
SET-VALUED INTERPOLATION,DIFFERENTIAL INCLUSIONS,AND SENSITIVITY IN OPTIMIZATION
FRANK LEMPIOLehrstuhl f�ur Angewandte Mathematikan der Universit�at BayreuthD-95440 BayreuthFederal Republic of GermanyAbstract. Set-valued interpolation and integration methods are intro-duced with special emphasis on error representations and error estimateswith respect to Hausdor� distance. The connection between order of con-vergence results and sensitivity properties of �nite-dimensional convex op-timization problems is discussed. The results are applied to the numericalapproximation of reachable sets of linear control problems by quadratureformulae and interpolation techniques for set-valued mappings.(AMS) Subject Classi�cation: 34A60, 49M25, 65D05, 65D30, 65L05,90C31, 93B03Keywords: di�erential inclusions, di�erence methods, set-valued interpol-ation, set-valued integration, Aumanns's integral, sensitivity in optimiza-tion, attainable sets1. IntroductionNumerical methods for the solution of di�erential inclusions follow threedirections.(i) Compute special solution trajectories with additional qualitative orquantitative properties:Such trajectories have to be computed by di�erence methods with addi-tional selection procedures choosing points from the set-valued right-handside in an appropriate way. Common strategies result, e.g., in the discrete



2 FRANK LEMPIOanalogue of heavy solutions, or slow solutions, or selections with a cer-tain kind of discrete minimal variation. These selection procedures requirethe solution of �nite-dimensional optimization problems at every gridpoint.Qualitative and quantitative sensitivity properties of this family of optim-ization problems determine qualitative and quantitative properties of theapproximated solution, cp. in this connection [23] and the survey [19].(ii) Compute all solution trajectories, or at least all belonging to a givenclass of functions:This is theoretically and computationally an extremely di�cult task.Applying the abstract framework of general discretization theory requirescorrect notions of stability and consistency. Conditions assuring order ofconvergence higher than 2 are not available until now. In principle, a propercalculus of higher order derivatives is required for set-valued mappings,guaranteeing Taylor expansions with valid error estimates with respect toHausdor� distance. Some results concerning Euler's method resp. Euler-Cauchy method and order of convergence equal to 1 resp. equal to 2 areavailable, cp. [33], [34]. Every solution belonging to an appropriate Sobolevspace can be approximated in a theoretical sense by a higher order linearmultistep method, where the relevant notion of consistency is related tostability properties of a family of perturbed optimization problems, cp.De�nition 3.2 in [23].(iii) Compute the reachable set of all solution trajectories at a prescribedpoint in time:The techniques mentioned in (ii) like Euler's method resp. Euler-Cauchymethod yield, as a by-product, �rst resp. second order discrete approxim-ations of reachable sets of special classes of di�erential inclusions. In [16]even higher order of convergence is proven for a method exploiting fully thestructure of special linear di�erential inclusions with polyhedral control re-gion. In the sequel of papers [7], [6], [4], and in the thesis [5], the discreteapproximation of reachable sets of linear di�erential inclusions is totally re-duced to the numerical integration of set-valued mappings. The basis of thisapproach consists in adaptations of quadrature formulae and extrapolationmethods to the calculation of Aumann's integral for set-valued mappings.In principle, classical quadrature methods are applied to the support func-tional of the set-valued integrand. For every point in the integration intervaland every unit vector in state space, the value of the support functionalis determined by a convex optimization problem. Smoothness propertiesof this support functional as a function on the integration interval uni-formly with respect to the unit ball in state space, thus strong stabilityand sensitivity properties of an in�nite family of convex optimization prob-lems, determine the order of the integration method and, consequently, the



SET-VALUED INTERPOLATION AND DIFFERENTIAL INCLUSIONS 3order of suitably de�ned discrete approximations of reachable sets. In thisframework, higher order discrete approximations to reachable sets can bede�ned at least for special classes of linear di�erential inclusions. Origin-ally, only the use of quadrature formulae with nonnegative weights seemedto be reasonable, like some open or closed Newton-Cotes formulae, Gaussquadrature, or Romberg's extrapolation method with Romberg's stepsizesequence. But exploiting some ideas in [8], compare also [9], depending onthe geometry of the set-valued integrand, even quadrature fomulae withnegative weights could be applied, thus opening the way to all kinds ofextrapolation methods, error estimates by inclusion, and stepsize controlfor set-valued integration.As outlined above, there exists an intrinsic relationship between nu-merical methods for di�erential inclusions and questions of sensitivity andstability analysis of �nite dimensional optimization problems. The main ob-jective of this paper is to describe this relationship. Hoping, that a numer-ical treatment of linear di�erential inclusions in the very spirit of set-valuednumerical analysis will also be of value for a more satisfactory numericaltreatment of nonlinear di�erential inclusions, we will concentrate on aspect(iii). Contrary to the thesis [5], where set-valued integration is the exclusivemathematical tool, we try to broaden the mathematical background to set-valued interpolation. The reader will easily recognize, that the techniquesapply to set-valued mappings of several variables as well, thus opening theaccess to �nite element methods for the discrete approximation of nonlineardi�erential inclusions in the, hopefully, near future.2. Set-Valued InterpolationIn the following, we introduce set-valued interpolation as a mathematicaltool to approximate set-valued mappings by simpler set-valued mappings.Deliberately, we avoid the technique of embedding spaces of convex setsinto normed linear spaces, cp. the papers [28], [21], [30], [10], and [18]. Thistechnique leaves the question unanswered how to interpret the results inthe original spaces. Instead, we stay completely in the framework of set-valued mappings. Naturally, the problem arises how to de�ne di�erencesof sets in an appropriate way. This is done by a method already used in[8] for the proof of error estimates for set-valued quadrature formulae withnegative weights, and in [5] for the derivation of inclusions of set-valuedintegrals by extrapolation methods. Only for simplicity we restrict ourselvesto interpolation by set-valued polynomials, extensions to other functionclasses and even to interpolation of set-valued mappings of several variablesby set-valued �nite elements being rather obvious.



4 FRANK LEMPIO2.1. Interpolation Problem. Let I = [a; b] with a < b andF : I =) Rnbe a set-valued mapping with non-empty, convex and compact values.Choose N 2 N and a grida � t0 < t1 < : : : < tN � b ;and compute for every l 2 Rn the polynomialpN (l; �)of degree � N withpN (l; tj) = �?(l; F (tj)) (j = 0; : : : ; N) :Here, we denote by�?(l; A) = supz2A l?z (l 2 Rn)the so-called support functional of the set A � Rn . It is well-known, that�?(�; A) is a real-valued, positively homogenous continuous and convex func-tional on the whole of Rn for every non-empty convex and compact setA. Moreover, the polynomial pN (l; �) exists and is uniquely determined forevery l 2 Rn . Naturally, except constant or linear interpolation or use of in-terpolation techniques with non-negative basis functions, cp. e.g. [24], [25],[35], the polynomial pN (l; t) is not for all t 2 I the support functional of aconvex set. This can easily be seen by inspection of Lagrange's interpolationformula, pN (l; t) = NXj=0 �?(l; F (tj)) NY�=0�6=j (t� t�)(tj � t�) ; (2.1)which, for �xed t 2 I, is a linear combination of support functionals with,unfortunately, some negative weights in general. Hence, pN (�; t) is real-valued, positively homogeneous and continuous for every t 2 I, but ingeneral not convex.A way out of this di�culty consists in the replacement of pN (�; t) by itsconvexi�cation resp. double conjugatep??N (�; t) (t 2 I) ;which can be computed as follows.



SET-VALUED INTERPOLATION AND DIFFERENTIAL INCLUSIONS 5By de�nition, cp. e.g. [29], we havep?N (z; t) = supl2Rn [z?l � pN (l; t)]= 8<: 0; if z?l � pN (l; t) for all l 2 Rn ;1; if z?l > pN (l; t) for at least one l 2 Rn :Hence, p?N (z; t) is the indicator function of the setPN (t) = fz 2 Rn : z?l � pN (l; t) for all l 2 Rng ; (2.2)and therefore p??N (�; t) = �?(�; PN (t))is the support functional of PN (t) for every t 2 I.2.2. Lemma. On the standard assumptions of Interpolation Problem 2.1,the set PN (t) is closed, convex and bounded for every t 2 I.Proof. According to (2.2) the set PN (t) is the intersection of closed halfspaces in Rn , therefore PN (t) is convex and closed. Moreover, (2.1) showsthat pN (l; t) is bounded uniformly for all l 2 Rn with klk2 = 1,pN (l; t) � c(t) (klk2 = 1) ; (2.3)this implies for z 2 PN (t) kzk22 � pN (z; t)and hence, for kzk2 6= 0,kzk2 � 1kzk2 pN (z; t)= pN � zkzk2 ; t�� c(t) (t 2 I) :Since p??N (l; tj) = �???(l; F (tj)) = �?(l; F (tj))and F (tj) is closed and convex,PN (tj) = F (tj) (j = 0; : : : ; N) :Therefore, in a very natural way, we can de�ne the set-valued interpolation\polynomial" which solves Interpolation Problem 2.1.



6 FRANK LEMPIO2.3. De�nition. For every l 2 Rn letpN (l; �)be the interpolation polynomial which solves Interpolation Problem 2.1.Then the set-valued mappingPN : I =) Rn ;de�ned byPN (t) = fz 2 Rn : z?l � pN (l; t) for all l 2 Rng (t 2 I) ;is called the set-valued solution of Interpolation Problem 2.1.At this point, we should add a warning: Neither is PN (t) in generalpolynomial with respect to t, nor is PN (t) necessarily non-empty for allt 2 I. Hence, it is crucial to give conditions which guarantee PN (t) 6= ;for all t 2 I. In addition, these conditions should allow the proof of errorestimates with respect to Hausdor� distance between F (t) and PN (t) whichare analogous to error estimates between the scalar functions �?(l; F (t)) andpN (l; t). For this purpose, we use the following result which was alreadyexploited in [8] for the proof of error estimates for set-valued quadratureformulae with negative weights.2.4. Lemma. Consider a �xed t 2 I where pN (�; t) is not itself a supportfunctional. Assume moreover, that there exists a ballB(m(t); r(t)) = fz 2 Rn : kz �m(t)k2 � r(t)gwith center m(t) 2 Rn and radius r(t) > 0, which is contained entirely inPN (t), B(m(t); r(t)) � PN (t) :De�ne, as in (2.3), c(t) = supklk2=1 pN (l; t) :Then the following error estimate holdshaus (F (t); PN (t)) � 2c(t)r(t) supklk2=1 j�?(l; F (t)) � pN (l; t)j :Here, haus(�; �) denotes Hausdor� distance with respect to Euclideannorm k � k2. The proof is contained in [8] and [5]. More convenient in ap-plications is the following condition on F (t) itself.



SET-VALUED INTERPOLATION AND DIFFERENTIAL INCLUSIONS 72.5. Corollary. Consider again a �xed t 2 I where pN (�; t) is not itself asupport functional. Assume moreover that the ball B(m(t); r(t)) with centerm(t) 2 Rn and radius r(t) > 0 is contained entirely in F (t).Then for every �(t) = supklk2=1 j�?(l; F (t)) � pN (l; t)jwith 0 < �(t) < r(t) the following error estimate holdshaus (F (t); PN (t)) � 2c(t)r(t)� �(t) �(t) :Proof. Since B(m(t); r(t)) � F (t), it follows�?(l; B(m(t); r(t))= l?m(t) + r(t)klk2� �?(l; F (t)) ;hence l?m(t) + r(t)klk2� pN (l; t) + �(t)klk2 ;whence it followsl?m(t) + (r(t)� �(t))klk2 � pN (l; t) (l 2 Rn) :This means that the ball B(m(t); r(t)� �(t)) is contained in PN (t), and theestimate follows from Lemma 2.4.If for a �xed t 2 I the interpolating function is itself a support func-tional, which is clear for all grid points, and for linear interpolation or otherinterpolation techniques with non-negative basis functions, then the errorestimate does not depend any longer on the geometry of the set-valuedmapping F (�). Then the following estimate, cp. [11], [21], holds.2.6. Lemma. Consider a �xed t 2 I where pN (�; t) is itself a support func-tional of a non-empty convex and compact set PN (t). Thenhaus (F (t); PN (t)) = supklk2=1 j�?(l; F (t)) � pN (l; t)j :



8 FRANK LEMPIOThe last representation of Hausdor� distance is extremely useful for thedirect proof of error estimates for set-valued quadrature formulae with non-negative weights without recourse to set-valued interpolation, cp. [7], [6], [4],[5], and Section 5.By Lemma 2.4, Corollary 2.5 and Lemma 2.6, the error between F (t)and PN (t) with respect to Hausdor� distance is totally reduced to theclassical error between �?(l; F (t)) and pN (l; t) and, eventually, some upperbounds for c(t) and positive lower bounds for r(t) which depend on thegeometry of PN (t) resp. F (t). As we will see in Section 3, continuity anddi�erentiability properties of �?(l; F (t)) with respect to t 2 I uniformlyfor all l 2 Rn with klk2 = 1 play a crucial role for the classical error.But, we want to stress that such regularity properties of �?(l; F (�)) canonly be expected to hold for special classes of set-valued mappings F (�),cp. Section 4. In any case, all subsequent error representations and errorestimates have to be done very cautiously to exploit at least some absolutecontinuity properties for reasonably large classes of problems.3. Representation of the Interpolation ErrorThere are several methods, to prove estimates for the interpolation errorRN (l; t) = �?(l; F (t))� pN (l; t) :One could follow classical lines, cp. e.g. [32], which usually requires a littlebit too strong smoothness assumptions on �?(l; F (�)). One could also followan approach exploiting systematically moduli of smoothness of �?(l; F (�)),cp. [31]. This approach yields the weakest estimates for problems in onevariable. Instead, we present an approach which leads to weak error estim-ates for an especially important class of problems, and which can easily beextended to interpolation problems in several variables, cp. [15] and [14].For simplicity, in this section we use the abbreviationf(t) = �?(l; F (t))and suppress the explicit indication of l whenever possible.Hence, f(t) satis�esf(t) = pN (t) +RN (t) (t 2 I) : (3.1)We follow the idea in [15], cp. also [14], pp. 127{130. Taylor's theoremin [17] yields, for N � 2,f(tj) = f(t) + f 0(t)(tj � t) + : : : + 1(N � 2)!f (N�2)(t)(tj � t)N�2+ Z 10 (1� �)N�2(N � 2)! f (N�1)(t+ �(tj � t))(tj � t)N�1d�



SET-VALUED INTERPOLATION AND DIFFERENTIAL INCLUSIONS 9for j = 0; : : : ; N and all t 2 I as long as at least f (N�1)(�) is continuous.If in addition f (N�1)(�) is absolutely continuous, then f (N)(�) exists almosteverywhere and is integrable on I, partial integration is justi�ed and givesf(tj) = f(t) + f 0(t)(tj � t) + : : :+ 1(N � 2)!f (N�2)(t)(tj � t)N�2+ " �(1� �)N�1(N � 2)!(N � 1)f (N�1)(t+ �(tj � t))(tj � t)N�1#�=1�=0� Z 10 �(1� �)N�1(N � 1)! f (N)(t+ �(tj � t))(tj � t)Nd�= f(t) + f 0(t)(tj � t) + : : :+ 1(N � 1)!f (N�1)(t)(tj � t)N�1+ Z 10 (1� �)N�1(N � 1)! f (N)(t+ �(tj � t))(tj � t)Nd� :Hence, for almost all t 2 I, we have the representation, which holds forN = 1 as well,f(tj) = f(t) + f 0(t)(tj � t) + : : :+ 1N !f (N)(t)(tj � t)N+ Z 10 (1� �)N�1(N � 1)! hf (N)(t+ �(tj � t))� f (N)(t)i (tj � t)Nd� :Consider t as a �xed parameter, then the polynomial of degree at mostequal to N p(z) = f(t) + f 0(t)(z � t) + : : :+ 1N !f (N)(t)(z � t)Nsatis�es d�dz� p(z) jz=t= f (�)(t) (� = 0; : : : ; N) (3.2)and, for j = 0; : : : ; N ,p(tj) = f(tj)� Z 10 (1� �)N�1(N � 1)! hf (N)(t+ �(tj � t))� fN (t)i (tj � t)Nd� :Therefore, it coincides with the Lagrange interpolation polynomial ofdegree at most equal to N which attains the same values at the nodes tj,p(z) � NXj=0"f(tj)�Z 10 (1��)N�1(N�1)! hf (N)(t+ �(tj�t))�f (N)(t)i (tj�t)Nd�#� NY�=0�6=j z � t�tj � t� :



10 FRANK LEMPIORemembering that pN (z) � NXj=0 f(tj) NY�=0�6=j z � t�tj � t� ;we get from (3.2) the following3.1. Error Representation. Let f (N�1)(�) be absolutely continuous on I.Then for � = 0; : : : ; N and almost all t 2 I the following representationholdsf (�)(t) = p(�)N (t)� NXj=0"Z 10 (1��)N�1(N�1)! hf (N)(t+ �(tj�t))�f (N)(t)i (tj�t)Nd�#�0BB@ d�dz� NY�=0�6=j z � t�tj � t�1CCA ����z=t :This error representation clearly shows that the variation of f (N)(�) onI plays a crucial rôle, where this variation has to be de�ned in an appro-priate way, since f (N)(�) is only integrable. Fortunately, f (N)(�) appearsonly in integrated form. Hence, the following de�nition is su�cient for ourpurposes, cp. [5], p. 15,VarI f (N)(�) = inf �varI g(�) :g(�) : I �! Rn is integrable andg(t) = f (N)(t) for almost all t 2 I� ; (3.3)where var(�) denotes the usual variation of a vector valued function withrespect to Euclidean norm. In the rest of this paper, the variation of integ-rable functions is to be understood in the sense of (3.3).Assuming f(�) to be absolutely continuous and N = 1; � = 0, we getf(t) = t� t1t0 � t1 f(t0) + t� t0t1 � t0 f(t1)� Z 10 �f 0(t+ �(t0 � t))� f 0(t)� (t0 � t)d� � t� t1t0 � t1 (3.4)� Z 10 �f 0(t+ �(t1 � t))� f 0(t)� (t1 � t)d� � t� t0t1 � t0



SET-VALUED INTERPOLATION AND DIFFERENTIAL INCLUSIONS 11for almost all t 2 I as a very special case. This example is special in anothersense as well. Since the basis functionst� t1t0 � t1 ; t� t0t1 � t0are nonnegative on I = [t0; t1],p1(l; t) = t� t1t0 � t1 �?(l; F (t0)) + t� t0t1 � t0 �?(l; F (t1))is itself a support functional of the non-empty convex and compact setP1(t) = t� t1t0 � t1F (t0) + t� t0t1 � t0F (t1) ;hence Lemma 2.6 applies, and (3.4) results directly in the following errorestimate for the Hausdor� distance between F (t) and P1(t).3.2. Linear Interpolation. Let �?(l; F (�)) be absolutely continuous, andlet ddt�?(l; F (�)) be of bounded variation in I uniformly for all l 2 Rn withklk2 = 1.Then, for linear set-valued interpolation, the following error estimateholds haus(F (t); P1(t))= supklk2=1 j�?(l; F (t)) � p1(l; t)j� supklk2=1VarI � ddt�?(l; F (�))� � (t� t0)(t1 � t)t1 � t0 :Naturally, such error representations suggest the use of piecewise poly-nomial interpolation of set-valued mappings to get error estimates in termsof stepsize. Piecewise linear interpolation leads to corresponding error es-timates for the composite trapezoidal rule for set-valued mappings which isthe basis for extrapolation methods for set-valued integration, cp. Section 5and [7], [4], [5].For later use, we add another special case, set-valued interpolation bypolynomials of second degree. Assuming now ddtf(�) to be absolutely con-tinuous and N = 2; � = 0, we get



12 FRANK LEMPIOf(t) = (t�t1)(t�t2)(t0�t1)(t0�t2)f(t0)+ (t�t0)(t�t2)(t1�t0)(t1�t2)f(t1)+ (t�t0)(t�t1)(t2�t0)(t2�t1)f(t2)� (t�t1)(t�t2)(t0�t1)(t0�t2) Z 10 (1��) hf (2)(t+�(t0�t))�f (2)(t)i (t0�t)2d�� (t�t0)(t�t2)(t1�t0)(t1�t2) Z 10 (1��) hf (2)(t+�(t1�t))�f (2)(t)i (t1�t)2d�� (t�t0)(t�t1)(t2�t0)(t2�t1) Z 10 (1��) hf (2)(t+�(t2�t))�f (2)(t)i (t2�t)2d� :Now, clearly, for �xed t 2 Ip2(l; t) = 2Xj=0 �?(l; F (tj)) 2Y�=0�6=j (t� t�)(tj � t�)is positively homogeneous with respect to l, but not any longer necessarilyconvex, since the Lagrangean elementary polynomials generally have dif-ferent signs. Therefore, applying Corollary 2.5, we get the following errorrepresentation for set-valued quadratic interpolation.3.3. Quadratic Interpolation. Let ddt�?(l; F (�)) be absolutely continuousand d2dt2 �?(l; F (�)) of bounded variation in I uniformly for all l 2 Rn withklk2 = 1. Assume moreover that for t 2 I the ball B(m(t); r(t)) with centerm(t) 2 Rn and radius r(t) > 0 is contained in F (t), and that�(t) = supklk2=1 j�?(l; F (t)) � p2(l; t)jis small enough, i.e. 0 � �(t) < r(t). Let c(t) = supklk2=1 p2(l; t) .Then the following error estimate holdshaus(F (t); P2(t))� 2c(t)r(t)� �(t) supklk2=1VarI  d2dt2 �?(l; F (�))! � 12� "j (t� t0)2(t� t1)(t� t2)(t0 � t1)(t0 � t2) j + j (t� t0)(t� t1)2(t� t2)(t1 � t0)(t1 � t2) j+ j (t� t0)(t� t1)(t� t2)2(t2 � t0)(t2 � t1) j# :



SET-VALUED INTERPOLATION AND DIFFERENTIAL INCLUSIONS 13Again, in concrete applications, one should use piecewise quadratic set-valued interpolation to get reasonable error estimates in terms of stepsize,compare in this connection Section 6.All these representations of the interpolation error clearly show that inthe case of interpolation by polynomials of degree at most equal to N theabsolute continuity of dN�1dtN�1 �?(l; F (�))and the variation of dNdtN �?(l; F (�))on I are essential for the error. For the special case N = 1, we only needthat �?(l; F (�)) itself is absolutely continuous and ddt�?(l; F (�)) of boundedvariation. Surprisingly enough, this property is satis�ed automatically forset-valued mappings de�ned by a broad class of linear di�erential inclusions,cp. [16] and Section 4.4. The Rôle of SensitivityAs outlined in Section 2, cp. especially Lemma 2.4, Corollary 2.5, andLemma 2.6, and exploited in Section 3, cp. Error Representation 3.1 andthe special cases 3.2 and 3.3, the error between F (t) and PN (t) with respectto Hausdor� distance is reduced to the classical error between �?(l; F (t))and pN (l; t) uniformly with respect to all l 2 Rn with klk2 = 1.This is the point where sensitivity enters the scene, since the classicalerror �?(l; F (t)) � pN (l; t)is determined, for every �xed l 2 Rn , by regularity properties of the valuefunction �?(l; F (�)) of the following family of convex optimization problems.4.1. Perturbed Optimization Problems. For every �xed t 2 I, max-imize l?zsubject to z 2 F (t) :Here, the perturbation parameter is t 2 I, the vector l 2 Rn is con-sidered to be �xed, and continuity and di�erentiability properties of thecorresponding value function �?(l; F (t)) with respect to t 2 I uniformlyfor all l 2 Rn with klk2 = 1 play a crucial rôle. Naturally, such additional



14 FRANK LEMPIOregularity properties of �?(l; F (�)) can only be expected to hold for specialclasses of set-valued mappings F (�) or for some concrete problems. A rel-atively complete overview of such classes is contained in [5], pp. 81{106,which is based on the results of [26], [27], [1], [2], [16]. In the following,we cite only the most important cases.4.2. Theorem. (a) Let U � Rm be compact and non-empty, and let thesingle-valued mapping f : I � U �! Rnbe a parametrization of F ,F (t) = f(t; U) (t 2 I) ;with compact values.Let f(t; �) be upper semicontinuous on U for all t 2 I, and let there exista Lipschitz constant L withkf(t1; u)� f(t2; u)k2 � Ljt1 � t2j (t1; t2 2 I; u 2 U) :Then, for every u 2 U; f(�; u) is absolutely continuous, and the family�@f@t (�; u)�u2Uis integrable. Assume moreover, that this family is jointly of bounded vari-ation in the following sense:There exist integrable functionsg(�; u) : I ! Rn (u 2 U)with g(t; u) = @f@t (t; u)for almost all t 2 I, such that all the numbersm�1Xi=0 kg(ti+1; ui)� g(ti; ui)k2are bounded uniformly for all subdivisionsa = t0 < t1 < : : : < tm�1 < tm = b ;all ui 2 U , and all m 2 N .



SET-VALUED INTERPOLATION AND DIFFERENTIAL INCLUSIONS 15Then, �?(l; F (�)) is Lipschitz continuous, and ddt�?(l; F (�)) of boundedvariation uniformly for all l 2 Rn with klk2 = 1.(b) Let U � Rm be compact and non-empty, and let the n�m-matrixfunction A(�) describe the following parametrization of F ,F (t) = A(t)U (t 2 I) :Let A(�) be absolutely continuous, and ddtA(�) of bounded variation.Then, �?(l; F (�)) is Lipschitz continuous, and ddt�?(l; F (�)) of boundedvariation uniformly for all l 2 Rn with klk2 = 1.Sometimes, it is possible to compute the support functional exactly forall t 2 I, and to examine its regularity properties directly.4.3. Examples. (i) LetF (t) = fz 2 Rn : kz �m(t)kp � r(t)gbe a varying ball in Rn with center m(t) 2 Rn and radius r(t) � 0, where1 � p � 1. Then�?(l; F (t)) = l?m(t) + r(t)klkq (t 2 I) ;where 1p + 1q = 1.(ii) Let ai(t) � bi(t) (i = 1; : : : ; n)and F (t) = nYi=1[ai(t); bi(t)] :Then�?(l; F (t)) = nXi=1 li �1� sign(li)2 ai(t) + 1 + sign(li)2 bi(t)� (t 2 I)for all l = (l1; : : : ; ln)? 2 Rn .(iii) Let F (t) = co fp1(t); : : : ; pr(t)g (t 2 I)be a convex polyhedron with corners p1(t); : : : ; pr(t) 2 Rn . Then�?(l; F (t)) = maxj=1;:::;r l?pj(t) (t 2 I) :



16 FRANK LEMPIOIf, for every l 2 Rn , there exists a cornerpjl(t) 2 fp1(t); : : : ; pr(t)gwith l?pjl(t) = maxj=1;:::;r l?pj(t) (t 2 I) ;then di�erentiability properties of pjl(�) on I are inherited by �?(l; F (�)).(iv) Consider a real function � : I ! R and a nonempty subset U � Rn .Then �?(l; �(t)U) = 8<: �(t)�?(l; U) (�(t) � 0)��(t)�?(l;�U) (�(t) < 0) :Hence, as long as �(�) does not change sign, di�erentiability properties of�(�) are inherited by �?(l; �(�)U).If, moreover, U = �U ;then �?(l; �(t)U) = j�(t)j�?(l; U) (t 2 I) :Hence, di�erentiability properties of j�(�)j, especially those at zeros of �(�),determine the di�erentiability properties of �?(l; �(�)U).(v) Let �(�) be an n�m-matrix function andB(m(t); r(t)) = fz 2 Rm : kz �m(t)k2 � r(t)g (t 2 I)a varying ball in Rm with center m(t) 2 Rm and radius r(t) � 0. De�neF (t) = �(t)B(m(t); r(t)) (t 2 I) :Then �?(l; F (t)) = l?�(t)m(t) + r(t)k�?(t)lk2 (t 2 I) :Hence, as long as �?(t)l 6= 0Rm (which is, e.g., the case for all l 2 Rnwith klk2 = 1 if the rows of �(t) are linearly independent for all t 2 I),di�erentiability properties of m(�); r(�), and �(�) are inherited by �?(l; F (�)).The situation is much worse with a varying ball in Rm with respect toin�nity norm,B1(m(t); r(t)) = fz 2 Rm : kz �m(t)k1 � r(t)g (t 2 I) :



SET-VALUED INTERPOLATION AND DIFFERENTIAL INCLUSIONS 17Again, let �(�) be an n�m-matrix function on I andF (t) = �(t)B1(m(t); r(t)) (t 2 I) :Now, according to Example 4.3 (i), we have�?(l; F (t)) = l?�(t)m(t) + r(t)k�?(t)lk1 (t 2 I) ;and only under rather special circumstances di�erentiability properties ofm(�); r(�), and �(�) lead to the corresponding di�erentiability properties of�?(l; F (�)), cp. [6], Example 2.Summarizing, we want to stress that Theorem 4.2 just su�ces to justifythe error estimate for (piecewise) linear set-valued interpolation for broaderclasses of parametrized set-valued mappings, whereas Examples 4.3 justifyeven higher order set-valued interpolation by (piecewise) polynomials formore restricted classes of set-valued mappings. In the following sections,these results are used for the derivation of error estimates for set-valuedintegration and discrete approximations of attainable sets.5. Set-Valued IntegrationSet-valued integration can be introduced in di�erent ways either follow-ing [10] and [18] exploiting abstract embedding theorems for spaces of con-vex sets [28], [21], or in a direct way for quadrature formulae with non-negative weights, cp. [7], [4], [6], [5], resp. for quadrature formulae withnegative weights, cp. [8] and [9]. First we give a motivation by a thirdapproach following the classical introduction of interpolatory quadratureformulae: Interpolate the set-valued integrand by a set-valued mapping inthe sense of De�nition 2.3 and integrate this set-valued mapping in thesense of Aumann [3].5.1. De�nition. Let I = [a; b] with a < b andF : I =) Rnbe a set-valued mapping. ThenZI F (�) d� = fz 2 Rn : there exists an integrable selectionf(�) of F (�) on I with z = ZI f(�) d�gis called Aumann's integral of F (�) over I.The following theorem is fundamental, for proofs cp. e.g. [2] and [22].



18 FRANK LEMPIO5.2. Theorem. Let F : I =) Rn be a measurable set-valued mapping withnon-empty and closed images. ThenZI F (�) d�is convex.If, moreover, F (�) is integrably bounded, i.e., if there exists a functionk(�) 2 L1(I) with supf(t)2F (t) kf(t)k2 � k(t) (5.1)for almost all t 2 I, thenZI F (�) d� = ZI co(F (�)) d� (5.2)is non-empty, compact, and convex.Here, co(�) denotes convex hull operation. The representation (5.2) sug-gests the interpolation of the set-valued mapping co(F (�)) in the sense ofInterpolation Problem 2.1 and De�nition 2.3. Just for simplicity, we assumein the following that F (�) itself is a measurable, integrably bounded set-valued mapping with non-empty compact convex values. Then we need notdistinguish between F (�); co(F (�)); co(F (�)) ;where co(F (�)) denotes the closed convex hull of F (�).According to Interpolation Problem 2.1, having set-valued interpolatoryquadrature formulae in mind, choose N 2 N and a grida � t0 < t1 < : : : < tN � b ;and compute for every l 2 Rn the polynomialpN (l; �)of degree � N withpN (l; tj) = �?(l; F (tj)) (j = 0; : : : ; N) ;respectively the set-valued mappingPN (�) = fz 2 Rn : z?l � pN (l; �) for all l 2 Rngwith support functional p??N (l; t)



SET-VALUED INTERPOLATION AND DIFFERENTIAL INCLUSIONS 19for every t 2 I.According to the proof of Lemma 2.2, PN (t) is closed, convex, and evenuniformly bounded for all t 2 I with PN (t) 6= ;. Moreover, the represent-ation (2.1) shows that pN (l; t) is continuous with respect to t 2 I. Hence,following [2], if PN (t) 6= ; for all t 2 I, then Aumann's integralZI PN (�) d�exists, is non-empty, convex, and compact, and satis�es�?(�; ZI PN (�) d�) = ZI �?(�; PN (�)) d�= ZI p??N (�; �) d� :Remembering the classical interpolatory quadrature formula de�ned bypN (l; �), i.e. ZI pN (l; �) d� = NXj=0 �?(l; F (tj)) ZI NY�=0�6=j (� � t�)(tj � t�) d� ;this suggests the use of this quadrature formula after convexi�cation withrespect to l 2 Rn :2664 NXj=0 �?(�; F (tj)) ZI NY�=0�6=j (� � t�)(tj � t�)d�3775?? : (5.3)For quadrature formulae with nonnegative weights, e.g. for closed New-ton-Cotes formulae with N nodes (N = 2; : : : ; 8; 10), this representationsimply�es, since a linear combination of support functionals with nonneg-ative coe�cients is again a support functional. Hence, if all the weightscj = ZI NY�=0�6=j (� � t�)(tj � t�)d� (j = 0; : : : ; N)are nonnegative, then (5.3) simpli�es to the support functionalNXj=0 cj�?(�; F (tj))



20 FRANK LEMPIOof the set NXj=0 cjF (tj) :One drawback of the above approach is, that one needs additional geo-metric assumptions to guarantee that the interpolatory set-valued poly-nomial has non-empty values. For quadrature formulae with nonnegativeweights, there is a direct approach avoiding this drawback and with a widerrange of applicability even to set-valued Gau� quadrature formulae and ex-trapolation methods, cp. [7], [4], [6], [5]. In the following, we give a briefsketch of this direct approach.It is well-known that, under all assumptions of Theorem 5.2, we haveZI F (�) d� = fz 2 Rn : l?z � �?(l; ZI F (�) d�)= ZI �?(l; F (�)) d� for all l 2 Rng :This suggests the approximation ofZI �?(l; F (�)) d�by a quadrature formulae J(l; F )ZI �?(l; F (�)) d� = J(l; F ) +R(l; F )with remainder term R(l; F ) depending on l 2 Rn and F (�).E.g. for composite closed Newton-Cotes fomulae, Gau� quadrature orRomberg integration, J(l; F ) has the representationJ(l; F ) = NXj=0 cj�?(l; F (tj)) (5.4)with a grid of nodes a � t0 < t1 < : : : < tN � band suitable weights cj 2 R (j = 0; : : : ; N):



SET-VALUED INTERPOLATION AND DIFFERENTIAL INCLUSIONS 21If all these weights are nonnegative, then the quadrature formula (5.4) canbe interpreted as a support functionalJ(l; F ) = �?0@l; NXj=0 cjF (tj)1Aof the non-empty, compact, and convex setNXj=0 cjF (tj) :Then, without any additional geometric assumption, Lemma 2.6, which istrue for an arbitrary pair of non-empty, compact, convex sets and theircorresponding support functionals, can be applied directly to the setsZI F (�) d�; NXj=0 cjF (tj) ;resulting in the following5.3. Theorem. Let F : I ) Rn be a measurable and integrably boundedset-valued mapping with non-empty, convex and compact values, and letthe quadrature formula J(�; F ) have nodes tj, nonnegative weights cj (j =0; : : : ; N), and remainder term R(�; F ).Then the error estimate holdshaus0@ZI F (�)d�; NXj=0 cjF (tj)1A = supklk2=1 jR(l; F )j :Obviously, the order of the error is determined again by regularity prop-erties of the scalarized integrand�?(l; F (t)) (t 2 I)with respect to t uniformly with respect to all l 2 Rn with klk2 = 1.To be more speci�c, we cite only two special cases, the set-valued ana-logues of composite trapezoidal rule and composite Simpson's rule. In fact,these two methods form the �rst two stages of a set-valued analogue ofRomberg's extrapolation method, cp. [4], [6], and [5] for more details andcomplete proofs.



22 FRANK LEMPIO5.4. Theorem. Let F : I ) Rn be a measurable and integrably boundedset-valued mapping with non-empty, convex, and compact values, and let�?(l; F (�))be absolutely continuous with �rst derivative with respect to t of boundedvariation uniformly for all l 2 Rn with klk2 = 1.Then the error between Aumann's integralZI F (�) d�and composite trapezoidal ruleh �12F (t0) + F (t1) + : : :+ F (tN�1) + 12F (tN )�on the grid tj = a+ jh (j = 0; : : : ; N)with meshsize h = b� aNis of order 2 in h with respect to Hausdor� distance.If, in addition, �?(l; F (�)) has an absolutely continuous second derivativeand if its third derivative is of bounded variation uniformly for all l 2 Rnwith klk2 = 1, then the error of composite Simpson's ruleh3 [F (t0)+4F (t1)+2F (t2)+4F (t3) + : : :+2F (tN�2)+4F (tN�1)+F (tN )]on the same grid for even N is of order 4 in h with respect to Hausdor�distance.Under additional smoothness assumptions Romberg extrapolation givesapproximations of even higher order with respect to Hausdor� distance,compare the examples and numerical tests in [4], [6], [5].We want to emphasize that, due to Theorem 4.2, we get second orderconvergence for a remarkable big class of parametrized set-valued map-pings. Due to Examples 4.3, we get even higher order of convergence formore speci�c problem classes. Exploiting inclusion techniques, based onthe asymptotic expansion of composite trapezoidal rule, for such problemclasses, one can even get inner and outer approximations to the exact Au-mann integral which converge of the same order with respect to Hausdor�distance as the underlying Romberg extrapolation method, cp. [5].



SET-VALUED INTERPOLATION AND DIFFERENTIAL INCLUSIONS 236. Approximating Reachable Setsby Set-Valued Integration and InterpolationWe want to outline in the following how set-valued integration and interpol-ation could be applied in a combined form to the discrete approximationof reachable sets of linear di�erential inclusions. To be more speci�c, weanalyse the following standard6.1. Linear Control Problem. Let the n�n-matrix function A(�) andthe n�m-matrix function B(�) be (at least) integrable on I = [a; b], and thecontrol region U � Rm be non-empty, compact, and convex. Let Y0 � Rnbe a non-empty, compact, and convex starting set.Find an absolutely continuous function y : I �! Rn withy0(t) 2 A(t)y(t) +B(t)U for almost all t 2 I ;y(a) 2 Y0 :The reachable set of this linear control problem at time t 2 [a; b] caneasily be represented as Aumann's integralY (t) = �(t; a)Y0 + Z ta �(t; �)B(�)U d� ; (6.1)where �(t; �) is a fundamental solution of the homogeneous systemddt�(t; �) = A(t)�(t; �)for almost all t 2 I, satisfying the initial condition�(�; �) = En :Now, approximating Y (�) numerically for all t 2 I requires an appropriatecombination of the following four procedures a), b), c), and d).a) Apply a set-valued quadrature formulaNXj=0 cj�(t; tj)B(tj)Uwith nonnegative weights on, say, an equidistant gridtj = a+ jh (j = 0; : : : ; N); h = t� aN ;



24 FRANK LEMPIOwhich is of order q with respect to h, i.e.haus0@Z ta �(t; �)B(�)U d�; NXj=0 cj�(t; tj)B(tj)U1A� �1hq :Using the methods outlined in Section 5, such formulae exist, if�?(l;�(t; �)B(�)U)has an absolutely continuous (q�2)-nd derivative and if the (q�1)-st de-rivative is of bounded variation uniformly with respect to all l 2 Rn withklk2 = 1. E.g., one could use the set-valued analogue of Romberg's method,cp. [4], [5]. For q = 2 resp. q = 4 this amounts to the use of set-valued com-posite trapezoidal rule resp. set-valued Simpson's rule according to The-orem 5.4.b) Naturally, the actual computation in a) is done with approximations~�(t; tj) (j = 0; : : : ; N) of the exact values of the fundamental solutionwhich should be of order q as well,sup0�j�N k~�(t; tj)� �(t; tj)k2 � �2hq :This is possible if A(�) has an absolutely continuous (q�2)-nd derivativeand if its (q�1)-st derivative is of bounded variation, cp. [31]. For similarresults cp. [12], [13]. Normally, A(�) is even smoother, and the choice of analgorithm of order q does not cause any problem. Since the weights cj arenonnegative, it followshaus0@ NXj=0 cj�(t; tj)B(tj)U; NXj=0 cj ~�(t; tj)B(tj)U1A� NXj=0 cj haus��(t; tj)B(tj)U; ~�(t; tj)B(tj)U�� NXj=0 cjk�(t; tj)� ~�(t; tj)k2kB(tj)Uk2 ;where k � k2 denotes simultaneously spectral norm and the norm of a set,kB(tj)Uk2 = supu2U kB(tj)uk2 :



SET-VALUED INTERPOLATION AND DIFFERENTIAL INCLUSIONS 25Hence, the combined procedures a) and b) maintain the overall order ofconvergence q, if NXj=0 cjkB(tj)Uk2is uniformly bounded for N 2 N . Keeping in mind that cj for j = 0; : : : ; Nare the weights of a convergent quadrature formula, this is the case, if, e.g.,B(�) is bounded on I.Summarizing the procedures a) and b), we get6.2. Theorem. Assume for Linear Control Problem 6.1 that the n�m-matrix function B(�) is bounded on I and that A(�); �?(l;�(t; �)B(�)U) havean absolutely continuous (q�2)-nd derivative and that the (q�1)-st derivativeis of bounded variation uniformly with respect to all l 2 Rn with klk2 = 1.Then, combining a set-valued quadrature formula with nonnegative weightsof order q with a di�erence method of order q for the computation of thefundamental solution yields a method of order q for the discrete approxim-ation of the reachable set at time t.Numerical tests, based on this result, can be found for various examplesin [7], [4], [6], [5]. For linear systems with polyhedral control regions cp. [16]and [20], where higher order methods are presented which are based onPontryagin's maximum principle.c) A method, approximating the reachable set Y (�) on the whole timeinterval I, necessarily should comprise a third procedure:Having computed Y (sj) (j = 0; : : : ; q)for some points sj = s0 + jĥ 2 I; ĥ > 0 ;approximate Y (�) on [s0; sq] by means of set-valued polynomial interpola-tion in the sense of Section 2. According to Error Representation 3.1, cp.also the special cases 3.2 and 3.3, direct interpolation of Y (�) would requireregularity properties of�? �l;�(t; a)Y0 + Z ta �(t; �)B(�)U d��with respect to t uniformly for all l 2 Rn with klk2 = 1. By no means, it iseasy to derive such properties from regularity properties of�?(l;�(t; �)B(�)U)



26 FRANK LEMPIOwith respect to � , which are needed anyway for set-valued integration.Therefore, we choose another representation of Y (t),Y (t) = �(t; a)Y0 + Z ta �(t; �)B(�)U d�= �(t; a) �Y0 + Z ta �(a; �)B(�)U d�� ;and treat the single-valued factor �(t; a)and the set-valued factorY0 + Z ta �(a; �)B(�)U d�separately. Then, only regularity properties of�? �l; Y0 + Z ta �(a; �)B(�)U d��= �?(l; Y0) + Z ta �?(l;�(a; �)B(�)U) d�with respect to t uniformly for all l 2 Rn with klk2 = 1 are needed. Ifthe (q�2)-nd derivative of �?(l;�(a; �)B(�)U) is absolutely continuous andthe (q�1)-st derivative of bounded variation uniformly for all l 2 Rn withklk2 = 1, then Z ta �?(l;�(a; �)B(�)U) d�has absolutely continuous (q�1)-st derivative with q-th derivative of bound-ed variation. This �ts favourably to Error Representation 3.1, leading toerror estimates of order q in ĥ with respect to Hausdor� distance. Naturally,for q > 1, additional conditions on the geometry of the setsY0 + Z ta �(a; �)B(�)U d� (s0 � t � sq) ;cp. Corollary 2.5, have to be satis�ed. Due to Theorem 4.2 (b), the caseq = 2 is especially important. If �(a; �)B(�) is absolutely continuous andits �rst derivative of bounded variation, then piecewise quadratic inter-polation, according to the special case 3.3, can be used for second orderapproximation on the whole interval I.



SET-VALUED INTERPOLATION AND DIFFERENTIAL INCLUSIONS 27Naturally, since the data to be interpolated,Y0 + Z sja �(a; �)B(�)U d� (j = 0; : : : ; q) ;can only be computed up to an error of order q with respect to somechosen stepsize h according to procedures a) and b), one never will get theexact set-valued interpolatory polynomial Pq(�), but only some set-valuedapproximation P̂q(�). Assuming, that the errorhaus�Pq(t); P̂q(t)� � �3ĥq (s0 � t � sq)and, similarily as in b),k�̂(t; a)� �(t; a)k2 � �4ĥq (s0 � t � sq)for the approximation �̂(t; a) of the exact fundamental system �(t; a), weget the following estimatehaus�Y (t); �̂(t; a)P̂q(t)�= haus��(t; a) �Y0 + Z ta �(a; �)B(�)U d�� ; �̂(t; a)P̂q(t)�� haus��(t; a) �Y0 + Z ta �(a; �)B(�)U d�� ; �(t; a)Pq(t)�+haus��(t; a)Pq(t); �(t; a)P̂q(t)�+haus��(t; a)P̂q(t); �̂(t; a)P̂q(t)�� k�(t; a)k2 haus�Y0 + Z ta �(a; �)B(�)U d�; Pq(t)�+ k�(t; a)k2 �3ĥq+�4ĥq kP̂q(t)k2for s0 � t � sq. Hence, in fact, the order of the \theoretical error"haus�Y0 + Z ta �(a; �)B(�)U d�; Pq(t)�determines the order of the global error.d) The last part of this combined method consists in the choice of anappropriate computer aided graphical visualization method of the sets�̂(t; a)P̂q(t) (s0 � t � sq) :



28 FRANK LEMPIOThe grid data for interpolation result from set-valued numerical integra-tion with nonnegative weights, and we recommend the dual approach bysupporting hyperplanes discussed thoroughly in [5] including an analysis ofthe additional error due to the fact that only �nitely many hyperplanes canbe computed. For higher dimensional problems, actually support points ofthese hyperplanes should be plotted, not the hyperplanes themselves. Thedual representation of �̂(t; a)P̂q(t) between gridpoints is more di�cult, sincein the representation (2.2) of P̂q(t) even non-supporting hyperplanes willoccur, i.e. one has to develop an appropriate device to get rid of such hy-perplanes and to restrict this representation to actually supporting hyper-planes resp. corresponding support points. The complexity of this task isdimension dependent. In the following numerical tests, we restrict ourselvesto state space dimension 2.The combined procedures a), b), c), and d) are visualized for the fol-lowing6.3. Example. Let I = [1; 2], and for all t 2 IA(t) = 0B@ 0 1� 2t2 2t 1CA ;B(t) = 0@ sin(2�t)cos(2�t) 1A ;U = [�1; 1] ;Y0 = [�0:1; 0:1]2 :With these data, approximate the reachable setY (t) = �(t; 1)Y0 + Z t1 �(t; �)B(�)U d�on the whole internal [1; 2].Due to Theorems 4.2, 5.4, and 6.2, the setsY (1); Y (1:5); resp: Y (2)can be computed by a combined method of order 2 very precisely. Theresults are plotted in Figures 1, 2, resp. 3. Since the control region is poly-hedral, the methods in [16], [20] could have been used equally well.
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30 FRANK LEMPIOThis opens the way, at least in R2 , for a dual representation of P̂2(t) asintersection of halfspaces. In Figure 4, the image of this representationunder the linear transformation �̂(t; 1) is visualized for t = 1:1. Observe,that not all of these halfspaces are supporting ones due to the non-convexityof p̂2(l; 1:1) with respect to l, cp. the magni�cation around the upper leftcorner in Figure 5.
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-0.16 -0.14 -0.12 -0.10Figure 5. Magni�cationFigures 6, 7, 8, resp. 9 show the approximations �̂(t; 1)P̂2(t) of thereachable set Y (t), based on the evaluation of the set-valued polynomialP̂2(t) and the linear transformation �̂(t; 1) for the successive time points1:3; 1:4; 1:7, resp. 1:8, compared with the exact reachable set (dotted line).Observe, that, in principle, it would have been su�cient to compute thedata sets for set-valued interpolation, cp. Figures 1, 2, 3, within an errorof order 2 with respect to the stepsize for interpolation to get an overallerror of order 2. In practical computations, one has to restrict oneself in(6.2) to a �nite collection of vectors l 2 R2 with klk2 = 1. Therefore, toretain order of convergence equal to 2 for the actually computed discreteapproximations in Figures 6, 7, 8, 9, one has to choose the vectors l froman appropriately adjusted grid on the unit sphere in R2 .Acknowledgement. I appreciate the help of Robert Baier in preparingthe plots. They are essentially based on his program package on the ap-proximation of reachable sets of linear di�erential inclusions by set-valuedintegration methods.
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