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1 Introduction

We consider the problem of feedback stabilizability of homogeneous semi-linear discrete time
systems, that is systems linear in the state where the entries of the transition matrix are
functions of the control. This class is a generalization of the frequently studied bilinear sys-
tems. Systems of this form occur as linearizations with respect to the state only of nonlinear
systems at singular points. Also they can be interpreted as systems in which the control
affects the parameter of a given system, see also [13].

In recent years there has been considerable progress in this area. For continuous time bilinear
systems sufficient conditions for feedback stabilizability have been presented by Ryan and
Buckingham [19], Chen et al. [5], Celikovsky [4] and Khapalov and Mohler [15]. In the more
general semi-linear case it has been recently shown in Griine [10] that null controllability
is equivalent to feedback stabilizability by discretized feedbacks and a numeric procedure
for the calculation of stabilizing feedbacks has been presented. The analysis in this paper
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matrices which has been undertaken by Colonius and Kliemann, [7], [8]. Already in [9] the
implications on stabilization of this approach have been studied. Furthermore the existence
of a classical (measurable) feedback under the assumption of null-controllability is shown by
Wang [22]. For general nonlinear systems in continuous time it has been shown in [6] that
asymptotic controllability is equivalent to feedback stabilizability by means of a sampled
feedback. This approach, however, does not lead to exponential stabilization and is only
constructive up to the fact that the knowledge of a control Lyapunov function is required.

Sufficient conditions for feedback stabilizability of bilinear systems in the discrete-time case
are presented in Yang et al. [25] and Stepanenko and Yang [21]. The methods employed in
these references, however, use in a fundamental way that the system in non-homogeneous,
i.e. that the origin is not a common fixed point for all control values. General feedback
stabilization schemes for discrete time systems have been presented by Simoes et. al. [3] and
Lin and Byrnes [16], [17]. The methods of the latter papers have been used to obtain smooth
asymptotically stabilizing feedbacks for bilinear systems in [18] under the assumption that
the uncontrolled system is Lyapunov stable.

In this paper we show how the discrete-time version of the results of Colonius and Kliemann
which have been presented in Wirth [24] can be used to obtain discrete-time versions of the
necessary and sufficient conditions for feedback stabilizability. The proofs are constructive
and we discuss numerical aspects of the constructed feedback.

The paper is organized as follows. In Section 2 we present the class of systems we consider
and formulate the problem. Furthermore we introduce systems associated to the semi-linear
systems, defined on projective space. These systems are vital in the analysis of spectral prop-
erties of the original system and for this we review the relevant material from spectral theory
of time-varying systems that is needed for the approach in this paper. The main theorem in
Section 3 states that feedback stabilizability is characterized by a property of the Floquet
spectrum. In the following Section 4 we construct stabilizing feedbacks using methods from
optimal control theory to approximate optimal exponential growth rates along trajectories.
Section 5 then shows how these results may be used in order to obtain a numerical scheme
for the calculation of a piecewise constant exponentially stabilizing feedback. In the final Sec-
tion 6 we draw conclusions and comment briefly on the robustness properties of the proposed
stabilization scheme.

2 Problem Formulation

We consider systems on R? of the form

et + 1) = Afu(t))z(t), teN, (1)

where A : U — R% is an analytic map, U c R™ is open and connected, and the set of
admissible control values satisfies U C U. Let ®(¢,u), t € N denote the evolution operator
defined by a sequence u € UMN. We call system (1) asymptotically null-controllable if for every



to singularity ®(¢,u)x = 0 for some finite ¢ may occur. System (1) is called (stafe) feedback
stabilizable if there exists a map F': R? — U such that the system

ot +1) = A(F(2(t)z(t), teN, (2)

is globally asymptotically stable. If F' can be chosen such that (2) is exponentially stable,
then we call (1) exponentially (state) feedback stabilizable. 1t is the purpose of this paper to
show that these concepts are equivalent if feedbacks can be chosen to be piecewise constant
and to present a procedure for the calculation of exponentially stabilizing feedbacks. Note
that it is inherent in this scheme that discontinuous feedbacks may occur.

Before presenting our general approach, let us briefly recall a special case of the results of
[18]. In this paper the authors consider systems of the form

z(t+1)= (A + i”: ui(t)Bi) x(t) + Du(t) =: Ax(t) + (B(x(t)) + D)u(t) (3)

under the assumption that A is Lyapunov stable, i.e. we may choose P > 0 such that
ATPA — P <0. In the following P will always denote a matrix with these properties and
furthermore ||z||p := T Px. Specializing to D = 0 we obtain a particular case of (1). In [18]
a bounded globally asymptotically stabilizing feedback is shown to exist if for

Q:={z e RY| (A°2)"(ATPA - P)A’2 =0, s>0}

S:={reR| (A 2)TPB(A*z) =0, s>0}

we have 2 NS = {0}. Furthermore an explicit formula for the feedback is given, namely

u(z)=—(I+ %B(Q?)TPB(J}))_lB(J})TPAJ} (4)

is globally asymptotically stabilizing but clearly in general not exponentially stabilizing.
However, exploiting homogeneity u can be modified to be exponentially stabilizing by choos-
ing the feedback to be constant on rays {az ; + € R\ {0},a > 0} as can be seen from the
following consequence of [18, Theorem 4].

Proposition 1 Consider a homogeneous bilinear system of the form (3) with D = 0 and
assume that A is Lyapunov stable. If QNS = {0} then for any p > 0 the system (3) is
exponentially stabilized by the feedback defined by F,(0) =0 and

T T
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Note that for every p > 0 F, is smooth on R\ {0}. Furthermore F, is bounded and the
bound can be made arbitrarily small by choosing p small.
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feedbacks u in (4) and F, by x(-;u) resI;. x(+; F,). It is shown in [18; Theorem 4] that

le(t+ L)l — et u)l[p < —2[lu(x())]

holds. By the assumption QNS = {0} it may be shown that for «(¢; u) # 0 there exists s > 0
such that either u(z(7;u)) # 0 for some 7 € {t,...,t+s+1}or ||a(t+s+1;u)||lp < ||x(t; uw)||p.
Using continuity and compactness it follows that there exists a 7' > 0 and a constant
1 > 8 > 0 such that for any ||2(0;u)||p = p we have ||z(T;u)||p—||z(0;u)||p < =8|l (0;w)]||3-
By the homogeneity of the closed loop system defined by F), and the fact that F,(x) = u(x)
for ||z]|p = p this implies

B
le(t+ T3 Fo)l[p — lle(t: F)llE < —;Hl‘(t; F)llE (5)
Hence exponential stabilization by the feedback F|, follows.

It is a further interesting fact that for the feedbacks F), just defined we have F,(z) = F,(—x).
Thus F, does define a smooth map on the projective space P4~! and in fact our general
approach uses feedback maps induced by maps on P?~'. As we will see these kind of maps
suffice for the feedback stabilization of (1). The basic idea of the construction of the feedback
is to obtain upper bounds on the exponential growth rates of the trajectories using ideas from
optimal control. In a more general situation than the one considered in Proposition 1 however
one cannot expect to obtain smooth or even continuous feedbacks using this approach. Also
our approach does in general not yield explicit formulas.

We equip P?~! with a Riemannian metric d(-,-). Let P denote the natural projection of a
subset in R?\ {0} to P~!. A matrix A € R¥? defines a map PA: P"'\Pker A — P Im A as
A maps one-dimensional subspaces into one-dimensional subspaces (or to 0). In homogeneous
coordinates this means n = PAE iff £ = [z, Ax # 0,n = [Az], where we have taken the usual
equivalence relation on R?\ {0} given by # ~ y iff 3y # 0 : = vy and [z] denotes the
equivalence class of x. With these remarks the associated system to (1) is given by

Et+1)=PA(u(t))é(t), teN (6)
0)=6 e P, we UMN(¢).

Here UM(&) denotes the set of admissible control sequences for £ € PY~!, i.e. those control
sequences u € UM such that ®(¢,u)z # 0 for all ¢t € N, whenever Pz = &. The solution of
(6) corresponding to an initial value ¢ and a control sequence u is denoted by ¢(-; &, u). In
order to be able to use the results obtained in [24] we assume that the map A and the sets
U cC U CR™ satisfy:

(A) The set Uy := {u € U] det(A(u)) # 0} is not empty.
(B) U is compact with connected interior.

(C) U CelintU CU.



definition of the forward orbit of a point f given by

Ot (&) :={n e P | 3t € N,u € U such that n = @(t; &, u)}.

The following concept introduces regions of approximate controllability in P4~'. A control
set is a set D C P?~! satisfying

(i) D C clOF(§) for all £ € P41,
(i) int D % 0.

(iii) D is a maximal set (with respect to inclusion) satisfying (i).

It is also possible to consider control sets with empty interior, but for the purposes of this
paper this is unnecessary. Control sets have been studied in [1] and [24] and the references
therein. We now present some of the relevant facts.

If we assume that (6) is forward accessible, i.e. int O (€) # () for every ¢ € P471, then there
exists a unique invariant control set in P?~! i.e. a unique set C satisfying clC' = cl O (),
V¢ € C. Cis closed, connected and has nonempty interior. An important subset of a control
set D is its core defined by

core(D):={£ € D | intO ()N D % 0 and int @+(§) ND=+0}.

Here @_(f) denotes the points n € P?~! for which there exist t € N, ug € int U such that
o(t;n,up) = € and the map u — @(¢;n, w) has full rank in ug. Under these conditions (1, ug)
is called a regular pair. A control u € int U" is called universally regular if (€, u) is a regular
pair for all £ € P4~L. By [20, Corollaries 3.2 & 3.3] forward accessibility is equivalent to the
fact that the set of universally regular control sequences is open and dense in U’ for all ¢

large enough. @+(§) is defined by n € @+(§) iff £ € @_(n).

To the invariant control set ' we may associate a set of Floquet exponents by

Ep(C) = {%log AN | A€ a(®(t,u)),ue U PGE(Xu) C core(C)}.

where we use the convention log) = —oo. Here o(®(¢,u)) denotes the spectrum of ®(¢, u)
and GFE(A,u) denotes the generalized eigenspace of an eigenvalue A € o(®(¢,u)) or in the
case of complex ) the kernel of the (real) matrix (Al — ®(¢,u))(M — ®(¢,u)))".

The meaning of the Floquet exponents becomes clear if we introduce the exponential growth
rate of a trajectory which is measured by the Lyapunov exponent

1
AMxg,u) :=limsup i log || ® (¢, w)xol| -

t—00

Clearly, A(xg,u) < 0 iff the corresponding trajectory converges to 0 exponentially fast, as A
measures the exponential growth of a trajectory. Due to the linearity (in x) of system (1)



3 Main result

It is an easy consequence of [24, Theorem 11.1] that the infimum of Y g (C) characterizes
exponential null controllability as it may be seen that

sup inf A& u) =infXg(C), (7)

gepd—1 u€UN

where possibly both sides are equal to —oo. In fact, the infimum of the Floquet spectrum
over (' also characterizes asymptotic null controllability and feedback stabilizability as the
following main theorem states.

Theorem 2 Let (A),(B),(C) hold and assume that (6) is forward accessible, then the fol-

lowing statements are equivalent.

(i) System (1) is asymptotically null controllable.

(ii) System (1) is feedback stabilizable with a piecewise constant feedback F'.
(iii) System (1) is exponentially feedback stabilizable with a piecewise constant feedback F.
(ZU) lanFl(C) < 0.

PROOF. (i) = (iv): Pick a point & € core(C'). By [24, Lemma 10.1] there exists a time T'
such that for every point ¢ € C there exists a control sequence ug € UT with p(te, &, ue) = &
for some t¢ <T'. By the boundedness of ||A(u)||, v € U from above we can conclude that for
all z € R? with Pz = £ the estimate ||®(t¢, ug)z|| < Klz|| is valid for some constant K > 0
independent of x. Also, asymptotic null controllability implies that there exists a time 5 > 0
and a control function ug € U% such that

1

| (o, uo)wo|| < ﬁ”onv

for all zg € R? with Pzg = &. Now denote z; := ®(ty,ug)zo. If z; = 0 it follows that
inf ¥p(C') = —oo and we are done. Otherwise by invariance of C' & := Pay € C. Choose
uy € U steering to & in time ¢; < T. Concatenating ug and u; we obtain a control u € Ufth
satisfying

1
Pltot 1o = & and (i + by, w)zol] < <ol

mlogZ € clXp(C) and the assertion follows. (iv) = (iii) follows from

Theorem 11 below, while (iii) = (ii) and (ii) = (i) are immediately clear.

This implies —



a numerical p;)int of view. We circumvent these probllems by introducing approximations of
(1) by invertible systems. We consider sequences {U, },en of compact sets satisfying for each
n € N the following condition:

intU, #0, U, Cintg Upp1 CUios  |J U = Ui (8)

neN

where intyy denotes the interior in the relative topology of U. One possible choice of such a se-
quence {U,} can be obtained via the following procedure. Let B(e) := {u € U | det(A(u)) >
e}. Then we may choose ¢ > 0 such that int B(e) # 0. Now define U, := B(e/n) for n > 1.

Assuming (8) we consider the approximating systems
§t+1) = PA(u(t))E(t) (65)

fePit yeUY,

The following proposition states in what sense the systems (6,,) are appropriate approxima-
tions of the original system.

Proposition 3 Let {U,}nen be a family of sets satisfying (8) then

(i) For every n € N system (6, ) is forward accessible.
(i) For everyn € N system (6,,) has a unique invariant control set C,,.
(ZZZ) 11mn_>oo inf ZFI(Cn) == infneN inf ZFI(Cn) = inf ZFI(C)
(iv) System (6) is asymptotically null-controllable iff there exists an ng € N such that system
(6,) is asymptotically null-controllable for all n > nyg.

PROOF. (i) By [20, Corollaries 3.2 & 3.3] forward accessibility of (6) and int U,, # @ imply
that for ¢ large enough (independently of n) there is a universally regular control sequence
u, € intU!. This implies that ¢(¢; €, u,) € int O1(€) for all £ € P41 which shows forward
accessibility.

(ii) Using the control u,, from part (i), let V' (u,,) denote the sum of the eigenspaces of ®(¢, u,,)
corresponding to the eigenvalues of greatest modulus, i.e.

Vi(u,) = @ GE(N uy).

Ao (D (t,un)),|A=r(®(t,un))

Correspondingly, define

Wiu,) = P GE(N uy).

Ao (D(tun)),| A <r(®(t,un))

By [24, Proposition 6.7] there is a control set C,, such that PV(u,) C core(C,). We claim
that C, is the unique invariant control set of (6,,). Note that for £ € P4=1\ W(u,) it holds



lim A(PO(t, un)* €, V(uy)) =0.

As system (6,,) is forward accessible and int PW (u,) = @ this shows that

PV(u,) Nl OF(€) # 0 for all € € P71, (9)

One the one hand this shows that (', is invariant, as any trajectory with initial condition
(o € C, can be steered back to core(C,,) such that the whole trajectory is contained in C,
by maximality of control sets. On the other hand there is no other invariant control set C”’
as (9) shows that from some control set C' # C,, it is possible to steer to C,, contradicting
the invariance of C".

(iii) As U, C Upy1 C U it follows that C,, C C,py C C and inf ¥ (C) > inf ¥py(Crgr) >
inf X g (C). Thus it follows that lim,,_ . inf X(C}) exists and

To prove the remaining inequality fix ¢ > inf ¥ (C). Choose t € N, and a universally regular
u € U}, such that there exists A\ € o(®(¢,u)) with PGE(X,u) C core(C) and Tlog|A| < c.
By universal regularity and the proof of (ii) we have PV(u) C core(C). For £ € PV(u) and
n € PGE(X u)we may by [24, Lemma 10.1 (ii)] choose a universally regular control v € U},

such that

n=(s;€,0).

Asu € U}, v € Us, there exists an ng € N such that v € intU!,v € int U? holds for all
n > ng. By part (ii) we have V(u) C core(C),) and as the control v is available for (6,,) the
invariance of C,, implies that n € C,,. On the other hand again using [24, Proposition 6.7]
there is a control set D such that PGE(A,u) C D. Now D N C, # 0 and hence D = C,
by the maximality of control sets. By definition of the Floquet spectrum if follows that
%log Al € ¥p(Cr) and so inf Xpy(C) < ¢. As ¢ > inf ¥y (C') was arbitrary this completes

the proof.

(iv) Clearly if (6,,) is asymptotically null-controllable then the same holds for all n >
no and (6). It has already been shown in the implication (i) = (iv) of Theorem 2 that
asymptotic null-controllability of (6) implies that inf ¥z/(C) < 0. Hence for all n large
enough inf ¥p(C,) < 0. Now (7) shows the claim. Note that the proof did not depend on
the connectedness of U.

Finally, we have to point out in this section that inf ¥(C) < 0 does not imply that there
exists a periodic sequence u such that the spectral radius satisfies r(®(¢,u)) < 1. So that
constructing a stabilizing feedback is not equivalent to the possibility of choosing a stable
periodic system in the family (1).



Let U = [-2,2]*. Clearly, for all uw = (a,b) € U it holds that det(A(u)) = 1, hence
det(®(t,u)) = 1 and thus r(®(t,u)) > 1 for all t € N, uw € U'. Thus a periodic system
in the family (1) is never exponentially stable.

However, for every T € sl(2,R), the group of real 2 x 2 matrices with determinant 1, there
exist t € N and w € U' such that T = ®(t,u). This can be shown by a simple calculation.

This means that in this case the projection (6) is completely controllable on P'. Thus C' = P!
and inf ¥y (C) < —log2 as 0(A(2,1/2)) ={2,1/2}.

Note also that the question, whether there exists a stable periodic system in the family (1)
is in general algorithmically undecidable, as has been shown in [2], whereas the problem of
approximating inf ¥y (C') has an algorithmic solution as will be shown in the remainder of
this article.

4 Construction of the Feedback

In this section we will give a constructive approach for the calculation of the exponentially
stabilizing feedback for system (1). It is based on a dynamic programming approach, using
the fact that optimal exponential growth rates can be approximated by discounted values
along trajectories.

The construction of the feedback is related to the following optimal control problem: Define
the function ¢ : P! x U — RU {—co} by

Q(§7U) = 10g%,u€U(5)7§:va

—o00, else,

and the running cost Jy : P91 x UM — R U {—cc} given by

limsupt T qleo(s; & u),uls)), u € UV(E).
Jo(€u) =y 7

—00 else.

Note that ¢ and thus also the sum over ¢ are bounded from above.



vo(€) = inf{jo(f,u) | w € U™} is negative for all points in the projective space. vy may be
approximated by value functions vs corresponding to the following -discounted yield:

limsup 3 e~ glp(s:€,u),u(s)), u € UN(E),
Js(€u) =4 7 =

—00 else.

We will also consider the value functions corresponding to the approximations U, given by

vsn(€) = uiengN Js(&,u),  vo,(&):= uiengN Jo(&,u).

Note that the series in the definition of Js is divergent iff the partial sums tend to —oo, and
that by assumption (8) we have inf;cpa—1 v5,(§) > —o0.

Theorem 5 Consider system (1) and assume that its associated system (6) is forward ac-
cessible, then it holds that

. _5 - i
(lgg%gre%adzcl(l — e us(€) = 52%%)51 vo(€) = inf X (C).

Furthermore, it holds for all n € N, that

. 3 _ — 3
lim max (1= e™)vsn(€) = max, von(€) = inf Xpu(Co).

PROOF. The equalities on the right hand side in each statement follow from (7).

We now obtain an upper bound for lim sup;_,q maxgepa-1(1 —e72)vs ,(€). The same argument
can be applied to vs and this case is therefore omitted. Fix n € N and choose & € core(C,,).
By [24, Lemma 10.1 (ii)] there exists a time Ty € N such that every point ¢ € P4~! can be
controlled to & in a time t = t(¢) < Ty by some control u = u(§). Using this u it follows
from Bellman’s principle of optimality that

t—1

vsn(€) < D" e qlp(s; € ) uls)) + e vs,(&o)

s=0

and hence there exists £(§) such that for all ¢ € P4 we have (1 — e™)vs, (&) < (1 —
e s (&) + (8) where e(§) — 0 as § — 0. By [23, Corollary 3.5] it holds that (1 —
e Nsn(&o) < von(&o) + E(8) where again £(5) — 0 as § — 0. Together this implies

li 1 — e )sn(€) < 26
imsup max (1 —e™)vsx(§) < max von(¢)

The proof of the first statement now follows from [23, Theorem 4.9], where convergence of dv;
to vg on core((') is shown. Now assume lim infs_,o maxgepa-1 6v5,(§) = 0 < maxgepa-1 vo,(€),
then [23, Proposition 3.8] and the boundedness of ¢ on P4~ x U, yield a contradiction.

10



usiné optimal feedbacks for the discounted problem. We will now show that this is indeed
the case. We construct a feedback as follows.

Definition 6 Define Fs,, : P~ — U, by the following procedure:

For each € € P! choose a value v € U, such that

a(&,u) + e vsa(p(15 €, u))

becomes minimal and let Fs,, (&) := u.

The function Fjs,, will in general not be unique; nevertheless the existence of a value Fj,(§)
with the desired properties is always guaranteed by the continuity of ¢, vs, and u — @(1; &, u)
and the compactness of U,,. Denote the solution of the system using Fs, by ¢(-;&, Fs,). It
is a straightforward calculation to show that this feedback law is indeed an optimal control
strategy for vs,, i.e. it holds that

507F5n . 26_55 fo,an) (S‘Q(S;fovF&n))) = U57n(§0)‘ (10)

It turns out, however, that this feedback is also exponentially stabilizing.

Theorem 7 Assume that (1) is asymptotically null-controllable and (6) is forward accessi-
ble, then there exists an ng € N and a dy > 0 such that for all n > ng and 0 < § < §g the
feedback F : R — U, given by F(0) = ug for some arbitrary ug € U, and

Fle)= Fso(€) iff Pa=¢ (11)

exponentially stabilizes system (1).

PROOF. Let ng be such that inf X (C,,) < 0 and choose dy such that maxgepa—1 v5,,(§) <
0 for all 0 < ¢ < dg. Then inf Xpy(C)) < 0 and maxgepa—1 v5,(£) < 0 for all (n, ) with n > ng
and 0 < d < dg. Choose n > ng,0 < § < dg. Denote the exponential growth rate of an initial
condition x¢ under the feedback F' by A(xo, F'). For any initial condition xq # 0 we have

Mg, F') = AM(Pao, F5,,) <limsup (1 — e_é)Jg(c,o(t; Pxo, F5.), Fsn)

t—00

< 1 —e s, (6) <0,
_grerﬁbadzcl( e vsn(€)

where we used [23, Proposition 3.8] and the fact that ¢ is bounded on P?~! x U,. To complete
the proof it suffices to show the existence of a constant M > 1 such that ||z(¢; zo, )| < Me,

11



from (10) the existence of a T such that

&)

T Lol + 56 R (s 4 66 B < 04

for all £ € P4~ and some t(¢) < T. By induction and boundedness of A(U) exponential
stability follows.

5 A Numerical Construction of the Feedback

Usually, it will not be possible to calculate vs, explicitly. Instead we assume that we are
given a numerical approximation to this optimal value function. From now on assume we have
fixed a compact control range U, C U;,, which approximates our original control problem
to a desired accuracy. The main implication of this is the existence of a constant M, such

that |¢(&, u)| < M, for all £ € P and all u € U,.

A numerical approximation of vs, can be obtained as in [11]: Parameterizing P*~! in a
suitable way we obtain a transformation of the problem to some subset  C R?! on which
we have to solve a discrete Hamilton-Jacobi-Bellman equation. The solution of this equation
can be approximated on a grid covering ) where we look for a solution which is piecewise
linear on each element of the grid. This solution can be calculated iteratively and, using
the inverse of the parameterization, gives an approximation of vs, on P4~l. We denote
this piecewise linear numerical approximation by vs. Using the results from [12] 05 may be
calculated in such a way that

05(§) = inf {q(& u) + ™ 0s(p(15 €, 1))} +n(€) (12)

uelUp

where |(€)] < 5 for all £ € P4~ and
Hﬁg - U57n"oo <E. (13)

From [12] it follows that > 0 and & > 0 can be made arbitrarily small using a suitable grid;
furthermore 05 is Hoelder continuous, i.e. it satisfies

[05(61) — 05(&)| < Kd(&1, )"

where v € (0.1] is an appropriate constant. Throughout this section K > 0 will denote
several appropriate constants. Note that also vs, is Hoelder continuous, see [10].

We will now use v; in order to construct an approximately optimal feedback.

Definition 8 Define I' : P™1 — U, as follows. For any point ¢ € P! choose a value

12



(&, u) + 7’ Bs(p(1; €, u))

becomes minimal and let F(f) = .
The previous definition yields an approximately optimal feedback law.

Proposition 9 Let I : P! — U, be a feedback law obtained from Definition 8. Then the
following inequality holds

| i5 alp(s: o, ). Flo (5160, 1)) = vsnl &) < i5 n(plsi o, F)) +2

n
<
—1—e¢

+é

for all & € P21,

PROOF. From Definition 8 and the first assumption on o5 it follows, that

(&) = q(&, F(€)) + e’ Ts(o(1: €, F)) + n(€)

for all £ € P41, Proceeding inductively with ds(¢(1;¢, F)) and using the second assumption

on ¥s yields the first inequality. The second follows from %2, e™% = 1_%

The feedback as constructed in Definition 8 does not possess any regularity properties, in
particular it will in general be discontinuous. However, it is possible to approximate this
feedback by a piecewise constant function which still yields approximately optimal trajecto-
ries.

Proposition 10 Let {V;|j =1,...,J} be a family of disjoint sets with J_, V; = P~ and
sup{d(&,Q) €, Ce Vi <a forallj=1,...,J. Define a feedback law E, by

for arbitrary (but fived) points £; € V; and all j =1,...,J and F' from Definition 8.

Then for any € > 0 there exists a constant o > 0 such that for any approximation vs of vs,,
with sufficiently small n > 0 and € > 0 from (12) and (13) the following inequality holds for
all ¢ € Pt

|3 e alplos € B Fulils: 6, ) — vi,n(6)] < =
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55(&) = (&, Ful&)) + 70 05(0(1565, F)) + (&)

Hence because of the Hoelder continuity of vs it holds for arbitrary £ € V;

05(§) = 0s(&j) + K 1() N
Fo(§5)) + 77 0s((1: &5, o)) + (&) + K (§)a”
F +e

(€) Os(p(15 €, Fo)) + (&) + Ka(€)a

(&5
3

QR

where K3(¢) < K is a uniformly bounded function. Now the assertion follows by induction
and the assumptions on ;.

Note that the previous proposition can in particular be used for the construction of piecewise
constant feedbacks by imposing further regularity conditions on the V;. On way to obtain
such sets is by using a partition (e.g. some triangulation) of the d dimensional unit sphere and
then by identifying P?~! with one hemisphere. Observe that the construction of the piecewise
constant map can also be based on the feedback Fj,, from Definition 6. The following theorem
now states the main existence result for piecewise constant feedbacks.

Theorem 11 Consider system (1) and assume its associated projection (6) is forward ac-
cessible. Assume furthermore that inf X (C) < 0. Then there exists a piecewise constant

feedback law F, : P — U, such that Jg(fo,ﬁa) < 0 for all & € P, and the map
F:R*— U, given by F(0) = ug for ug € U, arbitrary and

Flz)=F,(6) iff Pa=¢ (14)

defines an exponentially stabilizing piecewise constant feedback.

PROOF. From inf ¥p(C) < 0, Theorem 7 and Proposition 10 the existence of F, with the

proposed properties follows. Hence we obtain

Zes pls + 16 ), Falp(s + 66 F))) < e

for some value ¢ < 0 and all ¢ € N. Thus the assumptions of [23, Proposition 3.8] are satisfied
and we obtain A(wg, F,) < ¢ for all zo € R\ {0}. As in the proof of Theorem 7 this implies
exponential stability of the closed loop system on R

14



For semi-linear systems whose projection satisfies a controllability assumption we have shown
that open loop asymptotic null controllability and exponential feedback stabilizability via
piecewise continuous maps is equivalent. For these feedbacks no explicit formula has been
obtained and we also do not expect that a simple representation exists. Rather a numerical
procedure for their construction has been presented.

Finally let us briefly comment on the robustness of the proposed stabilization scheme. One
reason why feedback laws are preferred to open loop controls is that one expects some
robustness of the stabilization against small errors or perturbations.

Unfortunately, Fj, as well as I and F, are in general discontinuous, hence continuous
dependence on the initial value will not hold for the closed loop system and thus not yield
the desired robustness result. Nevertheless it is possible to show that the feedback controlled
trajectories are robust in the sense that they remain approximately optimal if the system is
subject to small perturbations using discrete-time versions of Proposition 5.2 in [14].

Acknowledgments: The authors want to thank Luiz San Martin for suggesting Example 4.
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