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Abstract— We are concerned with the one dimensional linear
wave equation with Dirichlet boundary condition and Neumann
boundary control. It has been shown numerically that this
hyperbolic partial differential equation can be stabilized by
instantaneous control, i.e. model predictive control with the
shortest feasible prediction and optimization horizon. Our
contribution is the complete theoretical analysis.

I. INTRODUCTION

In this paper we consider the one dimensional linear wave
equation with Dirichlet boundary condition and Neumann
boundary control. Exact controllability in finite time of this
hyperbolic partial differential equation has been shown, cf.
[5]. However, an optimization horizon of at least 2L/c is
required in this approach. Here L denotes the length of the
domain and c the propagation speed of the wave. Since the
complexity and – as a consequence – the numerical effort
of the corresponding optimal control problem grows rapidly
with the horizon length, we pursue a receding horizon ap-
proach in order to reduce this horizon and thus the numerical
effort significantly.

Model predictive control (MPC) – often also termed re-
ceding horizon control – relies on an iterative online solution
of finite horizon optimal control problems. To this end, a
performance criterion is optimized over the predicted tra-
jectories of the system, cf. [10]. Typically, this optimization
based technique is used in order to deal with optimal control
problems on an infinite horizon. Hence, stabilizing terminal
constraints or terminal costs are introduced in order to ensure
stability, cf. [7]. However, the construction of an appropriate
Lyapunov–function which can be used as a terminal cost
remains a challenging task. In order to avoid this drawback
we consider unconstrained model predictive control which
seems to be predominant in practical – and in particular
industrial – applications, cf. [9].

Moreover, using unconstrained MPC is motivated by nu-
merical results which indicate that MPC performs well in
this setting, [6]. Indeed, this observation even holds for
the shortest feasible prediction horizon in our appraoch –
a special case which is also termed instantaneous control
in the literatur. Our contribution is the complete theoretical
analysis of this observation. To be more precise, we exploit
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the stability and performance analysis which is presented in
[1] in order to prove stability of the closed loop rigorously.
However, in constrast to prior results for finite dimensional
linear systems which are based on the explicit knowledge
of the optimal value function, cf. [8], [11], our results are
derived from a controllability condition which is easier to
verify – especially in view of generalizations to nonlinear
and/or infinite dimensional systems, cf. [3], [4].

The paper is organised as follows. In Section II we give
a precise problem formulation and shortly summarize the
needed results from [1]. In the ensuing section we construct
suitable stage costs and explain why it is not possible to
obtain comparable results which employ the classical energy
norm of the system in the MPC cost functional. In Section
IV we deduce our central controllability condition which
allows for concluding stability of the closed loop. In the
following section we illustrate the results by means of a
numerical example and show that the derived bounds are
tight. In Section VI we conclude the paper and give a short
outlook on future work.

II. PROBLEM FORMULATION AND PRELIMINARIES

We are concerned with the one dimensional linear wave
equation with homogeneous Dirichlet boundary condition on
the left and Neumann boundary control on the right boundary
of the domain Ω = (0, L):

ytt(x, t)− c2yxx(x, t) = 0 on Ω× (0,∞) (1)
y(0, t) = 0 on (0,∞) (2)

yx(L, t) = u(t) on (0,∞) (3)

Here c 6= 0 denotes the propagation speed of the wave. The
initial data are given by

y(x, 0) = y0(x) and yt(x, 0) = y1(x)

with (y0, y1) ∈ C([0, L])×L2([0, L]). Moreover, the solution
space is given by

X = {y : y ∈ L2(0, t∗; H1([0, L])) with
yt ∈ L2(0, t∗; L2([0, L])), ∀t∗ > 0}

and u ∈ L∞([0,∞]). Our goal consists of steering the
system to the origin, which is the unique equilibrium. To
this end, we consider unconstrained model predictive control
(MPC) with the cost functional

JN (y(·, 0), u(·)) :=
N−1∑
n=0

∫ L

0

%(yx(x, nT ), yt(x, nT )) dx

+ λ

∫ NT

0

u(t)2 dt. (4)



An obvious choice for the function ρ(·, ·) in (4) is given by

%(yx(·, t), yt(·, t)) = yx(·, t)2 + (yt(·, t)/c)2 (5)

which corresponds to measuring the energy of the system
at each multiple of the given time parameter T . The second
term in our cost functional penalizes the control effort with
regularization parameter λ ≥ 0.

In order to prove stability of the receding horizon closed
loop and deduce tight performance estimates, we apply
results from [2], [3] which are formulated in discrete time.
Thus, we rewrite (1) as

z(n + 1) = f(z(n), u(n)) (6)

with state z(n) ∈ Z := H1(Ω) and control u(n) ∈ U :=
L∞([0, T ), R). Here the discrete time n corresponds to the
continuous time nT which implies z(n) = y(·, nT ). We
denote the solution trajectory for a given control sequence
u : N0 → U by zu(·).

This allows for preserving the cost functional (4) in the
discrete time setting by suitably chosen stage costs l : Z ×
U → R+

0 :

JN (z(0), u) =
N−1∑
n=0

l(zu(n), u(n)).

Moreover, we define the optimal value function

VN (z(0)) := inf
u∈U

JN (z(0), u(·)) (7)

which is the truncated sum induced by the optimal value
function V∞(z(0)) := infu∈U

∑∞
n=0 l(zu(n), u(n)) on the

infinite time horizon. Hence, our goal consists of finding a
feedback map µN : Z → U such that the feedback controlled
system

zµ(n + 1) = f(zµ(n), µ(zµ(n))) (8)

is asymptotically stable. To this end, we briefly summarize
some stability and suboptimality results which can be found
in [1].

Proposition 1: Assume that there exists α ∈ (0, 1] such
that for all z ∈ Z the relaxed Lyapunov inequality

VN (z) ≥ VN (f(z, µN (z))) + αl(z, µN (z)) (9)

holds. Then for all z ∈ Z the estimate

αV∞(z) ≤ αJ∞(z, µN ) ≤ VN (z) ≤ V∞(z) (10)

holds. If in addition, there exist z∗ ∈ Z and K∞-functions1

α1, α2 such that the inequalities

l∗(z) := min
u∈U

l(z, u) ≥ α1(d(z, z∗)) and (11)

VN (z) ≤ α2(d(z, z∗)) (12)

hold for all z ∈ Z, then z∗ is a globally asymptotically stable
equilibrium for (8) with feedback µ = µN and Lyapunov
function VN . Here d(·, ·) is an arbitrary metric on Z.

1A function α : R+ → R+ is said to be of class K∞ if it is continuous,
strictly increasing, and unbounded with α(0) = 0

A metric on Z which is suitable for our analysis will be
specified in Section IV-B.

In order to estimate α in (9) we require the following
controllability property.

Definition 1: We call the system (6) exponentially con-
trollable with respect to the running cost l if there exist an
overshoot bound C ≥ 1 and a decay rate σ ∈ (0, 1) such
that for each z ∈ Z there exists uz ∈ U satisfying

l(zuz
(n), uz(n)) ≤ Cσnl∗(z) (13)

for l∗(·) as defined in (11).
Remark 1: Note that exponential controllability with re-

spect to the running costs is not as restrictive as it may seem.
Since the running costs can be used as a design parameter,
this includes even systems which are merely asymptotically
but not exponentially controllable, cf. [3].

Based on this controllability condition and Bellman’s
optimality principle a formula which enables us to explicitly
calculate a lower bound – depending on the overshoot C and
the decay rate σ – for the suboptimality degree α in (9) is
introduced in [3, Theorem 5.3].

Theorem 1: Assume that the sytem (6) and l satisfy the
controllability condition from Definition 1 and let the opti-
mization horizon N be given. Then the suboptimality degree
αN from (9) is given by

αN := α = 1−
(γN − 1)

∏N
i=2(γi − 1)∏N

i=2 γi −
∏N

i=2(γi − 1)
(14)

with γi = C(1− σi)/(1− σ).
Remark 2: Theorem 1 is strict in the following sense. For

negative α there exist a system (6) and running costs l which
satisfy (11) and (12) but for which the closed loop system
with µ = µN is not asymptotically stabilizable, cf. [2].

As a consequence of Theorem 1 the closed loop (8) is
asymptotically stable and the suboptimality estimate (10)
holds whenever α is positive and (11), (12) are satisfied.

III. DESIGN OF THE STAGE COSTS ρ(·, ·)
Our goal consists of showing instantaneous controllability

of the linear wave equation (1)–(3), i.e., controllability of the
respective MPC closed loop with optimization horizon N =
2. Since the results from Section II are based on the relaxed
Lyapunov Inequality (9), we have to construct suitable stage
costs which allow for deducing this estimate. To this end, we
consider (1)–(3) with parameters L = c = 1 and λ = 10−3

numerically. Let the initial data be specified by

y0(x) :=

 +2x− 0.5 : 0.25 < x ≤ 0.50
−2x + 1.5 : 0.50 < x ≤ 0.75

0 : otherwise

and y1(x) ≡ 0. For solving the finite horizon optimal control
problems we discretize the spatial domain with discretization
parameter ∆x = 0.001 and employ the software package
PCC2 in order to solve the resulting tasks. Moreover, we set
the sampling time T = 0.025. Our numerical computations

2see http://www.nonlinearmpc.com/



indicate that model predictive control stabilizes these initial
data with the stage cost based on (5), cf. the dashed line
in Figure 1. However, one observes plateaus, i.e., areas on
which the optimal value function VN (·) from Equality (7)
exhibits constant values. Thus, the cost functional which is
based solely on the energy of the system does not provide a
strictly decreasing function for arbitrary initial data and – as
a result – cannot be used as a Lyapunov function in order to
conclude asymptotic stability. As a consequence, the corre-
sponding solution does not satisfy (9) which is an essential
requisite in order to deduce instantaneous controllability.

This problem is closely related with the finite propagation
speed of the wave. Since the energy of the considered initial
data is located in the middle of our domain Ω it can not
be reduced by means of our boundary control until T , i.e.,
during the first sampling period. This explains why it is
not possible to maintain a strict decrease on this short time
interval. As a remedy we consider stage costs based on

%(yx(·, t), yt(·, t)) = ω1(·)(yx(·, t) + (yt(·, t)/c))2

+ ω2(·)(yx(·, t)− (yt(·, t)/c))2

with weight functions

ω1(x) := 1 + L + x and ω2(x) := 1 + L− x. (15)

This enables us to employ our cost functional for the desired
purpose. The weight functions ωi : [0, L] → R+

0 , i =
1, 2, measure the distance to the right boundary and take
the direction of movement into account, i.e., they measure
the time we have to wait until we are able to influence
the energy. Note that this approach contains the prior one
(ω1 = ω2 ≡ 1). Figure 1 depicts the optimal value function
V2 along the closed loop trajectories for ω1 = ω2 ≡ 1,
i.e., the classical energy norm (dashed line), in comparison
to its counterpart based on the weight functions defined
above (solid line). Apparently each of these two curves
is monotonically decreasing, yet only the value along the
trajectory corresponding to (15) is strictly decreasing.
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Fig. 1. Comparison of the optimal value function V2(·) for different weight
functions in the running costs l(·, ·). The dashed curve corresponds to the
classical energy norm, i.e., ω1 = ω2 ≡ 1. Whereas the continuous curve is
based on our weighted energy from (15).

IV. CONTROLLABILITY OF THE WAVE EQUATION

The goal of this section consists in deducing an overshoot
bound C and a decay rate σ which satisfy the proposed
controllability condition from Definition 1. This enables us
to apply Theorem 1 in order to verify the assumptions of
Proposition 1 and – as a consequence – to conclude stability
of the closed loop (8), i.e., that the MPC feedback steers the
system to its equilibrium.

To this end, we use a control u?(·) which avoids reflections
on the right boundary. This way of proceeding simplifies the
involved calculations significantly. In order to perform this
step we employ the fact that the control sequence in (13)
does not need to be optimal – a key characteristic of our
approach. Moreover, since we focus on instantaneous control,
i.e., N = 2, Formula (14) is given by

α := α2 = 1− (C(1 + σ)− 1)2. (16)

In order to estimate the parameters C and σ from 13 we
choose the particular control

u(n) :=
1
2

(
yx(L− ct, nT )− yt(L− ct, nT )

c

)
(17)

which ensures that there do not occur any reflections on
the right boundary. By using this control the solution of (1)
coincides with the uncontrolled solution of the wave equation
on a semi-infinite interval [0,∞). The corresponding solution
can be calculated by D’Alembert’s method, cf. [12],

y(x, t) =
1
2
(y0(x + ct) + y0(x− ct))

+
1
2c

∫ x+ct

x−ct

y1(s) ds for x > ct,

y(x, t) =
1
2
(y0(ct + x)− y0(ct− x))

+
1
2c

∫ ct+x

ct−x

y1(s) ds for x < ct. (18)

In order to prove this fact, we consider yx(L, t). This yields

yx(L, t) = [y′0(L− ct)− y1(L− ct)/c] /2
= [yx(L− ct, 0)− yt(L− ct, 0)/c] /2 = u(0).

Thus, the initial conditions as well as the boundary con-
ditions coincide. As a consequence the solution of the
controlled wave equation coincides with the solution of
the uncontrolled wave equation on an unbounded domain.
Iterative application of this argument shows the assertion on
[0, iT ) for all i ∈ N≥1.

A. Overshoot bound C and decay rate σ

We begin with estimating the overshoot constant C from
(13) for the running costs defined in (15) and the control
which is specified in (17). To this end, we estimate the
control effort which is caused by (17). Since the chosen
control function is a certain fraction of the cost induced by



the current state we obtain the estimate
λ

4

∫ T

0

[yx(L− ct, nT )− yt(L− ct, nT )/c]2 dt

=
λ

4c

∫ L

L−cT

[yx(x, nT )− yt(x, nT )/c]2 dt

≤ λl∗(y(nT ))/c.

Here we have used the property ωi ≥ 1, i = 1, 2, of our
weight functions from (15). Using this estimate we obtain

l(y(n), u(n)) ≤ (1 + λ/c) l∗(y(nT )) = Cl∗(y(nT )) (19)

with C := (1 + λ/c). Again, note that we have not assumed
optimality of the control in our approach.

Next we show the inequality

l∗(y(i + 1)) ≤ σl∗(y(i)) (20)

with decay rate σ ∈ (0, 1). Inequality (20) is equivalent to
(1 − η)l∗(y(i)) ≥ l∗(y(i + 1)) with η := 1 − σ. Hence, it
suffices to establish the inequality

l∗(y(i))− l∗(y(i + 1)) ≥ ηl∗(y(i)) (21)

in order to show the desired inequality. The decisive tools
in order to establish this relation are the explicit formulas
given from (18) for the control defined in (17). Using these
formulas we perform the calculations∫ L

0

ω1(x) [yx(x, T ) + yt(x, T )/c]2 dx

=
∫ cT

0

ω1(x) [y′0(cT + x) + y1(cT + x)/c]2 dx

+
∫ L

cT

ω1(x) [y′0(x + cT ) + y1(x + cT )/c]2 dx

=
∫ L

cT

ω1(x− cT ) [y′0(x, T ) + y1(x)/c]2 dx

and ∫ L

0

ω2(x) [yx(x, T )− yt(x, T )/c]2 dx

=
∫ cT

0

ω2(x) [y′0(cT − x) + y1(cT − x)/c]2 dx

+
∫ L

cT

ω2(x) [y′0(x− cT )− y1(x− cT )/c]2 dx

=
∫ cT

0

ω1(x− cT ) [y′0(x) + y1(x)/c]2 dx

+
∫ L−cT

0

ω2(x + cT ) [y′0(x)− y1(x)/c]2 dx

in order to simplify the following arguments where we have
used ω2(cT − x) = ω1(x − cT ) in the last inequality.
Combining these equalities leads to

l∗(y(1)) =
∫ L

0

ρ(yx(x, T ), yt(x, T )) dx

=
∫ L

0

ω1(x− cT ) [y′0(x, T ) + y1(x)/c]2 dx

+
∫ L−cT

0

ω2(x + cT ) [y′0(x)− y1(x)/c]2 dx.

This equality allows for deducing an appropriate estimate in
order to derive our controllability condition. In consideration
of the equality

l∗(y(0)) =
∫ L

0

ω1(x) [y′0(x) + y1(x)/c]2 dx

+
∫ L

0

ω2(x) [y′0(x)− y(x)/c]2 dx,

the nonnegativity of ω2(·) on Ω, ω1(x)− ω1(x− cT ) = cT
and ω2(x) − ω2(x + cT ) = cT we obtain Inequality (21)
with η = cT/(1 + 2L):

l∗(y(0))− l∗(y(1))

≥ cT

∫ L

0

[y′0(x) + y1(x)/c]2 + [y′0(x)− y(x)/c]2 dx

≥ cT

1 + 2L
l∗(y(0))

Consequently, this leads to σ = 1−cT/(1+2L). This implies
– in combination with our estimate for the overshoot C –
exponential controllability in terms of the running costs, i.e.,

l(y(n), u(n)) ≤ Cl∗(y(n)) ≤ Cσnl∗(y(0)).

Hence, we have shown the validity of the controllability
condition given in Definition 1.

Remark 3: The decrease reflected by σ depends only on
the chosen weight functions. In addition, there occurs an
energy loss in the amount of∫ L

L−cT

ω2(x + cT )[y′0(x)− y1(x)/c]2 dx

This represents the energy which is removed by means of
the boundary control.

B. Stability of the closed loop

Since we have deduced explicit expressions for the over-
shoot C and the decay rate σ in (13), we are able to utilize
Theorem 1 in order to show stability of the receding horizon
feedback for optimization horizon N = 2, i.e., instantaneous
controllability. To this end, we need α2 > 0 with α2 from
(16). Thus, Theorem 1 ensures stability for

T >
(2 + 4L)λ
c(c + λ)

. (22)

For L = c = 1 this yields the estimate T > 6λ/(1 + λ).
Hence, the sampling interval has to be sufficiently large in
order to allow for compensating the control effort which is
reflected by the overshoot constant C. However, choosing a
small weight in the control penalization, e.g. λ = 10−3, this
results in a very short optimization horizon compared to the
time T̄ = 2L/c = 2 required for finite time controllability,
cf. [5]. It remains to establish (11) and (12). To this end we
choose α1(r) = r and define the metric d(z, z′) := l∗(z−z′)
which is well defined due to (2) and obviously satisfies (11).
Since ωi(·), i = 1, 2, is uniformly bounded by 1+L similar
arguments show that (12) is satisfied for α2(r) = 2(1 +
L)r. Hence, Proposition 1 ensures the desired stability of
the closed loop.



V. NUMERICAL RESULTS

In this section we revisit the example considered in Section
III in order to show that the derived bounds with respect to
the decay rate σ are tight.

We have already seen that using the weighted energy
norm with the weight functions defined in (15) exactly
encounters the problem which occurs for the classical energy.
Hence, this approach enables us to employ V2 as a Lyapunov
function which satisfies the relaxed Lyapunov Inequality (9).
However, the deduced decay rate σ seems to be pessimistic at
first glance. In order to investigate this issue more accurately
we calculate the corresponding σ–values for the example
from Section III. In order to visualize our theoretically
calculated estimate we have drawn a horizontal line at
1−T/3 in Figure 2 which shows that the calculated values for
the classical energy are arbitrarily close to one and exceed
our estimated bound whereas the values corresponding to
the stage costs which incorporate (15) are smaller than
1 − T/3 which confirms our theoretical results. Moreover,
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Fig. 2. We depict the corresponding σ–values with respect to the classical
(◦) and the weighted energy (15, x) from Inequality (20). Moreover, we have
drawn a horizontal line at 1 − T/3 in order to indicate our theoretically
derived bound.

the considered example shows that a further improvement of
the deduced estimate is not possible.

The solution trajectory of the instantaneous controlled
wave equation is depicted in Figure 3. Indeed, it even
coincides with the solution trajectory corresponding to an
optimization horizon of length 2L/c = 2 which is needed
in order to show finite time controllability. Hence, model
predictive control with N = 2 performs very well for
the stabilization task in consideration. The computing time
for solving the instantaneous control problem on the time
interval [0, 2] is less than one second even for a fine spatial
discretization.

VI. OUTLOOK

We have proven the instantaneous controllability of the
one dimensional linear wave equation (1)–(3) rigorously.
Numerical results indicate that MPC also works well for the
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Fig. 3. The solution trajectory for the instantaneous controlled wave
equation (MPC with optimization horizon N = 2) for the initial data given
in Subsection III.

two dimensional wave equation. Hence, our one of our future
goals consists of proving this fact.
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[2] L. Grüne, Analysis and design of unconstrained nonlinear MPC
schemes for finite and infinite dimensional systems, SIAM J. Control
Optim. 48 (2009), 1206–1228.
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