—1
denotes the unit sphere of the n-dimensional (closed) Euclidean ball B1(0).

The support function of C € C(R™) and the supporting face of C'in direction
[ € R™ are denoted by

0*(1,C) = max <l,c> resp. Cl:={ceC| <l,e>=6"(,C)}
C

and the Hausdorff metric on C(R") as
du(C, D) := [ax |0%(1,C) — 6*(I,D)| (C,D € C(R™)).
n—1

The scalar multiplication for A > 0, the Minkowski addition, the pointwise
negative (multiplication by —1) and the algebraic difference are defined as

AC :={Xc|ceC}, C+D:={c+d|ceC,de D} forC,D e C(R"),
oC :={—c|lceC}, CoD:={c—d|ceC, de D}.

The operation ©, frequently used also in interval analysis, does not even fulfill
C © C = {Orn} in general.
The geometric difference and the Demyanov difference

CED:={zeR"|Vl€ Sp_1: <l,z><d6"(,C)—-6"(,D)},
C =D :=to{C'— D'|l € 8,1, C* and D' are singletons} #
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in [4, 10] resp. [11] are convex, compact sets. C' = D could be empty and is
usually too small, whereas C' = D is usually too big in the sense that

(CiD)—I—DgC resp. ((J;D)+DQC (1.2)

is only satisfied in general. The last two differences have close connections to
the visualization of differences of embedded convex compact sets (see (1.6)).

2. DIRECTED SETS

Most of the definitions presented here are recursive and recalled from [1, 2].
Definition 2.1 A is called directed interval/one-dimensional directed set, if
A = (@O)=n

With a1 (1) € R for 1 = +1. Set || A |, := max|a1 (1)

The space of directed intervals is denoted by D(IR).

For n2_2) X is called directed set, if there exists a uniformly bounded
function A, 1 : S,_1 — D(R*!) with respect to || - ||,_1 and a continuous
function a,, : S;,_1 — R. Set Z = (An1(l;,a,ﬂb(l))l€5n1 and

1A |l == max{ sup A1 (a1, max |an(®)]}
€S, -1 leSp-1

and denote by D(IR™) the space of directed sets in R™.

The definition is motivated by the fact that the supporting face of each convex
compact set C' € C(R™) in direction [ € S,_ lies on the hyperplane given
by the support function in this direction. To enable a recursive approach, the
support function is saved separately from the supporting face and the latter is
seen as a (n — 1)-dimensional set.

Definition 2.2 The embedding J,, : C(R") — D(R™) is defined for n = 1 as
Ji([a1, ag]) := (6° (1, [a1, a2]))i=x1  for [y, as] € C(R)
and forn > 2 as
Tu(0) 1= (Jua (I 1(CY), 6 (1, Oies, ., for C € C(RY)

embeds all convex, compact, nonempty sets into the space of directed sets.
Hereby, Hf,;f(l')(X) is the projection of a (n — 1)-dimensional set X C R"
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contained in the hyperplane H (I, f(-)) in (1.1), which is determined by the
function f : R* — R, to R*~ 1,

The embedding .J,, is an isometric, injective map from C(R") to D(R™) with
respect to a new metric dv (-, -) on C(R™) introduced in [2] which is equivalent
to Demyanov’s metric.

The operations introduced on D(IR™) are defined recursively and act sepa-
rately on both components of the directed set.

Definition 2.3 Consider A —= (An—1(1),an(1))ies,_, and B = (B-1(1),
bn(1))ies,_, € D(R™). Define the operations recursively (for n = 1 the first
components of the directed sets do not exist) as

X + B = (An—l(ls + Bn—l(Tsa an(l) + bn(1))ies,—1> (1.3)
AA = O A (5 A - an(D)ies, s (AeR), (L4)

A-B:=4A+(-1) B). (1.5)

The space D(R™) has remarkable properties with these operations which
were studied in [2]. E.g., || - || in Definition 2.1 is a norm on D(R*) for
which D(R™) is a Banach space. Since we are interested in visualizations of
differences of embedded elements of C(IR™), we restrict our attention to the
closed linear hull of J,, (C(R™)) in most applications.

Proposition 2.4 ([2]) The subspace
C (R") := In(J,(C(RY))) C D(R")
for most applications is a Banach space as D(R") itself.

The following result proven in [2] shows that the well-known and often used
operations on C(R™) commute with the embedding.

Proposition 2.5 ([2]) Consider C,D € C(R™) and A > 0. Then,
Jn(C+ D) = J,(C) + Jo(D) and J,(AC) = AJ,(C).

The visualization for a directed set A € ?(]R") must incorporate the convex
case, i.e. Ae Jn(C(R™)), the concave case, i.e. Ae —J(C(R™)), and the
indefinite case, i.e.Z is a difference of two embedded convex compact sets or
the limit of such a sequence. Therefore, the visualization splits in three parts,
the convex part, the concave part and the mixed-type part. In the definition of
the mixed-type part, the boundary part is involved.
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The projection involved in Definition 2.2 splits into an orthonormal, linear
part £!,_, and a translation and allows an inverse reprojection on H(l,ay(-)),
ie.

O () = L1 (2 — au (D), Q4O(y) = (L4_1) " (¥) + an(D)]

forz € H(l,a,(-)), y € R*~L. It fulfills the inverse property
QO (@) =2 (2 € H{l,an()-

Definition 2.6 Let A = (An—1(1),an(1))ies,_, € D(R™). Define the convex
(positive) part P, the concave (negative) part NV,, and the visualization V,, as

Pu(A)i= () {z €R| <lz><an(l)}, Na(A):=6Py(-4),
leSn—1

Va(A) 1= Pu() U NW(A) U M, (A,
The mixed-type part M,, and the boundary part B,, are defined recursively:

Bi(4) = aPl(Z)UaNl(Z), Mi(A):=0 forn=1,
Bu(A) = U Q5 OVai(Ae))), } e

Enl

Mo ()= Bu(A) \ (9P, (A) U N, (X))

There is no mixed-type part for directed intervals, this part could appear
only for dimensions n > 2. The convex and the concave part are both convex,
compact sets, but could be empty as in one example in [3].

The directions [ € S,,_; for which a boundary point lies on the hyperplane
H(l,an(-)) are elements of the orientation bundle.

Definition 2.7 The orientation bundle of a directed set Z depends on a bound-
ary point and forms a nonempty subset of S,,_1.

Letn=1, 4 = (a1(1))i—s1 € D(R). Then,

1,7 yi={1},  ifar(1) £ —ai(~1),
1), 4) = {1}, (1) # —ay(-1),
(91 (ar(1), A) = {~1,1}, ifar(1) = —a1(~1).

Letn > 2, A= (An— l; )ies,_, € D(R*) and z € Bn(Z). Then,

Onlz, A) = {l € Sp_1 |z € Q4O (Vo (A1 (1))}



Let us collect special properties of the visualization parts and the boundary
part which are proven in [3]. Especially, the boundary part and the visualization
are never empty and the three parts of the visualization in Definition 2.6 are
disjoint, except in the special case that the convex and the concave part equal
to the same point.

Theorem 2.8 states that the visualized difference of two embedded convex
compacts lies between the geometric and the Demyanov difference (compare

(1.2)).

Theorem 2.8 (see [3]) Let 4 = Jo(C) — Ju(D) € D(R") with C,D ¢
C(R™). Then,

P(A)=C=D, N, (A)=e(D*0)
Bo(4) = 8(C = D) U (09(D = C)) U My (4).

The formula for the mixed-type part is rather complicated and is stated in a
recursive way in [3]. Furthermore,

C:DcVy(4d)cC=D, o(D=C)cVy(Ad)co(D=C) (L6)

Theorem 2.8 shows that the visualization of an embedded convex compact
set C is the set itself, the boundary part is the boundary of C (set D = {Og~ }).
There is no mixed-type part in this situation. The theorem also informs on
the visualization of the inverse of J,(D) (set C = {Or~}). Although, the
visualization is the pointwise negative set ©D, the operations (1.3)-(1.5) in
D(R™) avoid this operation.

From Definition 2.7, J,(C') has outer normals and —.J,, (D) inner normals.

3. DERIVATIVES OF SET-VALUED MAPPINGS

In this section, notions of simple convex-valued mappings are recalled from
[8,12]. Inthe following, F' : [to, T'] = R™ isaset-valued mapping with images
in C(R™). Derivatives of the following simple maps are studied in section 4..
Please see the above citations for a rich list of references.

Definition 3.1 F'is an affine map, if there exists Fy, F; € C(R"™) with

t—to
T —t

F(t) =Fy+ " (t el= [to,T]). .7

F is a semi-affine map, if there exists Fy, F; € C(R™) with

t—1p
T -1

ot =R (el T). (9

Ft)=(1-
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F is quasi-affine, if a positive homogeneous function ¢ : S,,_1 — R exists with
0* (I, F(t)) = co(0*(I, F(to)) + (t —to)e(l)) (I € Sp—1,t€I). (1.9)

F is called convex, if for all ¢1,t2 € [to,T"] and A € [0, 1]
AF(t) + (1 = N F(t2) C F(Mt1 + (1 = Nto). (1.10)

Since both affine and semi-affine maps are quasi-affine ([12, Proposition
2.2]) and quasi-affine maps are convex and continuous ([12, Lemma 2.7]),
quasi-affine maps are an important class of simple set-valued mappings.

Definition 3.2 Let F : [to,T] — D(R™) be a map with directed sets as

images. ? is a finitely generated directed map, if there exist ?Z € D(R"),
i=1,2,...,k, and scalar functions f; : [to,T] = R, i = 1,2, ..., k, with

k
Fi§ =S H0F (€ [to, T)). (111)
=1

F is called directed differentiable in t € I = [to, T, if the limit

\ \

F(t+h) — F(t)

- - - - —% - .
exists in D(R™). The k. derivative F¥)(¢) in ¢ € T could be defined as the

—
directed derivative of F(*~1(.) for k > 2 with F()(-) = DF(-.
F'is called directed differentiable in t € [to,T], if the function ¢ —
Jn(F(t)) is directed differentiable in ¢.

is a linear directed map, if there exists ?0, ?1 € D(R"™) with
F@ =Ry +1F, (¢ € [to, T)). (1.12)
Proposition 3.3 Let F' and T be given with m = Jn(F(t)), t € [to, T).
(i) If F(-) is affine, then m is linear.

(ii) If F'(-) is semi-affine, then FTS is linear.

Proof: (i) Let F' be affine in the form (1.7). Then, Proposition 2.5 and
Proposition 2.4, guaranteeing properties of a vector space, yield:

t—1o t—tp

F = Fi ) = F F
() = Ju U —, 1) = Jnl 0)+T—t0J"( 1)
to 1
= (J,(Fy) — —2—J (F — J.(F
::I70> :!171)
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(i) is proven similarly. |

Proposition 3.4 Let us consider a linear directed map F in the form (1.12).
Let C € D(R™) and Fy € C(R™) be arbitrarily chosen. If

R = Ju(R) —tC, F=C

and Pn(m) is nonempty for all ¢ € [to, T, then the function of the positive
part of 7 P,(F(-)), is quasi-affine with images in C(R"™).

Thus, positive parts of special linear directed maps are quasi-affine maps.
Proposition 3.5 Afinitely generated directed map ? in the form (1.11), where

fi(t), i = 1,..., k, are differentiable scalar functions with derivative f/(t), is
directed differentiable for all t € I = [to, T'] with

k
DF(H =Y f(F,

Proof: D(R™) is a normed vector space by Proposition 2.4, hence

k

DR = Jim = S (filt + W)E ~ fi()F)
t+hel =1
k ) s k
i=1 t+hel i=1

[ |

Proposition 3.3 states that affine and semi-affine convex-valued maps lead

to linear directed maps which are special cases of finitely generated directed
maps so that the next proposition can be easily derived from Proposition 3.5.

Proposition 3.6 An affine F' in the form (1.7) is directed differentiable with

DFE) = — o (Fy) = Ju

Fy) forallt e [ty,T).
Tt 1) € [to, T}

T — 19
A semi-affine map F in the form (1.8) is directed differentiable with

DF(t) = ! —(n(F) = Tu(F) for all ¢ € [to, T].

Eclipsing maps introduced in [8] could be discontinuous (see [12]), so that
directed differentiability for every eclipsing map could not be expected.
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4. EXAMPLES OF DIRECTED DERIVATIVES

In all following examples, set F(t; := Jo(F'(t)). The numerical calculation
of the derivative with difference quotients is neither very reliable nor very
efficient and is chosen here only for simplicity of the presentation.

Example 3.7 Consider F : [0, 1] = R? with
F(t) = B1(0) + t[0,2]*> (¢ € [0,1]).

F is affine, hence F is linear and directed differentiable in ¢ € [0, 1] with

F() = An(F, 1) = J5([0,2)2)

(see Proposition 3.6). The derivative is the embedded set C = [0, 2]? € C(R?),
so that the visualization is simply C itself with outer normals (see Theorem 2.8

and Figure 1.1). Figure 1.1 shows the two values of ? involved in Al(?, 0).

15 3 2.5

0.5 15

0 1 — -
05 0 05
1 0
1 T
35 1 05 0 05 1 15 -1 0 1 2 3 %85 o0 05 1 15 2 25

Figure 11 J>(F(0)), Jo(F(1)) and DF(0} = Ay (F, 0)

Example 3.8 Consider F : [0, 1] = R? with
F(t) = (1-1)[0,2]* (€ 0,1]).

F is semi-affine, hence F is linear and directed differentiable in ¢ € [0, 1] with

F(t) = Ay(F 1) = —Jo((0,2)

(see Proposition 3.6). Inthis case, the derivative is the inverse of the embedded
set C = [0,2]? € C(R?) visualized in Figure 1.1, so that the visualization is
simply ©C with inner normals (see Theorem 2.8 and Figure 1.2).

Example 3.9 Consider F : [0,1] = R? with
F(t) = (1 -1)Bys(0) + t[-1,1]* (teI=0,1]).



25 1 05
2 1 0 !
05
15 -05
b 4 b 0 % a L 4
05 -15
-05
0 T -2 !
-05 -1 -25
%5 0 05 1 15 2 25 El -05 0 05 1 35 -2 -15 -1 -05 0 05

Figure 12 Jo(F(0)), J2(F(1)) and DF(05 = Ay (F, 0)

F'is also semi-affine, hence 7 is linear and directed differentiable with

DF(H = An(F,t) = B(-1L,1%) — Jo(Bos(0) (¢ € 1)
(see again Proposition 3.6). In this example, the derivative is the difference
of the two embedded sets C = [-1,1]? and D = By5(0) € C(R?), so that

the positive part is C' = D with outer normals and a nonempty, non-convex
mixed-type part appears (see Theorem 2.8 and Figure 1.3).

1 15 15
1 1 1 . N
05 Dy") QQ
05 05 T L 1
0 0 | [ 0 | [
-05 -05 I T 1
-05 7>>>‘ //56
-1 T -1 ~ L
-1 -1 L
-1 -05 0 05 1 35 1 05 0 05 1 15 5 1 05 0 05 1 15

Figure 13 Jo(F(0)), Jo(F(1)) and DF (0} = Ay (F,0)

Example 3.10 Consider the convex map F : [—1,1] = R? (see (1.10)) with
F(t)=(—t*+1)B;(0) (teI=[-1,1]).

(t = —t? + 1 is concave and B1(0) is absorbing). Proposition 3.5 and direct
calculations show that ? is finitely generated and directed differentiable with

DF(#) = =261 (B1(0)), An(F,t) = —(2t+ h)Jo(Bi(0)) (¢ € I).

Here, the difference quotients Ah(?,0.5) approach the inverse of the em-
bedded set B;(0) with inner normals (see Theorem 2.8 and Figures 1.4, 1.5).



Directed Derivatives of Convex Compact-Valued Mappings 11

1 1 2
15
05 05 1
05
0 0 % 0
-05
-05 -05 -1
-15

N -05 0 05 1 N -05 0 05 1 % 451 05 0 05 1 15 2

Figure 1.4 Jo(F(0.5)), Jo(F(1)) and Ags(F,0.5)

2 2 2
15 15 15
1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
-1 -1 -1
-15 -15 -15
_—22 -15 -1 -05 0 05 1 15 2 _—22 -15 -1 -05 0 05 1 15 2 _—22 -15 -1 -05 0 05 1 15 2

Figure 1.5 A0_25 (?, 0.5), A0_125(?, 05) and Ao_m(?, 05)

Example 3.11 Consider the quasi-affine map F : [0, 3] = R? with
Ft)={z € R |Vie 8 :<l,a><5*(,C) +t-(6°(l, D) — §*(1,C))

and C = {0} x [-1,1], D = ( ) (see (1 9)). F equals the positive part of

the linear directed map G‘S (C) +t- (Jo2(D) — J2(C)) in Proposition
3.4. The approximated derivative fort = 2 is visualized in Figure 1.6.

3 3
1
2 2
0.5
1 1
0 0 0
-1 -1
-05
- -2
-3 -3, -1
3 -2 -1 0 12 3 3 -2 -1 0 12 3 -1 -05 0 0.5 1

Flgure 1.6 J2 CTS and DF = AO.OI(?, 2)
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S. SUMMARY

Embedded affine and semi-affine maps are linear directed maps. The situ-
ation for quasi-affine maps is not so easy, but specially chosen linear directed
maps have positive parts which, seen as a convex-valued maps, are quasi-affine.

The concept of linear directed maps tries to unify the different notions of
simple mappings with convex, compact images in one hand and allows on the
other hand to study their differences by visualizing their derivative. Directed
sets offer a convenient tool for studying the possible directed differentiability of
set-valued mappings with the help of the visualization of difference quotients.
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