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1. Introduction

Numerical methods for the solution of differential inclusions follow three
directions.

(i) Compute special solution trajectories with additional qualitative or
quantitative properties:

Such trajectories have to be computed by difference methods with addi-
tional selection procedures choosing points from the set-valued right-hand
side in an appropriate way. Common strategies result, e.g., in the discrete
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analogue of heavy solutions, or slow solutions, or selections with a cer-
tain kind of discrete minimal variation. These selection procedures require
the solution of finite-dimensional optimization problems at every gridpoint.
Qualitative and quantitative sensitivity properties of this family of optim-
ization problems determine qualitative and quantitative properties of the
approximated solution, cp. in this connection [23] and the survey [19].

(ii) Compute all solution trajectories, or at least all belonging to a given
class of functions:

This is theoretically and computationally an extremely difficult task.
Applying the abstract framework of general discretization theory requires
correct notions of stability and consistency. Conditions assuring order of
convergence higher than 2 are not available until now. In principle, a proper
calculus of higher order derivatives is required for set-valued mappings,
guaranteeing Taylor expansions with valid error estimates with respect to
Hausdorft distance. Some results concerning Euler’s method resp. Euler-
Cauchy method and order of convergence equal to 1 resp. equal to 2 are
available, cp. [33], [34]. Every solution belonging to an appropriate Sobolev
space can be approximated in a theoretical sense by a higher order linear
multistep method, where the relevant notion of consistency is related to
stability properties of a family of perturbed optimization problems, cp.
Definition 3.2 in [23].

(iii) Compute the reachable set of all solution trajectories at a prescribed
point in time:

The techniques mentioned in (ii) like Euler’s method resp. Euler-Cauchy
method yield, as a by-product, first resp. second order discrete approxim-
ations of reachable sets of special classes of differential inclusions. In [16]
even higher order of convergence is proven for a method exploiting fully the
structure of special linear differential inclusions with polyhedral control re-
gion. In the sequel of papers [7], [6], [4], and in the thesis [5], the discrete
approximation of reachable sets of linear differential inclusions is totally re-
duced to the numerical integration of set-valued mappings. The basis of this
approach consists in adaptations of quadrature formulae and extrapolation
methods to the calculation of Aumann’s integral for set-valued mappings.
In principle, classical quadrature methods are applied to the support func-
tional of the set-valued integrand. For every point in the integration interval
and every unit vector in state space, the value of the support functional
is determined by a convex optimization problem. Smoothness properties
of this support functional as a function on the integration interval uni-
formly with respect to the unit ball in state space, thus strong stability
and sensitivity properties of an infinite family of convex optimization prob-
lems, determine the order of the integration method and, consequently, the
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order of suitably defined discrete approximations of reachable sets. In this
framework, higher order discrete approximations to reachable sets can be
defined at least for special classes of linear differential inclusions. Origin-
ally, only the use of quadrature formulae with nonnegative weights seemed
to be reasonable, like some open or closed Newton-Cotes formulae, Gauss
quadrature, or Romberg’s extrapolation method with Romberg’s stepsize
sequence. But exploiting some ideas in [8], compare also [9], depending on
the geometry of the set-valued integrand, even quadrature fomulae with
negative weights could be applied, thus opening the way to all kinds of
extrapolation methods, error estimates by inclusion, and stepsize control
for set-valued integration.

As outlined above, there exists an intrinsic relationship between nu-
merical methods for differential inclusions and questions of sensitivity and
stability analysis of finite dimensional optimization problems. The main ob-
jective of this paper is to describe this relationship. Hoping, that a numer-
ical treatment of linear differential inclusions in the very spirit of set-valued
numerical analysis will also be of value for a more satisfactory numerical
treatment of nonlinear differential inclusions, we will concentrate on aspect
(iii). Contrary to the thesis [5], where set-valued integration is the exclusive
mathematical tool, we try to broaden the mathematical background to set-
valued interpolation. The reader will easily recognize, that the techniques
apply to set-valued mappings of several variables as well, thus opening the
access to finite element methods for the discrete approximation of nonlinear
differential inclusions in the, hopefully, near future.

2. Set-Valued Interpolation

In the following, we introduce set-valued interpolation as a mathematical
tool to approximate set-valued mappings by simpler set-valued mappings.
Deliberately, we avoid the technique of embedding spaces of convex sets
into normed linear spaces, cp. the papers [28], [21], [30], [10], and [18]. This
technique leaves the question unanswered how to interpret the results in
the original spaces. Instead, we stay completely in the framework of set-
valued mappings. Naturally, the problem arises how to define differences
of sets in an appropriate way. This is done by a method already used in
[8] for the proof of error estimates for set-valued quadrature formulae with
negative weights, and in [5] for the derivation of inclusions of set-valued
integrals by extrapolation methods. Only for simplicity we restrict ourselves
to interpolation by set-valued polynomials, extensions to other function
classes and even to interpolation of set-valued mappings of several variables
by set-valued finite elements being rather obvious.
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2.1. Interpolation Problem. Let I = [a,b] with a < b and
F:I=R"

be a set-valued mapping with non-empty, conver and compact values.
Choose N € N and a grid

a<tp<t1 <...<tny<b,

and compute for every | € R™ the polynomial

pN(lv )
of degree < N with

pN(lvtj) = 6*(lvF(tj)) (] :07"'7N) .

Here, we denote by

6*(l, A) = supl*z (leR")
2€A

the so-called support functional of the set A C R™. It is well-known, that
0*(-, A) is a real-valued, positively homogenous continuous and convex func-
tional on the whole of R" for every non-empty convex and compact set
A. Moreover, the polynomial py (,-) exists and is uniquely determined for
every [ € R". Naturally, except constant or linear interpolation or use of in-
terpolation techniques with non-negative basis functions, cp. e.g. [24], [25],
[35], the polynomial py(l,t) is not for all ¢ € I the support functional of a
convex set. This can easily be seen by inspection of Lagrange’s interpolation
formula,
N N (t—t,)
N(lat) = 25*(17F(t3)) H 7H )
j=0 (tJ - tH)

=0
n#E]

(2.1)

which, for fixed ¢ € I, is a linear combination of support functionals with,
unfortunately, some negative weights in general. Hence, py(-,t) is real-
valued, positively homogeneous and continuous for every ¢ € I, but in
general not convex.

A way out of this difficulty consists in the replacement of py (-, t) by its
convexification resp. double conjugate

pR(5t)  (tel),

which can be computed as follows.
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By definition, cp. e.g. [29], we have

py(z,t) = sup [2*] —pn(l,1)]
leR™

B 0, if 2%l <pn(l,t)foralll € R* |
oo, if z*l > pn(l,t) for at least one [ € R .

Hence, py(z,t) is the indicator function of the set
Py(t) ={z € R": 2"l <pn(l,t) foralll e R"} | (2.2)

and therefore
p;(\f*('a t) = 5*('a PN(t))
is the support functional of Py (t) for every ¢ € I.

2.2. Lemma. On the standard assumptions of Interpolation Problem 2.1,
the set Pn(t) is closed, convex and bounded for every t € I.

Proof. According to (2.2) the set Py(t) is the intersection of closed half
spaces in R, therefore Py (t) is convex and closed. Moreover, (2.1) shows
that py(l,t) is bounded uniformly for all [ € R” with [|/||s =1,

pn(ht) <c(t) (It =1), (2.3)
this implies for z € Py (t)
1213 < pwv(2.2)

and hence, for ||z]|2 # 0,

lzllz < ’—PN(Z,t)

z
B[P

c(t) (tel.

IN

Since

p?’V*(latj) = 5***(l7F(tj)) = 5*(l7F(tj))
and F(t;) is closed and convex,
PN(tj):F(tj) (7=0,...,N).

Therefore, in a very natural way, we can define the set-valued interpolation
“polynomial” which solves Interpolation Problem 2.1.
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2.3. Definition. For every | € R" let

pN(lv )

be the interpolation polynomial which solves Interpolation Problem 2.1.
Then the set-valued mapping

Py:I=R" )
defined by
Py(t)={zeR": 2"l <pn(l,t) foralll € R"} (tel),

s called the set-valued solution of Interpolation Problem 2.1. ]

At this point, we should add a warning: Neither is Py(f) in general
polynomial with respect to ¢, nor is Ppy(t) necessarily non-empty for all
t € I. Hence, it is crucial to give conditions which guarantee Py (t) # 0
for all ¢ € I. In addition, these conditions should allow the proof of error
estimates with respect to Hausdorff distance between F'(t) and Py (t) which
are analogous to error estimates between the scalar functions 0* (I, F'(¢)) and
pn(l,t). For this purpose, we use the following result which was already
exploited in [8] for the proof of error estimates for set-valued quadrature
formulae with negative weights.

2.4. Lemma. Consider a fized t € I where py(-,t) is not itself a support
functional. Assume moreover, that there exists a ball

B(m(t),r(t)) = {z € R* : [z =m(t)[]2 < r(t)}

with center m(t) € R" and radius r(t) > 0, which is contained entirely in
PN (t):

B(m(t),r(t)) C Pn(t) -
Define, as in (2.3),

c(t) = sup pn(l,t) .
llEl2=1

Then the following error estimate holds

haus (F(£), Py (1)) < 2((5)’ s 15", F(0) ()]

Here, haus(-,-) denotes Hausdorff distance with respect to Euclidean
norm || - [|2. The proof is contained in [8] and [5]. More convenient in ap-
plications is the following condition on F(t) itself.
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2.5. Corollary. Consider again o fized t € I where px(-,t) is not itself a
support functional. Assume moreover that the ball B(m(t),r(t)) with center
m(t) € R" and radius r(t) > 0 is contained entirely in F(t).

Then for every

€(t) = e 6%(L, F'(t)) — pn (L, 1))

with 0 < €(t) < r(t) the following error estimate holds

2¢(t)
haus (F'(t), Py (t)) < m

Proof. Since B(m(t),r(t)) C F(t), it follows

e(t) .

0% (1, B(m(t),(t))
m(t) +r(B)]|12
0" (1, F (1)) ,

IN

hence

m(t) +r(t)[11l2
< (1) + el

whence it follows
m(t) + (r(t) —e®)|lllls <pn(l,t)  (€eRY).

This means that the ball B(m/(t),r(t) —e(t)) is contained in Py (t), and the
estimate follows from Lemma 2.4. [

If for a fixed ¢t € I the interpolating function is itself a support func-
tional, which is clear for all grid points, and for linear interpolation or other
interpolation techniques with non-negative basis functions, then the error
estimate does not depend any longer on the geometry of the set-valued
mapping F(-). Then the following estimate, cp. [11], [21], holds.

2.6. Lemma. Consider a fizred t € I where pn(-,t) is itself a support func-
tional of a non-empty convex and compact set Py(t). Then

haus (F(t), Py (t)) = e 0%, F(t)) —pn (L, 2)] -
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The last representation of Hausdorff distance is extremely useful for the
direct proof of error estimates for set-valued quadrature formulae with non-
negative weights without recourse to set-valued interpolation, cp. [7], [6], [4],
[5], and Section 5.

By Lemma 2.4, Corollary 2.5 and Lemma 2.6, the error between F'(t)
and Py(t) with respect to Hausdorff distance is totally reduced to the
classical error between 0* (I, F'(t)) and py(l,t) and, eventually, some upper
bounds for ¢(t) and positive lower bounds for r(¢) which depend on the
geometry of Py (t) resp. F(t). As we will see in Section 3, continuity and
differentiability properties of §*(l, F'(t)) with respect to ¢ € I uniformly
for all [ € R* with ||/ = 1 play a crucial role for the classical error.
But, we want to stress that such regularity properties of §*({, F'(-)) can
only be expected to hold for special classes of set-valued mappings F'(-),
cp. Section 4. In any case, all subsequent error representations and error
estimates have to be done very cautiously to exploit at least some absolute
continuity properties for reasonably large classes of problems.

3. Representation of the Interpolation Error

There are several methods, to prove estimates for the interpolation error
Ry(l,t) = 6*(L, F(t)) —pn(l,t) .

One could follow classical lines, cp. e.g. [32], which usually requires a little
bit too strong smoothness assumptions on 0* (I, F'(-)). One could also follow
an approach exploiting systematically moduli of smoothness of 0*(I, F'(+)),
cp. [31]. This approach yields the weakest estimates for problems in one
variable. Instead, we present an approach which leads to weak error estim-
ates for an especially important class of problems, and which can easily be
extended to interpolation problems in several variables, cp. [15] and [14].
For simplicity, in this section we use the abbreviation

f(t) = 6" F(t))

and suppress the explicit indication of /| whenever possible.
Hence, f(t) satisfies

f)=pn(t)+Rn(t)  (tel). (3.1)

We follow the idea in [15], cp. also [14], pp. 127-130. Taylor’s theorem
in [17] yields, for N > 2,
1
ft) = fO+FO—-t)+...+ mf(N_Q)(t)(tj — )2

_ A\N=2
+/01 (1(N E—)Q)! FNDE+ ¢t — 1)t — )N d¢
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for j = 0,...,N and all ¢ € I as long as at least f(N=1(.) is continuous.
If in addition f(N—1(.) is absolutely continuous, then f(V)(.) exists almost
everywhere and is integrable on I, partial integration is justified and gives

ft;) = f(t)+f’(t)(tj—t)+---+ﬁf“v2)(t)(tj—t)N2
—(1—()" !

5 FEDE ¢t —0) (8 — )N
(N —2)I(N —1) P o

(1 AN—=1
- [ ™ e ot - ) - g
1

= fO+F O —t)+...+ mfwfl)(t)(tj — !

_ A\N-1
+/o1 %fw)(twt C(t; = 1)t —H)NdC .

Hence, for almost all ¢ € I, we have the representation, which holds for
N =1 as well,

F) = F0)+ 7O~ 1)+ 37 /OO~ Y

_ ~\N-1
S [ ot - ) - S 0] (- 0¥ac

Consider t as a fixed parameter, then the polynomial of degree at most
equal to IV

_l’_

1

p(z)=fO)+f ) (z—t)+...+ N M)z — )N
satisfies
@ _ ) _
dzyp(z) ="t  (v=0,...,N) (3.2)
and, for 5 =0,..., N,

1 _ \N-1
p(ty) = f(t;) - /0 % M@+ ¢ty =) = 0] 4 - HVdc

Therefore, it coincides with the Lagrange interpolation polynomial of
degree at most equal to IV which attains the same values at the nodes ¢;,

N 1(1_\N-1
p(2) = z%lf(m - /0 % PN+ ct=1) - ) (tj—t)Ndc]
j=
N z—1y,
1=0 tj — 1ty

W#E]
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Remembering that

N N ¥ — 1
()= 30 ) T =2
w#j

we get from (3.2) the following

3.1. Error Representation. Let f(N=1)(.) be absolutely continuous on I.
Then for v = 0,...,N and almost all t € I the following representation
holds

10 = )

NT 1 I_C N-1
—;%_A L@v%;g—Lﬂth+cuf—wraﬂNkw]@j_awd4

N
dz” 5t — ty
w#j

2=t

This error representation clearly shows that the variation of f(¥)(-) on
I plays a crucial role, where this variation has to be defined in an appro-
priate way, since f(M)(.) is only integrable. Fortunately, f(V)(-) appears
only in integrated form. Hence, the following definition is sufficient for our
purposes, cp. [5], p. 15,

V?r FM(.) = inf {vzlir g(:
g(:
g(t) = fN)(¢t) for almost all ¢ € I} ,

) :
) : I — R™ isintegrable and (3.3)

where var(-) denotes the usual variation of a vector valued function with
respect to KEuclidean norm. In the rest of this paper, the variation of integ-
rable functions is to be understood in the sense of (3.3).

Assuming f(-) to be absolutely continuous and N =1, v = 0, we get

O = F= )+ st (0)
1 —
= [+t = 1) = 1O (o - e == (3.0
0 0 1
1 —
= [ 1+t = 0) - 1) (- 0 -
0 1 0
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for almost all ¢ € I as a very special case. This example is special in another
sense as well. Since the basis functions

t—t  t—tp
to—t1’ t1 —to

are nonnegative on I = [tg, t1],

t—t t—t
= 6%(1, F(tg)) + ——~6*(1, F(t1))
to — 11 t1 — 1o

pl(la t) =
is itself a support functional of the non-empty convex and compact set

t—t t—to
“H@):tm—hF“w+fl—m

F(tl) )

hence Lemma 2.6 applies, and (3.4) results directly in the following error
estimate for the Hausdorff distance between F'(t) and P (t).

3.2. Linear Interpolation. Let §*(I, F(-)) be absolutely continuous, and

d
let Eé*(l’F(.)) be of bounded variation in I uniformly for all | € R™ with

122 = 1.

Then, for linear set-valued interpolation, the following error estimate

holds

haus(F'(t), P (t))
= sup |5*(Z,F(t)) —pl(l,t)|

llell2=1
d (t —to)(t1 — 1)
< su Var(—é*l,F- >—
||z\|2£1 I \dt LEC) t1 —to

Naturally, such error representations suggest the use of piecewise poly-
nomial interpolation of set-valued mappings to get error estimates in terms
of stepsize. Piecewise linear interpolation leads to corresponding error es-
timates for the composite trapezoidal rule for set-valued mappings which is
the basis for extrapolation methods for set-valued integration, cp. Section 5
and [7], [4], [5].

For later use, we add another special case, set-valued interpolation by

polynomials of second degree. Assuming now 7 f(-) to be absolutely con-

tinuous and N =2, v =0, we get
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(t—t1)(t—1t2) (t—to)(t—12)

o) = o)y Ot ) L0t
A0t 1) 12+ttt 1O 0] (1)

- ) T 10 [0 -0 - 10 (0%

- ) T 10 [0 a0 -0 (0

Now, clearly, for fixed t €

Z(S*lFt] H(tfitu)

j1=0 (t; — t)

is positively homogeneous with respect to /, but not any longer necessarily
convex, since the Lagrangean elementary polynomials generally have dif-
ferent signs. Therefore, applying Corollary 2.5, we get the following error
representation for set-valued quadratic interpolation.

d
3.3. Quadratic Interpolation. Let Eé*(l,F(-)) be absolutely continuous

2
and %5*([,}7(-)) of bounded variation in I uniformly for all | € R" with

Illl2 = 1. Assume moreover that for t € I the ball B(m(t),r(t)) with center
m(t) € R" and radius r(t) > 0 is contained in F(t), and that

e(t) = sup [5°(L, F(1)) = pa(l;1)|
ll2=1

is small enough, i.e. 0 < €(t) < r(t). Let c¢(t) = sup pa2(l,t) .

llell2=
Then the following error estimate holds e
haus(F(t), Py(t))
2¢(t) s 1
< 77“(15) ) Hlshljprar (ﬁé (I, F( ))> 5
| (t —t0)*(t = t1)(t — t2) I+ (t —to)(t = t1)*(t — ta)

(to — t1)(to — t2)

(t —to)(t —t1)(t — t2)?
* (t2 —to) (2 — 11) |] '

(t1 —to)(t1 — t2)
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Again, in concrete applications, one should use piecewise quadratic set-
valued interpolation to get reasonable error estimates in terms of stepsize,
compare in this connection Section 6.

All these representations of the interpolation error clearly show that in
the case of interpolation by polynomials of degree at most equal to N the
absolute continuity of

dN—l
W(V(Z,F('))
and the variation of
dav N
dt—Na (L, F(-))

on I are essential for the error. For the special case N = 1, we only need

d
that 6*(, F'(-)) itself is absolutely continuous and Eé*(l, F(-)) of bounded

variation. Surprisingly enough, this property is satisfied automatically for
set-valued mappings defined by a broad class of linear differential inclusions,
cp. [16] and Section 4.

4. The Role of Sensitivity

As outlined in Section 2, cp. especially Lemma 2.4, Corollary 2.5, and
Lemma 2.6, and exploited in Section 3, cp. Error Representation 3.1 and
the special cases 3.2 and 3.3, the error between F'(¢) and Py (t) with respect
to Hausdorff distance is reduced to the classical error between 6* (I, F'(t))
and py (I, t) uniformly with respect to all [ € R™ with ||l||2 = 1.

This is the point where sensitivity enters the scene, since the classical
error

5*(17 F(t)) - pN(l’ t)

is determined, for every fixed [ € R", by regularity properties of the value
function §*(, F'(+)) of the following family of convex optimization problems.

4.1. Perturbed Optimization Problems. For every fized t € I, maz-
imize
I’z
subject to
z € F(t).

Here, the perturbation parameter is ¢ € I, the vector [ € R" is con-
sidered to be fixed, and continuity and differentiability properties of the
corresponding value function ¢*(I, F'(t)) with respect to ¢ € I uniformly
for all [ € R” with ||{[]2 = 1 play a crucial role. Naturally, such additional
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regularity properties of 6*(I, F'(-)) can only be expected to hold for special
classes of set-valued mappings F(-) or for some concrete problems. A rel-
atively complete overview of such classes is contained in [5], pp. 81-106,
which is based on the results of [26], [27], [1], [2], [16]. In the following,
we cite only the most important cases.

4.2. Theorem. (a) Let U C R™ be compact and non-empty, and let the
single-valued mapping

f:IxU—R"

be a parametrization of F,
F(t):f(taU) (tEI)u

with compact values.
Let f(t,-) be upper semicontinuous on U for allt € I, and let there exist
a Lipschitz constant L with

1t u) = flt2,u)lls < Llts = 82| (fr,ta € LueU) .

Then, for every u € U, f(-,u) is absolutely continuous, and the family

(510

is integrable. Assume moreover, that this family is jointly of bounded vari-
ation in the following sense:
There exist integrable functions

g(-u): I - R? (uel)

with
olt,w) = (1)

for almost all t € I, such that all the numbers

m—1
> Ngtivrs ui) — g(tiu)ll2
i=0

are bounded uniformly for all subdivisions
o=ty <t <...<tpm1 <tpm=b0b,

all u; € U, and all m € N.
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d
Then, 0*(l, F(-)) is Lipschitz continuous, and Eé*(l’F(.)) of bounded
variation uniformly for all | € R™ with ||l||2 = 1.

(b) Let U C R™ be compact and non-empty, and let the n x m-matriz
function A(-) describe the following parametrization of F,

F(t) = A(t)U (tel).
d
Let A(-) be absolutely continuous, and EA() of bounded variation.

d
Then, 0*(I, F(-)) is Lipschitz continuous, and E(S*(l,F(-)) of bounded
variation uniformly for all I € R™ with ||l]]s = 1. ]

Sometimes, it is possible to compute the support functional exactly for
all ¢ € I, and to examine its regularity properties directly.

4.3. Examples. (i) Let
F(t) ={z e R : |z =m(t)[l, <r(t)}

be a varying ball in R™ with center m(t) € R" and radius r(t) > 0, where
1 <p<oo. Then

0" (1, F(t)) = 'm(t) + r(@)lllly — (t€T),

1 1
where;—l—a—l.

(ii) Let
a'z(t) < bz(t) (Z =1, 7n)
and .
F(t) = [Tlai(®), bi(t)]
i=1
Then

1+ sign(l;)

n [1 — sign(l;) ! bilt) ten

FULE) =1 fai(t) +
i=1

for alll = (Iy,...,0l,)* € R".
(iii) Let
F(t) =co{pi(t),...,pr(t)} (tel)
be a convex polyhedron with corners pi(t),...,py(t) € R*. Then

§*(I, F(t)) = max [*p;(t) (tel).

=1,...
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If, for every l € R™, there exists a corner

pi(t) € {p1(t),....pr(t)}

with
I*pj,(t) = max *p;i(t) (tel),
j=1,...,r

then differentiability properties of pj,(-) on I are inherited by 0*(I, F'(-)).

(iv) Consider a real function ¢ : I — R and a nonempty subset U C R™.
Then

o1, U ) >0

0L 4D :{ HHS(LU)  (#(0) 20)

—p(t)o*(l,=U) (#(t) <0)

Hence, as long as ¢(-) does not change sign, differentiability properties of
¢(-) are inherited by 6* (I, p(-)U).
If, moreover,
U=-U,

then
(L, o)U) = [p(®)|*(1,U)  (t€I).

Hence, differentiability properties of |¢(-)|, especially those at zeros of ¢(-),
determine the differentiability properties of 6*(1, ¢(-)U).

(v) Let ®(-) be an nxm-matriz function and
B(m(t),r(t) ={z e R" : lz—m()[l <r(®)}  (tel)
a varying ball in R™ with center m(t) € R™ and radius r(t) > 0. Define
F(t) = ®(t)B(m(t),r(t)) (tel).
Then
(1, F(t)) = "®(t)ym(t) + r(¢)||2*(¢)I||2 (tel).

Hence, as long as ®*(t)l # Ogm (which is, e.g., the case for all | € R"
with [|l||2 = 1 if the rows of ®(t) are linearly independent for all t € I),
differentiability properties of m(-),r(-), and ¢(-) are inherited by 0*(I, F(-)).

"

The situation is much worse with a varying ball in R™ with respect to
infinity norm,

Boo(m(t),r(t)) ={z € R" : |z —=m(t)[lc <r(t)}  (t€).
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Again, let ®(-) be an nxm-matrix function on I and
F(t) = 0(t) Bu(m(t),r(t) (e 1) .
Now, according to Example 4.3 (i), we have
0*(1, F(t)) = "@@)m(t) + r(@®* ()i (tel),

and only under rather special circumstances differentiability properties of
m(-),7(-), and ®(-) lead to the corresponding differentiability properties of
(I, F(-)), cp. [6], Example 2.

Summarizing, we want to stress that Theorem 4.2 just suffices to justify
the error estimate for (piecewise) linear set-valued interpolation for broader
classes of parametrized set-valued mappings, whereas Examples 4.3 justify
even higher order set-valued interpolation by (piecewise) polynomials for
more restricted classes of set-valued mappings. In the following sections,
these results are used for the derivation of error estimates for set-valued
integration and discrete approximations of attainable sets.

5. Set-Valued Integration

Set-valued integration can be introduced in different ways either follow-
ing [10] and [18] exploiting abstract embedding theorems for spaces of con-
vex sets [28], [21], or in a direct way for quadrature formulae with non-
negative weights, cp. [7], [4], [6], [5], resp. for quadrature formulae with
negative weights, cp. [8] and [9]. First we give a motivation by a third
approach following the classical introduction of interpolatory quadrature
formulae: Interpolate the set-valued integrand by a set-valued mapping in
the sense of Definition 2.3 and integrate this set-valued mapping in the
sense of Aumann [3].

5.1. Definition. Let I = [a,b] with a < b and
F:]=R"

be a set-valued mapping. Then

/ F(r)dr = {z € R" : thereexists an integrable selection
I

F() of F(-) oanithz:/If(T) dr

is called Aumann’s integral of F(-) over I. ]

The following theorem is fundamental, for proofs cp. e.g. [2] and [22].
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5.2. Theorem. Let F : I = R" be a measurable set-valued mapping with
non-empty and closed images. Then

/F(T) dr
I
1S CONvex.

If, moreover, F(-) is integrably bounded, i.e., if there ezists a function
k() € Li(I) with

sup |[|f()]l2 < k(2) (5.1)
OEHO)

for almost all t € I, then

/I F(r)dr = /I co(F (7)) dr (5.2)

s non-empty, compact, and convez. ]

Here, co(-) denotes convex hull operation. The representation (5.2) sug-
gests the interpolation of the set-valued mapping co(F'(-)) in the sense of
Interpolation Problem 2.1 and Definition 2.3. Just for simplicity, we assume
in the following that F'(-) itself is a measurable, integrably bounded set-
valued mapping with non-empty compact convex values. Then we need not
distinguish between

F(r), co(F (7)), co(F(7)) ,

where ¢6(F'(7)) denotes the closed convex hull of F(7).

According to Interpolation Problem 2.1, having set-valued interpolatory
quadrature formulae in mind, choose N € N and a grid

a<to<t<..<ty<b,
and compute for every [ € R" the polynomial
pn(l,)
of degree < N with
pn(l,tj) = 0L, F(t;)) (7 =0,...,N),
respectively the set-valued mapping
Py()={zeR": 2"l <pn(l,-) foralll e R"}

with support functional
PN (1)
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for every t € 1.

According to the proof of Lemma 2.2, Py (t) is closed, convex, and even
uniformly bounded for all ¢ € T with Py (t) # (. Moreover, the represent-
ation (2.1) shows that px(l,t) is continuous with respect to ¢ € I. Hence,
following [2], if Py(t) # 0 for all ¢ € I, then Aumann’s integral

/IPN(T) dr

exists, is non-empty, convex, and compact, and satisfies

5*(-,/IPN(T)dT) _ /15*(-,PN(T))dT
= /Ipﬁ(-,T) dr .

Remembering the classical interpolatory quadrature formula defined by
pN(l, -), i.e.

i No(r—t,)
[t ydr =300 rw) [ ] —2ar,
I j=0 I u=0 (tJ - tH)
n#j
this suggests the use of this quadrature formula after convexification with

respect to [ € R™ :

Fok
N

* ) al (T —tu)
S (-,F(t]))/lul_lo | (5.3)

=0
w#j

For quadrature formulae with nonnegative weights, e.g. for closed New-
ton-Cotes formulae with N nodes (N = 2,...,8,10), this representation
simplyfies, since a linear combination of support functionals with nonneg-
ative coefficients is again a support functional. Hence, if all the weights

O Pt o
c]—/l};[oﬁch (j=0,...,N)
w#Ej

are nonnegative, then (5.3) simplifies to the support functional

N
Y0t (- F(t)))
=0
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of the set

N
> ciF(ty) -
j=0

One drawback of the above approach is, that one needs additional geo-
metric assumptions to guarantee that the interpolatory set-valued poly-
nomial has non-empty values. For quadrature formulae with nonnegative
weights, there is a direct approach avoiding this drawback and with a wider
range of applicability even to set-valued Gaufl quadrature formulae and ex-
trapolation methods, cp. [7], [4], [6], [5]. In the following, we give a brief
sketch of this direct approach.

It is well-known that, under all assumptions of Theorem 5.2, we have
/F(T) dr={zeR": "z < 5*(1,/F(T) dr)
I I
= /(5*(l,F(T))dT forall e R"} .
I

This suggests the approximation of

[ & F@)ar
by a quadrature formulae J(I, F')
/15*(1,17(7)) dr = J(,F) + R(, F)
with remainder term R(l, ') depending on [ € R” and F(-).

E.g. for composite closed Newton-Cotes fomulae, Gaufl quadrature or
Romberg integration, J (I, F') has the representation

N
T F) =" cj0* (I, F(t))) (5.4)
j=0

with a grid of nodes
a<tg<t1 <...<ty<bh
and suitable weights

CjER (jZO,...,N).
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If all these weights are nonnegative, then the quadrature formula (5.4) can
be interpreted as a support functional

J(,F) =6 (z, ich(tj))

j=0

of the non-empty, compact, and convex set

N
> ¢iF(ty) -
=0

Then, without any additional geometric assumption, Lemma 2.6, which is
true for an arbitrary pair of non-empty, compact, convex sets and their
corresponding support functionals, can be applied directly to the sets

N
/ F(rydr, Y ¢F(t)
I o

resulting in the following

5.3. Theorem. Let F : [ = R" be a measurable and integrably bounded
set-valued mapping with non-empty, convex and compact values, and let
the quadrature formula J(-, F) have nodes tj, nonnegative weights cj (j =
0,...,N), and remainder term R(-, F).

Then the error estimate holds

N
haus ( /I F(7)dr, j;och(tj)) — sup |R(,F) .

llE]]2=1
(]

Obviously, the order of the error is determined again by regularity prop-
erties of the scalarized integrand

F(LF(t) (tel)

with respect to ¢ uniformly with respect to all [ € R” with ||I||2 = 1.

To be more specific, we cite only two special cases, the set-valued ana-
logues of composite trapezoidal rule and composite Simpson’s rule. In fact,
these two methods form the first two stages of a set-valued analogue of
Romberg’s extrapolation method, cp. [4], [6], and [5] for more details and
complete proofs.
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5.4. Theorem. Let F : [ = R" be a measurable and integrably bounded
set-valued mapping with non-empty, convex, and compact values, and let

0" (1, F(-))

be absolutely continuous with first derivative with respect to t of bounded
variation uniformly for all | € R™ with ||l]]s = 1.
Then the error between Aumann’s integral

/IF(T)dT

and composite trapezoidal rule

h %F(to) FE(b) 4t Flin_y) + %F(tN)

on the grid
ti=a+jh (=0,...,N)

with meshsize

is of order 2 in h with respect to Hausdorff distance.

If, in addition, 6* (I, F(-)) has an absolutely continuous second derivative
and if its third derivative is of bounded variation uniformly for all Il € R™
with ||l||2 = 1, then the error of composite Simpson’s rule

h

3 [F'(to)+4F (t1)+2F (to)+4F (t3) + ... +2F (tn—2)+4F (tn—1)+ F(tn)]
on the same grid for even N is of order 4 in h with respect to Hausdorff
distance. [

Under additional smoothness assumptions Romberg extrapolation gives
approximations of even higher order with respect to Hausdorff distance,
compare the examples and numerical tests in [4], [6], [5].

We want to emphasize that, due to Theorem 4.2, we get second order
convergence for a remarkable big class of parametrized set-valued map-
pings. Due to Examples 4.3, we get even higher order of convergence for
more specific problem classes. Exploiting inclusion techniques, based on
the asymptotic expansion of composite trapezoidal rule, for such problem
classes, one can even get inner and outer approximations to the exact Au-
mann integral which converge of the same order with respect to Hausdorff
distance as the underlying Romberg extrapolation method, cp. [5].
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6. Approximating Reachable Sets
by Set-Valued Integration and Interpolation

We want to outline in the following how set-valued integration and interpol-
ation could be applied in a combined form to the discrete approximation
of reachable sets of linear differential inclusions. To be more specific, we
analyse the following standard

6.1. Linear Control Problem. Let the n x n-matriz function A(-) and
the nxm-matriz function B(-) be (at least) integrable on I = [a,b], and the
control region U C R™ be non-empty, compact, and convex. Let Yy C R"
be a non-empty, compact, and convex starting set.

Find an absolutely continuous function y: I — R" with

y'(t) € A(t)y(t)+ B@)U foralmostallt eI,
yla) € Y.

The reachable set of this linear control problem at time ¢ € [a,b] can
easily be represented as Aumann’s integral

Y@:@@@m+/%@ﬂBmUm, (6.1)

where ®(¢,7) is a fundamental solution of the homogeneous system

d
E@(t’ 7) = A(t)®(t, 1)

for almost all ¢ € I, satisfying the initial condition
O(r,7)=E, .

Now, approximating Y (-) numerically for all ¢ € I requires an appropriate
combination of the following four procedures a), b), c), and d).
a) Apply a set-valued quadrature formula

N
> ¢;®(t,t5)B(t;)U
=0

with nonnegative weights on, say, an equidistant grid

t_
ti=a+jh  (j=0,...,N), h=_—"2
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which is of order ¢ with respect to h, i.e.

' N
haus (/ ®(t,7)B(r)U dr, chq)(t,tj)B(tj)U)

=0
S Oélhq .

Using the methods outlined in Section 5, such formulae exist, if
5*(17 (I)(tu )B()U)

has an absolutely continuous (¢—2)-nd derivative and if the (¢—1)-st de-
rivative is of bounded variation uniformly with respect to all [ € R® with
|l = 1. E.g., one could use the set-valued analogue of Romberg’s method,
cp. [4], [5]. For ¢ = 2 resp. ¢ = 4 this amounts to the use of set-valued com-
posite trapezoidal rule resp. set-valued Simpson’s rule according to The-
orem 5.4.

_ b) Naturally, the actual computation in a) is done with approximations
®(t,t;) (j = 0,...,N) of the exact values of the fundamental solution
which should be of order ¢ as well,

sup [|@(t,t5) — ®(t,15)[|l2 < azh? .
0<j<N

This is possible if A(-) has an absolutely continuous (¢—2)-nd derivative
and if its (¢—1)-st derivative is of bounded variation, cp. [31]. For similar
results cp. [12], [13]. Normally, A(-) is even smoother, and the choice of an
algorithm of order ¢ does not cause any problem. Since the weights c; are
nonnegative, it follows

N N
haus (Z qu)(t, tj)B(tj)U, Z Cji)(t, tj)B(tj)U>
Jj=0

=0

N
< > cjhaus (Dt t5)B(t)U, B(t,t)B(t;)U)
7=0

N

< D ell®(t,ty) — (t, t5) 1 BE)U 2
j=0
where || - [|2 denotes simultaneously spectral norm and the norm of a set,

1B(t)Ull2 = sup 1B(t;)ull2 -
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Hence, the combined procedures a) and b) maintain the overall order of
convergence ¢, if
N

>l BE)U 2

J=0

is uniformly bounded for N € N. Keeping in mind that ¢; for j =0,..., N
are the weights of a convergent quadrature formula, this is the case, if, e.g.,
B(+) is bounded on I.

Summarizing the procedures a) and b), we get

6.2. Theorem. Assume for Linear Control Problem 6.1 that the nxm-
matriz function B(-) is bounded on I and that A(-), 0*(I,®(¢,)B(-)U) have
an absolutely continuous (¢—2)-nd derivative and that the (¢—1)-st derivative
is of bounded variation uniformly with respect to all I € R™ with ||l||2 = 1.
Then, combining a set-valued quadrature formula with nonnegative weights
of order q with a difference method of order q for the computation of the
fundamental solution yields a method of order q for the discrete approzim-
ation of the reachable set at time t. [

Numerical tests, based on this result, can be found for various examples
in [7], [4], [6], [5]. For linear systems with polyhedral control regions cp. [16]
and [20], where higher order methods are presented which are based on
Pontryagin’s maximum principle.

¢) A method, approximating the reachable set Y(-) on the whole time
interval I, necessarily should comprise a third procedure:
Having computed

Y(sj) (1=0,...,9)
for some points

Sj:SO—i-jilEI, il>0,

approximate Y (-) on [sg, s,] by means of set-valued polynomial interpola-
tion in the sense of Section 2. According to Error Representation 3.1, cp.
also the special cases 3.2 and 3.3, direct interpolation of Y () would require
regularity properties of

5* (z, B(t,a)Yp + /at o(t, ) B(r)U dT>

with respect to ¢ uniformly for all [ € R" with ||| = 1. By no means, it is
easy to derive such properties from regularity properties of

(I, @(t,7)B(T)U)
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with respect to 7, which are needed anyway for set-valued integration.
Therefore, we choose another representation of Y (),

Yt = (I>(t,a)Y0—|—/t'1>(t,T)B(T)UdT
a
— B(t,a) [Y0+/tq>(a,f)B(T)UdT ,
and treat the single-valued factor
O(t,a)

and the set-valued factor
t
Yo +/ ®(a, 7)B(T)U dT

separately. Then, only regularity properties of

5* <l,Y0 + /:cp(a,T)B(T)U dT>
— S Y) + /at 5*(1, (a, 7)B(r)U) dr

with respect to ¢ uniformly for all [ € R" with ||l[|s = 1 are needed. If
the (¢—2)-nd derivative of 6*(I, ®(a,-)B(-)U) is absolutely continuous and
the (¢—1)-st derivative of bounded variation uniformly for all I € R” with
1Zll2 = 1, then

/t 5*(1, (a, 7)B(r)U) dr

has absolutely continuous (g—1)-st derivative with g-th derivative of bound-
ed variation. This fits favourably to Error Representation 3.1, leading to
error estimates of order ¢ in h with respect to Hausdorff distance. Naturally,
for ¢ > 1, additional conditions on the geometry of the sets

t
Yy —|—/ ®(a, 7)B(T)U dt (so <t <syg),
a

cp. Corollary 2.5, have to be satisfied. Due to Theorem 4.2 (b), the case
g = 2 is especially important. If ®(a,-)B(:) is absolutely continuous and
its first derivative of bounded variation, then piecewise quadratic inter-
polation, according to the special case 3.3, can be used for second order
approximation on the whole interval I.
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Naturally, since the data to be interpolated,
S]' i
Y0+/ B(a,")B(Udr  (j=0,....q)
a
can only be computed up to an error of order ¢ with respect to some

chosen stepsize h according to procedures a) and b), one never will get the
exact set-valued interpolatory polynomial P(-), but only some set-valued

approximation Pq(-). Assuming, that the error

haus (Py(t), Py(t)) < ash? (s <t < s9)
and, similarily as in b),

16t @) — Bt a)lls < aah?  (s9 <t < s,)

for the approximation ®(¢,a) of the exact fundamental system ®(t,a), we
get the following estimate

haus (Y (£), &(t, ) P (1))

~ haus (@(t,a) Yo + @(a,T)B(T)UdT], 'i)(t,a)Pq(t)>

< haus (@(t,a) {YH at@(a,T)B(T)UdT], @(t,a)Pq(t)>
+haus (®(t,a) Py (1), @(t,a) Py (1))
+ haus (®(t,a)Py(t), &(t,a)Py (1))

< ||®(t,a)|» haus YO+/:q>(a,T)B(T)UdT,Pq(t)>

+ |12 (t,a)ll2 azh?
+auh® [|Fy (2|2

for sy <t < s4. Hence, in fact, the order of the “theoretical error”

haus <Y0 + / " ©(a, 1) B(r)U dr, Pq(t)>

determines the order of the global error.
d) The last part of this combined method consists in the choice of an
appropriate computer aided graphical visualization method of the sets

(i>(t, a)ﬁq(t) (so <t <sq) -
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The grid data for interpolation result from set-valued numerical integra-
tion with nonnegative weights, and we recommend the dual approach by
supporting hyperplanes discussed thoroughly in [5] including an analysis of
the additional error due to the fact that only finitely many hyperplanes can
be computed. For higher dimensional problems, actually support points of
these hyperplanes should be plotted, not the hyperplanes themselves. The
dual representation of ®(t, a) P,(t) between gridpoints is more difficult, since
in the representation (2.2) of Pq(t) even non-supporting hyperplanes will
occur, i.e. one has to develop an appropriate device to get rid of such hy-
perplanes and to restrict this representation to actually supporting hyper-
planes resp. corresponding support points. The complexity of this task is
dimension dependent. In the following numerical tests, we restrict ourselves
to state space dimension 2.

The combined procedures a), b), ¢), and d) are visualized for the fol-
lowing

6.3. Example. Let I =[1,2], and for allt € I

0 1
A(t) = 2 2 |5
2t
B sin(2mt)
b= (cos(27rt)) 7
U = [-1, 1],
Yo = [-0.1, 0.1%.

With these data, approrimate the reachable set
Y () = ®(t, 1)V, + /Itq)(t,T)B(T)U dr
on the whole internal [1,2]. ]
Due to Theorems 4.2, 5.4, and 6.2, the sets
Y (1), Y(1.5), resp. Y(2)

can be computed by a combined method of order 2 very precisely. The
results are plotted in Figures 1, 2, resp. 3. Since the control region is poly-
hedral, the methods in [16], [20] could have been used equally well.
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Consider now the set-valued function 152(-), which interpolates the sets
8
Y, +/ &(1,7)B(r)U dr
1

on the grid
80:1, 81:1.5, 82:2.

According to Definition 2.3, this set-valued mapping is related to a scalar
quadratic interpolation polynomial po(l,-) in the following way,

Py(t) = {z € R : 1"z < po(I,1) forall | € R?} . (6.2)
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This opens the way, at least in R?, for a dual representation of ]32(15) as
intersection of halfspaces. In Figure 4, the image of this representation
under the linear transformation ®(t,1) is visualized for ¢ = 1.1. Observe,
that not all of these halfspaces are supporting ones due to the non-convexity
of po(l,1.1) with respect to [, cp. the magnification around the upper left
corner in Figure 5.

0.3 0.250

[ A
a3/ 2
0.2 S )%
0225 ] ey 7
01
00 0.200 | b
01
0175
02
03 0150

.03 -02 01 00 01 02 03  -016 -0.14 -0.12 -0.10
Figure 4. ®(1.1,1)P»(1.1) Figure 5. Magnification

Figures 6, 7, 8, resp. 9 show the approximations ®(t,1)P5(t) of the
reachable set Y (), based on the evaluation of the set-valued polynomial
Py(t) and the linear transformation ®(¢,1) for the successive time points
1.3,1.4,1.7, resp. 1.8, compared with the exact reachable set (dotted line).

Observe, that, in principle, it would have been sufficient to compute the
data sets for set-valued interpolation, cp. Figures 1, 2, 3, within an error
of order 2 with respect to the stepsize for interpolation to get an overall
error of order 2. In practical computations, one has to restrict oneself in
(6.2) to a finite collection of vectors | € R? with ||l|ls = 1. Therefore, to
retain order of convergence equal to 2 for the actually computed discrete
approximations in Figures 6, 7, 8, 9, one has to choose the vectors [ from
an appropriately adjusted grid on the unit sphere in R2.

Acknowledgement. I appreciate the help of Robert Baier in preparing
the plots. They are essentially based on his program package on the ap-
proximation of reachable sets of linear differential inclusions by set-valued
integration methods.
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