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1 Introduction

The question of convergence of optimal value functions of infinite horizon discounted opti-
mal control problems has been considered by various authors during the last years, see e.g.
[13], [6], [14], [16], [4], [1], [2], [12], [3] and the references therein. See also [5] for a related
problem. Roughly summarized, these papers state that under appropriate controllability
conditions the value function uniformly converges to the optimal value of an average time
optimal control problem at least on certain subsets of the state space. The main motivation
for obtaining such results is the fact that the optimal value functions of discounted optimal
control problems have certain nice properties (e.g. it is characterized as the solution of a
Hamilton-Jacobi-Bellman equation, it is numerically computable), which are not shared by
the averaged time optimal value functions.

However, up to now little has been reported in the literature about the corresponding rate
of convergence. In the discrete-time Markovian case the results in [16] can be used to
obtain immediate estimates for the rate of convergence. The assumptions in this reference,
however, exclude the deterministic case. Convergence results for the maxima, of discounted
value functions have been shown in [15]. This paper presents results for continuous time
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deterministic systems deriving rates for pointwise and uniform convergence, and is orga-
nized as follows: In Section 2 we start by describing the general setup. In Section 3 we
develop appropriate estimates for corresponding discounted and averaged functionals based
on the Integration Theorem for Laplace Transformations and we translate these results to
the optimal value functions, thus obtaining a criterion for at most quadratic pointwise con-
vergence. In Section 4 we characterize situations in which — for suitable compact subsets
of the state space — at most linear uniform convergence holds by properties of optimal
trajectories. Afterwards, in Section 5, we discuss two optimal control problems in which
these properties are satisfied and finally, in Section 6, we provide an example illustrating
that for one and the same control system both linear and slower rates of convergence may
hold depending on the cost function defining the functional to be minimized.

2 Setup

We consider nonlinear optimal control problems for which the dynamics are given by control
systems of the type

&(t) = f(x(t), u(?)) (2.1)

on some Riemannian manifold M where
u(-) €U :={u: R — U |u(-) measurable}

and U C R™ is compact. We assume that f is continuous and f(-,u) is locally Lipschitz for
every u € U. By compactness of U it follows that the Lipschitz constants may be chosen
uniformly in u. For a given initial value 2y € M at time £ = 0 and a given control function
u(-) € U we denote the trajectories of (2.1) by ¢(t,zg,u(+)) which we assume to exist for
all £ > 0. Let

g: M xR"™ - R (2.2)

be a cost function which is continuous and bounded, i.e. |g(z,u)| < M, for some constant
M,.
9

For a positive discount rate § > 0 we define the discounted functional

Iowo,ut) =0 [ e glp(s,zo, u()), u(s))ds (2.3
and the optimal value function for the corresponding minimization problem is defined by
vs(xo) := inf Js(zo,u(-)) (2.4)

u(-)eU

(Note that the corresponding maximization problem is obtained by simply replacing g by
—g.) In order to characterize the convergence properties for § — 0 we also need to define
the averaged functionals

T () 1= 1 [ ool z0,u()),ul)ds and oo, u() = limsup o, ()

and the averaged minimal value function

vo(z) 1= u(lr)lé}/{ Jo(z,u("))
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3 Rates of pointwise convergence

In this section we derive estimates for the rates of pointwise convergence for the discounted
functionals and optimal value functions. For this purpose we first discuss the relation
between discounted and averaged functionals. A direct approach to this problem has
been given e.g. in [11]. Instead, here we will use a theorem from the theory of Laplace
transformations as the starting point of our analysis. With this approach we avoid a
lot of technical work and furthermore obtain sharper estimates. After that we state an
immediate consequence from this relation to the discounted optimal value function and
provide a useful estimate which will be used in what follows.

Theorem 3.1 Let ¢ : R — R be a measurable function bounded by M,. Then

o0

o0 t
5/675tq(t)dt = (52/67&/(](8)618 dt
0 0

0

Proof: See e.g. [9, Theorem 8.1] 0

We use Theorem 3.1 in order to obtain the following relation between the rate of conver-
gence of discounted and average time functionals.

Proposition 3.2 Let r : Rf — R be a nonnegative, monotone decreasing function and
define

#(5) = 62 / e Ot () dt
0

Consider a point x € M, let T' > 0 and assume there exist sequences of control functions
ug(-) € U and times Ty — 0o as k — oo such that

J (@, up () < X +r(t) for all t € [T, Ty

Then
Js(@,up () < X+ 7(0) + 6°T*(My + r(T)) + ex(5)

with €5 (0) depending on 6, T}, and M, and €4(d) — 0 for each fixed § as k — oo.
Conversely, if there exists a 6 > 0 and u(-) € U such that

Js(z,u(-)) < XA+ 7(0)
then for each € > 0 there exists a time ¢ > €/36M, such that
Jo (@, u(r)) < A +r(t) +e
Both assertions also hold for the converse inequality if we assume that r(t) < 2M, for all

t > 0, in the first assertion replace “+62T%(M, + r(T)) + €,(8)” by “—6*T?3M, — €4 (0)”
and in the second “+¢” by “—¢”.
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Proof: We abbreviate gx(t) = g(p(t, z,uk(-), ux(t)) — X. Note that each |gi| is bounded
by M, < 2M,. We define () := qx(t) for t € [0,T}] and Gx(t) := 0 for ¢ > T},. Observe

that for each 6 > 0 then
o0 o0
/6_65 5/6 s)ds
0 0

For the proof of the first assertion pick 7" > 0 such that the assumption is satisfied for all
t € [T,Ty] and fix kK € N. Then

J

ex(8) = =0 (3.1)

as k — oo because T, — oo.

t
/ Gu(s)ds < tr(1) (3.2)
0
for allt > T. Let t* € [0,7] be minimal such that (3.2) is satisfied for all ¢ > ¢*. Then
t*
/ Gr(s)ds = £*r(t*)  and / G (5)ds < tr(t) — £ (")

0
is implied for all ¢ > ¢*. From this we can conclude
oo
5/6*5tq~k(t)dt = *‘”*5/ k(1" + s)ds
t*

,5,5* 52

t
e /qk(t*+s)d5
0

< e [ e ((# Ht)r(tt ) — tTr(tY)) dt

0\8 0\8

o0 o

52 / e Olr(t)dt — e 52 / e 7Ot*r (%) dt

i* 0

#(8) — e 5t r(t*)

F(8) — Ot*r(t*) + 6% r(t") (3.3)
for all § > 0 where we used Theorem 3.1 in the second step and the inequality e =% > 1 —ds
in the last step. Using this inequality again also

IA N

t*
5/ Mds<6/5sts<52t*2M

is implied. Thus we obtain

+*

5/6765(}%( Yds = 5/qk d5—5/ e %)y (s)ds

0
< Sty t*+5/ Y M,ds

* * 2*2
< Sttr(t) + 6% M,
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Now (3.3) together with (3.1) implies the first assertion by the monotonicity of r.

The converse inequality is shown the same way reversing the inequalities and the appropri-
ate signs, and observing that the second last inequality of estimate (3.3) may be reversed
if we add the term —42 f(f* e7Or(t)dt which by the assumption on r(t) is bounded from
below by —§2t*2M,,.

For the second assertion fix an arbitrary € > 0. Assume contrary to the assertion that
Tz, u(-)) > A+ e +r(t)

for all t > T = ¢/30M,. Note that without loss of generality we may assume r(t) < 2M,
for all these ¢, since otherwise the above inequality will be immediately false. Thus we can
use the first assertion for the opposite inequality with A\ = \ + ¢ yielding

Ts(@,u() = A+ e+ #(6) - 8*T*8My > A+ #(6)

which contradicts the assumption, and thus implies the assertion for some ¢ > T

The converse inequality is proved analogously with reversed inequalities and signs, where
the bound on r(¢) here is already given by the assumption. N

Observe that both assertions remain true when the whole right hand side of each assertion
is multiplied by —1 and the inequalities are reversed. This is easily seen by replacing g by

—g.

Remark 3.3 In order to see what kinds of rates of convergence of the discounted functional
are possible we give explicit estimates for 7#(d) for some special cases.

(i) If r(¢t) — 0 as t — oo then #(6) — 0 as § — 0, i.e. convergence to 0 of 7 is implied.

(ii) If r(t) < A/t¢ for some A > 0, some ¢ € (0,2) and all ¢ > 0 then 7(J) < 6°I'(2 — ¢)
for all 6 > 0. Since the Gamma function I'(2 — ¢) with ¢ € (0,2) is bounded by
max{1,1/(2 — ¢)} the rate of convergence of r(t) — 0 in 1/t carries over to the rate
of convergence of 7(§) — 0 in ¢.

(iii) If r(t) < A/t(t+1)"! for some c € (0,2) and all ¢ > 0 then from (ii) we can conclude
that 7#(6) < e?6°max{1,1/(2 — ¢)}, i.e. the same rates as in (ii).

(iv) If r(t) < A/t(t + 1) ! for some ¢ > 2 and all ¢ > 0 then #(§) < 62 [[° At!~¢dt =
62A/(c —2), thus quadratic convergence is implied. In any case, if r(t) is positive on
some set with measure greater that 0, we can estimate #(§) > §2C for some constant
C' > 0 which is independent of § for all 6 > 0 sufficiently small. Hence for nontrivial
r(t) a convergence rate faster than quadratic is impossible.

(v) If r(t) < A/t(t + 1) then for any ¢ > 0 we have r(t) < A/t(t + 1)7¢ and thus
by (iii) we can conclude #(§) < e°6>~€A/e which by choosing ¢ = —1/1n(8) implies
7(6) < e!*9521n(1/8)A, i.e. quadratic convergence up to a logarithmic factor. Con-
versely, if r(t) > A/t(t + 1) then #(0) > 52Af11/6 e Ot dt > 5% Ae ! f11/6 tldt =
62Ae 1In(1/6), i.e. quadratic convergence of r(t) does not imply quadratic conver-
gence of 7().
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) < Af(eeht(t + 1)) is

(vi) If r(¢) < Aln(1 +¢)/t then for each ¢ > 0 the inequality r(¢
1) which again by setting

implied, hence also by (iii) we obtain #(5) < e?0'°A/(ce
e = —1/1In(8) implies #(5) < °§1In(1/5)A.

The following corollary on the pointwise rate of convergence for discounted optimal value
functions is now an easy consequence of Proposition 3.2.

Corollary 3.4 Counsider the optimal control problem (2.1)-(2.4). Assume there exists a
point g € M, a time T" > 0, a function r : ]Ri{]" — R and sequences of times T — oo and
control functions ug(-) € U such that

JE(zo,up(-)) < A+ r(t) for all ¢ € [T, Ty]

Then
vs(zo) < A+ 7(0) + 62T2(Mg +r(T))

holds for the function #(d) from Proposition 3.2.

Conversely, if for any control function u(-) € U the inequality
JE(wo,u(+)) > A —r(t) for all t € [T, 00)
holds then the inequality
vs(z0) < A+ #(8) + 6°T%(My + r(T))
is implied for this function 7(J).

Proof: Immediately from Proposition 3.2. [l

We end this section with an estimate for finite time trajectories that will be useful in the
next section.

Lemma 3.5 Let J§(z,u(-)) < o for all t € [0,7]. Then Js(z,u(-)) < o + e T2M,.

Proof: Let ¢(t) := g(¢(t,z,u(:)),u(t)) —o for t € [0,T] and ¢(¢) =0 for ¢ > T. Then

o~ | =

t
/q(s)ds <0 for all t>0
0
and thus by Theorem 3.1 we obtain
00
6/6_6sq(s)ds <0 for all 6 > 0.
0
Since w.l.o.g. |o| < M, we obtain
00
5/6_‘58(9(90(8,96&('))#(8)) —q(s))ds < o+ e 2M,
T

and the assertion follows. [
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4 Rates of uniform convergence

We will now use the estimates from the preceding section in order to deduce results on the
rates of uniform convergence by imposing assumptions on the optimal trajectories. Here
we investigate those regions where vs uniformly converges to some constant function. As
already noted e.g. in [6], [14] and [12], this can be guaranteed by suitable controllability
assumptions on our system, furthermore the limiting function can be identified to be wvy.
Also here we are going to use certain reachability and controllability properties of the
system, and will start this section by defining the necessary objects and properties.

Definition 4.1 The positive orbit of x € M up to the time T is defined by
O} (z) :=={y € M |there is 0 <t < T and u(-) €U, such that o(t,z,u(-)) =y}
The positive orbit of x € M is defined by

Ot (z) = U O ().
T>0

The negative orbits O (z) and O~ (z) are defined similarly by using the time reversed
system.

For a subset D C M we define OF (D) = Uyep O (z) and OT(D), O (D), O~(D)
analogously.

Definition 4.2 A subset D C M is called a control set, if:

(i) D CO*(z) forall z € D

(ii) for every x € D there is u(-) € U such that the corresponding trajectory o(t,z,u(-))
stays in D for all ¢ > 0

(iii) D is maximal with the properties (i) and (ii)

A control set C is called invariant, if

C =0+(z) Vz € C.

Note that this (usual) definition of control sets demands only approximate reachability (i.e.
existence of controls steering into any neighborhood of a given point); a convenient way
to avoid assumptions about the speed of this asymptotic reachability (as they are imposed
e.g. in [2]) is to assume local accessibility, i.e. that the positive and negative orbit for any
point and arbitrary small times has nonvoid interior. This assumption is guaranteed e.g. by
the following Lie-algebraic property: Let L = LA{X (-,u), u € U} denote the Lie-algebra
generated by the vector fields X (-,u). Let Ay denote the distribution generated by L in
T M, the tangent space of M and assume that

dimAp(z) =dimM for all z € M. (4.1)
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As a consequence of assumption (4.1) we have exact controllability in the interior of control
sets, more precisely intD C OT(z) for all z € D, cp. e.g. [11].

Using this notion of control sets and assuming (4.1) we are now able to characterize situ-
ations in which uniform convergence holds. Although Remark 3.3 shows that the fastest
possible rate of pointwise convergence is quadratic, the following result on the behavior of
vg on control sets suggests that for uniform convergence an at most linear rate seems to be
the more realistic situation, cp. the example in Section 6 with cost function gs.

Proposition 4.3 Consider the optimal control problem (2.1)—(2.4) and assume (4.1). Let
D C M be a control set with nonvoid interior. Let K C intD be a compact set. Then
there exists a constant Ck such that

[vs(z) — vs(y)| < 5Cxk M,

for all z, y € K.

Proof: By [11, Proposition 2.5] with K; = Ky = K there exists a time Tx > 0 such
that for each two points z, y € K there exists a control function ug,(-) € U satisfying
O(tyy, T, uzy(-)) =y for some time ¢, , < Tx. Thus

tﬂ?qy

vs(w) —vs(y) < / 67659(90(37xauw,y('))a“w,y(s))ds + eiatm’yvd(y) —vs(y)

0

te,y
< [ G510 (), (9))ds] e 0s(y) — vsy)
0
Tk
< | / e % Myds| + |(e % — 1)M,| = 2(1 — T%) M, < 20Tk M,
0
and by symmetry of this inequality in  and y the assertion holds with C'x = 2Tk [l

Remark 4.4 Note that by the same argument vg is constant in the interior of control sets.

By Proposition 4.3 we can now give a characterization of the uniform rate of convergence
on compact subsets of the interior of control sets.

Theorem 4.5 Consider the optimal control problem (2.1)—(2.4) satisfying (4.1). Let D C
M be a control set with nonvoid interior. Assume there exists a point xzg € intD, a time
T > 0, a function r : ]Ri{)" — R and sequences of times T, — oo and control functions
uk(-) € U such that

T (w0, up(-)) < XA +r(t) for all t € [T, Ty]

Then for each compact subset K C intD there exist constants Bx > 0 and dy > 0 such
that
vs(z) < A+ 7(0) + 6Bk
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holds for all z € K and the function 7(d) from Proposition 3.2 and all § < dy.

Conversely, if for any control function u(-) € U the inequality
J¢(zo,u(-)) > X —r(t) for all t € [T, 00)

holds then the inequality
vs(x0) < A+ 7(0) + 6Bk

is implied for this function 7(0).

If both assumptions are true for the same value A and r(t) — 0 as t — oo then A = vy(z),
and thus convergence with rate 7#(0) + 0 Bg to the averaged value function is implied.

Proof: The first two assertions follow immediately from Corollary 3.4 and Proposition 4.3
with B = Ax M, + 66T*(My + r(T)).

The third assertion follows from the definition of vyg. i

Although this theorem gives quite precise estimates on the rates of convergence the as-
sumption on the function r(¢) here might be difficult to check. Thus we are now going to
develop geometrical conditions on the optimal trajectories guaranteeing linear convergence
on control sets. For this purpose we start by deriving estimates for finite time averaged
functionals along trajectories staying in some compact subset of a control set. We intro-
duce the following notation: Given a set K C M and x € K denote by U, x C U the set
of all control functions u(-) satisfying (¢, z,u(-)) € K for all ¢ > 0.

Proposition 4.6 Consider the optimal control problem (2.1)—(2.4) and assume (4.1). Let
D C M be a control set with nonvoid interior. Let K C D be a compact set. Then

(i) For each z € intK there exists a constant A = A(z) > 0 and a time T' = T'(z) such
that

Jo(w,u() = vo(z) —

for all u(-) € Uy, x and all t > T.

4
t

(ii) There exist a point z* € K and sequences of control functions uy(-) € U and times
tr — oo such that

To(a* ug () < dnf nf Jo(e,u()) +ex(T)

for all T > 0 and all ¢ € [0, min{7, ¢x}] where €;(T") — 0 for & — oo and each fixed
T>0.

Proof: (i) First note that by [11, Proposition 2.5] for each z € intK C intD there exists
a time T > 0 such that for any point y € K there exists a control function u,(-) € U with
o(ty,y,uy(-)) = x for some t, < T;.
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Now let x € int K and assume contrary to the assertion that for each constant A > 0 and
each T" > 0 there exists a control function u(-) € U, k such that

A
Ty, u()) < wola) — 4
for some t > T'. Since the point y = ¢(t, zg,u(-)) lies in K we find a control u,(-) steering
y to zo in a time ¢, < Tj. Letting 4(-) be the concatenation of u(-)[js) and uy(-)|j,s,) We
obtain for ¢; = t + ¢, and sufficiently large ¢ > 0

Mt A 2M,t
ﬂévo(wo)—avl— tfy

T (i) < Lop(e) = 2y

< volx
; R o(cx0)

and ¢(t1,z,u(-)) = 2. Thus we can continue periodically with this control which yields
Jo" (z,a() < wo()

for each n € N and consequently also
Jo(z,a(-)) <wo(z)

which contradicts the definition of vy.
(ii) If Upe kUy i = 0 there is nothing to show. Otherwise let y := inf,c g infy,yeu, Jo(z,u(-)).
Then there exist sequences of points z; € K and control functions u;(-) € Uy, i such that

Jo(z, () = vasl— o0

By the definition of Jj these sequences may be chosen such that there also exists a sequence
of times t; — oo satisfying

1
J(@w () < v+ i for all t>1¢.

For each | € N let s; > 2M,I?. Then [12, Lemma 3.8] implies the existence of times s} > 0
with s — s; > [ such that
s * * 2
Jo(elsiz, w(t)),wls) +-) < v+ Tr1
+1

for all s € [0,s] — s1]. We set z} := (s}, 2, w(-)) and uj(-) := w(s] +-). Since {z]} C K
we may assume that zf — z* € K C intD. For any fixed T' > 0 the functional J§(-, u(-))
is continuous in € K uniformly for all u(-) € ¢ and for all ¢t € [0,T] (as a consequence of
the uniform Lipschitz continuity of f on K x U) and hence we obtain for all ¢ € [0, 7]

* % * ok — — 2
Tt () < Jifat i () + E(T) <7+ &(T) + o
for all [ > 0 for which ¢ € [0,1]. Here £/(T) — 0 as | — oo.

Thus the assertion follows with uy, = uj(-) and 4(T") = &/(T) + Hll for k =1. a

Now we combine the Propositions 3.2 and 4.6 in order to obtain our main theorem on
geometric conditions for linear convergence.
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Theorem 4.7 Consider the optimal control problem (2.1)-(2.4) and assume (4.1). Let
D C M be a control set with nonvoid interior. Assume that there exist a compact subset
Ky C intD and sequences of points z; € Ky and control functions ug(-) € U such that
o(t, kg, uk(-)) € Ko for all k € N and all £ > 0 and

Jo(zk, ug(-)) = volintD

Then for each compact subset K C intD there exist constants Ax > 0 and dy > 0 such
that
vs(x) < wvplingp + 0Ak for all z € K and all § < dy.

Conversely, if there exists zp € intD and a compact subset K; C D such that for all
sufficiently small § > 0 there exist optimal trajectories for vs starting in xy and staying in
K then for each compact subset K C intD there exist constant Bx > 0 and dy > 0 such
that

vs(x) > volingp — 0Bk for all z € K and all § < dy.

Proof: Under the first assumption we can apply Proposition 4.6(ii) and obtain a point
x* € intD, a new sequence of control functions u;(-) € U and a sequence of times ¢; — oo
such that

Jo(z*, u () < volinen + (T

for all ¢ € [0, min{T,t;}] where £(T") — 0 for I — oo. Now fix an arbitrary sequence of
times T, — oo and an arbitrary constant A > 0. For each k € N we pick a value [, € N
such that ¢, > T, and ¢, (T;) < A/T}. Applying the first part of Proposition 3.2 to the
sequences uy, () and T (with T' = 0) yields vs(z*) < vglintp + Ad. Since A was arbitrary
we can conclude vs(z*) < vglingp since z* € intD the first assertion follows by Proposition
4.3 with Ag = CKMg.

For the second assertion assume that for each B > 0 and each 6y > 0 there exists ¢ € [0, dp]

such that
vs(z0) < wolintp — BS.

Then for some arbitrary but fixed € > 0 the assumption and the second part of Proposition
3.2 yield the existence of a time #(d, ) such that

B—c¢

Jé(d’g)(xo,u(')) < vy — m

and the corresponding trajectory stays inside Kj. Since B and §y were arbitrary and
t(d,e) — oo as § — 0 this contradicts Proposition 4.6(i) for B—¢e > A and thus Proposition
4.3 yields the assertion. N

Remark 4.8 Note that under the first assumption we have indeed proved the existence
of a point z* € intD with vs(z*) < vo(z*) for all § > 0.

Using the invariance property of invariant control sets we can conclude the following corol-
lary from the theorems in this section.
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Corollary 4.9 Counsider the optimal control problem (2.1)-(2.4) and assume (4.1). Let
C C M be a compact invariant control set with nonvoid interior. Assume that one of the
following conditions is satisfied

(i) There exist a compact subset Ky C intC' and sequences of points z € Ky and control
functions uk(-) € U such that ¢(¢, zg, uk(-)) € K for all k € N and all ¢ > 0 and

Jo(xk, ug(-)) = volintc

(ii) There exist zy € intC, T' > 0 and sequences of control functions u(-) € U and times
Ty, — oo as k — oo such that the inequality

A
TG0, ue()) < wolar) + 5
holds for some constant A > 0 and all ¢ € [T, Tj].

Then for each compact subset K C intD there exist constant Bx > 0 and §y > 0 such that

|vs(z) —vo(x)] < dBg for all z € K and all § < dy.

Proof: The invariance of C' immediately implies that the second assumption from Theorem
4.7 is always satisfied with K; = C. Thus Theorem 4.7 and Theorem 4.5 with r(t) = A/t,
respectively, yield the assertion. [l

5 Applications

In this section we will highlight two situations in which linear convergence can be concluded
from the results in this paper.

The first situation is given by completely controllable systems on compact manifolds. More
precisely the following corollary holds.

Corollary 5.1 Consider an optimal control system (2.1)—(2.4) on a compact manifold M
satisfying (4.1). Assume the system is completely controllable, i.e. there exists an invariant
control set C = M. Then there exists a constant K > 0 such that

lvs — volleo < K.

Proof: Follows immediately from Corollary 4.9 by the fact that M = intM is com-
pact. [l

Note that this setup coincides with the one in [10]; in fact there is a strong relation between
this result and the periodicity result there since in both cases the values of trajectory pieces
have to be estimated. The techniques, however, used in order to obtain these results are
rather different.
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The second application of our results is somewhat more specific. Here we consider the
problem of the approximation of the top Lyapunov exponent of a semilinear control system

i(t) = Au(t)z(t), e R? (5.1)

This problem is the continuous time analogon to the one considered in [15]. Note that here
we consider the maximization problem so all results are applied with inverted inequalities.
Also, since here we are going to derive an estimate for the supremum of vg, i.e. for one
specific point, we will use Corollary 3.4 and Proposition 4.6 instead of the “uniform”
Theorems 4.5 and 4.7.

We will briefly collect some facts about this problem, for detailed information we refer to
[7] and [8].

The Lyapunov exponent of a solution z (¢, zo, u(-)) of (5.1) is defined by

Az, u()) = limsup (. 70, u()) |

t—o0

which for ||zg|| = 1 can also be expressed as an averaged integral by

t
Ao, u()) = ol u()) = limsup ;[ glep(s,0,u()),uls))ds

t—00

where ¢(t, 29, u(-)) denotes the solution of the system projected to M = S9! — which
satisfies 5(t) = (A(u(t)) — s(t)T Au(t)s(t) - Id)s(t) — and g is a suitable function meeting
our general assumptions. For simplicity here we will embed S¢~! into R?, thus any = € RY
with ||z]| = 1 is an element of the sphere and vice versa any element s € S?! can be
considered as an element of R with ||s| = 1.

Since the Lyapunov exponent does not depend on the length ||zg| this averaged integral
indeed gives all possible Lyapunov exponents of (5.1) depending on xy and u(-). Thus the
top Lyapunov exponent can be defined on S4! via

k:= sup sup A(zo,u(:)).
:L‘()ESdflu(')Eu

It characterizes the stability of the solutions of (5.1) under all possible functions u(-), and
can also be used to define a stability radius of (5.1) analogous to the discrete time setting
in [15].

It already follows from the arguments in [12] that sup,cgi—1 v5(x) converges to x as § — 0.
Now it remains to determine the rate of convergence.

We assume (4.1) for the projected system. Under this condition the projected system
possesses a unique invariant control set C with nonvoid interior. Furthermore, the top
Lyapunov exponent can be realized from any initial value zo € S4~!, hence in particular
from any point zy € intC. Thus Proposition 4.6(ii) with K = C yields the existence of a
point 2* € C' and sequences of control functions u;(-) = u(ty, + -) and times ¢; satisfying

JE(x* uy () > K —g(T) for all ¢ € [0, min{T,#}].
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As in the proof of Theorem 4.7 (cp. also Remark 4.8) we can thus conclude that vs(z*) > &
for all 6 > 0. It thus remains to find an upper bound for sup,cgi—1 v5(2).

For this purpose consider a basis z1,...,z4 of R? such that ||z;|| = 1 and z; € intC for all
i =1,...,d. Then Proposition 4.6(i) with K = C yields the existence of a constant B > 0
such that

B
Jo(wi,u() <k + —
foralli =1,...,d and all u(-) € U and hence
@ (t, 25, u(-))|| < ePert.

By the compactness of S9! there exists a constant v > 0 such that any point zy € S9!
can be written as a linear combination zg = Egzl wi(xo)z; with coefficients |u;(z)| < v.
Thus we obtain

d

lz(t, 2o, u()Il = 1| D_ pilwo)a(t, zi,u()|| < dvePe™.
=1

Thus with A = B + Indv it follows that
A
J[)(.TZ,’U,()) S K+ ?

for all £y € S ! and all u(-) € Y. Thus for any A > A Corollary 3.4 yields
vs(mo) < K + 6A
for all sufficiently small 6 which finally yields

sup vs(x) € [k, k + 6 A]

resd—1

and thus the desired estimate.

In fact, with a similar argument one can also verify the assumption (i) of Corollary 4.9 and
thus linear convergence follows not only for the supremum but also on any compact subset
of intC.

6 An Example

Here we provide an example of a simple 1d control system with one (invariant) control set
where for one cost function g; the rate of convergence of v; is slower than linear but for a
slightly modified g» it is indeed linear.

Consider the control system

& = —uzx|z|+ (u—1)(z — 1)|z — 1 (6.1)

with z € R and u € [0,1]. The vector fields are sketched in the following picture.
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It is easily seen (cp. the figure) that (6.1) possesses an (invariant) control set C' = [0, 1].
All solutions starting outside C' can be steered to C' but no trajectory can leave C.

For the cost function g;(x,u) = |z| and initial values zy € C it is obviously optimal to
steer to the left as fast as possible, i.e. the optimal control is u = 1.

The solution for this constant control can be computed explicitly, it is given by

o

t) =

o) = 71

Thus

t

1 xo In(tzy + 1)

Jt ,1 = —/ d =
(@0, 1) t / sro+1 N txo

does not converge linearly, and by the first assertion of Proposition 3.2 (for the converse
inequality) the same holds for dvs, more precisely similar to Remark 3.3(vi) we obtain that

#(8) > O3 lu(1/5).

Now we consider g2(x,u) = |z —0.5|. For the initial value zy = 1/2 we obtain with u = 1/2
that x(t,zo,u) = zo for all t > 0, hence J§(1/2,1/2) = 0 for all ¢ > 0. Obviously here
Condition (i) of Corollary 4.9 is satisfied, thus linear convergence follows. A closer look
at the problem reveals that here we even obtain vs(0.5) = 0 for all § > 0, nevertheless
outside this point we have not more than linear convergence, again suggesting that —
apart from exceptional situations — this is a kind of “natural” bound for the uniform rate
of convergence.

In fact, with the same arguments linear convergence holds for all cost functions g, (x,u) =

. . . _ (a2—1)2
|z —al, a € (0,1) using the fact that « € (0, 1) is a fixed point of (6.1) for u = a1z ©
(0,1).

7 Conclusions

Convergence rates of optimal value functions of discounted optimal control problems are
investigated. Conditions on related averaged functionals are defined which imply at most
pointwise quadratic and uniform linear convergence. Furthermore geometric conditions
on optimal trajectories ensuring uniform linear convergence are given. These conditions
are checked for two optimal control problems where linear convergence can be verified.
However, an example shows that linear convergence is not always satisfied.
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