
Computing Aumann's IntegralRobert Baier and Frank LempioAbstrat. Quadrature formulae for the numerial approximation ofAumann's integral are investigated, whih are set-valued analogues ofordinary quadrature formulae with nonnegative weights, like ertainNewton-Cotes formulae or Romberg integration.Essentially, the approah onsists in the numerial approximation ofthe support funtional of Aumann's integral by ordinary quadratureformulae. For set-valued integrands whih are smooth in an appropri-ate sense, this approah yields higher order methods, for set-valuedintegrands whih are not smooth enough, it yields further insight intowell-known order redution phenomena.The results are used to de�ne higher order methods for the approxi-mation of reahable sets of ertain lasses of linear ontrol problems.Mathematis Subjet Classi�ation (1991): 34A60, 49M25,65D30, 65L05, 93B03Keywords: Aumann's integral, reahable set,�nite di�erene methods1 IntrodutionThe main objetive of this paper is to investigate higher order methods forthe numerial approximation of Aumann's integral and the reahable set oflinear di�erential inlusions. We hoose an approah based essentially onthe numerial approximation of the support funtional of Aumann's integralby ordinary quadrature formulae, p. in this onnetion [3℄. But ontrary to[3℄, we restrit our outline of basi error estimates from the very beginningto quadrature formulae with nonnegative weights, moreover, we use theweak regularity assumptions in the spirit of [17℄ to get higher order ofonvergene. Thus, we follow a diret approah to higher order quadratureformulae for set-valued mappings, avoiding the use of embedding theoremsfor spaes of onvex sets. In this respet, our presentation di�ers from theindiret approah indiated in [10℄, whih is based on [16℄, [12℄, and [4℄.



2 Robert Baier and Frank LempioThe underlying ideas are outlined in Setion 2 resulting in the fundamen-tal error estimate of Theorem 2.6. Moreover, the set-valued analoguesof losed Newton-Cotes formulae with nonnegative weights resp. Rombergmethod are given in Proposition 2.7 resp. 2.8 together with all regularityand smoothness assumptions required for higher order onvergene. Ap-plying these results to smooth set-valued integrands, as in Example 4.1,in priniple arbitrarily high order of onvergene an be ahieved, e.g. bythe set-valued analogue of Romberg's method. In addition, for set-valuedintegrands whih are not smooth enough, as in Example 4.2, we get furtherinsight into the order barrier notied in [19℄.In Setion 3 we will apply our results to the approximation of reahablesets for linear ontrol systems and get higher order methods at least forertain problem lasses. In fat, smoothness in the sense of Setion 2 ofthe fundamental solution multiplied by the set-valued inhomogeneity is theruial property, lak of it results in order redution phenomena. Thus, weget at least a partial answer to some open questions disussed in [9℄. Thesee�ets are illustrated by Example 4.3, whih is not smooth enough in theabove sense, hene giving additional insight into the order barrier desribedin [20℄, and by Example 4.4, whih is arbitrarily smooth, thus admittingnumerial approximations of the reahable set of arbitrarily high order.Note that there is a theoretial approah desribed in [8℄ whih results inorder of onvergene greater than two, if the ontrol region is a ompatonvex polyhedron. But, onverting these oneptual ideas into a numerialalgorithm is until now only possible for order of onvergene equal to three.All test examples are treated by the above methods by means of a dual ap-proah, explained more preisely in Setion 4. The development of eÆientalgorithms for higher dimensional problems, following this dual approahor omputing diretly sums of sets aording to the presented set-valuedquadrature formulae, is an interesting and hallenging �eld of researh.In the following, we desribe briey the onnetion between Aumann's in-tegral and linear di�erential inlusions.Problem 1.1 (Linear Initial Value Problem) Let the n � n-matrixfuntion A(�) be integrable on I = [a; b℄ andG : I =) Rnbe a set-valued mapping.



Computing Aumann's Integral 3Find an absolutely ontinuous funtion y(�) : I ! Rn withy0(t) 2 A(t)y(t) +G(t)(1.1)for almost all t 2 I and y(a) = y0 :(1.2)Suh problems arise from a wide range of appliations, e.g. from optimalontrol problems or from perturbed dynamial systems with unknown, butbounded perturbations.The only property really needed is that all solutions of (1.1),(1.2) an beequivalently represented in the formy(t) = �(t; a)y(a) + tZa �(t; �)g(�)d�for all t 2 I with a fundamental solution �(t; �) of the homogeneous systemddt�(t; �) = A(t)�(t; �)for almost all t 2 I , satisfying the initial ondition�(�; �) = Enfor a �xed � 2 I , and with an integrable seletion g(�) of G(�) on I .Hene, the reahable set at time t 2 IR(t; a; y0) = �z 2 Rn : there exists a solution y(�) on [a; t℄ of(1.1),(1.2) with z = y(t)	an be represented by means of Aumann's integral asR(t; a; y0) = �(t; a)y0 + tZa �(t; �)G(�)d�for all t 2 I , where the integral is de�ned aording toDe�nition 1.2 (p. [2℄) Let F : I =) Rnbe a set-valued mapping. De�neRI F (�)d� = �z 2 Rn : there exists an integrable seletionf(�) of F (�) on I with z = RI f(�)d� 	as Aumann's integral of F (�) over I.



4 Robert Baier and Frank LempioConsequently, our �rst step towards higher order di�erene methods forlinear di�erential inlusions should onsist in the investigation of higherorder numerial methods for the omputation of Aumann's integral. Thisis the entral subjet of Setion 2.2 Quadrature Formulae for Set-ValuedMappingsDe�nition 2.1 A set-valued mapping F : I =) Rn with nonempty andlosed images is integrably bounded, if there exists a funtion k(�) 2L1(I) with supf(t)2F (t) kf(t)k2 � k(t)for almost all t 2 I.In fat, we intend to use the well-known method of salarization of a set-valued situation, just exploiting the following fundamental fat.Theorem 2.2 Let F : I =) Rn be a measurable set-valued mapping withnonempty and losed images. ThenZI F (�)d�is onvex.If, moreover, F (�) is integrably bounded, thenZI F (�)d� = ZI o(F (�))d�is nonempty, ompat, and onvex. Here, o(�) denotes the onvex hulloperation.For the proof of onvexity and ompatness see [1, Theorem 8.6.3, pp. 329{330℄, the existene of a measurable seletion f(�) of F (�) is proven in [1,Theorem 8.1.3, pp. 308℄. It follows from the integrably boundedness ofF (�) that this seletion is also integrable and hene RI f(�)d� is an elementof RI F (�)d� . Compare [13, 8.2, Theorem 1, pp. 334℄ for the equality of bothintegrals.



Computing Aumann's Integral 5De�nition 2.3 Let C � Rn be a nonempty set and de�neÆ�(l; C) = sup2C <l; > 2 R [ f1gfor all l 2 Rn , where < �; �> denotes the usual inner produt in Rn .Then Æ�(�; C) is alled support funtion of the set C.We list the following property of the support funtion, p. [1, Table 2.1,pp. 66℄ whih we will use below.Lemma 2.4 Let l 2 Rn and C � Rn be a nonempty set.Then the following equality holds:Æ�(l; C) = Æ�(l; l(o(C)));where l(o(C)) denotes the losure of the onvex hull of the set C.Obviously (see e.g. [1, Proposition 8.6.2, pp. 327℄), under the assumptionsof both parts of Theorem 2.2 we haveRI F (�)d� = �z 2 Rn : <l; z>� Æ�(l; RI F (�)d�) = RI Æ�(l; F (�))d�for all l 2 Rn 	:This is the basis of the salarization, whih onsists in approximatingZI Æ�(l; F (�))d�by a quadrature formula J(l; F )ZI Æ�(l; F (�))d� = J(l; F ) +R(l; F );with remainder term R(l; F ) depending on l 2 Rn and F (�).E.g. for (omposite) Newton-Cotes formulae of open or losed type, Gau�quadrature or Romberg integration, J(l; F ) has the representationJ(l; F ) = NXi=0 iÆ�(l; F (ti))(2.1)with N 2 N, i 2 R, and a grida � t0 � t1 � : : : � tN � b:(2.2)



6 Robert Baier and Frank LempioThis representation and Lemma 2.4 suggest the interpretation of the quad-rature formula as a support funtionJ(l; F ) = Æ�(l; NXi=0 il(o(F (ti)))of the set NXi=0 il(o(F (ti)))(2.3)whih is possible if all weights i (i = 0; : : : ; N) are nonnegative.The following lemma, relating the Hausdor� distane haus(A;B) betweentwo sets A;B to the support funtions, an be found in [15, Satz 14.1,pp. 148℄.Lemma 2.5 Let A and B be nonempty, ompat, and onvex sets in Rn ,then haus(A;B) = supklk2=1 jÆ�(l; A)� Æ�(l; B)j:Applying it to the salarized quadrature formula with remainder term yieldsthe following error estimate.Theorem 2.6 Let F : I =) Rn be a measurable and integrably boundedset-valued mapping with nonempty and ompat images, and let the quadra-ture formula J(�; �) have nonnegative weights i, nodes ti 2 [a; b℄ (i =0; : : : ; N) and remainder term R(�; �).Then the following error estimate holdshaus(ZI F (t)dt; NXi=0 io(F (ti))) � supklk2=1 jR(l; F )j:To be more onrete, we use the omposite losed Newton-Cotes formulaof degree k 2 N over the interval [a; b℄ whih is exat for polynomials ofdegree at most k. Choose the number of subintervals N 2 N of the gridti := a+ ih (i = 0; : : : ; N); h = b� aN ;(2.4)



Computing Aumann's Integral 7suh that Nk is an integer, and apply the losed Newton-Cotes formula ofdegree k on eah subinterval [tik ; t(i+1)k℄, then we arrive atbZa Æ�(l; F (t))dt = Nk �1Xi=0 t(i+1)kZtik Æ�(l; F (t))dt == kh Nk �1Xi=0 kXj=0wkjÆ�(l; F (tik+j)) +RkNk (Æ�(l; F (�)))Using the results of [17, Theorem 3.5, pp. 52℄ (or the earlier results men-tioned in [7℄) in a slightly modi�ed way, we ould estimate the error byjRkNk (Æ�(l; F (�)))j � (1 + kXj=0 jwkj j)��( Wk+1 � �k+1(Æ�(l; F (�)); 2 kk+1h)1 ; if k is odd;Wk+2 � �k+2(Æ�(l; F (�)); 2 kk+2h)1 ; if k is even;where ��(f ; Æ) := ��(f ; Æ)1 is the averaged moduli of smoothness of order� de�ned in [17, De�nition 1.5, pp. 7℄ and W� denotes the �-th Whitneyonstant.Proposition 2.7 Let F : I =) Rn be a measurable and integrably boundedset-valued mapping with nonempty, ompat, and onvex images. Let thelosed Newton-Cotes formula of degree k have oeÆients wkj � 0; j =0; : : : ; k. Assume that the support funtion Æ�(l; F (�)) has an absolutelyontinuous (� � 1)-st derivative and that the �-th derivative is of boundedvariation with respet to t uniformly for all l 2 Rn with klk2 = 1, where� 2 � f0; 1; : : : ; kg; if k is odd;f0; 1; : : : ; k + 1g; if k is even:Integrating over the gridti := a+ ih (i = 0; : : : ; N); h = b� aN ;and introduing the set-valued mapping orresponding to (2.3), the followingerror estimates holdshaus( bZa F (t)dt; kh Nk �1Xi=0 kXj=0wkjF (tik+j )) �� C(k; �)(1 + kXj=0 wkj) � supklk2=1 b_a d�dt� Æ�(l; F (�)) � h�+1 :



8 Robert Baier and Frank LempioHere, bWa (�) denotes the total variation andC(k; �) = 8>>>>><>>>>>: 2k+1 k�+1��1Qj=0(k+1�j) �Wk+1 ; if k is odd;2k+2 k�+1��1Qj=0(k+2�j) �Wk+2 ; if k is even:
Proof. Apply the error estimates in [17℄ mentioned before and use theestimates [17℄[(3),(4), pp. 8 and (7), pp. 10℄ for a bounded, measurablefuntion f :�k(f ;h) � 2k�1�1(f ; kh) (k 2 N);�k(f ;h) � k���1Qj=0(k � j) h��k��(f (�); kk � � h) (if f (�) exists and isbounded and measurable, � 2 f0; : : : ; k � 1g; k 2 N);�1(f ;h) � h b_a f (if f is of bounded variation) Q.E.D.These results only apply if the oeÆients wkj (j = 0; : : : ; k) are nonnega-tive whih is the ase for trapezoidal rule (k = 1), Simpson's rule (k = 2),and for k = 3; : : : ; 7; 9, so that the maximal order of onvergene is 10 forthe losed set-valued Newton-Cotes formulae (p. [11, Table 6.2.1, pp. 268℄).Similar results an be ahieved, if we onsider omposite Newton-Cotes for-mulae of open type with degree k, where e.g. the oeÆients are nonnegativefor the midpoint-rule (k = 0) and for k = 1; 3 (p. the table in [14℄).Let us briey mention Romberg's method of extrapolation whih is de-sribed in more details in [5℄, [11℄, [18℄. Compute the integralbZa Æ�(l; F (t))dtby the omposite trapezoidal rule for a sequenze of stepsizes, sayh0 = b� a; h1 = 12h0; : : : ; hr = 12r h0;



Computing Aumann's Integral 9orresponding to the sequene of gridsa = ti;0 < ti;1 < : : : < ti;2i = b; ti;j := a+ jhi (j = 0; : : : ; 2i);and start with the �rst Romberg olumnTi0(l) = hi2 2i�1Xj=0 (Æ�(l; F (ti;j)) + Æ�(l; F (ti;j+1))) (i = 0; : : : ; r):Using the reursive formula for j = 1; : : : ; i; j � sTij(l) = Ti;j�1(l) + Ti;j�1(l)� Ti�1;j�1(l)4j � 1 (i = 1; : : : ; r);we are able to de�ne the setsTij(F ) = fy 2 Rn j <l; y>� Tij(l) for all l 2 Rn with klk2 = 1g(2.5)for j = 0; : : : ; i; j � s; i = 0; : : : ; r. It is known that eah Tij(l) ould bewritten in the form (2.1) with nonnegative weights (p. [11, Theorem 8.3.1,pp. 381℄) and N = 2i, hene we an apply all obtained results and getProposition 2.8 Let F : I =) Rn be a measurable and integrably boundedset-valued mapping with nonempty, ompat, and onvex images. Assumethat the support funtion Æ�(l; F (�)) has an absolutely ontinuous (2s)-thderivative and that the (2s + 1)-st derivative is of bounded variation withrespet to t uniformly for all l 2 Rn with klk2 = 1.Then the estimate holds for the set-valued mapping introdued in (2.5)haus( bZa F (t)dt; Tij(F )) � jY�=1 1 + ( 12 )2�1� ( 12 )2� � �ij � jY�=0h2i��for all j = 0; : : : ; i; j � s; i = 0; : : : ; r, where �ij an be hosen indepen-dently of all stepsizes hi�j ; : : : ; hi.Proof. Everything follows from a generalized Euler-Malaurin summa-tion formula whih gives (under the stated weaker assumptions) the sameasymptoti expansion of the omposite trapezoidal rule for the integralbZa Æ�(l; F (t))dtas desribed in [5℄, [18℄. Q.E.D.Hene, eah of the s+1 olumns of Romberg's tableau de�nes suessivelyintegration methods of order 2; 4; 6; : : : ; 2s + 2 for the approximation ofAumann's integral, if the support funtion Æ�(l; F (�)) is suÆiently smooth.



10 Robert Baier and Frank Lempio3 Approximation of Reahable Sets forLinear Control SystemsWe return to the Linear Initial Value Problem 1.1, assuming that it is givenby a linear ontrol problem of the following standard type.Problem 3.1 Let the n � n-matrix funtion A(�) and the n � m-matrixfuntion B(�) be integrable on I, and the ontrol regionU � Rmbe nonempty, ompat, and onvex.Find an absolutely ontinuous funtion y(�) : I ! Rn withy0(t) 2 A(t)y(t) +B(t)U for almost all t 2 I;y(a) = y0:With the notations from the introdution, the reahable set at time b isR(b; a; y0) = �(b; a)y0 + bZa �(b; �)B(�)Ud�:Now apply a quadrature formula on an equidistant grid (2.4) of the type(2.3) with error estimatehaus( bZa �(b; �)B(�)Ud�; NXi=0 i�(b; ti)B(ti)U) �� supklk2=1 jR(l; �(b; �)B(�)U)j � onst� 1N �p ;i.e. a quadrature formula of order p with respet to the disretization pa-rameter N 2 N. Suh formulae exist, if e.g.Æ�(l; �(b; �)B(�)U)has an absolutely ontinuous (p � 2)-nd derivative and if the (p � 1)-stderivative is of bounded variation uniformly with respet to all l 2 Rn with



Computing Aumann's Integral 11klk2 = 1 (p. Propositions 2.7 and 2.8).Choose in addition a di�erene method for the omputation of the funda-mental system �(b; �) on the same grid (2.4) whih omputes approximations~�(b; ti) (i = 0; : : : ; N) also of order psup0�i�N k~�(b; ti)� �(b; ti)k1 � onst� 1N �p :This is possible e.g. for the Adams-Bashforth method of degree p � 1 (p.[17, Theorem 6.3, pp. 126℄), if A(�) has an absolutely ontinuous (p � 2)-nd derivative and if the (p� 1)-st derivative has bounded variation. Underslightly di�erent assumptions one has similar results for Runge-Kutta meth-ods as well (p. [6℄, [7℄).Using the same notation kMk1 for the lub-norm of a matrix M with re-spet to the supremum norm k � k1 in Rn and for the norm of a set S � RnkSk1 = sups2S ksk1 ;the following inequality holdshaus( NXi=0 i�(b; ti)B(ti)U; NXi=0 i ~�(b; ti)B(ti)U) �� NXi=0 ihaus(�(b; ti)B(ti)U; ~�(b; ti)B(ti)U) �� NXi=0 ik�(b; ti)� ~�(b; ti)k1 � kB(ti)Uk1 ;if the weights i are all nonnegative. Moreover, NPi=0 ikB(ti)Uk1 is boundeduniformly for all N 2 N, if e.g. B(�) is bounded on I . Hene, we arrive atthe following result.Theorem 3.2 Consider the Linear Control Problem 3.1, and assume thatA(�) and Æ�(l; �(b; �)B(�)U) have an absolutely ontinuous (p�2)-nd deriva-tive and that the (p�1)-st derivative is of bounded variation uniformly withrespet to all l 2 Rn with klk2 = 1.Assume moreover, that NPi=0 ikB(ti)Uk1 is uniformly bounded for N 2 N.Then, ombining a quadrature formula with nonnegative weights of orderp with a di�erene method of order p in the sense desribed above yields amethod of order p for the approximation of the reahable set at time b.



12 Robert Baier and Frank Lempio4 Test ExamplesIn the following, we present a series of model problems, illustrating theresults of Setion 2 and 3. All numerial tests were made on an HP Apolloworkstation, Series 400. For every supporting hyperplane, the expliitknowledge of at least one boundary point of the set-valued integrand be-longing to that hyperplane is exploited for the omputation of the plots.In all tables, we use Lemma 2.5 together with uniformly distributed pointsli (i = 1; : : : ; �) on the boundary of the unit ball to approximate the Haus-dor� distane of two nonempty, ompat, and onvex sets C;D � Rn inthe following way:maxi=1;:::;� jÆ�(li; C)� Æ�(li; D)j � haus(C;D):In the above sense, we use a dual approah for the alulation of the pre-sented set-valued quadrature formulae and for the veri�ation of the orre-sponding error estimates.Example 4.1 Compute Aumann's integral2Z0 A(t)B1(0)dt = 2Z0 � et 00 t2 + 1 �B1(0)dt;where B1(0) denotes the losed unit ball in R2 .Then the support funtionÆ�(l; A(t)B1(0)) = Æ�(A(t)�l; B1(0)) = kA(t)�lk2is arbitrarily often ontinuously di�erentiable with respet to t with boun-ded derivatives uniformly for all l 2 Rn with klk2 = 1.In Figure 4.1 we show the boundary of the set reated by the ompositetrapezoidal rule with stepsizes h = 2:0 (the biggest set), h = 1:0; 0:5 (thetwo smaller sets), and the referene set (the smallest set) omputed byRomberg's method with 10 rows and olumns. Figure 4.1 illustrates order2 of the omposite trapezoidal rule whih is on�rmed by Table 4.1 wherewe show the approximated Hausdor� distane between the sets alulatedby di�erent numerial integration methods and the referene set.
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Fig. 4.1: Composite trapezoidal rule with h = 2:0; 1:0; 0:5ompared with the referene setIn Table 4.1, one an learly observe onvergene order 2 for the ompositetrapezoidal rule and order 4 for omposite Simpson's rule.Example 4.2 This example was presented in [19℄ as a negative result forthe approximation of Aumann's integral2�Z0 A(t)[�1; 1℄dt = 2�Z0 � sin(t)os(t) � [�1; 1℄dt:
In this example, the support funtionÆ�(l; A(t)[�1; 1℄) = Æ�(A(t)�l; [�1; 1℄) == jA(t)�lj = jl1 sin(t) + l2 os(t)jis only absolutely ontinuous, and its derivative has bounded variation uni-formly for all l 2 Rn with klk2 = 1.
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Fig. 4.2: Composite Simpson's rule with h = �2 ; �4 ; �8ompared with the referene setTable 4.2 illustrates onvergene order 2 for the omposite trapezoidal ruleand also only onvergene order 2 for the omposite Simpson's rule, be-ause laking smoothness of the support funtion prevents higher order ofonvergene. We refer to Figure 4.2 where the results of omposite Simp-son's rule are plotted for stepsizes h = 0:5�; 0:25�; 0:125� together withthe result of omposite trapezoidal rule with h = 0:02� (the referene set).Simpson's rule reates polytopes with inreasing number of edges. This isthe geometri explanation given in [19℄ for the observed order redution.



Computing Aumann's Integral 15Example 4.3 This example is also due to Veliov and was presented in [20℄.Consider the linear ontrol systemy0(t) 2 � 0 10 0 � y(t) +�01�[�1; 1℄ for almost all t 2 [0; 1℄;y(0) = �00�:Then the fundamental solution is�(t; �) = � 1 t� �0 1 � ;and the reahable set at time b = 1 is1Z0 �1� �1 �[�1; 1℄d�:In this ase, the support funtionÆ�(l; �(1; �)�01�[�1; 1℄) = j(1� �; 1)ljis only absolutely ontinuous, and its derivative is of bounded variationuniformly for all l 2 Rn with klk2 = 1.Hene, order of onvergene at most equal to 2 an be expeted.The numerial results in Table 4.3 were omputed with the expliitly knownfundamental solution, so that no errors our by the approximation of thefundamental solution. Nevertheless, we observe the expeted onvergeneorder for the �rst method and a breakdown of the onvergene order ofomposite Simpson's rule, whih is illustrated graphially in Figure 4.3.
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Fig. 4.3: Composite Simpson's rule with h = 0:5; 0:25ompared with the referene set



Computing Aumann's Integral 17Example 4.4 Consider the linear ontrol systemy0(t) 2 � 0 1�2 �3 � y(t) +B1(0) for almost all t 2 [0; 2℄;y(0) = �00�with the losed unit ball B1(0) � R2 .Then the fundamental solution is�(t; �) = � 2e�(t��) � e�2(t��) e�(t��) � e�2(t��)�2e�(t��) + 2e�2(t��) �e�(t��) + 2e�2(t��) � ;and the reahable set at time b = 2 is2Z0 �(2; �)B1(0)d�:In this ase, the support funtionÆ�(l; �(2; �)B1(0)) = k�(2; �)�lk2is arbitrarily often di�erentiable with bounded derivatives with respet to� uniformly on the set fl 2 R2 : klk2 = 1g.
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Fig. 4.4: Composite Simpson's rule ombined with Runge-Kutta (4)with h = 1:0; 0:5 ompared with the referene set



18 Robert Baier and Frank LempioFourth order of onvergene of omposite Simpson's rule is learly indi-ated by Table 4.4 and illustrated by Figure 4.4, where a very rough step-size h = 0:5 gives a remarkably good approximation (whih nearly doesnot di�er from the referene set within plotting preision). Comparing theresults using the expliitly known fundamental solution with the ombinedmethods using a numerial approximation of the fundamental solution, weobserve the same order of onvergene in Table 4.4, but higher starting er-rors. Notie that we have hosen appropriate methods for the omputationof the fundamental solution whih have the same order of onvergene asthe integration method.Table 4.1: Results for Example 4.1approximatednumerial method stepsize Hausdor� distaneomposite 2:0 1:9999999999999991trapezoidal rule 1:0 0:52375377899371940:5 0:13255401055063040:25 0:03324172250198651:0 0:52375377899371940:1 0:00532332625809850:01 0:00005324204542130:001 0:00000053242133190:0001 0:0000000053242024omposite 1:0 0:0316717053249587Simpson's rule 0:5 0:00215776978456630:25 0:00014012610426041:0 0:03167170532495870:1 0:00000362421542200:01 0:00000000036306250:001 0:0000000000000480



Computing Aumann's Integral 19Table 4.2: Results for Example 4.2approximatednumerial method stepsize Hausdor� distaneomposite 1:0� 3:9999999986840358trapezoidal rule 0:5� 0:85840734509425290:25� 0:20776220280996860:2� 0:13246880249843820:02� 0:00131603253153220:002� 0:0000131581652458omposite 0:5� 1:9056048962908503Simpson's rule 0:25� 0:42464391690473050:125� 0:08764395430023390:2� 0:13246880249843820:02� 0:00263241288528040:002� 0:0000263176810722
Table 4.3: Results for Example 4.3approximatednumerial method stepsize Hausdor� distaneomposite 1:0 0:2254227652525390trapezoidal rule 0:5 0:06049223327129650:25 0:01550003889047300:125 0:00389837027345400:1 0:00239978748291830:01 0:00002466707824190:001 0:00000024810244570:0001 0:0000000023598524omposite 0:5 0:0686732300277554Simpson's rule 0:25 0:01804166452852390:125 0:00494920140357960:0625 0:00126519818689810:1 0:00262196721628070:01 0:00002639632859720:001 0:00000022641524270:0001 0:0000000016145246
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Table 4.4: Results for Example 4.4appoximatednumerial method stepsize Hausdor� distaneomposite 1:0 0:9433330463362816trapezoidal rule 0:1 0:00243478767505690:01 0:00002436875392390:001 0:00000024366549870:0001 0:0000000024125214omposite 1:0 2:5354954374884917trapezoidal rule 0:1 0:0054487041523342ombined with 0:01 0:0000496413103789the method of 0:001 0:0000004919838970Euler-Cauhy 0:0001 0:0000000048984064omposite 1:0 0:1335888228107664Simpson's rule 0:5 0:02248590674276720:25 0:00162160534829110:125 0:00008450261547851:0 0:13358882281076640:1 0:00003321426954690:01 0:0000000030953542omposite 1:0 0:5738839013456635Simpson's rule 0:5 0:0130316902023255ombined with 0:25 0:0008327343054384Runge-Kutta (4) 0:125 0:00004572769813231:0 0:57388390134566350:1 0:00001807663727460:01 0:0000000018105748
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