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ABSTRACT

Non-native plant species that become invasive can impact native communities and
exclude native species. Understanding what drives the ongoing success of dominant non-
native species is essential to mitigating the impacts of non-native species and predicting
where mitigation will be successful. However, the key processes that determine invasion
outcomes are context dependent and change throughout the life cycle of an invasion.
Consequently, predicting invasion success and non-native species impact remains
challenging. In this thesis [ aim to identify dominant non-native species having significant
negative impacts on grassland communities. I present four studies that span the major
stages of an invasion: the spread and establishment of non-native species, the impacts of
non-native species following establishment and the persistence of these impacts in the

long term.

A common theme throughout is the need to disentangle the relative importance of site
suitability and competitive interactions between non-native and resident species. We
present a framework for understanding the landscape effects on the spread of non-native
species. Long-distance dispersal events, coupled with the distribution of sites suitable for
establishment, are the key determinants of non-native species spread. We also show that
non-native species impact is determined by the conditions under which dominant non-

native species maintain competitive superiority.

We develop a modelling approach for quantifying the impacts of dominant non-native
species in a community context. We find that non-native species impact varied
significantly under different conditions of resource availability and disturbance.
Experimentally validating this analysis, we test the role of environmental and
competitive conditions in determining these impacts. We also show that many non-native
species can persist long-term. Our findings suggest that rehabilitation can be effective,
but that interventions should target communities where the conditions facilitating non-

native species impact are not expected to change.

Overall, this thesis highlights the difficulties in separating the different processes

underlying invasion success and non-native species impact. Because environmental and

ix



competitive drivers are both important, the relative importance of different processes
can be confounded in observed patterns of species abundance. Combining observational
and experimental data is essential, as neither approach is enough to conclusively identify
which processes are most important at determining success and impact at different
stages of the invasion lifecycle. The studies in this thesis demonstrate when models can
fail and highlight the need for experiments that are both general and robust. The need to
compare model and experiment is especially acute in ecology, where natural settings are
often far from controlled, but managing the impacts of dominant non-native species

requires action under uncertainty.

Keywords:

Invasion, non-native species, grasslands, dominance, spread, impact, joint-species

modelling, rehabilitation, competition.
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1.1 General drivers of invasion, or a lack thereof

Invasion ecology focuses on the processes that allow new species to move between
communities, finding space to settle and obtain the resources to reproduce and persist
among established groups of species (Ehrenfeld, 2010; Mack et al., 2000). Research in
invasion ecology often traces the path of conspicuous non-native species through a series
of steps common to all invasions: introduction, establishment, impact and spread
(Blackburn et al., 2011; Richardson et al., 2000). Conspicuous non-native species tend to
be easily identifiable and often particularly damaging, diminishing the condition of
invaded communities by outcompeting or excluding resident species (Vila et al., 2011).
Some non-native species can have severe impacts beyond community composition (Falk-
Petersen, Bghn, & Sandlund, 2006; Richardson et al., 2000), such as habitat transformers
(organisms that change the condition, form or nature of a natural ecosystem) and
ecosystem engineers (those that change the natural fluxes, feedbacks and availability of
resources). The impacts of invasions are especially concerning when dominant, non-
native species are pervasive across large geographic areas (Parker, Simberloff, &
Lonsdale, 1999). Therefore, invasive species management typically involves targeting
problematic invaders to limit their spread and impact through eradication. While this
focus on problematic invaders is necessary, we do not fully understand the general
drivers of invasion success, nor invasive species impact (Catford, Jansson, & Nilsson,

2009; Kueffer, PySek, & Richardson, 2013).

In many respects, the search for general drivers of invasion success mirrors the
fundamental questions of community ecology (Gurevitch, Fox, Wardle, Inderjit, & Taub,
2011; Shea & Chesson, 2002). The mechanisms underlying species coexistence are
central to understanding why diverse communities exist (Chesson, 2000; Vellend, 2016)
and understanding how interactions between species within diverse communities can
help explain how invasive species spread, establish, persist (Godoy, 2019; Shea &
Chesson, 2002; Tilman, 2004). It is tantalising to think that the assembly of communities
could be explained with a simple suite of rules using easily measurable indicators of
environmental conditions and species traits (Adler, Fajardo, Kleinhesselink, & Kraft,
2013; Kraft, Godoy, & Levine, 2015), but while modern ecology has made great strides
toward understanding the general principles that support diverse communities

(Chesson, 2018; Ellner, Snyder, Adler, & Hooker, 2018; Letten, Ke, & Fukami, 2017), it
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remains unclear which conditions lead these processes to explicable deterministic
outcomes, or to chaotic systems where stochasticity rules (Adler, HilleRislambers, &

Levine, 2007; Grainger, Letten, Gilbert, & Fukami, 2019; Weiher et al., 2011).

Similarly, identifying general patterns that predict which non-native species become
dominant and have large impacts is difficult because the drivers of invasion are likely
context dependent (Catford et al., 2019; Gross, Liancourt, Butters, Duncan, & Hulme,
2015). A central theme of this thesis is therefore understanding when invasion success is
driven by variation in environmental conditions, or by interspecific competitive
interactions. A particularly compelling idea is that the relative importance of site
suitability and competitive hierarchies within a community can be explained by a few
dichotomous axes of plant functional traits (Diaz et al., 2015; Funk et al., 2017; Kunstler
et al.,, 2015). Some species have traits that are suited to take advantage of disruption and
opportunity, others have traits that advantageous under stable conditions (Westoby &
Wright, 2006). Simply put, no one species can be good at everything (Tilman, 2011).
Studying how site suitability and competitive interactions change with resource
availability, disturbance and trophic structure can explain which community assembly
processes enable dominant non-native species to invade, as well as inform the

management of existing and future invasions (Colautti et al., 2014; Kueffer et al.,, 2013).

This thesis describes a series of studies covering the primary stages of an invasion: non-
native species spread, establishment, impact, and long-term persistence in invaded
communities. In the section that follows, I summarise the key processes and patterns of
each stage and consider which mechanisms might be driving the impacts of dominant
non-native species on communities of coexisting species. We use communities of
grassland plant species as model systems throughout. Grassland and grassy woodland
communities in Australia, South America and western North America have undergone
massive compositional change since European settlement (Mack, 1989), with many now
invasive species having been introduced intentionally to facilitate the conversion of
native communities to pastoral ecosystems (Driscoll, Catford, et al., 2014). Because
grassland species are sessile, numerous and well distributed, communities can be
surveyed across square meters, hectares, or continents, making them useful candidates

to study how environmental conditions and competition influence community assembly.



I conclude this introduction with an overview of the aims and structure of thesis before

presenting our primary findings on dominant non-native grassland species.

1.2 The life cycle of an invasion

1.2.1 Introduction and spread:

Invasions begin when propagules arrive at an uncolonized site with conditions suitable
to establish, reproduce and disperse. The large-scale distribution of non-native plant
species can be predicted from environmental covariates, but also human activity (Pysek
et al.,, 2010) which suggests that the original introduction of many non-native species is
due to anthropogenic disruption. These introductions can be unintentional or intentional
(Gravuer, Sullivan, Williams, & Duncan, 2008). Unintentional introductions occur when
propagules are accidentally dispersed by vectors, including (but not limited to) cargo,
tires, outdoor equipment, wildlife, livestock, and pets. Biosecurity efforts attempt to
minimise the risk of unintentional introductions by intercepting foreign material in
transport (Sikes et al., 2018). Intentional introductions differ in that propagules are
transported en masse to new locations where they are cultivated, typically for economic
benefit (Gravuer et al, 2008). Many non-native plants are introduced for pasture
improvement, forestry, and ornamental trade. These economic activities are the primary
driver of non-native species introductions in many countries (Dehnen-Schmutz, Touza,
Perrings, & Williamson, 2007) and the rate of species introductions is expected to
continue to increase with growing global connectivity (Hulme, 2009; Seebens et al,,

2018).

Once introduced, some non-native species reproduce and disperse, driving further
spread beyond the original point of introduction. Others, however, are only able to persist
as isolated, often small populations. This variation in invasion success may be due to
differences in propagule pressure (Levine, 2000). While some non-native species may
depend on chance events and few introductions to colonize new areas (Shea & Chesson,
2002), others often invade established communities through sustained introduction of a
large number of propagules (Colautti, Grigorovich, & Maclsaac, 2006), either through
repeated introduction events or a large number of individuals per introduction
(Lockwood, Cassey, & Blackburn, 2009). Difference in introduction outcomes can also be

related to the compatibility of environmental conditions and introduced species niches
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which can vary both spatially and temporally (Hastings et al., 2005). High rates of spread
are often associated with habitat modification, altered disturbance regimes, and low
levels of environmental stress, especially high resource availability, all of which facilitate
opportunistic species that may be less suited to intensely competitive environments
(Catford etal., 2012). However, dominant non-native species come in all shapes and sizes
and often invade many different communities, which suggests that facilitation through
introduction and disturbance may be less important in determining the success of their

spread.

1.2.2 Establishment:

One reason propagule pressure is important to invasion success is that a greater numbers
of introduction attempts increases the likelihood of establishment (Duncan, Cassey, Pigot,
& Blackburn, 2019). But propagule supply alone does not explain successful
establishment. Introductions to inhospitable sites can result in small founding
populations that fail to establish due to demographic stochasticity and Allee effects
(Duncan, 2016). Although large native ranges are typically indicative of tolerance to a
wide range of environmental conditions, this has been shown to have poor predictive
power of invasion success (Williamson, 2006), suggesting that there are other factors
describing the establishment of non-native species. Some non-native species have
mutualistic symbioses with specialist pollinators, rhizobial bacteria or mycorrhizal fungi
and may face difficulty establishing if these facilitators are absent from newly colonized
sites (Wandrag, Sheppard, Duncan, & Hulme, 2013). Warrington et al. (2019) show that
these mutualisms can be maintained in non-native ranges if symbionts are co-introduced
along with non-native plant species, further highlighting how establishment can depend

on site conditions more specific than just coarse environmental indicators.

It is the interaction between site suitability and propagule abundance (the number of
individuals that are introduced) that appear to be the primary drivers of establishment
success (Duncan, 2016). The importance of site suitability for establishment is
demonstrated in the positive relationship between native and non-native richness,
because the processes favouring successful establishment favour both groups (Levine,
2000; Prober & Wiehl, 2012). Establishment in grassland communities is often facilitated
by disturbance (HilleRisLambers, Yelenik, Colman, & Levine, 2010; MacDougall &

Turkington, 2005). Disturbance in grasslands can lead to nutrient enrichment or the



temporary removal of competitors (J. C. Lake & Leishman, 2004; Prober, Thiele, &
Speijers, 2013), thereby increasing the number of safe-sites where niches are vacant and
available for both native and non-native species to establish (Wandrag, Catford, &
Duncan, 2019). However, once colonised, disturbance must enable greater recruitment
of individuals than are lost, lest established non-native populations decline (Buckley,

Bolker, & Rees, 2007).

1.2.3 Impact:

Following establishment, invasion success is determined by the rate at which populations
of dominant non-native species increase from rarity within existing communities (sensu
Chesson, 2000). Here, invaders may face biotic resistance, where the expansion of newly
established non-native species is prevented by the resident community (reviewed in:
Levine, Adler, & Yelenik, 2004). Biotic resistance can be encountered where resident
species share overlapping niches with the invading species, meaning that they must share
access to common resources (Grainger, Levine, & Gilbert, 2019; Shea & Chesson, 2002)..
Niche overlap is common among plants that all share common drivers of growth and
mortality (Farrior et al.,, 2013; Mortensen et al., 2018) as they compete for space, water
and nutrients during recruitment and reproduction. If the resident species are superior
competitors, then established non-native species may be restricted to small,
opportunistic populations. Alternatively, if the invader occupies an uninhabited niche, for
example a deep-rooted plant establishing in a community of shallow-rooted residents,
then it will experience no resistance and can expand within the community with no

impact on residents (MacDougall, Gilbert, & Levine, 2009).

Impact occurs when competition between species with overlapping niches is decided by
a fitness advantage of the invader, causing dominant non-native species to reduce the
population growth of resident species more than they are impacted by resident species
themselves (I. T. Carroll, Cardinale, & Nisbet, 2011; Tilman, 1988). In extreme cases,
impact can lead to reduced local species richness when subordinate residents are
excluded by dominant non-native species (Carmel et al., 2017; Catford, Bode, & Tilman,
2018). Invading species can impact communities in many ways, through resource
competition, altered disturbance cycles, the accumulation of litter (Brooks et al., 2004;
Crooks, 2002; Levine et al., 2003), and indirect effects such as the attraction of parasites

or predators (Chesson & Kuang, 2008; Vila etal., 2011). Mechanisms of impact that create
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positive feedbacks can disproportionately affect resident species and community

structure by favouring non-native species.

Andropogon gayanus (Gamba grass) provides a good example of how complex these
effects can be (Buckley et al,, 2007). Andropogon gayanus is a dominant non-native
species, prevalent in in Northern Australia where it was introduced to improve pasture
for cattle. But because Andropogon gayanus produces a higher fuel load than the native
savanna grasses, fires become more intense (Rossiter, Setterfield, Douglas, & Hutley,
2003), disrupting native communities and encouraging greater establishment arriving
Andropogon gayanus individuals, thereby creating a grass-fire feedback that can result in
native species exclusion (D’Antonio & Vitousek, 1992). Additionally, the litter produced
by Andropogon gayanus is nitrogen rich, thereby tightly linking nutrient cycling to fire
regime (Rossiter-Rachor, Setterfield, Douglas, Hutley, & Cook, 2008) and reducing
available resources for competitors (Rossiter-Rachor et al., 2009). The dominance of
Andropogon gayanus can impact larger landscape factors such as habitat structure for
fauna (Parr, Ryan, & Setterfield, 2010) and ecosystem primary productivity (Beringer,
Hutley, Tapper, & Cernusak, 2007), but this thesis focuses primarily on non-native

impacts on community composition.

Luckily, only a subset of non-native species become dominant and have substantial
impacts (Lai, Mayfield, Gay-des-combes, Spiegelberger, & Dwyer, 2015). Distinguishing
between the contexts in which non-native species have minor effects and those where
non-native species have large impacts is vital to prioritizing management efforts
(Richardson et al., 2000). However, identifying these impacts can be difficult, particularly
where they interact with other drivers of community change (Didham, Tylianakis,
Gemmell, Rand, & Ewers, 2007). The per-capita impact of non-native species can change
between native and non-native ranges (Parker et al., 1999) and be moderated by the
presence or absence of other species in the community (Levine, Bascompte, Adler, &
Allesina, 2017). If the dominance of non-native species facilitates the subsequent
establishment of further invaders, a near total transformation of native to non-native
communities can occur (Jeschke etal., 2012; Simberloff & Von Holle, 1999). This variation
in invader effects means that impact can depend on both environmental and competitive

contexts, which often frustrates simple comparisons between communities.

1.2.4 Persistence:



Once non-native species are identified as having large impacts, the major question
becomes: how should we manage dominant non-native species that have established in
invaded communities? The chronic effects associated with the persistence of these
dominant non-native species represent the primary ecological (and economic) outcomes
of species invasions, yet long-term effects are seldom studied (Strayer, Eviner, Jeschke, &
Pace, 2006). Complete eradication is possible and recommended when established
populations are small, (Simberloff, 2003), however the primary drivers of invasion must
also be addressed, lest eradication leave a ‘weed-shaped hole’ (Buckley et al., 2007). In
many cases, especially in heavily invaded communities, invader impacts are irreversible
and eradication is impossible (S. P. Carroll, 2011). Here, the future impacts of non-native
species can be controlled by manipulating the environmental and competitive
components of community assembly to limit abundance of dominant species. Declines in
non-native dominance can be brought about by passive regeneration of resident
communities (Bellingham, Peltzer, & Walker, 2005; Fensham, Butler, Fairfax, Quintin, &
Dwyer, 2016). More intensive interventions may be required to facilitate recovery if
native species are unable to re-establish (Derham, Duncan, Johnson, & Jones, 2018).
Knowing which interventions and when they are required relies on being able to identify
and predict the impacts of dominant non-native species and understand how they may

change in the future (D’Antonio, Jackson, Horvitz, & Hedberg, 2004).

1.3 Summary

The key processes that determine invasion success and invasive species impact are
context dependent and changes throughout the life cycle of an invasion. Species
introductions typically occur due to human driven propagule pressure, but less is known
about how variation between species and among introduction sites causes some non-
native species to spread of their own accord. The interaction between propagule pressure
and site suitability is particularly important for driving establishment, whereas
competitive resistance from the resident community is not. However, competitive
differences do describe how non-native species interact within a community and are
central to understanding the impacts of established non-native species. The difficulty in
predicting this impact stems from changes in species interactions in different

environmental and community contexts. The impacts of some dominant non-native



species appear to persist for long time periods, whereas other species may only be
transient. Management needs to understand what determines the ongoing success of

dominant non-native species, where their removal most often results in reinvasion.

1.4 Aims

We suggest that viewing invasion in the context of environmental and competitive
drivers of community assembly could act as a basis for better empirical studies and
monitoring programs. This thesis aims to improve the effectiveness of our response to
invasive species by contributing to fundamental research in three main areas: 1) the
development of methods to identify potentially invasive plants; 2) the assessment of the
impacts of invasive plants that have already arrived in native communities; and 3) the
development of ecological restoration strategies for managing invasive plant impacts in

the future.

1.5 Chapter descriptions

In Chapter 2 (Landscape effects on the spread of invasive species) my co-authors and

[ conduct a selective review of research focused on how landscape factors contributed to
the spread of invasive species, both plant and animal, in the last 5 years (2010-2015). We
organise this research in terms of the composition and configuration of habitats and
explore how heterogeneity in either can influence the pattern of invasive species spread
in complex ways. Studying how landscape composition and configuration influences
dispersal behaviour and how local population growth varies across landscapes can help
to understand how species spread. Interactions between species demographic processes
and landscape heterogeneity can then be used to identify potential invaders and areas at

risk.

In Chapter 3 (Measuring competitive impact: joint species modelling of invaded plant

communities) we explore methods to quantify the impacts of non-native species that
dominate native plant communities by competitively displacing native species. Joint-
species distribution models (JSDMs) can potentially disentangle the relative mechanisms
of invasive species dominance by simultaneously modelling how species respond to
environmental variation and to changes in community composition. We use a JSDM to
model variation in plant cover of an invaded grassland community in Canberra, Australia
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to identify impactful invaders that cause other species to decline in abundance. In
combination with experimental manipulations and analyses of species functional traits,
we explain how the impact of two dominant non-native species occurs at high fertility
sights, in the absence of herbivores, primarily through light competition, and suggest how

these non-native species could be managed to reduce their impacts.

However, the inferences of our JSDM analysis are primarily phenomenological, meaning
that although our model captured the observed patterns of abundance well, it lacked an
ability to explain how they were generated. We attempted to validate these findings
experimentally in Chapter 4 (Inferring the strength of plant competition from field

data: reconciling field and experimental results). We found that while our J[SDM

correctly identified the strong competitive interactions of dominant invasive species, it

suffered a flaw common to studies of observational data and underestimated the strength
of competition. In the glasshouse, all species had strong positive responses to increasing
soil fertility, where our phenomenological model mis-predicted that many native and
non-native species would decrease in abundance at high fertility sites. This means that
the competitive effect of dominant species remained confounded with environmental
variation, demonstrating a very real pitfall of estimating the competitive impact of

invasive species, especially where species have been excluded.

Lastly, Chapter 5 (Can _rehabilitation alter long-term trajectories of vegetation
change in degraded grasslands?) investigates how the invaded communities may be

managed in the future, by seeking to answer whether rehabilitation interventions have
net positive, long-term effects on community structure or whether these effects are
overridden by deterministic successional change. We present a case-study from
Minnesota, USA where seed addition had small, positive effects on native species
abundance after 25-years, but importantly, separating this effect from natural variation
in the succession of degraded old fields was only possible with an extensive dataset of
reference communities. Finding suitable control plots to evaluate the rehabilitation of
invaded communities is a challenging problem that requires greater consideration when

testing and evaluating courses of invasive species management.
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1.6 Thesis outline

While these chapters follow a common thread of invasive species research, they are
presented herein as standalone scientific articles, each accompanied by their specific
background, aims and findings. I summarise the combined contribution of my research
with a summary and suggestions on the common futures of community and invasion
ecology may hold. Finally, acknowledgements of support, a bibliography and several
appendices are included at the end of this thesis. These appendices that include
additional detail, figures, and tables to support each article, and referred to in text with

the letter of the appendix heading.
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2.1 Abstract

Landscapes differ in the composition and configuration of habitats, and this
heterogeneity can influence the manner in which invasive species spread in complex
ways. To understand this complexity, we outline a framework that identifies how
landscape heterogeneity influences spread by causing dispersal behaviour and local
population growth to vary across the landscape. We use this framework to review
progress over the last 5 years in understanding landscape effects on invasive spread,
focussing on the role of interactions between landscape heterogeneity, dispersal, and

population processes.
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2.2 Introduction

Species introduced to regions outside their native range become invasive when they
spread away from the site of initial introduction to establish self-sustaining populations
in new locations (Richardson et al., 2000). Understanding the processes that control the
pattern and rate at which invasive species spread is key to forecasting and managing their
potential impacts (Caplat, Coutts, & Buckley, 2012; Letnic, Webb, Jessop, & Dempster,
2015; Tingley et al.,, 2013).

Much of our understanding of spread dynamics comes from mathematical models of
populations expanding across homogeneous landscapes (Hastings et al., 2005; Skellam,
1951; van den Bosch, Hengeveld, & Metz, 1992). However, invasions typically unfold
across more complex landscapes, and attention has shifted toward understanding how
landscape heterogeneity (the composition and configuration of habitats) can influence
the pattern and rate of invasive species spread (Higgins, Richardson, & Cowling, 1996;
Marco & Paez, 2000; Shigesada & Kawasaki, 1997; With, 2002). Perhaps the dominant
theme to emerge from this research is the wide variation in outcomes obtained from
relatively simple spread models, with this complexity arising for three key reasons. The
first is that the pattern and rate of species spread is context specific, depending on both
the traits of the species concerned and individual landscape composition and
configuration. Second, theoretical studies show that the key demographic processes
driving spread, including rates of dispersal and local population growth, can have non-
linear responses and both interact and feedback on one another, leading to highly
variable outcomes given slight changes to demographic parameters, landscape
configuration or starting conditions (Coutts, van Klinken, Yokomizo, & Buckley, 2011).
Finally, recent work has highlighted the role that demographic and environmental
stochasticity can play in affecting spread rates, with their influence mediated by
interactions with other demographic processes (Jongejans, Shea, Skarpaas, Kelly, &
Ellner, 2011; Pachepsky & Levine, 2011). These complex interactions and the varied
outcomes they generate make it difficult to identify general principles governing the
effect of landscape structure on invasive spread (Melbourne & Hastings, 2009; Schreiber

& Lloyd-Smith, 2009).
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Our aim in this review is twofold. First, to illustrate the potentially complex interactions
that can drive spread we develop a framework that aims to capture the key processes
underlying spread and use this framework to identify the ways in which landscape
heterogeneity can influence the spread of invasive species. Second, using this framework
we review progress over the last five years in understanding landscape effects on

invasive spread.

To do this, we conducted a systematic review of studies published since 2010 as indexed

by Web of Science and Google Scholar, using the following Web of Science keywords:

TOPIC: ((invas* OR alien OR exotic) AND (land*)) AND (spread OR
expansion) AND YEAR PUBLISHED: (2010 - 2015).

This returned 809 articles, which we refined to 503 by specifying the following Web of

Science fields:

Environmental Sciences Ecology OR Plant Sciences OR Biodiversity

Conservation OR Zoology OR Agriculture OR Marine Freshwater Biology.

These 503 articles were further narrowed to 180 based on their title. We reviewed the
abstracts of these 180 articles and identified a subset we considered most relevant to the
aims of this review. Our choice was selective: there have been several excellent reviews
of landscape effects on invasive spread (Hastings et al., 2005; Vila & Ibafiez, 2011; With,
2002), and rather than covering much of the same ground, we focus on recent
developments in understanding how landscape heterogeneity and interactions between
spread processes generate variation in spread dynamics, using the framework we

develop

2.3 Conceptual framework for spread

Spread involves an increase in the number of locations or area occupied by a species
(Coutts et al, 2011). At its core, spread is a population process that can be understood as
a repetitive sequence of events (Figure 2.1): individuals arrive and settle at a location,
with settlement implying that arriving individuals persist at that location. Given
conditions suitable for reproduction, those individuals then produce propagules that

either contribute to local population growth or disperse to new locations. If conditions
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are suitable at these new locations, dispersed propagules settle and reproduce, producing
propagules that are dispersed to further locations, and so forth (Hodgson, Thomas,
Dytham, Travis, & Cornell, 2012). Figure 2.1 illustrates these events, with arrows
identifying the steps between dispersal, settlement and local population growth that

result in spread.

We include settlement and local population growth as separate events to accommodate
sink habitats: locations where arriving individuals can survive (settle) but local
reproduction is insufficient for positive population growth, and occupancy relies on the
continued arrival of individuals from elsewhere (Pulliam, 2000). This distinction is
important when considering the spread of invasive species, because sink habitats will
usually be included in the area an invader has occupied, and thus contribute to measures
of spread, although in reality it is difficult to distinguish sink from non-sink locations
(Meffin, Duncan, & Hulme, 2015). The transition from settlement to population growth
implies that conditions are suitable for the establishment of a self-sustaining population

at a given locality.

A large body of theory shows that in homogeneous landscapes, the rate at which an
invasive species spreads is critically dependent on its dispersal capability and its rate of
population growth when rare (Kot, Lewis, & van den Driessche, 1996; Skellam, 1951; van
den Bosch et al,, 1992). Real landscapes are not homogeneous, and typically comprise a
variety of habitats with different characteristics. For a given species, habitats can differ
both in their suitability for movement, with some habitats facilitating and others
impeding dispersal (Bullock, Moy, Coulson, & Clarke, 2003), and in their suitability for
survival and reproduction, leading to spatial variation in local population growth rates
(Pulliam, 1988). Landscape heterogeneity can thus directly affect spread through
variation in habitat suitability that results in varying rates of dispersal, settlement, and
local population growth across the landscape. The direct effects of habitat suitability on

these demographic processes are shown as arrows in Figure 2.1.

Although habitat variation can affect spread directly by causing dispersal and local
population growth rates to vary, complex spread dynamics often arise through
interactions between these processes, creating the potential for non-linear responses,
feedback and thresholds in spread behaviour, leading to highly variable outcomes (Coutts

et al., 2011). While the arrows in Figure 2.1 identify the direct effects of one process on
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another, multiple arrows pointing to the same process identify the potential for
interactions, meaning outcomes could exhibit greater variability because they depend on
the joint effects of two processes whose effects may not be additive. Settlement and the
transition to population growth, for example, depend on both dispersal and habitat
suitability for survival and reproduction (Figure 2.1). Rather than acting independently,
however, it is the interaction between these processes that determines the probability
that a population will establish at a new location (Duncan, 2016; Duncan, Blackburn,
Rossinelli, & Bacher, 2014). Low rates of dispersal, for example, may allow populations
to settle in patches of suitable habitat, but may not provide sufficient propagules for
establishment in patches of less suitable habitat (Duncan, 2016), resulting in spread
being strongly influenced by the make-up of habitat patches that differ in their suitability
for population growth. In contrast, high rates of dispersal may provide sufficient
propagules to overcome establishment barriers (Von Holle & Simberloff, 2005), meaning
spread is much less affected by differences among habitat patches in their suitability for
population growth. As a consequence, while landscape heterogeneity may cause
dispersal behaviour and local population growth to vary across the landscape somewhat
independently, spread is critically dependent on how these processes interact to jointly
determine outcomes. Here we use the framework shown in Figure 2.1 to review progress
over the last 5 years in understanding how landscape-level heterogeneity in dispersal
behaviour and population growth can influence spread dynamics, first by considering the
direct effects of heterogeneity on each of these processes separately, and second by

examining the importance of interactions.
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Figure 2.1. Conceptual framework for understanding landscape effects on the spread of
invasive species. Landscapes differ in the composition and configuration of habitats. For
a given invader, landscapes comprise habitats of varying suitability for movement,
survival and reproduction, which influences spread by generating spatiotemporal
heterogeneity in both dispersal behaviour and local population dynamics (settlement and

population growth)

2.4 Direct effects of landscape heterogeneity on dispersal behaviour

The rate at which invasive species spread is known to be highly sensitive to variation in
dispersal parameters, with spread rate increasing as both mean dispersal distance and
the frequency of long-distance dispersal events increase (Coutts et al., 2011; Kot et al,,
1996). Nevertheless, for a given species, spread is often modelled assuming a fixed
dispersal kernel that does not vary across the landscape. Relative to this, patterns of
spread are likely to differ if, instead, a landscape comprises habitats or has features that
differentially affect the movement of individuals, leading to spatial and/or temporal

heterogeneity in dispersal behaviour. Spatially, dispersal behaviour may vary if
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propagule movement is facilitated in some habitats but not others, resulting in more
propagules able to move a greater distance through some parts of the landscape (Bullock
et al, 2003). If the mean dispersal distance remains the same, introducing spatial
heterogeneity in dispersal behaviour should increase invasion speed, because this will
increase the frequency of longer-distance dispersal events, which have a
disproportionate influence on spread rates (Ellner & Schreiber, 2012; Kot et al., 1996).
Ellner and Schreiber (2012) have shown that this is the case for temporal variation, with
increasing variation in dispersal rates accelerating invasive spread because this results
in an increase in the frequency of longer-distance dispersal events. We expect the same
outcome given spatial heterogeneity, whereby the addition of landscape features or
vectors that facilitate long-distance dispersal will increase invasion speed. Human-
assisted dispersal can play a key role in this regard, with even occasional long-distance
movements by humans substantially accelerating the spread of invasive species

(Carrasco et al., 2010).

Empirical studies of invasive spread highlight the importance of landscape features that
influence propagule movement. Caplat et al. (2012) and Jongejans et al. (2011), for
example, show that invasion speed in two wind-dispersed species is highly sensitive to
variation in wind speed, implying that the strength and direction of wind patterns across
the landscape are likely to be critical determinants of spread dynamics (Cousens et al.,
2012). Data on how wind patterns vary across the landscape can be used to identify areas
connected by high rates of dispersal, which is where management may be most effective
in limiting spread (N. S. G. Williams, Hahs, & Morgan, 2008). Similarly, Miller et al. (2015)
show that variation in local vegetation structure affects spread by creating barriers to
movement. They show a steeper decline in the density of the wind-dispersed invasive
herb Hieracium lepidulum away from stream habitat, which acts as a propagule source,
when the surrounding vegetation is forest rather than grassland. The ability of Hieracium
lepidulum to spread more rapidly into grassland habitat is most likely due to greater
dispersal distances across low-growing grassland vegetation relative to forest, which
creates a taller barrier (see also: Gelbard & Harrison, 2003). This suggests that
management to reduce spread would be most effective if it targeted control in parts of
the landscape acting as a source for rapid dispersal into surrounding areas (in this case

grassland stream habitat; A. L. Miller et al., 2015).
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Nevertheless, relative to settlement and population growth, which we discuss below, few
invasion studies have quantified the extent to which landscape heterogeneity affects
dispersal behaviour, and fewer still have explored the consequences of such
heterogeneity for spread dynamics (Driscoll, Banks, et al., 2014). This is most likely due
to the difficulty in measuring dispersal but highlights an important gap in understanding.
The increasing availability of genetic data allowing the spatial locations of parents and
their offspring to be matched (Manel, Gaggiotti, & Waples, 2005) provides a way of
quantifying rates of dispersal across the landscape and identifying landscape features
that act as barriers or facilitate movement (Zeller, McGarigal, & Whiteley, 2012). Such
approaches are starting to be applied to invasion questions (Medley, Jenkins, & Hoffman,

2015).

2.5 Direct effects of landscape heterogeneity on local population processes

In simple spread models across homogeneous landscapes, rate of spread depends on
population growth rate when rare: all else being equal, higher rates of population growth
result in faster spread (Fisher, 1937), because more rapidly growing local populations
are able to supply greater numbers of propagules that then disperse and settle (Figure
2.1). Variation across the landscape in local population growth rates should therefore

directly affect spread dynamics.

Many studies that have explored how heterogeneity in local population processes affect
invasive spread have employed spatially explicit simulation models, because the added
complexity of allowing population processes to vary means analytical approaches are less
tractable or require strongly simplifying assumptions (Keeling et al., 2001; Pitt, Worner,
& Suarez, 2009; Sebert-Cuvillier et al., 2008). While simulation models are informative, it
is not always clear whether the findings from modelling a given scenario are system-
specific or provide more general insights. Significant progress has been made recently,
however, in deriving analytical solutions for spread dynamics across landscapes where
population growth rates vary spatially. Perhaps the most accessible treatment is by
Dewhirst and Lutscher (2009), who derive several important results that generalise
findings from earlier simulation studies. A key outcome is that the relationship between
landscape heterogeneity and rate of spread can be highly non-linear. Simulation models,

for example, have previously identified the existence of ‘invasion thresholds’ whereby
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invasive spread occurs most rapidly and extensively across landscapes with some
minimum proportion and distribution of suitable habitat (With, 2002). Dewhirst and
Lutscher (2009) show that, as a rule of thumb, in a landscape comprising suitable and
less-suitable habitat patches, the minimum proportion of suitable habitat, pmin, required

for an invader to spread is:

Equation 2.1

1-—n

Pmin = —
where r1 and rz are the population growth rates when rare in suitable and less suitable
habitat patches, respectively (assuming rz < 1). When r2 = 0 (i.e. populations are unable
to establish in unsuitable patches,) the proportion of suitable habitat required for spread
is (1 / r1), implying that much larger areas of suitable habitat are required for invasive
spread if that suitable habitat has relatively low rates of population growth. These
outcomes depend on the shape of the invader species’ dispersal kernel, and the above
rules apply when the variance, and hence the mean dispersal distance, is large relative to
the average distance between suitable habitat patches, meaning that suitable patches are
well connected by dispersal. As the mean dispersal distance declines relative to the
distance between habitat patches, the probability that some suitable patches may not be

colonised increases, and pmin also increases.

Dewhirst and Lutscher (2009) also show that, in the absence of Allee effects, the rate of
invasive spread across a landscape comprising habitat patches that differ in suitability
for population growth is a function of the spatially weighted average population growth
rate of the different patches. This confirms the intuitive idea that increasing the area of
habitat unsuitable for population growth should slow invader spread by creating habitat
sinks that effectively act as dispersal barriers. Rigot et al. (2014) provide a recent
demonstration, showing that the rate of spread of the pine bast scale Matsucoccus
feytaudi is slower in diverse landscapes having patches of suitable and unsuitable habitat,

relative to more homogeneous landscapes.

What remains less well understood analytically is how the spatial arrangement of habitat
patches, as opposed to the proportion of suitable habitats or degree of fragmentation,

affects spread (but see: Kinezaki, Kawasaki, & Shigesada, 2010). Spatial simulation
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models reinforce what we might anticipate: that spatial aggregation of suitable habitat
can slow the rate of spread, with more spread occurring across greater distances where
suitable habitat forms corridors or stepping stones that allow rapid movement or jumps
through unsuitable habitat (Hodgson et al., 2012). This highlights the importance of
habitat corridors and stepping stones in facilitating invasive spread, and the potential for
management to slow spread by targeting populations in these habitats (Letnic et al,

2015; Resasco et al,, 2014; Tingley et al., 2013).

A further source of heterogeneity in population processes are temporal fluctuations due
to demographic and environmental stochasticity. Recent work has identified two
important consequences of temporal stochasticity. First, while theoretical studies have
shown that temporal variability in dispersal can lead to increased rates of invasive spread
(Ellner & Schreiber, 2012), the opposite is true for population growth, where temporal
variation in growth rates causes spread to slow relative to a temporally stable landscape
(Ellner & Schreiber, 2012). This occurs because long-term mean population growth rates
at localities will decline with increasing variance in local population growth rates
(Dennis, Munholland, & Scott, 1991), meaning invasion speed will slow as temporal
variability increases. Fitzpatrick et al. (2012), for example, show that spread of the
hemlock woolly adelgid Adelges tsugae is slowed substantially by cold winter
temperatures, and that regions with greater temperature variability, leading to extremes

lethal to populations, have slower spread rates.

Second, temporal stochasticity means that invasive spread is not a deterministic process:
any real-life invasion represents one outcome contingent on a series of probabilistic
events, such that we could see a different outcome if we reran the process. How important
is this variation? Melbourne and Hastings (2009) show that spread of the flour beetle
Tribolium castaneum is remarkably variable in replicate landscapes comprising identical
habitat patches. This variability arises in part through demographic stochasticity, but also
through other stochastic processes perhaps related to the initial conditions in small
founding populations (Melbourne & Hastings, 2009). The implication is that stochasticity
makes it inherently difficult to predict the trajectory of any given invasion, even under
laboratory controlled homogeneous conditions. In contrast, Giometto et al. (2014) show

much higher levels of repeatability in the spread of the freshwater ciliate Tetrahymena
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sp. Under similar controlled conditions, although any uncertainty will almost certainly be

magnified in heterogeneous landscapes (e.g. Fitzpatrick et al,, 2012).

2.6 Interactions between landscape heterogeneity, dispersal, and

population processes

The previous two sections considered how landscape-induced variation in dispersal and
population processes can independently affect spread dynamics. While heterogeneity in
these processes alone can generate substantial variation in patterns of spread, recent
work has emphasised that interactions between these processes have the potential to

generate even greater complexity.

Central to understanding the variability in outcomes that can result from interactions
between dispersal and population processes is the role of stochasticity. While
deterministic models treat population density and spread as continuously varying, in
reality, spread involves the dispersal of a discrete number of individuals. When only a few
individuals disperse to a new locality, the resulting small founding population will be
prone to extinction through fluctuations in size due to demographic and environmental
stochasticity (Duncan et al., 2014). As a consequence, spread via the establishment of new
populations is a probabilistic process, with the probability of a new population
establishing jointly dependent on the number of individuals that disperse and settle (the
size of the founding population) and the suitability of the locality for survival and
reproduction (see: Figure 2.1; Duncan, 2016; Duncan et al.,, 2014; Warren, Bahn, &
Bradford, 2012).

Relative to a deterministic spread model, the inclusion of stochasticity should slow the
spread of an invasive species, because small founding populations just beyond the edge
of the invasion front can go extinct in even suitable localities. Eventually, however, these
localities should be colonised as populations at the edge of the invasion front grow and
supply a greater number of propagules, leading to more frequent colonisation events and
larger founding populations, resulting in higher probabilities of establishment. The
potential to colonise beyond the invasion front, however, depends on the ability of
established populations near the front to produce sufficient propagules, and hence on the

degree to which reproductive output is density dependent.
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In homogeneous landscapes, the combined effects of density dependence and
demographic stochasticity have been shown to result in only a modest slowing of
invasion speed (Snyder, 2003). In heterogeneous landscapes, however, these processes
can interact to have large effects on spread rates (Pachepsky & Levine, 2011). In a
fragmented landscape comprising patches that are both suitable and unsuitable for
population growth, spread will slow if populations on the edge of the invasion front
cannot produce enough dispersing propagules to successfully colonise suitable habitat
patches that are sufficiently far away. Without density-dependent regulation, initially
small populations at the invasion front will grow and increase their propagule output,
eventually producing sufficient numbers of propagules that disperse across a habitat gap
to ensure colonisation of distant patches. However, if density-dependent regulation
causes per capita reproductive output to decline as populations increase in size, total
propagule output may not increase greatly as edge populations grow, meaning distant
patches continue to receive few propagules, resulting in a low probability of colonisation

and greatly slowing the rate of spread (Pachepsky & Levine, 2011).

While we are not aware that this effect has been demonstrated in real populations,
Warren et al. (2012) have shown that the relevant conditions arise in the invasive grass
Microstegium vimineum. This species shows variable recruitment across the landscape
(equivalent to settlement in Figure 2.1) that is jointly dependent on the number of seeds
arriving at a locality and the suitability of that locality, such that the probability of
colonisation increases with greater seed supply and in more favourable habitats.
Subsequent reproductive output, however, is strongly density-dependent, with low-
density populations producing roughly the same number of seeds as high-density
populations. While the number of seeds produced by an initially low-density population
is sufficient for positive local population growth (Warren et al., 2012), strong density
dependence then limits the number of seeds available for dispersal as the population
grows, potentially limiting its ability to provide sufficient seeds to colonise more distant
localities. This potential for density dependence to interact with heterogeneity in
suitability for population growth has implications for the traits we associate with species
having high rates of invasive spread. While previous work has emphasised the
importance of traits linked to rapid population growth rate when rare, Pachepsky and
Levine (2011) show that traits associated with reproduction at both high and low
densities may be important.
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The importance of interactions between landscape heterogeneity, dispersal and
population processes is likely to depend on the extent to which rates of dispersal and
population growth are correlated across the landscape, with strong correlations
potentially accelerating rates of spread through positive feedback between dispersal and
population growth. For example, while Ellner and Schreiber (2012) showed that
temporal variation in population growth rate slows spread, such variation will increase
the rate of spread if it is positively correlated with dispersal variability. In other words,
invasive spread will accelerate if favourable years for local population growth are also
associated with favourable years for dispersal. Similarly, Schreiber and Lloyd-Smith
(2009) show that spread rates increase when dispersal and population growth rates are
positively correlated in spatially heterogeneous landscapes, and slow when they are
negatively correlated. These findings are important because it may be relatively common
for good years or good habitat patches to provide conditions favourable for both
population growth and dispersal. Many animal species, for example, exhibit density
dependent dispersal (Matthysen, 2005), such that patches of higher population growth
may lead to greater dispersal distance among animals to avoid crowding effects.
Similarly, roadsides are often identified as conduits for the rapid spread of invasive
species because they provide corridors of suitable habitat, but also because human-
mediated transport along road corridors can facilitate long distance dispersal (Medley et

al., 2015; Warren, Ursell, Keiser, & Bradford, 2013).

The implication is that spatiotemporal heterogeneity in environmental conditions can
result in windows of opportunity where conditions are particularly favourable for both
population growth and dispersal (Johnstone, 1986), and that even brief windows of
opportunity could play a critical role in accelerating the spread of invasive species. Such
heterogeneity also provides a plausible mechanism for the widely observed time lag
between establishment and the start of rapid population growth and spread in invasive

species (Aikio, Duncan, & Hulme, 2010; Schreiber & Lloyd-Smith, 2009).

If spatial variation in dispersal and population growth are positively correlated, then
management aimed at reducing spread may be most effective if it targets habitats with
high suitability for both (N. S. G. Williams et al., 2008). Without detailed knowledge of
how dispersal and population growth vary across the landscape, it is less clear which

should be targeted. Coutts et al. (2011) found that dispersal was the main factor driving
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spread in a spatially explicit invasive plant simulation model, implying that management
aimed at limiting dispersal at key locations in the landscape may be the most effective
way to slow invasions. Nevertheless, they also found that interactions between drivers
could result in habitat manipulations having highly variable and unpredictable outcomes.
Indeed, we suspect there is no universal answer as to the relative importance of dispersal
versus population growth in influencing spread, given the potential for these processes
to both interact and covary across the landscape. In pine species, for example, Caplat et
al. (2012) found that intraspecific variation in seed terminal velocity had the largest effect
on spread rate via wind, while Nathan et al. (2001), using a similar approach, found that
wind velocity was more important. The differing results were attributed to stronger
mean wind velocity in the Nathan et al. (2001) study, emphasising the importance of
landscape context and highlighting that spread dynamics result from interactions

between landscape conditions and demographic processes.

2.7 Conclusion

Figure 2.1 provides a framework identifying how landscape heterogeneity affects
invasive spread, both as a direct consequence of variations in dispersal, settlement and
population growth across the landscape, and because the joint effects of these processes
are not additive, resulting in interactions that increase the range of possible outcomes.
Our review has identified areas of recent progress in understanding how these processes
combine to determine invasive spread, but has also highlighted gaps in our

understanding that provide avenues for further research:

1. Relative to understanding how variation in population processes affect
spread, we understand less about how dispersal behaviour varies across the

landscape and the implications of this for spread dynamics.

2. Interactions between landscape heterogeneity, dispersal and population
processes appear key to understanding spread, and demographic and

environmental stochasticity play a central role in these interactions.

Spread dynamics should be influenced by the degree to which variation in dispersal
behaviour and population processes are correlated across the landscape, because

this can result in positive feedback that disproportionately drives spread.
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3.1 Abstract

1. Non-native species can dominate plant communities by competitively
displacing native species, or because environmental change creates conditions
favourable to non-native species but unfavourable to native species. We need to
disentangle these mechanisms so that management can target competitively

dominant species and reduce their impacts.

2. Joint-species distribution models (JSDMs) can potentially quantify
competitive impacts by simultaneously modelling how species respond to
environmental variation and to changes in community composition. We describe a
JSDM to model variation in plant cover and show how this can be applied to
compositional data to detect dominant competitors that cause other species to

decline in abundance.

3. We applied the model to an experiment in an invaded grassy-woodland
community in Australia where we manipulated biomass removal (through slashing
and fencing to prevent grazing by kangaroos) along a fertility gradient. Non-native
species dominated plant cover at high fertility sites in the absence of biomass
removal. Results from the JSDM identified three of the 72 non-native plant species
(Bromus diandrus, Acetosella vulgaris and especially Avena fatua) as having a strong
competitive impact on the community, driving changes in composition and reducing
the cover of both native and non-native species, particularly in the absence of
grazing. The dominant non-native grasses Bromus diandrus and Avena fatua were
among the tallest species in the community and had the greatest impact on shorter-
statured species, most likely through competition for light under conditions of high

fertility and low grazing.

4. Synthesis. We demonstrate a method to measure competitive impact using a
JSDM, which allowed us to identify the species driving compositional change
through competitive displacement, and where on the landscape competitive impacts
were greatest. This information is central to managing plant invasions: by targeting
dominant non-native species with large competitive impacts, management can
reduce impacts where they are greatest. We provide details of the modelling

procedure and reproducible code to encourage further application.
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3.2 Introduction

Dominance by non-native plant species is frequently associated with declines in the
abundance and diversity of native species (Vila et al., 2011). These changes can occur if
non-native species are superior competitors, such that increasing abundance of non-
natives directly drives declines in native species through competitive displacement
(Levine etal., 2003; MacDougall et al., 2009). Alternatively, increasing dominance by non-
native species could be a consequence of changing environmental conditions that favour
non-natives over natives due to species in each group having different environmental
tolerances (HilleRisLambers et al., 2010; Shea & Chesson, 2002). As plant invasions are
frequently accompanied by environmental perturbations (Pysek et al., 2010; Vellend et
al, 2017), it can be difficult to determine when non-native dominance is driven by
competitive impact (Godsoe, Franklin, & Blanchet, 2017; Soberén, 2010). In fact, many
non-native species appear to have little impact on the communities they invade (Lai et al,,
2015; Williamson & Fitter, 1996). In order to manage non-native species appropriately,
we need ways to identify which non-native species, if any, are having strong competitive
impacts, and where those impacts are greatest (Gallien, Miinkemitiller, Albert, Boulangeat,

& Thuiller, 2010; Ricciardi, Hoopes, Marchetti, & Lockwood, 2013).

Joint species distribution models (JSDM) are extensions of standard species distribution
models that have the potential to measure both competitive impact and species
responses to environmental conditions using community composition data from sites
along known environmental gradients (Kissling et al., 2012; Nieto-Lugilde, Maguire, Blois,
Williams, & Fitzpatrick, 2018). JSDMs use data on species composition across multiple
sites to jointly model individual species responses to environmental variation,
interpreting residual among-species covariation as potentially resulting from
interactions such as competition (Latimer, Banerjee, Sang, Mosher, & Silander, 2009;
Ovaskainen, Hottola, & Shtonen, 2010; Pollock et al., 2014; Warton et al., 2015). To date,
JSDMs have mostly been used to model presence-absence data, where large negative
residual covariance between two species could be interpreted as the competitive
displacement of one species from sites that both could occupy. However, presence-
absence data can only detect competitive impacts that result in complete exclusion from
a site, yet dominance without exclusion is an important component of species impact

(Levine et al., 2003; Seabloom et al., 2013). Here we use a method proposed by Clark et
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al. (2017) to model cover data in a JSDM that overcomes the problem of zero-inflation
that is typically inherent in these data (see: Joint-species tobit modelling in Methods;
Figure 3.1). With this approach, we can detect declines in species abundance associated
with the presence and abundance of competitors, which should provide greater

resolution in quantifying competitive impacts.

Figure 3.1. A simulated example of tobit regression. Black circles show observed cover
for a species measured at points along an environmental gradient. Cover declines as
environmental suitability decreases, eventually reaching a point where the environment
is unsuitable for the species and cover is zero. Beyond that point, environmental
suitability continues to decline but cover remains at zero. These zero values are censored
in that zero cover provides partial information about the latent suitability (open circles):
it tells us a site is unsuitable but, beyond that, does not measure how unsuitable. Tobit
regression aims to estimate latent suitability (the open circles, which are uncensored) by

fitting a regression line (red) to the cover data, treating the zero values as censored.

Even with these improvements to JSDMs, separating environmental responses from

competitive impacts is challenging (Adler, Kleinhesselink, et al., 2018), suggesting we
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should apply JSDMs to systems where the primary environmental drivers of species
abundances are well understood (Giannini, Chapman, Saraiva, Alves-dos-Santos, &
Biesmeijer, 2013; Wisz et al., 2013; Zurell, Pollock, & Thuiller, 2018). In grasslands
around the world, non-native plant species often increase in dominance at higher fertility
sites and when grazing is excluded (Seabloom et al., 2015). This shift in dominance has
been attributed to the competitive displacement of native species by non-native species
that are competitively superior under conditions of high resource availability and low
grazing. This competitive superiority arises because, relative to native species, many non-
native grassland species have traits associated with rapid growth and high biomass
(Ordonez, Wright, & Olff, 2010; M Van Kleunen, Weber, & Fischer, 2010), traits that are
likely beneficial when there is little above ground disturbance and competition for light
is intense (Borer et al., 2014; Hautier, Niklaus, & Hector, 2009). These trait differences
between native and non-native species should be less important under herbivory where

biomass removal may reduce any competitive advantage of fast growth (Lind et al,, 2013).

We aim to test these ideas using data from a 7-year experiment that tracked changes in
plant cover over time following herbivore exclusion (Driscoll, 2017). Sites were arrayed
along a fertility gradient and we predicted that non-native species would dominate under
high fertility and would increase in dominance following herbivore exclusion. We used
JSDMs to model how species cover varied with fertility, grazing and rainfall, and
identified species with strong negative residual covariances, suggestive of strong
competitive impacts on the community. We predicted that: 1) competitive impacts, and
hence the magnitude of negative residual covariances, would increase in the absence of
grazing where competition for light would be most intense; and 2) if competition for light
caused competitive displacement, the strength of negative covariances between species
(reflecting the strength of competitive interactions) should correlate with trait

differences associated with growth and light capture.

3.3 Methods

3.3.1 Study system:

This study was carried out in a box-gum grassy woodland reserve in south-eastern
Australia (Pinnacle Reserve, ACT. 35° 15§, 149° 02’ E; 620 - 708 m a.s.l.). The vegetation

of the reserve comprised a scattered overstorey of trees, predominantly Eucalyptus
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blakelyi and E. melliodora, with a dense understorey of grasses and forbs. The vegetation
has been extensively modified over the last 150 years, primarily by tree clearance and
livestock grazing. Livestock grazing ceased in the reserve in 1993 and the dominant
herbivore is now the native eastern grey kangaroo (Macropus giganteus), which was at
moderately high density over the course of the study (1.8 - 2.2 ha‘1; Driscoll 2017). The
understorey vegetation was dominated by a mix of native and non-native species, with
many non-native species introduced for pasture improvement (e.g. Dactylis glomerata
and Trifolium subterraneum) or as pasture contaminants (e.g. Avena fatua and Bromus
diandrus). Mean annual precipitation in the area is ~660 mm year-! and daily maximum
temperatures range from 9 °C to 33 °C during the spring growing period and as low as 4
°C in the preceding winter months (Australian Government Bureau of Meteorology,
2017). Soils are typically of relatively low fertility, shallow and rocky, although some

deeper soils occur on slopes and in depressions.

3.3.2 Data collection:

We used data from an experiment that tested whether different management
interventions can increase native grassland species richness (Driscoll, 2017).In 2010, ten
sites were established in open, unshaded areas along a natural fertility gradient (see
below). Sites ranged from relatively uninvaded communities to communities dominated
by non-native species. Each site contained 10 permanently marked 5 m x 5 m plots
separated by at least 1 m. One of 10 different experimental treatments was applied to
each plot, but we use only a subset of the treatments in this study (see Appendix Al,
Figure A4-S1). From 2011, five plots at each site were fenced in a single enclosure to
exclude mammalian herbivores (predominantly kangaroos but also rabbits). One plot
inside and one plot outside the fence had its above-ground biomass removed each year
by slashing, and one plot inside and one plot outside the fence was left unmanipulated
(unslashed). We analysed these four treatments at each site (grazed, unslashed; grazed,
slashed; fenced, unslashed; and fenced, slashed), allowing us to test whether the
competitive impact of non-native species was stronger in the absence of biomass removal
by grazing and/or slashing, and to assess whether uniform biomass removal by slashing

had similar effects to herbivore grazing.

Vegetation surveys were conducted every year from 2010 to 2016, except for 2014. In

late spring (October) of each year, the percent cover of all vascular plant species was
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visually estimated in four 1 m x 1 m quadrats placed in the corners of each plot (only
three quadrats per plot were surveyed in 2013 due to time constraints). We use plant
cover as a proxy for abundance. Our dataset thus comprised six years of vegetation cover
data from 160 quadrats across 40 plots. In total, we had 920 quadrat level vegetation
measurements, comprising 10,780 cover estimates for 142 species (70 native and 72
non-natives; see Appendix Al, Figure A4-S2 for more details). In 2015 and 2016, we
measured the traits of abundant species, defined as those comprising the first 80% of
total recorded cover at each site. At each site, we measured traits associated with growth
rate and light capture on 5-10 adult individuals in each of the unslashed plots following
standard protocols (Pérez-Harguindeguy et al, 2013). These traits included canopy
height (m), maximum height (m), canopy width (m), leaf length and width (cm) and
specific leaf area (mm2 mg-1; SLA). To avoid the influence of outliers, we used 90t quantile

values from all measured plants to estimate species maximum potential for each trait.

Total extractable nitrogen at sites along the fertility gradient ranged from 615 ppm to
2420 ppm (Driscoll & Strong, 2017). Total soil carbon, nitrogen, and phosphorus levels,
as well as extractable nitrogen and phosphorus, all covaried strongly across the 10 sites
(Appendix A1), and we used total extractable nitrogen as a proxy for overall soil fertility.
Grasslands in this region also respond strongly to variation in annual rainfall (Figure A4-
S3; Prober et al,, 2013). We obtained data on total rainfall for the four months prior to
each survey (August - November) from the Australian Bureau of Meteorology (Appendix
A1) as a proxy for water availability. Total rainfall during these four months ranged from
185 - 414 mm over the seven years of the study. Both total nitrogen and spring rainfall

were centred and scaled prior to model fitting.

3.3.3 Analyses:

Relative dominance of non-native species

We examined how the dominance of non-native species changed over time, in relation to
soil fertility and rainfall, and in response to the experimental treatments (fencing and
slashing). Our response variable was the proportion of non-native species cover in each
plot in each year. This was calculated by taking the average cover of each species across
quadrats in each plot in each year, summing these averages to get the total average cover

of all species in each plot in each year, and calculating the proportion of total cover
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comprising non-native species. We logit-transformed this proportion and modelled it as
a linear function of soil fertility, fitting a separate intercept and slope for each
experimental treatment (grazed/fenced and slashed/unslashed) and for each year. We
included rainfall by specifying a single coefficient for the effect of inter-annual rainfall
variation on the proportion of non-native cover. The model structure is described in

detail in Appendix A2.

Joint-species tobit modelling

To test if dominance by non-native species was a consequence of environmental
responses or competitive displacement, we specified a JSDM that modelled the cover of
each species in response to variation in soil fertility, rainfall, and experimental treatment
(JSDM1). This model included a single covariance matrix to capture unexplained residual
variation, with negative residual covariances potentially indicating competitive impacts.
We fitted a second model (JSDM2) to test whether competitive impacts varied with
grazing and slashing treatments. JSDM2 had the same structure as JSDM1, but we fitted
separate residual covariance matrices for each experimental treatment, which allowed
us to test if the magnitude of negative residual covariances were greater in the absence
of biomass removal where light competition should be most intense. We analysed data
for the years 2013-2016, which were the years during which the experimental treatments
showed clear effects (see: Figures 2 & S4b), and restricted our analyses to species present
in >20% of plots measured between 2013 and 2016 (N = 30, 14 native and 16 non-native
species; Figure A4-S2.) These species were present at >50% of sites in each year and were
thus sufficiently widespread that absences were more likely due to unsuitable
environmental conditions or competitive displacement rather than dispersal limitation.
We analysed cover data at the quadrat level because we expected species interactions to
be most evident at this scale. Zero cover was recorded when a species was absent from a
quadrat. Even after restricting our analysis to the 30 most common species, most of our

data comprised zero values (~69%; 4,396 cover estimates, 10,004 absences).

We used tobit regression to accommodate zero inflation by treating absences as censored
data (J. S. Clark et al,, 2017; Tobin, 1958). Censored data occur when it is not possible to
observe a value beyond some limit. In this case, we assume there is an unobserved latent
variable that measures the ‘suitability’ of each quadrat for each species, where suitability

encompasses all biotic and abiotic factors that might influence species cover. When a
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species is present in a quadrat, we equate the latent suitability with cover, assuming that
higher cover indicates higher suitability (Figure 3.1). Quadrats where species are absent
can be thought of as sufficiently low suitability that a species cannot persist but quadrats
with zero cover can still vary in their underlying suitability. We model observations of
zero cover as censored data arising from this latent suitability distribution, which can

take values less than zero:

Equation 3.1

_{y*, ify*>0

Y=, ify <0

where y is the observed cover and y* is the corresponding latent suitability value. To
complete the model, we need to specify a distribution for the underlying latent variable.
We specified the underlying distribution as multivariate normal with 30 dimensions, one

for each species.

We regressed latent suitability (y*) against the environmental variables soil fertility and
rainfall, with residual variation captured in a single covariance matrix (JSDM1). We
specified different regression coefficients for each experimental treatment, modelled
hierarchically, and included normally distributed random effects to account for repeated

measurements of plots nested within sites. The structure of JSDM1 was:

JSDM1:

Equation 3.2
Yiijry ~ MultiNormal(u[ijkl],E)
Hgijin
Hiijrn = MZ[fjkl]
Mg
Hsijy = Pinterceptgy) t Bstopegyyy  fertility(jg + Braingy) - rainfallyy + Bpiot,

2
ﬁplot[jk] ~ Normal (ﬁsite[ky aplot)

2
.Bsite[k] ~ Normal(0, Usite)

where y[*i]-kl] is an N-length vector of latent suitability values in year I (1-3), under

treatment j (1-4), at site k (1-10) in quadrat 1 (1-4). S indexes species (s = 1 ... N) with
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intercept terms measuring average site suitability for each species in each treatment, and
slope and rain terms measuring how site suitability varied with soil fertility and rainfall
for each species in each treatment. X is an N x N covariance matrix with the diagonal
containing the residual variances in suitability for each species, 62, and the off-diagonals
containing the residual covariances between each species pair, conditional on the value

of Wjjiyy. This matrix has N * (N - 1) / 2 = 435 unique elements, with the covariance

between two species defined as: 12 = 61 62 p12 = X21.

The covariances describe how residual variation in the cover of one species is related to
residual variation in the cover of a second species. If, having accounted for environmental
effects, the cover of one species declined in quadrats when the cover of a second species
increased, the residuals of the two species would covary negatively. We interpreted
negative covariances as due to competition on the grounds that we had modelled species
responses to the major environmental gradients in these grasslands (fertility and water
availability; Leishman & Thomson, 2005; Morgan et al.,, 2016; Prober, Thiele, & Speijers,
2016). Large negative covariances imply potentially strong competitive impacts, while
species with low cover, or where cover is well explained by environment variables, will
have smaller covariances because there is less residual variation that could be associated
with co-occurring species. Moreover, if a dominant species caused several species to
decline in cover, resulting in strong negative covariances, this is likely to induce a pattern
of positive covariances among the impacted species because they would all tend to have
lower cover at sites where the dominant species was present and higher cover at sites

where it was absent.

Change in species covariances by treatment
Specifying a single covariance matrix in JSDM1 meant the covariances were estimated
from the data in all treatments. In JSDM2, we specified a separate covariance matrix for

each of the four treatments:

JSDM2:

Equation 3.3
yfl-jkl] ~ MultiNormal(u[l-jkl],Z'[]-])

ﬂs[ijkl] = ﬂintercepts[j] + ﬂslopes[j] 'fertilit:V[jk] + lgrains[j] ’ rainfall[i] + ﬂplot[]-kl]
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where both the coefficients for species s and the covariances X varied with treatment j
(1-4). Comparing the covariance matrices for different treatments in JSDM2 allowed us
to evaluate whether competitive interactions were stronger in plots without slashing or

grazing.

Predicting competitive impact from functional traits

We predicted that competitive impacts, measured as the magnitude of negative
covariance between species, should be linked to differences in traits associated with
growth and light capture. To test this, we regressed the posterior mean of the negative
covariance parameters estimated in [SDM2 against the absolute difference in measured
trait values for each species pair. Trait values were normalised prior to analysis so that
traits measured using different units could be compared directly. For the regression
models, we specified separate intercept and slope coefficients for the covariance-trait
relationships in each experimental treatment, with the slopes and intercepts modelled as

drawn from normal distributions for each trait.

All models were fitted to the data in a Bayesian framework using adaptive Hamiltonian
Monte Carlo with the probabilistic programming language Stan (Carpenter et al.,, 2017)
and the rstan interface (Guo et al,, 2016) in R, version 3.4 (R Core Team, 2018). Details of
model fitting and prior specification are in Appendix A2 and online at

https://github.com/aornugent/impact2. We took a conservative approach to identifying

interactions in the data by specifying that we a priori expected covariances to be weak
(see prior specification in Appendix A2), meaning that strong residual covariances

required strong support from the data.

3.4 Results

3.4.1 Relative dominance of non-native species:

Overall, the proportion of total cover that comprised non-native species increased with
increasing soil fertility (Figures 2, S4a). Prior to and immediately after fencing (2010 &
2011), the relationship between fertility and proportion of non-native cover was similar
in the fenced and grazed, and in the slashed and unslashed treatments. However, from
2012 onwards the proportion of non-native cover increased substantially at higher

fertility sites in the fenced, unslashed plots (i.e., in the absence of biomass removal).
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There was no clear change over time in the proportion of non-native cover along the
fertility gradient in plots that were grazed, slashed or both (Figure 3.2, Figure A4-S4b).
The proportion of non-native cover was higher in years with higher spring rainfall

(Figure A4-S3, inset)

Figure 3.2. Proportional cover of non-native species (logit-transformed) as a function of
soil fertility at 10 sites measured over 7 years (2010-2016 with no measurement in
2014). There were four treatments at each site, which are plotted separately. Slashed
plots are shown on the top line and unslashed plots on the lower line, with filled circles
and solid lines for fenced plots, and open circles and dashed lines for grazed plots.

Fertility is scaled and standardized as described in Appendix A1l.

3.4.2 Joint species tobit modelling:

Species responded differently to changes in soil fertility, with latent site suitability
increasing strongly with higher soil fertility (i.e. total extractable nitrogen) for two native
and five non-native species (95% credible intervals above zero in at least one treatment;
Figure 3.3). The remaining species, both native and non-native, declined in cover with
increasing fertility. Relationships between cover and fertility did not vary much between
experimental treatments with three exceptions: relative to other species, the cover of the
non-native species Avena fatua, Bromus diandrus and Acetosella vulgaris increased more
strongly with fertility in the fenced, unslashed treatment. At high fertility, several fenced,
unslashed plots were completely dominated by one or more these species. For most

species, cover was positively related to rainfall across years (Figure A4-S3).
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Figure 3.3. Latent suitability with respect to soil fertility for 30 species estimated using
a joint-species-distribution model and tobit regression (see text). Separate relationships
were fitted for each species in each of four treatments, shown as different panels. Native
species are drawn with dashed lines (n = 14) and non-native species with solid lines (n =
16). Lines are coloured from dark blue to light yellow corresponding to a shift from

negative to positive slopes, respectively.

Figure 3.4 shows species’ residual covariances from JSDM1 as a pairwise covariance
matrix (Figure 3.4a) along with the median covariance for each species across all pairwise

interactions (Figure 3.4b). We report the median covariance because covariance values

41



could be highly skewed. One species, Avena fatua, stood out as having strong negative
covariances, with high cover of Avena fatua often associated with reduced cover of other
species. Median covariance for the native grass Themeda triandra was the second most
negative but of much smaller magnitude than Avena fatua. Moreover, Themeda triandra
covaried negatively with A. fatua (Figure 3.4a), such that high cover of A. fatua was
associated with low cover Themeda triandra and vice versa. Small-statured species, such

as those in the genera Aira, Vulpia and Hypochaeris, tended to covary positively.

Figure 3.4. Species associations estimated by JSDM1. a) The full residual covariance
matrix for JSDM1 and b) the median residual covariance from all pairwise interactions
for each species, with negative covariances indicative of competitive displacement (see
text). The full matrix shows mean covariances from the posterior distributions shaded by
magnitude and direction, ranging from large negative covariances (deep red) to large
positive covariances (blue). A black dot indicates the 95% credible intervals for a

covariance did not include zero. Non-native species are marked with asterisks.
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Figure 3.5. The median residual covariance from all pairwise interactions for each
species from JSDM2, where a separate covariance matrix was fitted for each treatment
(shown as separate panels). The median covariance summarises the magnitude of
competitive displacement between a single species and the rest of the community. Names
of non-native species are shown in black and native species in grey. Non-native species

are marked with asterisks.

3.4.3 Change in species covariances by treatment:

JSDM2 revealed that species’ residual covariances varied by grazing and slashing
treatment (Figure 3.5), suggesting that competitive interactions were altered by biomass
removal. Covariances were weakest in the grazed, slashed treatment with the median

close to zero for most species (mean median covariance with 95% confidence intervals =
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-0.4, CI = [-2.2, 1.3]), implying weak interactions. Covariances were larger but still
relatively weak in the fenced, slashed treatment (mean = 0.2, CI = [-1.5, 2.0]). Median
covariances were most negative in the grazed, unslashed treatment (mean =-1.3, CI = [-
3.0, 0.5]) and especially the fenced, unslashed treatment (mean = -3.2, CI = [-4.9, -1.5]),
suggesting stronger competitive interactions in the absence of slashing, and especially in
the absence of both grazing and slashing. Relative to the natural situation in these
grasslands (the grazed, unslashed treatment), the three species whose cover increased
most strongly with fertility in the fenced, unslashed plots (Avena fatua, Bromus diandrus
and Acetosella vulgaris) showed a marked shift to more negative covariances in the same
treatment, especially A. fatua (Figure 3.5). This implies these species had a greater

competitive impact on other species in the absence of biomass removal.

Figure 3.6. The relationship between covariance and trait differences among species
(mean and 95% credible intervals). Negative values indicate that competitive
displacement is associated with greater difference in trait values between species. The
relationships are plotted separately for the four treatments, with filled circles for fenced

plots, open circles for grazed plots, and slashed and unslashed plots in different panels.
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Trait differences were normalized before analysis to allow direct comparison of slope

estimates for traits measured in different units.

3.4.4 Predicting impact from functional traits:

In the fenced, unslashed treatment, stronger negative covariances between species were
associated with greater differences in plant height (Figure 3.6). This relationship was
evident, though weaker, in the grazed, unslashed treatment but largely absent in both
slashed treatments. Covariances were less negative between species that had greater
differences in SLA in all treatments, but the strength of this relationship was much
weaker than for height. None of the remaining trait differences (canopy width and leaf

dimensions) showed strong relationships with covariances.

3.5 Discussion

Measuring the strength of species interactions when these are confounded with
environmental variation remains a major obstacle to studying the impact of non-native
species in plant communities (HilleRisLambers et al, 2010; Levine et al, 2003;
MacDougall & Turkington, 2005). We have shown how a joint-species-distribution model
can be adapted to model plant cover and, when applied to our case study, could identify
the non-native species having large competitive impacts on the community, along with
the conditions under which those impacts were greatest. Globally, non-native species
frequently dominate grasslands under conditions of high fertility in the absence of
grazing (Seabloom et al, 2013, 2015). Our findings show this can result from
displacement of native species by one or more competitively dominant non-native
species. In our study, greater cover of three non-native species (Bromus diandrus,
Acetosella vulgaris and especially the annual grass Avena fatua) was associated with
strong declines in the cover of native species after accounting for differences in
environmental responses. This outcome is consistent with previous studies that have
measured the impact of non-native species in Australian temperate grasslands (Driscoll
& Strong, 2017; Prober, Thiele, Lunt, & Koen, 2005) and in grasslands globally (Chang &
Smith, 2014; Flores-Moreno et al.,, 2016; Harpole et al., 2016).

Our results support the predictions outlined in the Introduction. First, competitive

impacts, as revealed by the strength of negative covariances, were much stronger in the
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absence of biomass removal (Figure 3.5). Second, under low or no biomass removal, the
strength of negative covariances were linked to differences in plant height: in unslashed
plots, taller species had greater impact on shorter species, implying a strong competitive
advantage associated with plant height under these conditions (Figure 3.6). This outcome
most likely results from competition for light, which should favour taller, higher biomass
species (Borer et al., 2014; Hautier et al.,, 2009). While negative covariances were linked
most strongly to height differences, negative covariances were smaller among species
with greater differences in specific leaf area (Figure 3.6). This implies that, while
competitive dominance was due primarily to a trait advantage in height, this was partly
offset by trait dissimilarity in SLA, potentially indicative of reduced competitive impact

through niche differentiation (Gross, Borger, Duncan, & Hulme, 2013).

Results from the ]SDMs provide additional insights into interactions in these grasslands.
For example, negative covariances, and hence competitive interactions, were weaker in
the slashing treatments (Figure 3.5). Annual biomass removal by slashing may prevent
species from attaining cover sufficient to have a strong competitive impact (Mortensen
et al., 2018). Grazing may also prevent competitive dominance, although interactions
were stronger under grazing alone than when plots were slashed (Figure 3.5), suggesting
grazing removes less biomass than slashing, or selectively removes certain species
allowing others to attain cover sufficient to have measurable impact (Evju, Austrheim,
Halvorsen, & Mysterud, 2009). The most dominant species, Avena fatua had the greatest
competitive impact, but also covaried negatively with two other species that had
relatively high impact overall: the native grass Themeda triandra and non-native forb
Acetosella vulgaris (Figure 3.4). Avena fatua and Acetosella vulgaris both increased in
cover at higher fertility in the absence of biomass removal, suggesting these species
competed for site occupancy under those conditions. The ability of Acetosella vulgaris to
form dense rhizomatous mats may have excluded Avena fatua from some sites (Fan &
Harris, 1996). Themeda triandra, in contrast, had higher cover at lower fertility. Themeda
triandra is known to dominate more intact native grasslands (Prober & Lunt, 2009),
suggesting that Avena fatua may be displacing an otherwise competitively dominant

native grass at higher fertility sites.

Other non-native species were abundant in these grasslands but had little or no

competitive impact. Short-statured annual grasses in the genera Aira and Vulpia, for
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example, were widespread (Figure A4-S2) and had high average cover where they
occurred (15% and 24% for Aira and Vulpia, respectively, compared with 30% for Avena
fatua). Both Aira and Vulpia strongly negatively covaried with Avena fatua and Bromus
diandrus, and both covaried positively with other, typically short-statured, species that
were also impacted by the competitive dominants. Hence, in addition to identifying the
drivers of change in this community, we can identify non-native species that achieve
moderate to large cover without impacting the community, most likely because they are

ruderal-like species that exploit more marginal habitats.

We have demonstrated how a JSDM can be applied to field data to measure impact and
identify the species driving compositional change in a plant community. We emphasise
that interpreting negative residual covariation as due to species interactions relies on
having measured and correctly modelled the major environmental variables, fertility and
rainfall in our case, that control species abundances (Hui, Taskinen, Pledger, Foster, &
Warton, 2015). Our approach of crossing a natural fertility gradient with manipulation of
biomass removal no doubt helped to disentangle competitive from environmental effects
in this system, as it meant differences between the biomass treatments at each site were
not confounded with environmental variation. Nevertheless, the model appeared
successful in identifying species having impact in the unmanipulated treatment alone
(grazed, unslashed; Figure 3.5), suggesting JSDMs can detect interactions in systems
without experimental manipulation where the environmental drivers are well

understood.

3.6 Conclusion

Quantifying the importance of competitive interactions is difficult when species
abundance is confounded with environmental variation (Adler, Kleinhesselink, et al.,
2018). We approached the problem by using a JSDM to model changes in the cover of
Australian temperate grassland species in response to gradients of fertility and rainfall,
biomass removal treatments, and variation in community composition. This identified
the dominant non-native species driving compositional change through competitive
displacement in this community, highlighting the utility of J[SDMs in studies of plant
invasion where it is often unclear which non-native species, if any, are directly impacting

invaded communities (HilleRisLambers et al., 2010; Lai et al, 2015; MacDougall &
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Turkington, 2005). By experimentally altering grazing we were able to show that the
competitive impact of the dominant non-native species increased in the absence of
grazing and that species responses were mediated by trait-differences in height,
consistent with the outcome we would expect due to competition for light (Borer et al.,
2014). Hence, the modelling approach provided insights into the mechanisms underlying
impact, paving the way for general tests of the drivers of community structure in other
communities (Mortensen et al., 2018). We have provided the data and code in an R

package (https://github.com/aornugent/impact2) to reproduce our analyses and

encourage further application of the approach.
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4.1 Abstract

Competition is considered a key factor structuring plant communities, however
estimating the relative importance of intra- and interspecific competition from field data
is prone to bias. This can arise due to a failure to measure competition at sites where
species are absent because they have been competitively excluded (the ghost of
competition present). Joint species distribution models (JSDMs) may be less susceptible
to this bias because they infer interactions such as competition based on residual
covariation among species, which includes information on species absences. Glasshouse
studies provide an alternative approach to estimating competitive effects but it often

unclear whether the results from field and glasshouse studies are comparable.

We conducted a glasshouse competition experiment to validate a JSDM fitted to
Australian temperate grassland communities. Three non-native grasses (Avena fatua,
Bromus diandrus and Eragrostis curvula) were grown in monoculture and in mixture with
a representative grassland community (Bromus hordeaceus, Poa labillardierei,
Rytidosperma caespitosum) using a response surface study design that was replicated at
three levels of nutrient addition. We fitted yield density curves at each fertility level to
estimate the effects of intra- and interspecific competition, then compared our results

with residual covariation between species abundances detected by the JSDM.

Although our experiment identified the same competitive associations that we detected
in the field, our JSDM underestimated the effect of interspecific competition because it
incorrectly predicted that high fertility sites were unsuitable for some species. We show
through simulation that JSDMs are less biased when the patterns of observed abundance
contain enough process noise to decouple species abundance from environmental

factors.

There is significant potential to use JSDMs to identify when competitive interactions are
strongly affecting community assembly but, like other phenomenological models, we
suggest their limitations are carefully considered before drawing general conclusions.
While JSDMs partially circumvent the limitation of field studies that only observe species
in their realised niches, they should be validated against ecological knowledge and

experimental tests.
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4.2 Introduction

The relative strength of inter and intraspecific competition, and how this varies with
environmental conditions, is central to understanding species coexistence and the forces
structuring plant communities (Chesson, 2000, 2018). However, measuring competition
in the field is difficult and there is concern that the ‘ghost of competition present’ may
bias outcomes in field settings (Detto, Visser, Wright, & Pacala, 2019; Tuck, Porter, Rees,
& Turnbull, 2018). This ghost arises when strong interspecific competition excludes a
focal species from sites it would otherwise occupy (i.e. realised vs. potential niches;
Jiménez-Valverde, Lobo, & Hortal, 2008; Kearney, 2006; Soberon & Nakamura, 2009).
Field studies that measure interspecific interactions where the focal species is present
may underestimate the strength of competition if these studies do not include sites where
the focal species is absent due to particularly strong competition that resulted in
exclusion (Figure 4.1; Adler, Kleinhesselink, et al., 2018; but see: Carmel et al., 2017; Tuck
et al, 2018). This presents a fundamental limitation to what can be inferred from
observational field studies of plant communities (Cale, Henebry, & Yeakley, 1989;
Ovaskainen, Rybicki, & Abrego, 2019), with consequences for our understanding of

coexistence across terrestrial plant communities (Adler, Smull, et al., 2018).

Joint species distribution models (JSDMs) estimate relationships between environmental
factors and species presence or abundance in field data and interpret residual covariation
as being potentially due to interactions among species (Ovaskainen et al., 2017; Pollock
et al., 2014; Warton et al, 2015). Negative covariation, sometimes indicative of
competition, can arise if the presence of one species causes the abundance of a second
species to be lower than expected from environmental effects alone (]. S. Clark et al., 2017;
Niku, Warton, Hui, & Taskinen, 2017). However, negative covariance could also arise due
to unmeasured environmental variation or dispersal limitation (Barner, Coblentz,
Hacker, & Menge, 2018; Cazelles, Aratjo, Mouquet, & Gravel, 2016; Freilich, Wieters,
Broitman, Marquet, & Navarrete, 2018). This means that although JSDMs can leverage
information from species absences to detect where interspecific competition is strong,
patterns of negative covariance could be confounded with other factors. Inferring
competition from distributional patterns of species abundance instead requires a priori
ecological knowledge about the scale, traits and mechanisms related to species

interactions (Dormann, BobrowskKi, et al.,, 2018; Dormann et al.,, 2012).
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Figure 4.1. The ‘ghost of competition present’ can bias estimates of competition derived
from patterns of observed abundance that do not include sites where species are
excluded. Competitive intensity (blue line) continues to increase with competitor
abundance beyond the point where a target species (dashed green line) has been

completely excluded.

A growing number of studies confirm that JSDMs can be useful for identifying species
interactions under select conditions (Norberg et al., 2019; Ovaskainen et al., 2019; Zurell
et al.,, 2018), however JSDMs face two additional hurdles when inferring whether
competition is important driver in plant communities. First, covariances are
mathematically symmetric, meaning that they represent the average strength of
interactions between two species, and do not imply a direction. Competition among
plants, however, can be asymmetric, with larger individuals having disproportionate
effects on their smaller competitors (DeMalach, Zaady, Weiner, & Kadmon, 2016;
Schwinning & Weiner, 1998). The strength of competitive interactions may be
underestimated by covariances if asymmetric effects are not accounted for. Secondly,
JSDMs must specify an underlying environmental relationship for each species, which
may have significant impacts on species interactions (Bar-Massada & Belmaker, 2017;
Bimler, Stouffer, Lai, & Mayfield, 2018; Pellissier et al., 2018), such as size dependent
competition along fertility gradients (Cameron, Coulson, & Marshall, 2019; Goldberg,
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Martina, Elgersma, & Currie, 2017; Rees, 2013). While it is accepted that models will only
ever provide an approximation of true ecological dynamics (Chu & Adler, 2015), there is
a risk of misunderstanding the factors that shape species distributions if models are
insufficiently flexible to capture the underlying environmental relationships (Merow et

al, 2014).

Therefore, while JSDMs may circumvent the ghost of competition present, the application
of JSDMs should build on established ecological knowledge to support inferences about
species interactions. We conducted an experiment to validate a JSDM previously fitted to
observational data from an Australian temperate grassland (O’Reilly-Nugent et al., 2019)
and test whether our J[SDM was also biased by the ghost of competition present (Adler,
Kleinhesselink, et al., 2018; Tuck et al., 2018). The JSDM analysis identified two dominant
non-native grasses, Avena fatua and Bromus diandrus, that showed strong positive
responses to soil fertility and negatively covaried with other native and non-native
grassland species, indicative of competitive impact. However, our JSDM predicted that
many native species should decrease in abundance with increasing soil fertility, even in
the absence of dominant competitors. This result was unexpected and indicated a
potential misfit of our model. Our experiment sought to verify this finding by measuring
the growth of individuals grown at different densities along a gradient of fertility, and by
comparing species growth in isolation against growth in community mixtures (Harper,

1977; Hart, Freckleton, & Levine, 2018).

We used these experimental measurements to test whether the inferences derived from
our JSDM were correct in terms of whether: 1) the relationships with fertility derived
using the JSDM were accurate, 2) the competitive hierarchy derived from the JSDM
matched that obtained in the glasshouse experiment, and 3) the approximation of
competitive interactions using a symmetric covariance in the JSDM was appropriate. In a
second analysis, we demonstrate through simulation how our experimental patterns of
species interactions could indeed reflect the same underlying demographic and
competitive processes occurring in the field. This simulation also allowed us to test for
potential causes of bias in the JSDM. More generally, this experiment enabled us to
answer an important question: do associations in field data, when used to infer the
strength of species interactions, match the outcomes of competition that we observe

experimentally? (Cadotte & Tucker, 2017; D’Amen, Mod, Gotelli, & Guisan, 2018;
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Dormann, Bobrowski, et al., 2018) Together, our JSDM, experiment and simulation
demonstrate a general mismatch between observation and experimental studies of plant

competition and suggest how they should be considered in conjunction with one another.

4.3 Methods

4.3.1 ]SDM analysis of an Australian grassland community:

The results of our JDSM analysis have been published in a separate journal article
(O’Reilly-Nugent et al., 2019), therefore our discussion of these methods will be brief. We
used anovel JSDM to compare the competitive impacts of introduced species on grassland
communities in the Australian Capital Territory (ACT). We used data from 3 years of
vegetative community surveys in 400 x 1 m? quadrats. Species abundances were
estimated as the percent areal cover within each quadrat. The model was fitted to
abundance data to jointly estimate species environmental responses and residual

covariation between 30 species.

Environmental responses were modelled as linear functions of fertility and spring
rainfall, which are known to strongly influence species abundances in these grasslands
(Leishman & Thomson, 2005; Morgan et al., 2016; Prober et al., 2016). There was no
constraint on direction of these responses meaning that species could increase or
decrease with increasing fertility or rainfall. Covariances estimated by our JSDM describe
how residual variation in the cover of one species is related to residual variation in the
cover of a second species. If, having accounted for environmental effects, the cover of one
species declined in quadrats when the cover of a second species increased, the residuals
of the two species would covary negatively. We took a conservative approach by
specifying a priori that most variation in species abundances was independent of co-
occurring species, meaning we required adequate data to support strong residual
covariances, increasing our confidence of identifying potential interactions between
species. Two species were identified as being especially dominant: Avena fatua and
Bromus diandrus (O’Reilly-Nugent et al., 2019). Both species had strong positive
relationships between abundance and fertility and were observed to negatively covary
with other species in the community, meaning that as these species increased in

abundance, resident species declined.
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The impact of these dominant non-native grasses was consistent with a priori
understanding of competition in grasslands. Avena fatua and Bromus diandrus had strong
impacts where herbivores were excluded. Given that both dominant non-native species
also increased in abundance with increasing fertility, they likely excluded resident
species through competition for light (Lind et al., 2013; Seabloom et al., 2015). This was
confirmed by a significant relationship between height differences between species and
the magnitude of negative covariation in abundance (O’Reilly-Nugent et al., 2019).
Impacts increased with increasing differences in height, but this was approximated in our
JSDM using a symmetric covariance structure, meaning that a pair of species had equal
impacts, which is unlikely during light competition. This limitation of a symmetric
covariance approximation coupled with the unexpected negative relationships between
abundance and fertility prompted us to conduct a glasshouse experiment to validate our

findings.

4.3.2 Experimental measurement of competition between species:

For each of six species, we experimentally quantified the strength of per-capita
competition by growing individuals of each species in a response-surface design
(Damgaard 1998; Inouye 2001). Response surface designs estimate intra- and
interspecific competition by measuring changes in species growth along gradients of
intra- and inter-specific density (3, 6, 9 & 12 individuals per pot). Because our [SDM
analysis was primarily focused on measuring the impact of non-native species, we
measured the competitive effects of three non-native species on a resident grassland
community at three fertility levels. Our three focal non-native species included the two
grasses, Avena fatua and Bromus diandrus, that were identified as having significant
negative associations in our JSDM analysis, and Eragrostis curvula, which was not
abundant or dominant in our JSDM study but is a weed of national significance in
Australia (Csurhes, Leigh, & Walton.,, 2016). Because Eragrostis curvula is an
opportunistic coloniser that becomes dominant in marginal and disturbed habitats (such
as along roadsides), it provides a good contrast to Avena fatua and Bromus diandrus
which we identified as having impact through interspecific competition. We expected that
Eragrostis curvula would have little interspecific competitive impact on the resident

community.
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Our resident community consisted of the native grasses Rytidosperma caespitosum, Poa
labillardierei and the non-native Bromus hordeaceus, which is small statured and
commonly coexists with native grassland species. We grew the resident community in
fixed densities (1, 2, 3, & 4 individuals per species) such that the total pot densities were
the same as the non-native monocultures described above (3-12 individuals per pot). We
sourced seed from local distributors (Greening Australia ACT, Plant Science Consulting,
Australian Grasses & Wildflowers), except for Eragrostis curvula which was collected
from an existing population at the University of Canberra. We germinated seedlings of
each species in monoculture on trays of peat coir in August 2016, in an environmental
chamber with a heating mat set to 18 °C and a high intensity overhead lamp providing a
12 hr photoperiod. We transplanted seedlings approximately one week after emergence
of the second leaf into 13 cm diameter pots with 2 cm deep saucers that contained 2 L of
a 1:1 mixture of sterilised river sand and vermiculite, creating a nutrient poor substrate

that required regular supply of nutrients and water.

We grew non-native and resident species in monoculture and in mixture with relative
frequencies that ranged from 0.25 to 0.75 (that is mixtures of 3/9, 3/6,3/3,6/6,6/3, and
9/3 non-native/resident individuals). We repeated this design at three levels of nutrient
supply (Low, Medium, and High) resulting in 102 pot-level experimental treatments (4 x
4 x 3 = 48 non-native or resident monocultures, 6 x 3 x 3 = 54 non-native/resident
mixtures). We added 10 ml of liquid nutrient solution (1/8, 1/2 and 1 x strength nitrogen
and phosphorous, Appendix B1; Table B2-S1) uniformly to each pot twice per week. Pots
were watered twice daily (dawn and dusk) by an automated sprinkler system at a rate of
approximately 2 ml.day-1, representative of average conditions in the area during the
growing period although with much less variability (Bureau of Meteorology, Australian
Government). We replicated this design in four blocks, each arrayed on a 0.9 m x 3 m
bench, and randomised the layout of pots within each block each week to minimise the

effect of neighbouring pots.

In total, we planted 3,601 seedlings into 408 pots and harvested them after 12 weeks
growth (84 days). 11 seedlings that died during an initial two-week establishment period
were replaced. Daily temperatures during the experiment ranged from 12/7 °C
(max/min) to 42/20 °C. An automated cooling system was active at temperatures above

30 °C to limit the effects of very hot days. Similarly, we erected a permeable shade-cloth
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in the final 6 weeks to control extreme temperatures but added high intensity discharge
lighting to maintain a 12 hr photoperiod. A further 66 seedlings died after the
establishment period, leaving 3,535 plants at the end of the experiment. The

aboveground biomass of each individual plant was harvested, dried, and weighed.

4.3.3 Fitting vield density curves:

Our primary aim was to reconcile negative residual covariation estimated from
abundance data recorded in the field with experimentally derived measurements of
competition. We estimated how the aboveground biomass of one species changed with
increasing abundance of a competitor by fitting yield density curves to the biomass of all
individuals in a single pot. Although this approach examines the effect of competition on
a different scale to our JSDM, the interactions estimated from species abundance
observed in the field are driven by the outcomes of growth, survival, and reproduction of
individual plants. Because biomass and plant cover are typically correlated (Axmanova
et al, 2012; MacDonald, Burke, Chen, & Prepas, 2012), we make the simplifying
assumption that reductions in growth and biomass due measured in our experiment will

also result in reduced abundance and cover in the field.

Asymptotic yield density curves assume that biomass (either in a pot or in the field) is
eventually limited by available resources and, as total biomass approaches this limit, the
average biomass per individual will get progressively smaller (Spitters, 1983). For a

single species, total biomass was described by

Equation 4.1

Al]l_mo Y=w-N
where Y was the maximum (asymptotic) biomass supported by the available resources,
w was the average individual biomass (g) and N was the number of competing
individuals. As N increased and Y remained fixed, there were fewer resources for each
individual, and therefore w decreased, otherwise known as the law of constant yield. We
modelled the relationship between average biomass and density for small numbers of

individuals by including an intercept:

Equation 4.2
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where o represented the inverse biomass of a single individual in isolation. a described
how the biomass per plant decreased with each additional individual, and n = N - 1
described the density of competitors, not including the focal individual. a therefore
measures the average intra-specific competitive effect, assuming that interactions

between individuals are additive under fixed environmental conditions.

We extended this model to measure interspecific competition across our three fertility
levels specifying separate intercepts and interaction terms for each species in each

treatment:

Equation 4.3

-1

S
Wik = (%Uk] + Z Apjkt) * n[l])

=1

where j corresponds to the focal species, k indexes fertility treatment, and 1 was one of S
competing species. Comparing ao for each species described how they responded to
increasing fertility, independently of competition. ajjki represented the average effect of
species 1 on individuals of species j in fertility treatment k. Intra-specific competition
occurred when 1 = j, but again ny did not include the focal individual (thatis, ¥ n=N - 1).
Because we expected significant variation in individual growth, as well as the potential
for systematic bias due to the position of the pots in the glasshouse, we used the estimated
average individual biomass as the expectation of a probabilistic observation model that

described our experimental data:

Equation 4.4
wiiy = (Wi Brey) — 05 oy

iy ~ Lognormal(ugy, o)

where y is the observed biomass of individual i, which is drawn from a lognormal
distribution with mean p and a variance term 6% on the log scale. p includes a

multiplicative offset B for all individuals in block b, relative to the first block (81 = 1), and
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a small offset so that our fitted expectation of w represents the mean biomass on the

standardised scale (i.e. not log transformed).

In total, we fitted this model to 30,808 interactions between 3,535 individuals to
parameterise 90 interaction coefficients (ejki). All parameters were constrained to be
positive and given weakly informative priors: gamma distributions for ao and «
parameters, and half-normal distributions for § and 2. We fitted this model to the data
in a Bayesian framework using adaptive Hamiltonian Monte Carlo with the probabilistic
programming language Stan (Carpenter et al., 2017) and the rstan interface (Guo et al,,
2016) in R, version 3.5.1 (R Core Team, 2018). Both the model and data be found online

at https://github.com/aornugent/competition.

4.3.4 Comparing observation and experimental results:

Plant communities are structured by both intra- and inter-specific effects, but
observational studies, including JSDMs, typically focus on detecting when the impacts of
interspecific competition is greater than intraspecific competition (Adler, Kleinhesselink,
et al,, 2018; Tuck et al., 2018). We derived a measure of relative competitive effect from
our glasshouse experiment by predicting species mean biomass in two competitive
scenarios: under increasing intra-specific competition and under increasing inter-
specific competition. Using our posterior estimates of ao and a, we predicted the total
biomass of three resident individuals, one from each species, then increased the number
of intra- or interspecific competitors from 0 - 9. Similarly, we predicted the biomass of
one individual of each non-native species, then increased competitor number from 0 -
11, such that total pot density was the same for non-native and resident comparisons. We
limited the number of comparisons by pooling the competitive effects of resident species
on the three focal species equally (Qjk[residents] = Y (ayjki]) / 3, where 1 € resident

community species).

We then calculated the ratio of predicted mean biomass per plant under interspecific and
intraspecific competition at each density, in each fertility treatment. Species strongly
impacted by inter-specific competition had ratios below one (i.e. performed better in
monoculture than in mixture) whereas species that are not strongly impacted by
interspecific competition had ratios above one (i.e. were more limited in monoculture

than in mixture). We ranked these ratios to identify which species had the greatest
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interspecific competitive effect, which we predicted should match the degree of negative
residual covariation observed in our JSDM. Additionally, we calculated this ratio for each
posterior sample to generate 95% credible intervals and examined whether these
overlapped between fertility treatments to test whether competitive interactions

changed with nutrient supply.

4.3.5 Reconciling experiment and observation through simulation:

An inherent limitation of short-term experiments is that they can only focus on a subset
of possible mechanisms that operate in the field over the longer term (Stachowicz, Fried,
Osman, & Whitlatch, 2002). Competition is known to affect multiple population
processes, with differing impacts on abundance patterns (Martorell & Freckleton, 2014).
Although we assumed that competition measured in our experiment will also result in
reduced abundance and cover in the field, our glasshouse experiment was of insufficient
length to capture population-level responses. We therefore conducted a secondary
analysis of our JSDM, using a simulation of population dynamics informed by our
glasshouse experiment. This allowed us to model the same competitive processes we

expected our JSDM to detect and examine any potential cause of bias.

Much like our glasshouse experiment, we simulated the equilibrium abundance of two
species in isolation and in competition at 1,000 sites along a gradient of fertility using a
Lotka-Volterra model. Based on our experimental results, we assumed that each species
had positive intrinsic growth rates positive responses to fertility, and negative intra- and
interspecific interaction coefficients (Table B2-S2). We assumed that each species follows
logistic population growth and that equilibrium abundance was the number of
individuals N when the population reached the carrying capacity of site i. For a single

species, this was given by:

Equation 4.5

where r was the intrinsic per-capita growth rate, B was the increase in growth rate with
respect to x fertility, and a was an intra-specific interaction coefficient. We extended this

to two interacting species as follows:
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Equation 4.6

g - (i1 + Bry - X)) — apg - (g + Bug - X1a)
Aljjl * Akk] — A[kj] * A[jk]

Njij) =

where the number of individuals of species j was reduced proportionally to average effect
of interspecific competition ajkj of the expected number of individuals of species k, which
was also impacted by interspecific competition akj from individuals of species j. The
terms ayjjjj and akk) represented intraspecific competition for each species. We calculated
the ratio of equilibrium abundance in mixture to abundance in monoculture to examine
how the intensity of competition changed along an environmental gradient in a

population-based model.

This simulation approximated a pattern of abundance that we would expect to see if
populations in the field followed the same competitive processes observed in the
glasshouse. However, populations in the field are also subject to demographic
stochasticity, or process noise, that induces variation in abundance that is independent
of environmental conditions. JSDMs make use of this residual variation to quantify the
strength of covariation from patterns of abundance that are decoupled from
environmental conditions. Any remaining variation that is not correlated with
covariation in species abundances is assigned as observation noise. We introduced two

parameters to simulate this effect in the two species model:

Equation 4.7

Ny = el (i + Bui - %1+ viin) = @t (o + B - X + viwa) | o
N ajjj) - Aki] = Aij] * Ajik] N

where y is process noise and ¢ is observation noise for each species at each site. In our
simulations, these parameters were drawn from normal distributions, centred on zero
with hyper-parameters ysp and 6sp, meaning that they can take a range of positive or
negative values. N was truncated at zero if process or observation noise led to predictions
of negative abundance. Because abundances are truncated, competitors had no impact if

they were predicted to have an abundance less than zero.

Introducing parameters to control process noise enabled us to test how well a JSDM was

able to recover the underlying environmental and competitive interactions specified in
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our simulation. Increasing the level of process noise (Figure B3-S1), decouples the
relationship between the relationship between abundance and fertility, thereby
increasing the potential for the model to detect strong residual covariation. We repeated
our simulation 2,000 times, progressively increasing ysp from 0 to 1, and fitted a bivariate
JSDM to the pattern of competing species abundances in each simulation, using the same
general model structure as O’Reilly-Nugent et al., (2019). Repeatedly fitting this model in
a Bayesian framework was computationally prohibitive, therefore we attempted to
recover the model parameters in each simulation with maximum likelihood estimation
using the optimr (Nash, 2016) and furrr packages (Vaughan & Dancho, 2018) in R version
3.5.1 (R Core Team, 2018). We calculated the bias in estimated environmental response
as the square error between the JSDM parameter estimates from the true values and
examined the ability of the JSDM to detect competitive interactions as negatively

correlated, non-zero covariance between both species.

Figure 4.2. Species’ responses to fertilty estimated in the glasshouse and field. The
estimated biomass (in grams) of a single individual (ao) increases for all species with
increasing fertility. This differs from the relationship between abundance fertility (inset),
estimated from field data using a JSDM, which is positive for non-native species A. fatua
and B. diandrus, but negative for resident species B. hordeaceus and R. caespitosum. Points

indicate the posterior means, while error-bars describe the 95% credible intervals.
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4.4 Results

4.4.1 Contrasting [SDM and experiment results:

Yield density curves fitted our experimental data well (Figure B4-S2). For all six species,
the estimated intercept terms ao showed increasing biomass in response to increasing
fertility (Figure 4.2). Avena fatua was consistently larger than all other species. Average
aboveground biomass of Avena fatua ranged from 0.4 g per individual at low fertility to
2.9 g per individual at high fertility, followed by Bromus diandrus at 0.3 g to 2.0 g. In
comparison, Eragrostis curvula and individuals of the resident species performed much
more similarly, with an average biomass per individual of all species of approximately 0.2
g at low fertility. Eragrostis curvula and Bromus hordeaceus performed better at high
fertility, with average biomass at 1.5 g and 1.7 g, respectively, which was significantly
larger than Poa labillardierei and Rytidosperma caespitosum at 1.0 g and 0.7 g. There was
significant variation in growth for all species, but even so, these results differed from the
JSDM where and Bromus hordeaceus and Rytidosperma caespitosum decreased in cover

with increasing fertility (Figure 4.2, inset panel).

The competitive ranking of interspecific impacts was consistent between analyses, with
Avena fatua and Bromus diandrus having the largest interspecific impacts in the field and
in the glasshouse (Table 4-A). A. fatua was identified as strongly negatively covarying
with Bromus hordeaceus and Rytidosperma caespitosum in the field. Bromus diandrus
negatively covaried with Rytidosperma caespitosum but had positive covariation with
Bromus hordeaceus. Eragrostis curvula and Poa labillardierei were not observed in our
field study. The experimentally derived interaction coefficients were negative for all
species pairs (Figure B2-S3). The interspecific impacts of Avena fatua and Bromus
diandrus were highly asymmetric, having greater competitive impacts on resident species
than imposed by resident species (Table 4-A). Eragrostis curvula had far smaller impacts
the other non-native species. Our experiment was not able to distinguish between the
interspecific effects of each resident species (Figure B2-S3). We therefore focus on the

overall impact of the community from here on.
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Table 4-A. Interspecific competitive impact estimated from our JSDM (o) and glasshouse
experiment (a) at low, medium and high fertility. While not directly comparable between
treatments, the scale of interaction coefficients within each column gives an indication of
the degree to which increasing abundance of the competitor decreases the abundance of
other species. Importantly, o is forced to be symmetric, with the direction of competitive
impact inferred from a priori ecological knowledge, whereas interspecific dominance is

clear when a takes different values for pairs of non-native / resident competitors.

Non-native Resident O[SDM] QA[Low] O[Medium] Q([High]
B. hordeaceus -43.2 4.60/067 176/030 1.15/0.18
A. fatua R. caespitosum -102 7.55/0.65 1.75/030 1.76/0.17
P. labillardierei -- 7.65/0.66 2.77/029 2.15/0.18
B. hordeaceus +27.9 4.01/074 217/026 1.31/0.16
B. diandrus R. caespitosum -89.7 5.00/0.78 1.62/0.26 1.57/0.15
P. labillardierei -- 599/0.78 3.69/0.27 2.30/0.16
B. hordeaceus -- 1.64 /563 048/1.76 0.24/1.03
E. curvula R. caespitosum -- 213 /543 0.68/1.69 0.37/1.06
P. labillardierei -- 221/633 095/171 0.46/0.68

Avena fatua was uniformly dominant, having the greatest competitive effect on the
resident community across all three fertility levels. Competitive intensity increased with
fertility for Bromus diandrus (Figure 4.3), which had less impact at low fertility. Eragrostis
curvula experienced greater impact at high fertility. The competitive impact of our
resident species was broadly uniform across all three treatments, except for slightly
reduced impact on Bromus diandrus at low fertility. Large uncertainties in the estimates
of inter- and intra-specific competition coefficients meant there were no significant

differences between treatments. This uncertainty may come from individual variation in
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species interactions (Figure B2-S3), even though the overall observation noise in our

experiment was low (Figure B2-54).

Figure 4.3. The ratio of predicted mean biomass per plant under interspecific and
intraspecific competition in each fertility treatment. a) Ratio of resident biomass under
increasing intra- and interspecific competition. b) Ratio of non-native species biomass
under increasing intra- and interspecific competition. A ratio less than one indicates that
resident biomass is reduced by interspecific competition more than intraspecific
competition, while ratios greater than one indicate the opposite. (red = Low, blue =

Medium, green = High fertility).

4.4.2 Simulating the effect competition on abundance

In our simulation, the equilibrium abundance of both species increased linearly with
fertility (Figure 4.4a). However, when grown in competition, the abundance of the less
competitive species (blue) declined with increasing fertility (Figure 4.4b). The
relationship between abundance and fertility was largely unchanged for the dominant
species when grown in competition. Competitive intensity experienced by each species
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changed along the fertility gradient, notably for the subordinate species which
experienced a large degree of suppression at high fertility, even though per-capita impact

remains the same (Figure 4.4c)

Figure 4.4. Reconciling JSDM and experimental results with simulation. A) The simulated
abundance of the subordinate species (green) is initially higher than that of the dominant
species (blue) at low fertility, when grown in isolation. The dominant species acheieves
higher abundance at high fertility sites. B) The subordinate species has higher abundance
at low fertility, when grown in competitoin together, however the abundance of the
subordinate species declines with increasing fertility as the dominant species increases

in abundance at moderate levels of fertility. C) Competitive impact is shown to change
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with fertility for both species, with the degree of suppression, measured as the ratio of
abundance when grown in mixture to monoculture, increasing rapidly for the
subordinate species and decreasing rapidly for the dominant species. Values less than
one indicate that the focal species performs worse under competition than in isolation.
D) Repeating this simulation with increasing process noise, independent of
environmental or competitive conditions, decreases the degree of non-identifiability in a

JSDM model and reduces bias in the estimates of response to fertility.

A JSDM did not detect any negative associations in species abundance when there was no
variation independent of environment conditions (Figure B2-S5). Because environmental
and competitive drivers were confounded, the JSDM did not properly recover the
relationship between abundance and fertility for the subordinate species when process
noise was low (Figure 4.4d). This bias was negligible for the competitively dominant
species. However, the competitive relationship was detected as process noise increased.
As process noise increased, species abundance became decoupled from environmental
factors, allowing for greater separation of competitive effects. Negative correlation in
species residual error stabilised at moderate levels of process noise, while the error
captured as covariance between two species continued to decrease with increasing
amounts of variation (Figure B2-S5). Increasing process noise reduced bias in the
estimates of environmental relationship for the subordinate species, but the J[SDM was
unable to recover the true response to fertility even with a large degree of process noise

in the simulated patterns of abundance (Figure 4.4d).

4.5 Discussion

Together our J[SDM, experiment and simulation demonstrate the difficulty of inferring
species interactions from observational data. Our experiment confirmed the competitive
dominance of two non-native species Avena fatua and Bromus diandrus that were
identified as strongly impacting community structure in the field (O’Reilly-Nugent et al.,
2019). However, our experiment also showed that our JSDM underestimated the
underlying relationships between abundance and fertility for two subordinate species
Rytidosperma caespitosum and Bromus hordeaceus (Figure 4.2). Reconciling these results
through simulation suggested that environmental and competitive drivers remained

confounded in our JSDM, causing competitive interactions in the field to be

67



underestimated. While underestimating competitive impacts is a documented problem
of observational studies that do not account for species exclusions - the ‘ghost of
competition present’ (Figure 4.1; Adler, Kleinhesselink, et al., 2018; Tuck et al., 2018) -
our model failed because it falsely predicted high fertility sites to be outside the potential
niches of many species, when their absence was instead most likely due to competitive
exclusion. We therefore suggest that JSDMs can be useful for identifying strong
competitive interactions, but that the impact of dominant species may be underestimated
if competitive interactions are confounded with environmental variation (Godsoe,

Franklin, et al., 2017).

It was reassuring to see that, overall, our inferences of competitive interactions in the
field were aligned with our experimental results, despite measuring different responses
in terms of abundance and biomass, respectively. The assumptions of our JSDM provided
valid approximations, even using a single, symmetric covariance matrix to approximate
competitive interactions that were likely asymmetric (Table 4-A). Even though the
intensity of competition is expected to increase with fertility (Figure 4.4c; Rees, 2013),
there was little difference in relative impact across fertility treatments (Figure 4.3),
meaning that assuming a constant per-capita effect may be suitable to capture general
trends. Large, annual species like Avena fatua and Bromus diandrus may have been
particularly dominant at high fertility if rapid growth improved the chances of reaching
reproductive maturity before the available resources were depleted (Aarssen, 2015).
However, these same species can be excluded at resource poor sites where competition
for resources may prevent recruitment (Martorell & Freckleton, 2014). If the recruitment
of large species is limited at resource poor sites, then there are opportunities for more
diverse communities of less competitive species (Dostal, Tasevova, & Klinerova, 2019).
While our single covariance matrix over-simplified this complexity, it otherwise provided

an appropriate approximation of average competitive outcomes in the field.

One reason our JSDM may have worked well for dominant species is because their large
competitive impacts meant that they were prevalent across many sites, providing enough
information to make robust inferences about the relationship between abundance and
fertility (Segurado & Aratjo, 2004). Some studies have demonstrated improved
predictive power by including the presence of dominant species as covariates that

determine the abundance of subordinate species (Kissling et al., 2012; Le Roux, Pellissier,
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Wisz, & Luoto, 2014). This approach can, however, lead to over-fitting if correlated
residual variation between species is not accounted for (J. S. Clark, Gelfand, Woodall, &
Zhu, 2014; Maguire et al., 2016). Hierarchical modelling, as in our JSDM, instead attempts
to ‘borrow strength’ from common species to improve predictions for rarer species
(Gelfand et al., 2005; Ovaskainen & Soininnen, 2011). However, we found that partial
pooling between species was not strong enough to identify a common environmental
relationship that was observed in our experiment. Our model fitting procedure instead
minimised negatively correlated residual variation among species by predicting negative
relationships between abundance and fertility. Although our sample of field data did not
contain enough information to accurately estimate the interactions of less common
species (Popovic, Warton, Thomson, Hui, & Moles, 2019), validating our inferences with
an experiment provided evidence to introduce additional constraints (Kearney & Porter,
2009; Kearney, Wintle, & Porter, 2010). In future analyses, all species could be assumed

to have positive relationships with fertility.

In fact, building experimental evidence into phenomenological models, such as JSDMs, is
fundamentally necessary to test theories of how the world works (Alexander, Diez, Hart,
& Levine, 2016; Evans, Merow, Record, McMahon, & Enquist, 2016). Studying complex
systems in ecology requires a trade-off between precision, generalism and realism (Mark
van Kleunen, Dawson, Bossdorf, & Fischer, 2014) and while experiments allow us to
conduct robust tests that isolate confounded processes, they are inevitably limited in
scope (Letten et al.,, 2017; Maynard, Miller, & Allesina, 2020). Incorporating physiological
and mechanistic drivers into models of competition that can be applied in the field allows
us to test our theories at scale by providing support to processes that are not directly
observable (e.g. Hooper et al., 2008) and confirming where and when competition is
actively structuring communities (Dostal et al., 2019; Hart & Marshall, 2013). This is
particularly important for making predictions where species performance under field
conditions has not yet been observed (T. E. Miller, TerHorst, & Burns, 2009; Mark van
Kleunen et al., 2014). Eragrostis curvula and Poa labillardierei were not included in our
JSDM analysis, but their slow growth (Figure 4.2) and limited competitive impact (Figure
4.3) measured in our experiment suggests that they may be excluded from invaded
communities in the field, which could in turn be tested by seed addition (Wandrag et al.,

2019) or direct invasion experiments (Grainger, Letten, et al., 2019).
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Frameworks that integrate experiment, observation and theory are improving rapidly
(Grainger, Levine, et al.,, 2019; Maynard, Wootton, Servan, & Allesina, 2019), leading to
ever more realistic simulations of plausible community assembly processes (Carmel et
al., 2017; Ellner, Snyder, & Adler, 2016). These simulations are extremely valuable for
testing the sensitivity and specificity of models that rely on observational data (Norberg
etal, 2019; Ovaskainen et al.,, 2019; Zurell et al., 2019). Our simulation demonstrated the
importance of process noise for JSDMs to isolate confounded processes driving patterns
of species abundance. The requirement of process noise may also suggest that there is a
limit to the precision with which JSDMs can recover the environmental relationships of
multiple species at once (Figure 4.4d). Practitioners applying these models must be
aware that species may appear to interact weakly because they are often confined to their
realised niches by competition (Tuck et al, 2018) and should attempt to include
observations from sites where species are absent whenever possible. Ultimately,
inferences drawn from observational data must consider that patterns in the field could
be generated by multiple processes and should be validated with experiments (Barner et

al, 2018).

4.6 Conclusion

There is justifiable concern that non-random associations detected by JSDMs might not
reflect species interactions. We show that although JSDM analysis correctly identified
competitively dominant, non-native species impacting native grassland communities, the
magnitude of these impacts was likely underestimated. JSDMs, like other models that
infer competitive interactions from observational data, require enough information to
decouple patterns of species abundance from environmental drivers. Where this
condition is met, JSDMs are powerful tools for investigating competitive dynamics in
diverse plant communities. Future extensions of JSDMs should look to incorporate
process-based models that improve predictions of abundance under field conditions.
Even then, inferences should be tested using complementary datasets, such as traits,

ecological theory, and ultimately experimentation.
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5.1 Abstract

1) The short-term effects of interventions such as seed addition may be overwhelmed by
natural successional change in the long run. This calls into question the value of
rehabilitation efforts. Identifying appropriate controls to assess long-term rehabilitation
outcomes can be challenging when control plots within rehabilitated areas are
themselves affected by rehabilitation actions (e.g. through the local spread of native
species). However matching external reference sites can be rare, and trajectories of

community development vary significantly across the landscape.

2) We compared vegetative changes in a rehabilitated old field against three sets of non-
intervention controls: non-intervention plots in the rehabilitated field; plots from two
matched reference fields of the same successional age; and plots in 21 nearby old fields
that varied in time of abandonment. We examined the cover of five functional groups over
27 years to assess whether vegetative change in the rehabilitated field differed from

natural successional trajectories of abandoned grasslands in this area.

3) Rehabilitation, involving seed addition of native grassland species coupled with
herbicide application, burning and rototilling, led to lower abundance of non-native
species and higher abundance of native grasses and forbs 27 years after intervention,

relative to natural successional trajectories of control plots in 21 unrehabilitated fields.

4) Nevertheless, conclusions about the long-term outcome of rehabilitation varied
depending on the choice of non-intervention controls. Local control plots demonstrated
the short-term (1-2 years) effects of rehabilitation on the establishment of native species,
but little long-term difference between rehabilitated and non-intervention plots after 27
years. Rehabilitation appeared effective in restoring native vegetation relative to the two
reference fields. But examination of a larger number of abandoned old fields showed that

many equivalent communities’ transition to native dominance without intervention.

5) Synthesis and applications. Rehabilitation of degraded communities is only necessary
where natural succession to native dominance has either slowed, stalled, or diverged.
Accounting for natural succession by forecasting possible scenarios of community change
will enable rehabilitation practitioners to target sites that maximise the certainty of

rehabilitation outcomes.
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5.2 Introduction

“If we seek to recreate the temperate forests, tall grass savannas or desert communities of

centuries past, it is not to turn back [time] but to set it ticking again.”
(Falk, 1990)

Successful rehabilitation of degraded grasslands means altering the trajectory of
vegetative change toward enhanced indigenous habitat (Gann et al., 2019; SERA, 2017),
often involving interventions that encourage the reestablishment of native species, and
create the conditions necessary for their long-term persistence (Buisson et al., 2019;
Johnson, Catford, Driscoll, & Gibbons, 2018). These interventions are especially
important where the non-native species are expected to remain dominant, long after
cultivation has ceased (Cramer, Hobbs, & Standish, 2008; MacDougall et al., 2014). Many
studies have shown that rehabilitation interventions can have positive outcomes in the
short-term (e.g. Kiehl, Kirmer, Donath, Rasran, & Hoélzel, 2010; Kiehl & Pfadenhauer,
2007; Pywell et al., 2002, 2007), but sustaining native populations requires the creation
of persistent feedbacks that support recovery after disturbance and limit the potential for
re-invasion (Buckley et al., 2007; Nimmo, Mac Nally, Cunningham, Haslem, & Bennett,
2015). Meta-analyses of ecosystem recovery show little long-term difference between
rehabilitated sites and sites left to recover naturally (Jones et al., 2018; Meli et al., 2017),
suggesting that natural successional processes can often overwhelm rehabilitation

efforts in the long run (decades to centuries; Walker & del Moral, 2009).

Succession describes the sequential development of plant communities following
disturbance, which can occur predictably, due to the primary effects of environmental
conditions on community assembly, or exhibit significant variation depending on initial
conditions or the timing of species establishment (Fukami, Bezemer, Mortimer, & Van Der
Putten, 2005). Where environmental conditions are the primary driver of vegetative
change, communities of the same age and stage are expected to share similar
compositions of native and non-native species. However, large-scale drivers, such as
changing climatic patterns (Walther et al., 2009), pollution (MacDougall et al., 2014) and
species dispersal (Matthews et al., 2009), can act as key forcing factors that overwhelm
the effects of local restoration interventions. Long-term changes in environmental

conditions could preclude the pathways that lead to native dominated communities
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(Macdougall, Beckwith, & Maslovat, 2004; ]J. W. Williams & Jackson, 2007). Alternatively,
if the trajectories of vegetative change are contingent on differences between
communities, then variation in community development can lead to significantly
different compositions, including alternative stable states dominated by non-native
species that are difficult to escape (Shriver et al., 2019; Suding, Gross, & Houseman,
2004). Understanding where succession will lead to native dominated communities, or
where interventions result in short-term changes but little long-term effect, is essential

for rehabilitation planning (Matthews & Spyreas, 2010; Prach & Hobbs, 2008).

Separating the effects of rehabilitation from succession is complicated because it is
difficult to predict what would have happened had intervention not occurred. Most
rehabilitation assessments compare the trajectory of vegetative change against a
reference community that shared similar starting conditions (Montoya, Rogers, &
Memmott, 2012). An ideal reference would be an exact replica where community
development proceeded without intervention, leading many studies to use un-
rehabilitated control plots within the same site (Christie et al., 2019). However, because
many rehabilitation interventions are often carried out at small spatial and temporal
scales, local control plots may not be independent from intervention effects (Underwood,
1990). For example, seed addition is often used to establish persistent populations of
extirpated native species, or supplement existing native populations (Cox & Anderson,
2004; Kardol et al., 2008; Prober et al., 2005), but local control plots that did not receive
seed addition could resemble seed addition plots due to local dispersal, or if community
development is overridden by external drivers, with seed addition having little effect on
the long-term outcome of community development (Brudvig, 2011; Grman, Bassett, &

Brudvig, 2013).

Where local control plots are inadequate, many studies compare the effect of
rehabilitation intervention against the passive development of unrehabilitated
communities at external reference sites (P. S. Lake, 2001). However, it can be difficult to
find reference sites that share similar legacies of land use, were not rehabilitated and
otherwise match the degraded community in all relevant dimensions of ecological
development (White & Walker, 1997). One option is to use abandoned communities of
the same successional age, which assumes a common pattern of vegetative change. But

true replicas can be rare when there is significant variation in the patterns of natural
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succession can across the landscape (Woods, 2007). Chronosequences of similar
abandoned communities could be used to examine regional-scale trends of community
development by comparing patterns of vegetative change across sites of different ages
(Bakker, Olff, Willems, & Zobel, 1996; Michener, 1997). This space-for-time substitution
would identify how trajectories of succession vary between developing communities
(Foster & Tilman, 2000). With a good understanding of successional variation across a

landscape, it should be possible to set an appropriate reference for rehabilitation.

We present a case-study that compares post-rehabilitation changes in a recovering old
field plant community against un-rehabilitated controls at three scales:1) 5 plots in the
focal field that had no intervention; 2) 100 plots in two nearby fields, which had similar
previous land-use and were abandoned at similar times; and 3) 1,100 plots in 21 nearby
old fields that varied in time of abandonment. The rehabilitation experiment trialled six
rehabilitation interventions to establish native grassland species in an abandoned old
field dominated by non-native grasses at Cedar Creek Ecosystem Science Reserve. In
1993, 30 plots in the focal field received one-off interventions of native seed addition in
combination with burning, herbicide, and tilling. The plots were revisited five times over
a 25-year period to track changes in plant community composition to assess whether the
community shifted from non-native to native grass dominance. Revisiting these fields, we
sought to test whether our conclusions about the long-term effect of rehabilitation
intervention was dependent on the choice of non-intervention control for comparison.
We expected that if all fields followed consistent natural successional processes, then
then the effect of rehabilitation and restoration would be clear, but if fields followed very
different trajectories, then the outcomes of restoration would depend on the choice of

reference ecosystem.

5.3 Methods

5.3.1 Site details:
Cedar Creek Ecosystem Science Reserve (CCESR) in Bethel, Minnesota (45.4086" N,
93.2008" W) is a ~2,200 ha area that includes a mosaic of ex-agricultural, prairie and oak
savanna communities, as well as woodlands and wetlands. Cedar Creek was declared a
National Natural Landmark in 1945 and has been a Long-Term Ecological Research site

since 1982. CCSER has hot, humid summers (~27 °C June-August) and cold winters (-14
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°C December - February; A. T. Clark, Knops, & Tilman, 2019). Mean annual precipitation
is roughly 775 mm (16 mm), ~60% falling between April and August. Soils come from a
sandy glacial outwash and are low in organic matter, nitrogen and water-holding capacity
(Grigal, Chamberlain, Finney, Wroblewski, & Gross, 1974). Abandoned fields are typically
dominated by cool-season C3 grasses, shifting slowly to dominance by native perennial
C4 grasses with increasing time since abandonment (Inouye et al., 1987). Old fields at
Cedar Creek had a mean richness of 43 species during initial surveys in 1983, with more
biennial species than either annual or perennial species. The most abundant species
included the non-native C3 grasses Poa pratensis, followed by Elymus repens (formerly
Agropyron repens), then native C4 grasses Schizachyrium scoparium and Andropogon
gerardii (Foster & Tilman, 2000). Common forbs included the non-native Crepis tectorum

and native Erigeron canadensis and Ambrosia artemisiifolia.

5.3.2 Rehabilitation experiment details:
We studied the effect of rehabilitation interventions in 35 plots in a single field (F0) that

was abandoned in 1965 (Svenson, 1995). Each plot was 6 m x 6 m and arrayed in a 36 m
x 48 m grid with a 1 m buffer between plots. Six rehabilitation interventions and a non-
intervention control were randomly assigned to plots, with five replicates each. The
interventions were carried out in May 1993. All six interventions involved adding seeds
of 18 native grassland species (5 grasses and 13 forbs; Table C3-S1) to each plot. Seed of
each species added at a density of 100 seeds/m? except Bouteloua curtipendula, Elymus
canadensis, Helianthus pauciflorus, and Asclepias tuberosa which were seeded at 50
seeds/m?2 due to limited seed availability. Prior to seeding, one of the following
interventions was applied to each plot: (1) no manipulation other than seed addition; (2)
burning; (3) herbicide application; (4) tilling; (5) seed addition of a nurse crop species;
and (6) both herbicide and tilling (details given in Table 5-A). These interventions were
intended to increase the success of native seed addition by removing the resident non-

native species and/or remediating local nutrient cycles.

Community composition was first measured in September 1993, and again in August
1994, by visually estimating the percent cover of all plant species, litter and bare ground
in a single 1 x 0.5 m quadrats located in each plot (Svenson, 1995). Cover was
standardised to sum to 100% providing a relative measure of species abundance in each

plot. In 1995 all plots in the field were burned. In 1999 and 2000, community composition
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was remeasured in 15 plots (corresponding to interventions 0, 1 and 6; Table 5-A) using
four 1 x 1 m quadrats in each plot (Blumenthal, Jordan, & Svenson, 2005). Three quadrats
were perturbed by burning and/or the addition of nitrogen fertilizer and plant biomass
was harvested by clipping within 1 cm of the soil surface. Biomass was summed across
quadrats in each plot but left unstandardized. All 35 plots were then remeasured in June
2017 using the same four 1 m x 1 m quadrats as the second set of surveys. The total cover
of all plant species, bare ground and litter was visually estimating in each quadrat, then
summed across quadrats within each plot. Cover was unstandardized and could therefore
sum to > 100% where there was vertical overlap between species. Standardisation of
measurement types is described in section 5.3.5. Data compilation. The effects of quadrat
perturbation were not evident in a final survey in 2017 and we thus ignore them for the

remainder of our analyses (details of this sub-experiment can be found in Appendix C1).

Table 5-A. Summary of 1-6 seed addition interventions applied to field FO in 1993, and
two un-rehabilitated conditions found in plots across all 22 old fields. Seed addition
aimed to establish persistent populations of native species, additional interventions were
intended to increase the success of native seed addition. Herbicide treated plots were
sprayed with glyphosate (Roundup®; 110 ml/m?) on the 15%» May 1993. Burning
occurred on the 15t% June 1993. Tilled plots were rototilled to ~8 cm, raked and packed

on the 17th-18t June 1993. Native species seed composition is described in Table C3-S1.

# Code Interventions Native seed addition
0 C- None (un-rehabilitated) x
0b B- Burned (un-rehabilitated) x
1 C+ Native seed only v
2 B+ Burned v
3 HB+ Burned & herbicide v
4 BR+ Burned & tilled v
5 BRN+ Burned & nurse crop v
6 HBR+ Burned & herbicide & tilled v
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5.3.3 Matched reference sites:

As a second set of non-intervention controls, we examined changes in plant community
composition over time in permanently marked plots in two nearby fields (F1 and F2;
~2,200 m and ~2,000 m from FO, respectively). Community composition was repeatedly
surveyed in 100 1 m x 0.5 m plots arrayed along four 40 m transects in each field (1 m
between plots; 25 m between transects). Within each field, two transects (0b) are
regularly burned, while the remaining half (0) are unmanaged and are primarily only
disturbed by herbivores (e.g. insects, deer, gophers; Table 5-A). Cover of all species, litter
and bare ground was visually estimated in each quadrat and normalised so that the total
cover in a single plot was equal to 100 (i.e. relative abundance). Surveys were conducted
in 1983, 1989, 1994, 1997, 2002, 2006, 2011 and 2016, spanning the same timeframe as
our rehabilitation experiment (A. T. Clark et al.,, 2019). These fields had similar land use,
and were of similar successional age, both abandoned in 1961. We therefore assumed to
share similar community development trajectories as our focal field (FO) at the time of
rehabilitation intervention, providing 2 x 50 = 100 control plots (intervention 0) that

were spatially independent from our focal field (FO).

5.3.4 Landscape chronosequence:

For a final set of non-intervention controls, we examined changes in 21 old fields,
including F1 and F2, that had been abandoned at various times in the past. These fields
ranged in size from 2 ha to 14 ha and form a 70-year successional chronosequence with
the earliest year of field abandonment in 1927 and the most recent in 1997 (Inouye et al.,
1987). The fields previously produced corn, oats, potato, rye, and soybeans but otherwise
shared similar post-abandonment histories. All fields were distributed within a ~3,500
m radius, often separated by roads, waterways, or forest fragments, with the nearest field
~570 m from F0. 100 permanent plots were established in each field, half of which were
regularly burned, and community composition was measured in the same way as the
matched reference sites (above), except that data from the 2016 survey was only
available for F1 and F2. One field was not burned and had 100 non-intervention control
plots only (C-). In total, we had 1,100 non-intervention control plots from fields of

different ages.
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5.3.5 Data compilation:

Species name, functional group and origin were resolved using the USDA PLANTS
database (Natural Resources Conservation Service, 2018). 169 distinct taxa were
recorded in plots, 137 of which were resolved to species level and 29 to genus level. Taxa
unable to be assigned to genera were aggregated by functional group, leaving entries for
miscellaneous forbs, legumes, grasses, mosses & lichens, woody plants, and fungi. 0.3%
of records had no distinguishing features and were treated as miscellaneous species.
Records of disturbance (e.g. anthills and gopher mounds) and debris were treated as bare
ground and litter, respectively. We grouped species into functional groups of native
grasses (primarily C4 species; 67%), non-native grasses (primarily C3 species; 67%),
native forbs (6% legumes) and non-native forbs (20% legumes). Woody plants, ferns, and
species of unknown origin were grouped as “other”. We summed the cover or biomass
for species in each group in each quadrat at each measurement. We had 14,431 repeat
measurements of five functional groups in 2,135 plots in 22 fields (FO - F21), with each
field surveyed at least three times from the 12 occasions surveys were conducted
between 1983 to 2017. This totalled 72,155 observations, which included 18,215

functional group absences (25%) which were recorded as zero abundance.

We scaled our data by discarding records for bare-ground and litter and dividing
observations of functional group abundance within a plot by the standard deviation (SD)
of functional group abundance across all plots in each survey. Standardising by SD gives
a comparable scale between surveys by normalising for differences in plot sizes,
observers, and survey methods. Because all observations for a given year were of the
same type, this scaling maintains relative differences in functional group abundances
among plots in each survey. Discarding bare ground and litter was important to compare
percent cover that had been standardised to relative abundance. Relative abundance can
be difficult to model because the abundance of one functional group is dependent on the
abundance of other functional groups in the plot, and two plots can have the same relative
abundance but very different total cover. Bare ground and litter therefore provide
common reference across plots, within a survey. Where functional group abundance is
low, there is little vegetative cover and lots of bare ground and litter. This contrasts with
plots that have high functional group abundance and have lots of vegetative cover,
meaning that bare ground and litter make up a relatively small proportion of percent
cover. Dividing by the SD of the remaining observations then puts percent cover on a
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standardised abundance scale. Although biomass measurements may have different
distributions than cover, these are highly correlated (MacDonald et al., 2012)and make

up only a small proportion of our total dataset (<1%).

5.3.6 Assessment of rehabilitation:

We attempted to identify the effect of rehabilitation intervention on community
development by fitting a model to records of standardised abundances in rehabilitated
plots and comparing the trajectory of vegetative change with that of three sets of non-
intervention controls. We described this pattern of vegetation change as a function of
time, with each functional group increasing or decreasing monotonically. We modelled
the relationship between functional group abundance A and time since abandonment t in
each plot using a type Ila parameterisation of the Gompertz curve (Eq. 14; Tjgrve &

Tjerve, 2017), with three parameters:

Equation 5.1

Xo[ijk]

Ak lijkl]

exp(—r[ij]-t)
A [iji) = Akijry ( )

where ao is the initial functional group abundance at the time of abandonment (t = 0), ax
is the equilibrium abundance at the end of succession, and r is the intrinsic rate of change
in abundance of functional group i in plot j in field k given rehabilitation intervention L
All parameters were constrained to be positive. In this parameterisation, ao and ak are
independent and the greater the difference between abundances at the start and end, the
longer succession would take for a fixed r. ao and ak also determine the direction of
change, increasing or decreasing monotonically from start to end. Rehabilitation
interventions affected the trajectory of vegetative change by increasing or decreasing ax,
the expected final abundance within a given plot. We did not observe ao and ax directly
but modelled them as latent parameters. Parameter estimates were drawn from
hierarchal normal distributions, with functional group-level means and plot-level
random effects. Distributions for ao and ax shared a common standard deviation
parameter for each functional group to constrain the initial and final abundances to the

same scale.

We fitted this model to two subsets of our data: 1) our focal field and matched reference

sites (F0-2) and 2) the full Cedar Creek chronosequence (F0-21). Appendix C2 describes
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our model structure, which includes an auto-correlation component to capture short- and
medium-term variation in plot level abundance and a lognormal observation component

to describe the probabilistic distribution of our data.

5.3.7 Comparing intervention effects:

Rather than examine the effect of intervention by comparing the final outcome of
succession, which could be expected to vary between fields, we calculated response ratios
using posterior predictions of expected functional group abundance in each plot at a fixed
point in time, t = 52 which was the age of abandonment of FO in 2017. Response ratios
can be used to measure the effect size of multiple interventions against a common set of
non-intervention controls (Lajeunesse, 2011). We tested for differences between
treatment and control plots calculating response ratios using: 1) data from 5 non-
intervention control plots nested in F0, 2) posterior predictions of 105 control plots from
a model fitted to fields FO-F2 and 3) posterior predictions 1,105 control plots from a
model fitted to fields FO-F21. Posterior predictions were generated by taking 1,200
samples of the expected abundance of each functional group in control plots. In addition,
we drew 1,200 samples of the expected abundance of each functional group in five plots
under each intervention (T = 1-6) in field FO. These samples represented our uncertainty
in the underlying trajectory of community development in each field but ignored plot
effects and auto-correlation between observations. Unrehabilitated burned plots (B-)

were not included in this analysis.

For each function group, we calculated response ratios for each intervention in field FO
as RR = log(yr+ / yc), which is the log transformed proportion of expected functional
group abundance in plots rehabilitated with intervention T+ relative to non-intervention
control plots C- in 2017 (see Table 5-A for interventions). We assessed whether the
treatment plots clearly differed from the control plots by calculating the uncertainty
associated with each RR. We calculated the standard deviation orr of the aggregate
response ratio, pooling the RR from all six rehabilitation interventions, which accounts
for potential bias in using a single set of controls for repeated comparisons of multiple
treatments within a single study (Lajeunesse, 2011). Response ratios significantly greater
than zero mean that functional group abundance is greater in rehabilitated plots 24 years
after intervention, while values less than zero indicate that functional abundance is

greater in non-intervention control plots. Significant effects were determined by
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examining whether the confidence interval of each response ratio (CIrr = RR * 1.96 - orr)
included zero. Calculating response ratios using an increasing number of fields allowed
us to explore whether our reference controls were suitable for separating the effect of

rehabilitation from variation in natural succession.

5.4 Results

Figure 5.1. Change in functional group abundance following rehabilitation in 35
plots. Negative control plots (C-) received no intervention, all other interventions were
seeded with native grassland species. Interventions included seed addition only (C+),
burning (B), herbicide and burning (HB), burning and tilling (BR), burning, tilling and a
nurse crop (BRN), and herbicide, burning and tilling (HBR). Dashed lines separate plots

that followed typical management practices from more intensively restored plots.

5.4.1 Comparison with local control plots:

Native grass and forb species increased in abundance following seed addition

interventions (Figure 5.1; see Table C3-S1 for extant and added species). Although native
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forb abundance decreased between 1994 and 1999, native grasses became persistently
dominant in plots where seed was added, including plots with no removal of existing
vegetation (C+, B+). In 2017, interventions that combined burning and seed addition
appeared to have reduced the abundance of non-native grasses relative to non-
intervention controls (e.g. RRusr+ = - 0.69; Clupr+ = [-0.84, -0.54]), whereas seed addition
alone had not (RRc+ = -0.02; Clc+ = [-0.17, +0.13]).

Control plots that did not receive seed addition (C-) converged on a similar native
dominated community as treatment plots after 27 years, with both having similar
abundances of native grasses and forbs (Figure 5.1). There was no clear difference
between treatment and control plots in response ratios for native grass abundance (e.g.
RRupr+= 0.18; CluBr+ = [-0.07, +0.43]) or native forbs (e.g. RRer+ = 0.06; CIpr+ = [-0.55,
+0.67]).

5.4.2 Comparison with matched reference fields:

During the same period, external reference fields F1 & F2 were not rehabilitated and
showed markedly little change in the abundance of native grasses and forbs, 56 years
after abandonment (Figure 5.2). Functional group abundances were similar across fields
FO, F1 and F2 at the time rehabilitation interventions were applied, but native grasses

only increased in the rehabilitated field.

Control plots in all three fields shared very similar, stationary trends for non-native grass
abundance. Strong fluctuations around the successional mean are observed in all
functional groups and estimates of 8 > 0.5 imply strong autocorrelation between
observations (Figure 5.2). One such fluctuation may explain the observed decline in non-
native abundance in FO following rehabilitation. After controlling for auto-correlated
stochastic variation, some intervention specific effects are detectable (Table 5-B). The
application of herbicide combined with burning and rototilling (HB+, HBR+) was most
effective at reducing the abundance of non-native grasses (e.g. RRus+ = -1.52; Clus+ = [-
1.74, -1.29]), however, the strongest result was the uniform increase in native grass (RR
between 3.98 and 4.35) and forb abundance (RR between 1.96 and 2.91) in all seed

addition plots, compared to unrehabilitated controls from fields FO-F2.

Table 5-B. Response ratios (RR) and associated uncertainties of restoration intervention

using the expected abundance of each functional group at t = 52 (equivalent to the age of
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the restored field in 2017) compared with unrestored plots (C-) at three scales. Nc- is the

number of control plots used at each scale. orr is the aggregate standard deviation across

the response ratios of all six interventions. RR are the response ratios of each restoration

intervention. Positive values indicate greater abundance after intervention compared to

controls. RR where the 95% confidence interval does not span zero are italicised and

underlined.

Single field (FO; Nc- = 5) ORR RRc:  RRp: RRus+ RRgr+ RRprn:  RRugrs+
Non-native grasses 0.076 -0.02 -0.35 -028 -0.57 -0.35 -0.69
Native grasses 0.127 -0.08 0.03 0.02  -0.05 0.13 0.18
Non-native forbs 0.541 0.23 -0.11 -0.22 0.17 -0.99 0.12
Native forbs 0313 -0.65 -0.28 -0.11 0.06 0.02 -0.11
Other 0873 -0.01 0.68 -1.20 062 -0.48 0.20
Matched reference sites (FO-F2; Nc- = 105)

Non-native grasses 0.115 -0.03 0.18 -1.52 -0.51 -0.51 -1.09
Native grasses 0.518 398 3.90 3.85 4.21 4.28 4.35
Non-native forbs 0.167 -0.86 -1.50 -0.02 -0.04 -0.35 -0.53
Native forbs 0.346 1.96 242 291 2.83 2.80 2.68
Other 0.557 145 1.68  1.65 0.85 1.35 0.66
Landscape chronosequence (FO-F21; Nc¢-=1,055)

Non-native grasses 0.047 0.16 0.22 -0.61 -0.17 -0.09 -0.36
Native grasses 0.058 0.41 0.35 042 0.45 0.51 0.58
Non-native forbs 0.051 -0.01 -024 0.26 0.32 0.10 0.09
Native forbs 0.041 049  0.63 0.94 0.90 0.89 0.75
Other 0.062 -1.55 -149 -1.49 -1.79 -1.57 -1.66




5.4.3 Comparison with landscape chronosequence:

The effect of rehabilitation was less evident when compared at the landscape scale
(Figure 5.3). Averaging across all 22 fields showed that, on average, native grasses should
eventually dominate abandoned old fields (o [Native grasses] = 4.09, CI = [3.53, 4.65]). There
was, however, substantial variation between fields in the eventual outcomes (Figure C4-
S2). Assuming our posterior samples of ak capture the likely variation in community
development, non-native grasses were predicted to have greater final abundance (ak)
than native grasses 23% of the time. Similarly, non-native forbs had greater abundance

than native forbs in 43% of posterior samples across all fields.

Figure 5.2. Repeated measurements of functional group abundances measured in non-
intervention control plots (solid lines) and burned or rehabilitated plots (faded lines) in
three old fields abandoned between 1961 and 1965. The estimated modal trajectory
(dashed white lines) of native grasses and forbs indicate a transition to native dominance

in non-intervention control plots (C-) of the rehabilitated field (F0), but not in
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unrehabilitated fields (F1-F2). Blue shading indicates 95% credible intervals. Estimates
of 8 > 0.5 suggest functional group abundance is highly correlated between

measurements.

Figure 5.3. Community composition measured from 1983 to 2017 in non-intervention
control plots (solid lines) and burned or rehabilitated plots (faded lines) that span more
than 80 years of successional change. Repeated measurements of functional group
abundances following rehabilitation (white) closely followed the average predicted
trajectories of community development (yellow), estimated from non-intervention
control plots in 22 abandoned fields (blue). Yellow shading indicates 95% credible
intervals. Colour indicates the year a field was abandoned ranging from 1927 in dark blue

to 1997 in light blue.

86



Fitting our model to 2,135 plots dramatically increased the statistical power of our study
to detect the effect of rehabilitation intervention (Table 5-B). We observed small but clear
positive effects of seed addition on the abundance of native grasses (RRbetween 0.41 and
0.58) compared with 1,105 unrehabilitated control plots across all 22 fields. Non-native
grasses decreased in plots that received herbicide (e.g. RRus+ = -0.61; Clus+ = [-0.70, -
0.52]) but there was no clear pattern of effects on non-native forb abundance in
rehabilitated plots. The most convincing effect of rehabilitation was the greater
abundance of native forbs after 27 years across all interventions (RR between 0.49 and

0.94).

5.5 Discussion

Comparing vegetative change against non-intervention controls at three scales showed
that conclusions about the long-term outcome of rehabilitation intervention can vary
significantly depending on the choice of non-intervention reference (Table 5-B). At the
plot level within our study field (F0), the convergent trajectories of intervention and
control plots (C-) meant that it was unclear whether the native grass populations present
in rehabilitated plots were the result of local dispersal following seed addition or because
the effects of intervention had been overwhelmed by external factors driving community
development (Brudvig, 2011; Grman et al., 2013). Comparing our study field with two
matched reference fields (F1-F2; Figure 5.2) suggested that seed addition increased
native species abundance in FO compared to non-intervention controls. However, old
fields at Cedar Creek, on average, started with low abundance of native species and
increased in native dominance without intervention (Figure 5.3). Considering our
experiment in the context of a larger sample of 22 fields showed that seed addition did
have a positive, long-term effect on native species abundance, but the effect was stronger
for native forbs than for native grasses. This discrepancy demonstrates that the
recommendation of two matched references sites (Ruiz-Jaen & Mitchell Aide, 2005) may
be inadequate when there is large variation in successional outcomes across the

landscape (White & Walker, 1997).

Considering rehabilitation within a successional framework is not a new idea (Suding,
2011; Walker, Walker, & Hobbs, 2007) but it remains difficult to distinguish where

intervention is necessary. Non-intervention is a viable option where native species are
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available to colonise degraded communities and successional dynamics are predicted to
lead to native species recovery (Fensham et al.,, 2016; Prach & Hobbs, 2008). At Cedar
Creek, native grasses are known to increase in dominance with enough time since
abandonment which were already predicted to become dominant in this landscape (A. T.
Clark et al., 2019). Native perennial grasses like Andropogon gerardii, Schizachyrium
scoparium and Sorghastrum nutans are considered superior nitrogen competitors and are
known to displace dominant non-native grasses Elymus repens and Poa pratensis (Craine
et al, 2002; Tilman & Wedin, 1991). Seed addition may have accelerated this
displacement if community development was primarily dispersal limited (Li et al., 2015),
but may have had little effect if competitive interactions were only important in late
succession (A. T. Clark et al., 2019; Purschke et al., 2013) or if abiotic constraints limited
establishment (Bakker & Berendse, 1999). Native forbs, on the other hand, may have
benefited from early seed addition if they were able to establish before local competitive
interactions prevented subsequent colonisation (Fukami, 2015; Young, Stuble,

Balachowski, & Werner, 2017).

If successional dynamics are well understood, then rehabilitation should attempt to
target communities where local development is predicted to stall or diverge (Li et al,,
2016; Walker & del Moral, 2009). Fields where non-native species were predicted to
remain dominant, (e.g. fields F1-F2; Figure C3-S3) may benefit from interventions that
remove dominant non-native species and establish persistent populations of native
grasses and forbs (e.g. HB+, HBR+). Divergences in successional trajectory can occur
when priority effects, environmental feedbacks or demographic stochasticity lead
community development to an alternative stable state (Fukami et al., 2005; Shriver et al,,
2019; Suding et al., 2004). Invasion of Elymus repens following nutrient enrichment is
known to shift old fields communities in Cedar Creek into a low-diversity state (Isbell,
Tilman, Polasky, Binder, & Hawthorne, 2013), which persists due to altered nutrient
cycling, litter accumulation and fire regimes that disproportionally favour annual non-
native species (Knapp & Seastedt, 1986). Interrupting these feedbacks with tilling or
herbicide may have been an effective component of rehabilitation, enabling native
species to establish better than seeding alone. We note that non-intervention control
plots in FO had significantly lower abundance of native grasses at the time of
rehabilitation intervention, compared to other abandoned old-fields in this study (Figure
5.3). While we cannot assess whether FO would have persisted in a non-native dominated
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state, rehabilitation appears to have enhanced the recovery of a field that was otherwise

lagging behind natural succession.

Long-term datasets are necessary to understand how community dynamics change
across large temporal scales but analysing historical data can be complicated by
differences in data type and quality (Woods 2007). Quantitative and theoretical models
that predict rehabilitation outcomes over long time-scales and across broad successional
contexts can be useful to integrate studies designed to monitor different outcomes
(Brudvig et al, 2017). Using a predictive modelling framework, we combined a
chronosequence study and restoration experiment to demonstrate that the choice of
reference sites can significantly alter conclusions about the effectiveness of seed addition.
Although more complex than a typical case-control analysis, where rehabilitation is
matched with a non-intervention control, we obtained a broader picture of potential non-
intervention outcomes and avoided overstating the effect of our interventions (loannidis,
2005; Lawlor, Smith, & Ebrahim, 2004). Identifying the effect of rehabilitation requires
detailed domain knowledge about the recovery processes of each study system, which
may not be adequately captured in meta-analyses (e.g. Jones et al., 2018). Integrative,
predictive approaches can also improve the precision of interventions needed to alter
landscape level feedbacks (Bowman, Perry, & Marston, 2015) and improve habitat
configuration (Fahrig et al., 2011) by prioritising where intervention should target.
Incorporating additional drivers of vegetative change into our model may have improved
predictions of community development in non-intervention plots, however forecasting
successional trajectories prior to intervention would truly test our understanding of

ecosystem recovery (Dietze et al,, 2018).

5.6 Conclusion

It is unclear whether rehabilitation interventions such as seed addition have persistent,
long term effects on ecosystem recovery. Our results show that removing non-native
species and establishing populations of native grasses and forbs can improve community
development in abandoned old fields, also that the choice of reference is important. If
there is significant variation in natural successional trajectories then, rehabilitation
should only target sites that are predicted to remain in a degraded state, lest the effect of

intervention be overwhelmed by natural succession. The large number of control sites
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required to accurately quantify the outcomes of rehabilitation demonstrates the
complexity of processes occurring during ecosystem development and suggests that we
should remain humble in our expectations of ecosystem control. Interventions
rehabilitating degraded communities must be pursued in tandem with the conservation

of remnant ecosystems. Once gone, these systems are very hard to bring back.
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6.1 Overall findings

This thesis has a simple aim: to identify dominant non-native species that have significant
negative impacts on grassland communities. Understanding how and where impacts
occurred would mean that impactful invaders could be prevented or targeted for
management. [ therefore sought to contribute to the ecology and management of invaded

grassland communities by answering three main questions:

1. What determines the spread of potentially invasive plants?
2. How can the impacts of non-native plants be quantified?

3. How can these impacts be managed?

It is clear, however, that no single factor is likely to determine invasion success (Catford
et al, 2009; Jeschke, 2014). Although my findings are not enough to understand the
context for all invasions, I believe the methods presented here can be useful for
identifying dominant non-native species, and that successful management can limit or
remove their impacts. In the process of answering specific questions on spread, impact
and persistence, I took the view that invaders must be considered in a broader context,
be it the landscape through which they moved or the community in which they
established. This hopefully means that these findings can be applied beyond the handful
of non-native species that I examined. In this summary I will demonstrate how I answered
the questions above 'by briefly reporting major findings of each chapter and then

discussing their implication.

6.1.1 What determines the spread of potentially invasive plants?

In Chapter 2, we showed how landscape heterogeneity affects invasive species spread
by inducing variation in dispersal, settlement, and population growth. Because the joint
effects of these processes are not additive, interactions between these processes can
result in a diverse range of outcomes, from stalled invasions where species ranges do not
expand beyond their original point of introduction, to invasions that move great distances

by relying on infrequent but long-distance dispersal events.

Much less is understood about how dispersal behaviour varies across the landscape, and
how this affects spread dynamics, compared to how variation in population processes
affect the spread of non-native species. This is likely because dispersal is hard to examine

directly, particularly when important dispersal events are long-distance and rare (Ellner
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& Schreiber, 2012). Biosecurity detection programs are aware of this problem, in that
non-detection at potential introduction sites is not considered the same as non-
introduction (Caley, Ingram, & De Barro, 2015). However much of invasive species
management focuses on where species have already established (Coutts et al.,, 2011),
which gives little insight into future dispersal events. This is a thorny issue, because once
invaders are moderately widespread, there usually aren’t enough resources to monitor
far away from the immediate range front (Epanchin-Niell & Hastings, 2010; Magarey,

Colunga-Garcia, & Fieselmann, 2009).

That said, we know that dispersal dynamics influence spread inasmuch as they are
correlated with variation in population processes across the landscape. Finding patches
well suited to reproduction results in the production of greater numbers of propagules,
leading to positive feedbacks that disproportionately drives spread (Dewhirst &
Lutscher, 2009). Successful management could therefore focus on rehabilitating the
communities found in habitat patches that are suitable for both settlement and
reproduction, before an invader has arrived (Pachepsky & Levine, 2011). If the primary
feedbacks that support the native community, such as fire regime, grazing and nutrient
cycling, are well established then arriving propagules may have little opportunity to

establish (Buckley et al., 2007).

6.1.2 How can the impacts of non-native plants be quantified?

Negative associations in patterns of species abundance

Once species have established within a community, we showed how the competitive
impacts of non-native species can be quantified using a joint-species distribution model
(JSDM). Existing JSDMs had been used to model co-occurrence data, but non-native
impacts can be more nuanced than just causing local exclusion. In Chapter 3, we
developed a method to detect covariation in patterns of species abundance and applied
it to data from a field experiment that manipulated two major axes of environmental
variation that determine community structure. This allowed us to infer the impact of two
dominant, non-native species, Avena fatua and Bromus diandrus, that were driving
compositional change through competitive displacement in a temperate grassland, and
allowed us to identify where, across a landscape, competitive impacts were greatest.

While we identified two non-native species having disproportional impacts on

93



community composition, many widespread, abundant non-native species appeared to
have little or no impact on the community, suggesting they invaded native communities

without competitively displacing any other species.

Variation in the importance of environmental and competitive drivers, across a
landscape, is closely linked to the impacts of non-native species. Non-native species can
have direct impacts by reducing the population growth of community residents, however
this requires that they maintain an advantage when competing for limited resources (I.
T. Carroll et al., 2011). Plant functional traits provide an excellent indication of the
differences and similarities between competing species (Adler et al.,, 2013; Kraft et al,,
2015). Traits are particularly important where differences between species represent
easily understood trade-offs between alternative ecological strategies (Aerts, 1999;
Westoby & Wright, 2006). In this thesis, we found that traits indicative of species’ ability
to compete for light were particularly useful for explaining the dominance of fast growing,
non-native annual species in simplified environments of high fertility and low

disturbance.

However, the benefits of trait differences are context dependent, and may confer a
disadvantage where environmental conditions are a more important driver of
community composition than competitive interactions (Catford et al., 2019). At infertile
sites or under sustained grazing pressure, many grassland species favour slow growth
and investments in defences against herbivory (Lind et al, 2013). In our study,
communities at infertile and grazed sites were often diverse mixtures of native and non-
native species, suggesting that non-native species may be less impactful where there is
limited scope for larger, functionally different species to establish. The changing
importance of trait trade-offs between communities may explain the limited success to

identify general traits of invasiveness (Mark Van Kleunen, Weber, & Fischer, 2010).

Validation with controlled glasshouse experiments

In Chapter 4 we conducted a glasshouse experiment that showed our JSDM was biased
toward the detection of strong species interactions, while also demonstrating the
inherent difficulty of inferring processes from patterns. [SDMs require variation in
patterns of species abundance to separate environmental and competitive drivers. Our

experiment showed that we had underestimated how well many species would perform
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along a gradient of increasing fertility, and subsequently underestimated the competitive
interactions of between species of our grassland community. This bias did not affect
dominant species, and our JSDM predicted the same competitive hierarchy that we
measured in the glasshouse, suggesting there is still merit in using JSDMs for identifying
the impact of dominant invaders in diverse communities, but that non-native species'

impacts may be greater than we would infer from field data alone.

Identifying when plant populations are limited by environmental drivers or by
competitive interactions is challenging, because these drivers are often confounded in
observed patterns of species abundance in grassland communities. Estimating species
interactions from field data remains difficult because their impacts cannot be observed
outside the restricted realised niches that species occupy (Tuck et al., 2018). Most studies
of plant invasion focus on either the native or introduced ranges of non-native species,
meaning that there is often little evidence to suggest how non-native species will perform,
or what impacts they will have when interacting with new communities in novel

environments (Godsoe, Jankowski, Holt, & Gravel, 2017).

Although similarities and differences in species’ functional traits can provide strong
indications of the processes underlying community assembly, experimental validation is
vital to truly break the confounding of environmental and competitive drivers (Adler,
Kleinhesselink, et al., 2018; Detto et al., 2019). Coupling experimental and correlative
methods has long been advocated in the study of species distributions, where species are
spread across spatial scales that far exceed the resources available for direct
measurement (Kearney & Porter, 2009; Kearney et al., 2010). This need is especially
acute when considering species interactions, as the number of pairwise species
combinations scales quadratically (Maynard et al., 2020). Constraining our JSDM model
with evidence of how species perform beyond their current realised niche could
significantly improve estimates of competitive interactions and potentially allow us to

predict species impacts beyond communities that are already colonised.

6.1.3 How can these impacts be managed?

Chapter 5 showed that the effects of dominant non-native grassland species can persist
over long timespans. Interventions that both remove non-native species and establish
native populations can help to rehabilitate recovering ecosystems, however we also

found that some abandoned old fields of Minnesota, USA recovered passively, over
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decades to centuries, meaning that the effect of rehabilitation interventions could be
overwhelmed by natural successional processes. This finding highlights the need to
consider rehabilitation in a landscape context and take careful stock of possible outcomes

before embarking on expensive rehabilitation interventions.

The management of non-native species is a relentless task and predictions of non-native
impact could be used to prioritise the protection of vulnerable communities or target
dominant species that have particularly outsized effects. Prioritisation is needed because
propagule supply continues unabated and the risks of successful establishment are highly
asymmetrical (Epanchin-Niell, Haight, Berec, Kean, & Liebhold, 2012; Yemshanov et al,,
2019): for all the countless invasions that are prevented, only one dominant non-native
species is needed to significantly disrupt native communities (Richardson & Pysek,
2006). One source of hope is the growing body of evidence that suggests that many non-
native species appear to integrate into grassland communities with little fanfare (Lai et
al., 2015). It may be acceptable to consider these species as an established part of the
community, increasing overall diversity and productivity (S. P. Carroll, 2011; Vellend et

al, 2017).

While identifying current impacts is valuable, it is also necessary to understand how
communities grow and change to determine what the outcomes of these impacts will be
in the future (Kueffer etal., 2013). Some grassland communities appear to transition back
to native dominance without intervention, if given enough time to recover from
disturbance (A. T. Clark et al., 2019; Fensham et al.,, 2016). But there are still many
significantly degraded communities that can be improved (Kettenring & Adams, 2011).
Rehabilitation and restoration interventions should target communities where the
recovery of native dominance is stalled or disrupted (e.g. Chisholm, Menge, Fung,
Williams, & Levin, 2015). This appears to be the case of many invaded communities in
Australia, suggesting that significant rehabilitation effort is still needed (Cuneo et al,,

2018; Driscoll, 2017; Johnson et al., 2018).

6.2 Implications

The methods presented here have the capacity to meaningfully improve our response to
plant invasion, by increasing our ability to predict where impacts will be greatest and

increasing management efficiency. Our framework for understanding the spread of non-
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native species across a landscape can be used to direct where effort should focus - long-
distance dispersal means we must look well beyond just the primary invasion front.
Identifying which species have major impacts, and where, means that dominant species
can be targeted directly with interventions that are related to the competitive advantages
determining community composition. By understanding where competitive interactions
are important, we can identify when the removal of non-native species will be successful,
and when management can be expected to lead to native communities that persist long

term.

That said, the management of non-native species might be futile if the large-scale drivers
of climate and human activity overwhelm any chances of native community recovery.
Forecasting successional change before undertaking management can help to make
decisions about where to intervene with the information we currently have. When doing
so, we must be critical of obvious assumptions, particularly in modelling, but even in
experiments where the observed outcomes may be the result of confounded processes.
These studies have shown when models can fail and highlighted the need for experiments
that are both general and robust, especially in ecology where we have little control over

the conditions of natural settings.

6.3 Future research

6.3.1 Improved detection and risk assessment:

Because of the variety of processes that are important to plant invasions, attempts to find
general rules relating to invasion success and non-native impacts remain largely
unsuccessful. We could likely study any number of invasions and still find novelty in how
species spread, establish, and persist. As with the bias of our models to detect strong
competitive interactions, here too there is bias in the selection of species to study: we
tend not to study the non-native species we do not notice (Guerin, Martin-Forés, Sparrow,
& Lowe, 2018), or that have established at inaccessible sites (Tomasetto, Duncan, &

Hulme, 2019).

Technologically, we may make progress with the introduction of high-throughput
detection networks that can detect incursions of non-native plants at large spatial scales
(Cavender-Bares et al, 2017; Lehmann et al, 2017). Early detection is particularly

effective when coupled with strong biosecurity practices to enable cost effective
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interventions while establishing non-native populations are small (Kompas, Chu, Van Ha,
& Spring, 2019; Pluess et al,, 2012). Pessimistically though, species introductions will
continue apace, both deliberately and accidentally (Seebens et al., 2017). Many species in
degraded grasslands were originally introduced for pasture improvement and were only
considered invaders after marginally productive communities were abandoned, or newer
pasture crops became available (Meffin et al., 2015). Better predictions of the impacts
that unintroduced non-native species will have on existing communities may allow for
informed decisions about deliberate species introductions (Genovesi, Carboneras, Vila, &

Walton, 2015; Roy et al., 2018).

6.3.2 Physiology as unifying process:

Community ecology is an active field but understanding the drivers of community
assembly remains a foremost challenge of ecology. Even so, there has been significant
progress toward experimental and analytical designs that test key theoretical aspects of
modern community ecology (Ellner et al., 2016; Grainger, Levine, et al., 2019; Kraft et al.,
2015). Research that brings together commonalities across communities tempts hope
that general rules may yet be uncovered. Coupling experimental measurement with
physiological, ecological and even evolutionary processes is a natural path to continue
expanding our knowledge on the major controls of vegetative ecosystems (Camac et al.,
2018; Falster, Brannstrom, Westoby, & Dieckmann, 2017). Physiological rules,
sometimes referred to as ‘hard traits’, are a sensible foundation to build on as they
provide a direct link between abiotic conditions and species distributions (Belluau &
Shipley, 2018; Farrior et al, 2013). This moniker refers to the fixed nature of
physiological limitations rather than more plastic morphological traits. However, hard
traits are also difficult to measure, and their relative importance will need to be mapped

against a wide range of possible conditions.

One avenue of research will be to develop a common suite of automatic “unit tests” to
identify signals of mechanistic processes. Unit testing comes from software engineering
practices, where individual units of code are tested independently to ensure the overall
system functions as intended. Standardised tests that can be quickly and reproducibly
applied to common data types may uncover general patterns that are common (or differ)
between communities. Examples of these tests exist for the study of biodiversity (e.g.

MoB; McGlinn et al., 2019) and population dynamics (e.g. COMPADRE; Salguero-Gémez
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et al., 2015). Because standardised tests ensure that the functioning of each unit is well
understood, more time can be spent understanding higher order patterns that occur from
combinations of smaller processes. This suite of tests would require constant
experimentation and critical questioning to validate the underlying processes
represented in these patterns, however by repeating the same analysis across
communities around the world we can seek to understand how relevant different

mechanisms are at any given point in time.

6.3.3 Steps toward predictive ecology:

Hierarchical modelling, used throughout this thesis, is a powerful tool for integrating
many independent processes. Hierarchical modelling provides a coherent framework to
account for variation within individual plots and between datasets that can frustrate
direct comparisons of spatial and temporal trends at large scales. However, this approach
faces two types of problem: choosing the level at which inferences are pooled (i.e.

splitting vs. lumping) and rapidly increasing computational complexity.

The first problem arises from generalising processes by assuming that similar species,
and communities, behave similarly (Taylor-Rodriguez, Kaufeld, Schliep, Clark, & Gelfand,
2017). Although this is immensely helpful to identify common factors promoting or
preventing invasion, aggregating at too coarse a scale can mask variation that is just as
important (Smith, Godsoe, Rodriguez-Sanchez, Wang, & Warren, 2019). Understanding
variation between non-native species is important because the impacts of dominant non-
native species may be infrequent but very damaging. Future research should consider the
consequences of rare events as well as general trends (Bailey & van de Pol, 2016; Breiner,
Guisan, Bergamini, & Nobis, 2015), especially when optimizing the limited available

resources for surveillance and control (Epanchin-Niell et al., 2012).

Secondly, computational burden increases as we attempt to extend our analyses across
ever larger scales, datasets and model compilations (Al-Jarrah, Yoo, Muhaidat,
Karagiannidis, & Taha, 2015; Dormann, Calabrese, et al., 2018). While hardware and
software improvements will continue to help, significant inroads may be made by
considering ‘online learning’ where models are continuously updated with data and
knowledge (Lima, Cannon, & Hsieh, 2016; MacKay, 2005). This is common in weather
forecasting systems that integrate daily data, as well as update parameters based on

predictions that are incorrect (Bauer, Thorpe, & Brunet, 2015). Like the weather, iterative
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forecasting holds great potential to infer processes from patterns that are well beyond

our control (Dietze et al., 2018).

6.4 Conclusions

Although the existence of general drivers of invasion success remains uncertain, this does
not mean that we should not act at all. Waiting to examine every possibility, until we
understand all potential outcomes, likely means missing opportunities to significantly
improve the quality of our natural world. Acting with uncertainty means diligently
recording, exploring, and declaring the limitations of our understanding so that we can
reflect and adapt when our environmental management does not proceed as intended.
Making careful choices and documenting management activities, collating, and
disseminating the data we collect and openly sharing the tools to contribute new research
will see greater impact of our work as ecologists. General inferences about the processes
underlying invasion are important, but patterns must be cautiously interpreted and
stringently validated using both experimental and field studies. Approaches that combine
observational and experimental data have great potential to contribute to our
understanding of invasion and community ecology. I hope that the methods presented in
this thesis can be used to identify dominant non-native species and improve our response

to their impacts across all stages of the invasion life cycle.
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APPENDICES FOR CHAPTER 3

A.1 Data collection

The data in this study are from an experiment designed to test if different management
interventions could increase species richness of native grasses and forbs (Driscoll, 2017).
Ten sites were established in 2010 in relatively uniform areas of unshaded grassy
vegetation that encompassed the range of grassland communities in the reserve, from
relatively uninvaded communities to communities dominated by non-native species.
Sites were 20 m x 25 m in size and situated 200 m - 600 m apart. At each site, 10
permanently marked 5 m x 5 m plots were laid out, with each plot separated by at least 1
m. In late spring (October) 2010, the vegetation in each 5 m x 5 m plot was surveyed by
placing four 1 m x 1 m quadrats in the corners of each plot and recording all vascular
plant species present in each quadrat along with their cover, estimated visually as the
proportion of each quadrat covered by the canopy of each species. Total cover of all
species in a quadrat could sum to greater than one if plant canopies overlapped. Plants
were identified to species, and any plants that could not be reliably identified in the field
were collected and pressed, with identifications subsequently determined by referring to
collections at the Australian National Herbarium. Three genera in which species were
difficult to distinguish were grouped and treated as species complexes: Vulpia (3 species;

non-native), Rytidosperma (4 species; native) and Aira (2 species; non-native).

In 2011 experimental treatments were applied to each plot. First, five of the 10 plots at
each site were chosen and a fence constructed around these to exclude large mammalian
herbivores (predominantly kangaroos but also rabbits). Second, an experimental
treatment was assigned to each of the five plots inside and outside each fence: unslashed,
vegetation removal by slashing, vegetation removal by burning, nutrient reduction by
sugar addition, and biomass suppression by planting a barley crop (see Driscoll, 2017).
For this study, we restricted our analysis to the unslashed and slashed plots, because we
were primarily interested in how biomass removal by herbivores might alter competitive
interactions and the impact of non-native species across the landscape. The unslashed

plots inside and outside the fence allowed us to compare vegetation responses in the
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presence and absence of herbivores. Slashing provided an additional biomass removal
treatment that we could contrast with herbivory to assess whether it was biomass

removal per se that moderated non-native impact.

We therefore analysed data from four plots at each site: the fenced and grazed unslashed
plots, and the fenced and grazed slashed plots. Slashing was carried out annually at the
beginning of the growing season using a brush cutter to remove all vegetation above a
height of about 2 cm. The slashing treatment was applied each year from 2011-2016,
except for 2014. Vegetation surveys were repeated in all plots from 2011-2016, except
for 2014. Our dataset thus comprised six years of vegetation cover data from 160
quadrats in 40 plots (four quadrats per plot, four plots per site, and 10 sites), although
due to time constraints only three quadrats per plot were surveyed in 2013. This meant
we had a total of 920 quadrat level vegetation measurements, comprising 10,780

individual cover estimates for 142 species (70 native and 72 non-natives; Figure A4-S2).

We measured traits associated with growth rate and light capture in 2015 and 2016
following standard protocols (Pérez-Harguindeguy et al., 2013). Canopy height (m) was
measured as the distance from the base of a plant to the highest leaf, and maximum height
(m) was measured as the distance from the base to the highest point of the plant. Canopy
width (m) was measured as the horizontal distance between the two furthest points.
Whole adult leaves were collected, scanned to obtain their surface area, dried and
weighed to measure leaf dry matter content (mg; LDMC) and to calculate specific leaf area
(mm?2 mg-1; SLA). Traits were measured on at least five adult individuals of the species
that comprised at least 80% of the total cover in all 20 unslashed plots in the fenced and
grazed treatments. Species level trait data was aggregated across plots and years, and
traits for less abundant species that were not sampled in the field were taken from the
TRY database (TRY-db.org). We used 90th quantile values as a species maximum

potential for each trait to avoid the outcome being overly influenced by outliers.

In autumn 2011 and 2015, five 75 mm x 100 mm soil cores were taken from each plot,
the soil from each plot was bulked, and then analysed for total carbon, nitrogen and
phosphorus, and available phosphorus, nitrate, and ammonium. Available phosphorus
and nitrate were measured with Colwell and KCI extractions, respectively, and organic
carbon was measured with wet oxidation and colorimetric determination (Driscoll &

Strong, 2017). Nitrogen, phosphorus and carbon levels were strongly correlated in these
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soils (Spearman rho: 0.53-0.62) and previous studies have shown that covariation in
these two nutrients comprises the dominant fertility gradient (Driscoll & Strong, 2017).
No treatment specific effects were detected between 2011 and 2015, thus we opted to

use total extractable nitrogen (ppm) measured in 2011 as an overall measure soil fertility.

Water availability can also strongly influence non-native species abundances in
Australian grasslands (Morgan et al., 2016). To account for inter-annual variation in
species cover due to rainfall variation, we obtained rainfall data from the two weather
stations closest to the reserve (3-6 km distance) that had records for the period 2010-
2016 (Ainslie #70242 and Melba #70277; Australian Government Bureau of
Meteorology, 2017). Vegetation surveys were undertaken in late October and completed
in November. We used the cumulative rainfall total in the four months prior to each
survey (August - November) as an explanatory variable representative of water
availability that might explain inter-annual variation in cover, with rainfall averaged
between the two stations in each year. This ranged from 185 - 414 mm during the study

period.
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A.2 Model fitting

Regression of non-native dominance:

Our response variable was the logit-transformed proportion of introduced species cover
within a plot, constrained to be greater than 0 and less than 1 following the protocol of

(Smithson, 2006). Covariates of fertility and rainfall were centred and scaled.

Equation A2-51

logit(yyije)) ~ Normal (i), 0%)

Ulijk) = .Bintercept[ij] + :leope[ij] : fertility[jk] + :Brain ’ rainfalll- + .Bplot[]-k]

2
.Bplot[jk] ~ Normal (ﬁsite[k]l Jplot)

2
.Bsite[k] ~ Normal(0, Usite)

where yiijk is the proportion of non-native cover (240 observations) in yeari (1-6), under
treatment j (1-4), at site k (1 - 10). The intercept and slope coefficients were modelled
hierarchically, with each value drawn from a Student’s t-distribution in each treatment
with four degrees of freedom and a mean and variance estimated from the data. This
provided some degree of pooling between species, but still allowed for outliers with
strong positive or negative responses to environmental conditions. We included random
effect parameters for each plot to account for the repeated measurements across years,
modelling these parameters as drawn from a hierarchical normal distribution with a
different mean for each site to allow for the nested structure of plots within sites.
Additionally, we included a random effect for each plot to account for repeated
measurements, which were drawn from a hierarchical normal distribution at each site to

incorporate the nested nature of plots within sites.

]SDM specification:

For both JSDMs, we specified an LK] prior on the correlation component of the covariance
matrices (Lewandowski, Kurowicka, & Joe, 2009) which maintains the positive semi-
definite nature of correlation matrices. An LK] prior of 1 is close to uniform with equal
likelihood of strong positive and strong negative correlations, which we believed to be

unlikely (Adler, Smull, et al., 2018). We therefore tested LK] priors of 10, 25 and 50, with
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25 providing the best fit to the data. This is a very conservative prior, meaning that strong
correlations required substantial support from the data. We specified weakly informative
priors for all other parameters, with unit normal distributions for hyper-parameters such
as hierarchical means, and half unit Cauchy distributions (i.e. bounded above zero) for
any variance terms. All analyses in this paper were run using Hamiltonian Monte Carlo
implemented in the probabilistic programming language Stan (Carpenter et al., 2017).
Models were run with an adaptation delta of 0.8 and a maximum tree-depth of 15. For
each model, we ran four Markov chains to generate 1,000 posterior samples after
discarding 1,000 warmup samples. We looked for adequate sampling depth using the
number of effective samples, and checked for model convergence using the Rubin-
Gelman statistic, which was less than 1.01 for all models indicating adequate convergence

(Gelman, Rubin, Gelman, & Rubin, 1992).

Comparison of model fit

We first compared the fit of both JSDMs to the data to examine how separate covariance
matrices affected parameter estimation. Model fit was evaluated by generating posterior
predictions of cover for each quadrat and comparing predicted values to the observed
data. We used five posterior predictive metrics to identify the best fitting model: the root
square mean error (RMSE), 2) the mean Euclidean distance between predictions and data
(both censored below zero), 3 & 4) the probabilities that estimates of latent suitability
from environmental conditions correctly predicted species presence or absence (true
positive, true negative respectively), and 5) the coefficient of determination (R?) as the
ratio of the sums of squares (SS) of predicted latent suitability and posterior predictions
of cover, omitting species absences (Gelman, Goodrich, Gabry, & Vehtari, 2018). We
considered a better fitting model to be one that minimised RMSE and Euclidean distance,
but maximised the accuracy of predicted presences, absences, and cover. We also
compared the number of parameters in each model to demonstrate the added complexity

of including separate multiple covariance matrices.

We then compared how negative between-species covariances changed between models
with a single covariance matrix (constant across treatments) and with multiple
covariance matrices (varying across treatments). Covariance matrices are the
combination of separate correlation (p) and variance (62) components, with correlations

describing how tightly residual variation in one species was associated with residual
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variation in another, and variances describing the scale of residual variation for each
species. This means that changes in the cover of one species will be associated with large
changes in the cover of a second species (i.e. dominance effects) when the variances are
large and strongly correlated. Less common species, with low overall cover, and species
with cover that is well explained by environment variables will have smaller covariances
because there is little variation that could be attributed to co-occurring species. However,
covariance matrices are positive-semidefinite, with an upper limit on the proportion of
negative to positive correlations. If species driving change in the community negatively
covary with multiple neighbouring species, these neighbours will positively covary with
one another. We therefore selectively focus on negative covariances as indicative of
dominance effects arising from competition. We calculated the average, 2.5% and 97.5%
quantiles of all negative posterior samples of each covariance matrix and, for the second
model, calculated the mean difference between covariance parameters of the grazed,
unslashed treatment (which may be positive) and the negative covariances of the

remaining treatments.

Allowing both species’ environmental responses and potential interactions to vary in
JSDM2 did not significantly improve model fit (Table A3-S1). The low proportion of
variance explained in both models is indicative of the fact JSDMs are analysis of residual
variation. However, specifying additional covariance matrices highlighted the ability of
JSDMs to detect variation in species interactions (Table A3-S2). The magnitude of
negative covariances was greatest in the fenced, unslashed treatment and were typically
more negative than the corresponding covariance in the grazed, unslashed treatment.
Slashing reduced the range and magnitude of negative covariances but appeared to be

less effective (on average) in the grazed treatment.
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A.3 Supplementary tables

Table A3-S1. Posterior predictive checks of JSDMs fit to 30 speceis with constant

(JSDM1) and treatment specific (JSDM2) covariance matrices. Mean and standard

deviation of five summary statistics show similar goodness-of-fit between models. Root

square mean error (RSME) and Euclidean distance are calculated after censoring the

posterior predictions, in order to match the observed data. R? is fit with observed

abundance only (does not include zeros). The accuracy of the [SDMs to predict presence

or absence are summarised as a probabilities.

Number RSME  Euclidean R2 P(Pres) P(Abs)
parameters dist.
10.02 1219 0.26 0.76 0.77
JSbM oo (x0.07) (x7.88) (x0.02) (x0.01) (x0.00)
10.23 1227 0.25 0.72 0.78
JSbM2 2279 (x0.07) (¥8.05) (x0.02) (x0.01) (x0.00)

Table A3-S2. Summary statistics of negative between-species covariances from constant

(JSDM1) and treatment specific (JSDM2) covariance matrices.

Treatment Mean Meanchange 2.5%least 97.5% most
negative from negative negative
covariance reference* quantile quantile
JSDM1
All treatments -31.79 -- -0.48 -173.76
JSDM2
Grazed + unslashed -21.23 0 -0.26 -125.43
Grazed + slashed -10.60 -2.19 -0.17 -56.08
Fenced + unslashed -36.55 -27.99 -0.34 -239.56
Fenced + slashed -18.53 -12.10 -0.33 -81.25

*Covariance from grazed/unslashed treatment used as reference class in M2.
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A.4 Supplementary figures

Figure A4-S1.Experimental design of paired fenced, unfenced, slashed and unslashed 5m

x 5m plots., replicated at 10 sites.

*non-native species indicated with an asterisk

Figure A4-S2. Species abundance distribution from 2013-2016. 30 common species
(black) were observed 20% of plots in all years. The remaining species in this dataset
have the potential to be dispersal limited or be rare or transient species which are only

observed in one or two years.

148



Figure A4-S3. Effect of rainfall on inter-annual site suitability. Estimated latent
suitability for 30 species in relation to spring rainfall under treatments of fencing and
slashing fitted using tobit regression. Most species have small positive responses,
however a few nonnative species (solid lines) show stronger relationships. Lines are
coloured from dark blue to light yellow corresponding to a shift from negative to positive
slopes. (inset) Plot-level relative abundance (logit-transformed) of non-native species
shows a slight positive trend in response to spring rainfall. The effect of fertility (coloured

from low in blue to high in yellow) is described in Figure 3.2.
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Figure A4-S4. Relationship between soil fertility and non-native dominance. a) Overall
relationship between the proportion of non-native species (logit transformed) and an
environmental gradient of fertility between 2010 and 2016, under treatments of fencing
and grazing. Filled points indicate fenced plots, while open points indicate grazed plots.
Circles correspond to unslashed plots and triangles correspond to grazed plots.
Treatments are also indicated by line type. Points are coloured from dark blue to light
yellow with increasing fertility b) Annual changes in the relationship between the
proportion of non-native species and fertility. The posterior mean of a logistic regression
intercept is shown for each year, with the 95% credible interval shown by the shaded
areas. Points are coloured from dark to light with increasing posterior means of a logistic
regression slope, indicating greater dominance at high fertility. Filled points again

correspond to fenced plots, while open points correspond to grazed plots
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B. APPENDICES FOR CHAPTER 4

B.1 Hoaglands nutrient solution

Hoaglands solution is a useful nutrient supplement to grow plants on sand substrate.
Because nutrients are in liquid form, they can be added in precise amounts. The
procedure calls for the creation of four stock solutions (A, B, C, D; Table B2-S3). These

solutions are then combined into a single nutrient supplement before application.

In our experiment we varied the concentration of nitrogen, phosphorus, and potassium
by varying the amount of stock A and B that were applied to pots. Our High fertility
treatment had 8 ml (1x strength), Medium had 4 ml (0.5 x strength) and Low had 1ml
(1/8 x strength) of each stock added to each L of water. All treatments had 1 ml each of

stocks C and D, meaning all treatments had the same level of micro-nutrients.
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B.2 Supplementary tables

Table B2-S1. Recipes for four stock solutions, to be combined into Hoaglands nutrient

solution.
Stock Compound Final MwW Amount of Stock conc.

Conc. compound per L (mM)

A KNOs3 6.2mM 101.11 82.15 812
Ca(N03)2.4Hz0 40mM 236.16 118.08 500

B NH4H2PO4 20mM 115.03 28.80 250
MgS04.7H20 20mM 246.47 61.62 250

C H3BOs3 46uM  61.83 0.248 4.60
MnCl2.4H20 0.5puM 1979 0.099 0.50
ZNSO04.7H20 0.2uM 287.54 0.055 0.20
(NH4)6M07024.4H20 0.1 uM  1235.95 0.124 0.10
CuS04.5H20 0.1uM  249.7 0.050 0.20

D FeCL3 45 uM 162.2 24 ml of 60% 45.0

Table B2-S2. Lotka Volterra simulation parameters

Subordinate Dominant
Parameter Symbol . .
species species

Intrinsic per-capita growth - 0.80 0.20
rate

Response to fertility B 0.01 0.02
Intraspecific interaction )

(effect on conspecifics) il 0.05 0.05
Interspecific interaction _

(effect on competitors) Al 0.01 0.04
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B.3 Supplementary figures

Figure B3-S1. Contrasting levels of process noise example . a) Abundances of two speceis
with low levels of process noise and b) high levels of process noise due in a Lotka Volterra
model. Coloured lines are linear regressions fit to each species individually, representing

a naive estimate of the relationship between abundance and fertility for each species.
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Figure B3-S2. Yield density relationship for six species (columns) in monoculture (blue)
and mixture (red), at each of three fertility treatments (rows). Points are aboveground
biomass harvested after 12 weeks, while lines are the mean and 95% credible intervals
of the posterior predictions. Note: y-axis scale varies between fertility (low to high) and

community treatments (mixture and monoculture competition).
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Figure B2-S3. Experimentally estimated interspecific competition coefficients (afjy),
describing the per-capita effect that a species (right) has on its competitors (left) at each
fertility level. Yield density curves are fitted on the inverse scale, such that larger
interaction coefficients lower the expected biomass of a focal individual more than

smaller interaction coefficients.
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Figure B4-S4. Diagnostic plots showing a) the log-standard deviation ¢ of the log-normal
observation model for each species in each fertility treatment, b) a demonstration of this
lognormal distribution with the expected biomass w = 1, and log-standard deviation ¢ =
0.5 and c) the multiplicative offsets to account for systematic effects of glasshouse

position for all individuals in each block, relative to block A.
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Figure B3-S5. Estimates of residual covariance between-species partitioned into
correlation (left) and covariance (right) from JSDM models fitted to of equilibrium
abundances of two species, simulated using a Lotka-Volterra model. When there is little
to no variation, the JSDM is unable to detect any associations between species, but the
correlation quickly becomes more negative with increasing process noise. However, this
effect on negative correlation appears to saturate at moderate levels of process noise,
whereas covariances continue to become more negative as the scale of variation in

patterns of species abundance increases.
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C. APPENDICES FOR CHAPTER 5

C.1 Disturbance and reinvasion sub-experiment

Blumenthal et. al (2005) visited the rehabilitation experiment in FO in 1998 to assess the
effect of rehabilitation on suppressing weed species invasion. Four 1 x 2 m quadrats were
established in 15 plots (five plots in three treatments, corresponding to interventions 0,
1 and 6; Table 4-A). Quadrats were randomly assigned to one of four perturbation
treatments: no perturbation (C), nitrogen addition (N), burning (B) or nitrogen and
burning (N/B). Burning was conducted to remove litter and improve seedling
establishment, while nitrogen was applied to reduced competition for soil nitrogen. If
restoration suppressed invasion by reducing establishment, burning lead to an increase
in non-native establishment. If restoration suppressed invasion through increased
competition for soil nitrogen, N addition should lead to an increase in non-native

establishment.

Burning was conducted in October 1998 and nitrogen addition carried out in May 1999,
July 1999, May 2000, and August 2000. N plots received 10 g m-2 nitrogen at each addition
and non-N plots were all amended with phosphorus, potassium, and micronutrients to
ensure that only nitrogen would be limiting. Non-native species (Table C3-S2) were
seeded into each sub plot in November 1998 and the establishment of non-native species
measured in terms of seedling biomass, harvested between July and September in 1999
and 2000. All resident vegetation was harvested in September of each year. Biomass was
collected by clipping within 1 cm of the soil surface, separated by species and functional
groups, then dried at 60 °C. Fallen (non-green) litter was also collected, dried, and

weighed.

The initial results of this sub-experiment showed that rehabilitated quadrats were less
likely to be invaded by non-native species than negative control plots or perturbed
quadrats (Blumenthal et al.,, 2005). Both nitrogen addition and burning increased the

establishment of seeded non-native species. We tested whether these quadrat level
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differences persisted 17 years later during our final survey of FO in 2017. We resurveyed
the same quadrats and visually estimated the total cover of each species, which was
summed by functional group in each quadrat (see Data compilation section of the
methods). Because we only needed to test for difference community composition single
survey, the relative abundance of each functional group was comparable between
quadrats. Relative abundance was calculated by normalising the cover of each function

group with the total cover of all groups recorded in a quadrat.

We tested for the effects of perturbation experiment within restoration interventions by
calculating the calculated the adjusted R2 for overall community composition using a
multivariate analysis of variance (MANOVA). We included terms for restoration
intervention (R), perturbation intervention (P) and the interaction between the two (R x
P), with a plot level random effect in the analysis to account for the nested design of
quadrats within plots. There appeared to be little effect of sub-plot perturbations
remaining in 2017, 17 years after the fact (Wilks’ statistic = 0.70, p = 0.15; Figure C4-S1).
The abundance of non-native forbs (including those seeded in 1999) was very low in all
plots, with marginally higher abundance in plots that received nitrogen addition. The
variance explained by subplot perturbation was low (adjusted-R2 = 0.03) and did not vary
by restoration intervention (adjusted-R2 = 0.04). We therefore concluded that there was
no significant effect of this sub-experiment on plot level community composition in 2017

and ignored differences between quadrats for the remainder of our analyses.
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C.2 Model fitting

Our model attempts to estimate long term trends within a field, however we expected
there to be significant short- and medium-term variation in plot level abundance. [Here
we describe the model structure used to separate this variation from successional
trends]. Within a plot, we also expected functional group abundance at one time-point to
be correlated with abundance at the next observation, due to inter-annual variation that
was independent of successional change. We modelled this autocorrelation by including
a lagged observation of functional group abundance y(t-1) as a covariate for our expected

functional group abundance yt:

Equation C2-S51

Yer) = 8111 - Yee-va + (1= 8pg) - A

*additional indices dropped for brevity

where the auto-correlation term 8 partitioned the degree to which we expected the
current functional group abundance to be affected by the previously observed abundance
in the same plot. 8 was pooled across all fields for each group i and bounded between 0
and 1 (negative correlation is possible, but unintuitive and unlikely in our system). As &
approached one, the functional group abundances were strongly influenced by the
previous state and may have followed divergent trajectories away from expected values
A(t). As 8 approached zero, there was little correlation between observations and any

stochastic variation was randomly distributed around A(t).

However, our dataset rarely contained consecutive observations at t and (t - 1). We
accounted for irregular time between observations by defining g as the ‘gap’ between
measurement m and the preceding (m - 1), then scaling the contribution of auto-

correlation at each observation (Millimet & McDonough, 2017). That is:

Equation C2-52
im] = tm] — Hm-1)]

_ Im Iim
Fetim) = O™ Velim-1)] + (1 -8 ]) - A i)
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When gm = 1, the model proceeded as normal, but as the time between observations
increased the effect of 8 decreased. Our approach to standardisation resulted in positive
continuous abundance data yt with a range of 0 - 12 on the standard abundance scale,
which was well described by a lognormal model, with mean pand variance 6% parameters
on the log scale. We also scaled the error term of our model € to allow for increased
chances of extreme values with strong autocorrelation and large gaps between

observations:

Equation C2-53
:Vt[im] ~ Lognormal(,ut[im]: O-[zlm])

Hetim) = M(Fefim)) — 0.5 - Ofim

1-5,™
L JE—
7fom = I (1 ' ( 1 =6y .g[zi]>.y[”2n])

This parameterisation includes an offset so that our expected abundance yt represents
the mean functional group abundance on the standardised scale (i.e. not log
transformed). We assumed that zero observations were not true zeros (meaning a
functional group was absent from a field) but reflected functional groups at sufficiently
low abundance they were not recorded in the sample plots. We accounted for this by
drawing latent abundance values from our lognormal distribution between zero and an
upper limit set by the minimum standardised abundance recorded in each year L = min(y
> 0). This upper limit ranged from 0.00006 to 0.01 on the standardised abundance scale,

with a mean of 0.005.

We fitted this model to two subsets of our data: 1) our focal field and matched reference
sites (F0-2) and 2) the full Cedar Creek chronosequence (F0-21). We estimated our model
parameters in a Bayesian framework using adaptive Hamiltonian Monte Carlo with the
probabilistic programming language Stan (Carpenter et al., 2017) and the rstan interface
(Guo et al., 2016) in R, version 3.5.1 (R Core Team, 2018). Details of model fitting and

prior specification are online at https://github.com/aornugent/cc.
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C.3 Supplementary tables

Table C3-S1. List of extant and added species in rehabilitated field (FO). Asterisks

indicate non-native species

Extant community

Ambrosia artemisiifolia
Ambrosia coronopifolia
Berteroa incana*
Bromus inermis*
Chenopodium album*
Cyperus spp.

Danthonia spicata
Digitaria ischaemum*

Elymus repens*

Erigeron canadensis
Erigeron strigosus
Euphorbia glyptosperma
Gnaphalium obtusifolium
Lepidium densiflorum
Mollugo verticillata*
Oxalis stricta

Panicum capillare

Panicum oligosanthes

Poa pratensis*
Polygonum convolvulus*
Polygonum pensylvanicum
Potentilla argentea*
Potentilla simplex

Rumex acetosella*

Setaria lutescens*
Tragopogon dubius*

Verbascum thapsus*

Equisetum spp. Physalis heterophylla Vicia villosa*
Added species (1993)
Andropogon gerardii Lespedeza capitata Petalostemum purpureum

Asclepias tuberosa
Aster oolentangiensis
Bouteloua curtipendula
Elymus canadensis

Helianthus pauciflorus

Liatris aspera

Monarda fistulosa
Penstemon gracilis
Penstemon grandiflorus

Petalostemum candidum

Rudbeckia hirta
Schizachyrium scoparium
Solidago speciosa
Solidago rigida

Sorghastrum nutans
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Table C3-S2. Non-native species seeded in sub-experiment (see: Appendix C1;

Blumenthal et al.,, 2005).

Amount of seed

Species Life cycle Functional group added (g m?)
Chenopodium album Annual Non-native forb 3.0
Digitaria ischaemum Annual Non-native forb 2.5
Polygonum convolvulus Annual Non-native forb 2.0
Setaria glauca Annual Non-native forb 3.0
Asclepias syriaca* Perennial Non-native forb 3.0
Berteroa incana Perennial Non-native forb 3.0
Cirsium arvense Perennial Non-native forb 2.5
Crepis tectorum Perennial Non-native forb 1.0
Silene latifolia Perennial Non-native forb 3.0
Sonchus arvensis Perennial Non-native forb 2.0
Tragopogon dubius Perennial Non-native forb 2.0
Verbascum thapsus Perennial Non-native forb 2.0

*A, syriaca is native to Northern America but a noxious weed in Minnesota
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C.4 Supplementary figures

Figure C4-S1. The relative abundance of non-native and native species in sub-plot
interventions, 17 years after perturbation (see Appendix C1). Adjusted-R? describe the
proportion of variance explained by perturbation (P) or the interaction of restoration
intervention and perturbation (P x R). Perturbations included nitrogen addition (N),
burning (B) and burning with nitrogen addition (N / B). Control sub-plots (C) received no
perturbation. Panels, from left to right, correspond with rehabilitation interventions of
non-intervention (C-), seed addition only (C+) and seed addition with herbicide

application, burning and rototilling (HBR+; Table 4-A).
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Figure C4-S2. Recovery trajectories of 22 abandoned fields over four decades (one field
per row for the next five pages). Black lines are the trajectories of individual control plots

(R-), while light grey lines are plots that were regularly burned (RB-) or received-
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Figure C4-S2 cont. restoration intervention (Table 4-A). Fitted estimates of field level
mean abundances in plots are shown by dashed white lines. Blue shading indicates 95%

credible intervals.
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Figure C4-S2 cont.
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Figure C4-S2 cont.
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