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Abstract 

The research field of digital libraries involves a combination of different subfields from a wide 

variety of domains, and the usability and popularity of digital libraries depend on the 

satisfaction and user experiences of people while engaging with digital library systems.  The 

digital library collections are nothing but large-scale resource search and retrieval systems, that 

are increasingly playing an important role in our knowledge society. They can be defined as 

catalogued and curated collections of different types of information resources, that are stored 

in a digital format in digital places. They can be viewed as online resource hubs, where it is 

possible to access information anytime and anywhere.  It is important that every digital library 

needs to be equipped with a wide set of tools, assisting the users in their resource search and 

retrieval activities, and enhance their user-experience with these activities, leading to better 

usability of the system, and help users in finding relevant information and getting tailored 

information based on the personalized feedback, feelings and sentiments, ratings, preferences, 

and metadata build within the system. One of the tools that facilitates such a wide set of tailored 

and personalisation option, is called the recommender system, synonymously called the 

recommendation system, as well.  The digital library systems equipped with recommendation 

system tools aim to provide personalisation features and assist users in finding relevant 

information based on their preferences, based on their previous choices, maintained in their 

respective profiles, and other similar users with either similar profiles or usage behaviour and 

pattern. The success of the recommendation process and tailored retrieval performance of the 

recommender system depends on the quality and quantity of the information used about the 

items and users, and their profiles stored from each interaction since the profiles represent the 

information needs of the users from the user-item interactions. To identify the needs of an 

individual user, and provide better personalisation, the design of the recommender system 
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needs to be based on models that maintain detailed item descriptions and accurate users’ 

profiles, their preferences, and details of item-user interactions, and the performance and 

robustness of the entire recommendation system rely on the modelling accuracy on these 

factors. Due to massive information available about items and resources, often users are faced 

with ambiguity and diversity of information, due to the enormous growth of the Internet, with 

increasingly complex and massive volumes of the information, leading to difficulties in 

isolating the content that fits their needs. Due to this, users are not always certain of their 

information needs, nor do they know exactly how to describe what they want. The most 

challenging task involved in building tailored and personalized recommendations is acquiring 

information on user needs and their preferences, when there is limited information about users, 

particularly when the users are new, or do not engage with the system often. These problems 

make it difficult to profile users accurately and provide quality recommendations. Traditional 

approaches to address this issue in the research literature has been based on the concept of 

building taxonomical representation of the item and model the interaction information about 

each user and the item, and the relevance of each item to users and several other users of similar 

type. Such item representations or a taxonomical model can assist in determining users’ 

preferences. These models involve a hierarchical structure, comprising the coarse-grained 

representation to the fine-grained representations, for symbolizing the set of categories or 

topics, items, and users. However, due to the complex relationship between concepts, items, 

and users, from massive data sources, these taxonomic representation models are limited in 

their capabilities, and identification of each user’s information need is still a challenging task, 

particularly, when the user interaction with the items is limited, or the user happens to be new 

to the system. This thesis attempts to address some of these challenges, and proposes a novel 

computational framework based on deep machine learning techniques for building 

recommendation systems for digital libraries (modelled similar to a large-scale resource search 
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and retrieval system), by including user feedbacks, preferences, explicit ratings, sentiments, and 

metadata information. In particular, the two deep learning models proposed in this thesis, the 

Multilayer Convolutional Neural Networks (MCNN) model and Collaborative Filtering based 

Multistage Deep Neural Network architecture (CFMDNN) model, allow better interaction and 

collaboration events to be captured between users’ feedbacks, explicit ratings, sentiments, and 

metadata information. The evaluation of the proposed computational framework based on 

several publicly available datasets shows significant enhancement in the recommendation 

systems performance, outperforming the related baselines. Further, the extension of these novel 

deep learning models for a new multilingual context (Arabic /English) digital library systems 

context, has led to promising results. In summary, this thesis makes significant contributions to 

recommender systems for digital library systems applications, with models based on multiple 

components including, explicit ratings, sentiment analysis based on text feedback, and metadata 

information for both Arabic and English languages contexts. 
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Chapter 1 Introduction 

Over the last few decades, digital library systems have been continuously evolving. With the 

rapid advancements in information and communication technologies, the range and quality of 

services offered by digital libraries have improving significantly, with better user experience, 

improved personalized recommendations, and sensitivity to user preferences.  These 

improvements are due to efficient data mining and machine learning techniques continuously 

analysing the data stored in the digital library repositories and warehouses and providing 

different user-oriented services based on the search history, usage patterns, and users’ profiles. 

Having a computational workflow/pipeline of identifying users based on their search history, 

usage patterns and user profiles, grouping them into cohorts/categories, and recommending 

appropriate resources/services lead to better personalisation, and improved user experience and 

satisfaction.  

Digital Libraries (DLs) are usually defined as the information collections that provide similar 

services to users through several technologies (Callan et al., 2003). Similar information 

collections can be found in personal data, business data or online data, and could be in text, 

images, or video form. The digital library users can access these collections by using a computer 

that is connected to a network.  Some of the previous research attempts in improving the DL 

services involved, scientists exploring different data mining techniques on DL data to get a 

better understanding of how the users interact with the DL systems (Witten and Frank, 2002). 

With the implementation of Resource Description and Access (RDA) cataloguing standards by 

several digital libraries worldwide, it has become relatively easier to implement in-depth 

analytics and knowledge discovery from DL data stores, in terms of the users, their DL resource 

usage patterns, their borrowing behaviours, and their profiles. DL resource description based 

on RDA cataloguing standards provides several advantages, including, better responsiveness, 

improved user acceptance, costing efficiency, more flexibility, and seamless continuity. Due to 

their significant benefits, several DL systems with similar architectures got deployed widely in 

several countries. The Joint Steering Committee (JSC) for the Development of RDA devised 

Resource Description and Access is a replacement for the Anglo-American Cataloguing Rules 

Second Edition (AACR2), the library domain’s widely used content standard (Oliver, 2010). 

The RDA’s structure is based on the conceptual models of the Functional Requirements for 

Bibliographic Records (FRBR) and the Functional Requirements for Authority Data (FRAD) 

(Hart, 2010). The RDA structure is also supported by the Open Archives Initiative Protocol for 
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Metadata Harvesting (OAI-PMH). OAI is also supported by the Digital Library Federation, the 

Coalition for networked information and the National Science Foundation. The OAI-PMH 

protocol from OAI is more convenient to apply in a digital environment and has been adopted 

widely in the development of Digital Library environments. For example, the first Saudi Digital 

Library (SDL) based on this protocol standards was established in 2010, with a primary aim to 

support the educational process and meet the needs and requirements of modern students, 

researchers, and professionals etc. Currently, it has over 24,000 e-books on various scientific 

topics and has subscribed to nearly 300 International, local, and regional publishers (MOHE, 

2010; Saudi Digital Library, 2011). The development of digital libraries in Australia began in 

the 2000s (Velasquez and Campbell-Meier, 2015). The emergence of DLs in several nations 

has instilled great promise in the economic, social, technical, cultural and scholarly spheres, 

due to their potential to provide substantial advantages in building knowledge communities. 

However, though the digital libraries have been around for several years, both in developing 

and developed nations, their uptake in terms of increased user’s engagement with the content 

and services offered by digital libraries has been minimal. They turned out to have generated 

more hype, along with poor user experience, rather than facilitate transformation into 

knowledge communities (Lynch, 2012). This could be due to the issues associated with 

metadata captured in digital library systems. Similar issues exist in E-commerce application 

domains, such as online shopping and purchasing, but the user engagement with online e-

commerce systems has not reduced much, as compared to digital libraries. This could be due to 

the perception that personalisation of digital libraries with use of tools such as recommenders 

comes at the cost of the metadata getting captured and personal private information getting 

compromised. This might be true, since most of the digital library systems design have been 

based on RDA cataloguing standards, which allows mining of the metadata, containing user 

profiles, user identities and browsing behaviours, without any personalisation because users 

may not be aware of their preferences being stored, or the user might be new with no browsing 

history. What is ideally needed here, is giving users the right products based on what they need 

with high accuracy by using data mining and deep learning techniques for a personalized 

recommendation. The data mining and knowledge discovery framework proposed in this thesis 

tries to address some of these short comings of current digital library systems, based on 

advances in data mining and machine learning technologies to build personalized digital library 

recommender systems. 
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1.1 Thesis Context and Motivation. 

This thesis presents research towards the development of a data mining and knowledge 

discovery framework for digital library recommendation systems, based on novel approaches 

involving cutting edge technologies from multiple domains, including Digital Libraries (DLs), 

recommendation systems, data mining and knowledge discovery, deep learning, sentiment 

analysis, text processing, resource description and access (RDA) and metadata harvesting 

methods. Digital Libraries (DLs) which are defined as collections of information a provide 

better user experience if equipped with new technologies that identify the user preferences, and 

these associated services can be delivered to user communities, using a variety of technologies 

(Callan et al., 2003). One of the most significant components of DLs is the circulation system. 

A circulation system or library lending services is a component which enables users to borrow 

books or any types of media by requesting items and get approval from the library. In addition, 

another important tool which helps in enhancing user experiences (following on with other 

online services such as eCommerce/online shopping), is the recommender component in the 

digital library systems. The recommender service components are defined as a part of 

information retrieval pipeline, facilitating additional information for users that can be of equal 

or more interest (McGinty and Smyth, 2006). 

A recommender component in digital library systems is based on comparing users’ profile with 

similar interests by using metadata, user’ feedback and ratings, and provide 

information/displays on additional items of interest. Recommender components provide user 

personalisation, and can improve customer satisfaction, and hence have become one of the 

essential components of online web-based services and included in digital library systems as 

well. They can be defined as a part of the technology component, that allows tailoring the 

content and presentation of a web-based application for everyone according to his/her 

preferences and characteristics (Perkowitz and Etzioni, 1999; 2000). The information needed 

for personalisation is stored in a user model. While the personalized recommendations services 

can improve user satisfaction, it comes at a cost. Hence it is important to develop automated 

frameworks for digital library recommendation services that helps users to get what they need. 

The research proposed in this thesis makes contributions towards developing a 

recommendations framework based on novel data mining and machine learning techniques 

targeted for digital libraries use case. More specifically, this thesis aims to study to which extent 

data mining can extract user ‘preferences from metadata, uses’ rating and user’ feedback and 

recommend items to the user. 
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Rest of this Chapter is organised as follows. Next Section states the problem definition. Section 

1.3 presents the thesis objectives, followed by Section 1.4 which presents the description of the 

contributions of this thesis. Subsequently, section 1.5 presents the research questions. Section 

1.6 describes the datasets used in this thesis, including the sample dataset developed for the 

digital library system use-case studied in this thesis, and other publicly available datasets used. 

Next, Section 1.7 presents the problem definition describing the challenges associated with 

building digital library recommender systems, and the complexity associated with several 

aspects for enhancing the recommendations, including sentiment analysis, ratings, 

personalization and metadata information. Finally, Section 1.8 present the overall structure of 

the thesis and contributions made in this work. 

1.2 Problem Definition. 

Data mining term was introduced in the mid-1990s in the United States of America and 

involved combining the terms from statistics and information technologies, such as databases 

and artificial intelligence. Data mining is defined as process which finds useful information 

from large amount of data by extracting some salient features from it (Bharati and Ramageri, 

2010).  However, Digital libraries are considered more complex systems as compared to 

traditional libraries. The research field of digital libraries is generally referred to as a union of 

different subfields from a variety of domains. The domains are combined with new research 

issues and aim at realizing their full potential (Nürnberg et al., 1995). Chen and Liu (2001) 

stated that digital libraries present a set of complex and complicated research issues. Further, 

Chen (2003) found that digital libraries experience the issues of user centred aspects and 

interface/presentation of information to different types of users.  Many users tend to feel the 

inappropriate presentation of information and poor interfaces in digital library systems, causes 

a lot of problems related to the information overload (Kim et al., 2003). Therefore, there is a 

need for better information presentation to different users, and this is possible with appropriate 

analytics driven information extraction and presentation. Data mining and machine learning 

techniques can be promising as it can allow analytics to be done on the large data, extract 

relevant and useful information and provide a customised information to the users in digital 

libraries (Witten and Frank, 2002; Costabile and other authors, 1999; Han  et al., 2012). In 

contrast with traditional libraries, DLs can make information directly available and easy to find. 

This is due to the Resource Description and Access (RDA) cataloguing standards used in digital 

libraries, that tend to tag the metadata and extract names and entities linking the users and 

resources from previous borrowings records.  
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Witten and Frank show that the data mining techniques have much to offer to improve the 

quality and types of services offered with digital libraries to their users (2002). In their study, 

they have recommended Greenstone open-source toolkit as an efficient tool to build digital 

library system prototypes. The study of data mining: a competitive tool to the digital library 

(Lone and Khan, 2014) reports the benefits of using data mining and analytics capabilities in 

digital libraries towards improving the libraries’ services such as analytics related to client 

information, weblogs, circulation, and information. Also, data mining tools can help manage 

data and allow better visualisation, in terms of reports generation and explanation/justification, 

and the potential for better information presentation and visualisation customised for different 

users (Lone and Khan, 2014).   Data mining tools in digital library systems can allow better 

user segmentation or user cohort segmentation based on the user profiles, their interests, and 

their borrowing records/behaviours. This can help in the provision of better recommender 

services in digital libraries, as this will provide personalisation of resources being offered by 

digital libraries. This is achieved by casting the specific recommendation system problem as a 

classification or clustering problem, and using different approaches based on data mining and 

machine learning technologies for solving this problem. By casting it as a classification 

problem, it is possible to classify or cluster different users, their profiles and their interests at 

individual levels and cohort levels and enhance the quality of recommendation services being 

provided by Digital Library systems. The need for better recommender systems in digital 

libraries has been felt, since there is information overload on the web (Mnih and Salakhutdinov, 

2008), and the excess data has complicated retrieval of information for the users or even making 

choice with available data difficult, particularly for real time retrieval scenarios. The availability 

of efficient and accurate recommender systems can be beneficial in handling information 

overload and giving recommendations to the users according to their needs. The systems can 

therefore, facilitate the search for content that cannot be easily retrieved, and help enhance the 

user experience, if available in real time. Researchers have, thus, used the recommender 

systems as a preferable choice for obtaining information (Tang and Wang, 2018). Digital library 

recommendation systems are based on the retrieval techniques which utilise the algorithms for 

screening and sorting out the required information. 
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1.3 Thesis Objectives. 

The objectives of this thesis are: 

• To investigate the extent of integration of data mining techniques for improving digital 

library borrowing system services and capture user’s preferences by including 

recommender components in their services. 

 

• To investigate the power of open-source tools such as Greenstone/Librarika for 

implementing digital library system prototypes, and examine issues that cannot be 

investigated in live and real digital libraries deployed, including issues corresponding 

to multilingual contexts (Saudi Arabia/Australia). 

 

• To investigate whether the inclusion of RDA and metadata information can allow 

improved recommendations to be provided, both in terms of quality and accuracy of 

recommendations being provided.  

 

• To investigate the potential of advances in machine learning techniques, including deep 

learning approaches, deep learning techniques, for providing better recommendations. 

  

• To investigate the potential of sentiment analysis techniques, which helps the users to 

provide their feedback and sentiments expressed as text comments, for enhancing the 

quality and accuracy of recommendations in multilingual contexts (English and Arabic 

language for example).  

1.4 Thesis Contributions. 

This thesis presents an interdisciplinary study and makes contributions to multiple disciplines 

connected with digital library systems.  A novel data mining and knowledge discovery 

framework is proposed in this thesis, for developing an integrated digital library 

recommendation system by applying new deep learning and data mining techniques based on 

including user feedback, involving sentiment analysis, ratings and metadata for Arabic and 

English languages. The experimental evaluation of the proposed computational framework was 

done with several publicly available datasets, as well as validated on a prototype use case 

scenario, developed in-house, comprising of a users’ borrowing records dataset collected from 

Librarika, an open-source library management system. In addition, we have used Saudi digital 
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library (SDL) dataset by extracting data from their dataset by using data mining techniques to 

collect resources metadata for both languages English and Arabic from SDL.  By applying data 

mining and deep learning algorithms to find the relationships between items in user’s profile, 

an improved recommendation system was developed based on the user preferences and 

feedbacks. The system intends to aid in the extraction of complex features from data of high 

dimension and use them in the building of models relative to the inputs and outputs in the 

system (Papernot et al., 2016). The capture of user opinions in both languages Arabic and 

English from user feedbacks by using different machine learning classifiers a multi-lingual 

recommender system with enhanced performance and robustness.  

 

1.5 Research Questions.  

To address the research aims and objectives following research questions have been formulated: 

1. What are the traditional approaches to providing recommendations in patterns like 

digital library systems services?  

2. How can we provide better recommendation services by using advances in data 

mining and machine learning algorithms, including the recent deep learning 

algorithms, by linking the borrower information and resources information? 

3. Are there enough resources, approaches, corpora, sentiment analysis datasets and 

neural network approaches for providing recommendations in multilingual systems 

context, particularly in English and Arabic multilingual contexts? 

1.6 Thesis Datasets. 

In this thesis, we used different datasets from different sub-domains, as large digital library 

systems consist of resource collections of multiple different types including, the books, audio, 

music, food, hotel and video collections.  All datasets used are available publicly, except the 

Saudi Digital Library (SDL) datasets we extracted from the Saudi digital library database after 

their permission. The details of each dataset are presented in experimental work done for 

investigating each research question in the other Chapter of this thesis.  The datasets used are: 

1. Librarika dataset. 

2. MovieLeans20M dataset. 

3. Amazon Book dataset. 

4. Book-Crossing dataset. 

5. Food Fine Amazon dataset. 
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6. Arabic Movie dataset. 

7. Arabic Hotel dataset. 

8. Amazon digital Music dataset. 

9. Booking Hotel dataset. 

10. Saudi Digital Library (SDL) datasets in Arabic and English Languages. 

 

1.7 Challenges in building digital library recommender system based on 

sentiment analysis, ratings, personalization, and user history. 

Though there are several data mining and deep learning-based recommendation system 

approaches proposed for digital libraries and other similar systems, there are still several 

challenges and issues in terms of quality and accuracy of recommendations being provided, and 

this could be due to isolated and disparate strategies used for mining the data and extracting 

useful and personalized recommendations.  

Some of these include: 

• Presentation and Visualisation issues, leading to users unable to manage huge 

amount of data and that makes search experiences in DLs and other similar 

systems searching more difficult for users. 

•  Multilingual context management to address the needs of the international 

community. For instance, none of the previous work we have surveyed, shown 

the options of multilingual recommender services, such as in the context of 

digital libraries and other similar systems in Saudi Arabia and Australia. 

• The quality and quantity of recommendations provided by the current systems 

need significant improvement.  

• The privacy issues involved in maintaining user records in digital library 

systems.  For example, the user records such as in the University of Canberra 

library in Australia does not keep user records as that is in American system. 

• The need for a large size of high-quality data sets for building better 

recommender systems based on new data mining and machine learning 

techniques (such as deep learning techniques). Deep learning techniques require 

large datasets with rich user-item interaction information to provide good 

recommendations to the users.   
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•  Most of the Machine-Readable Cataloguing record (MARC) or biographic 

record of digital libraries everywhere, do not give user/borrower relevant 

documents. 

•  Poor user interfaces with lack of interactivity, with no options for enabling users 

to put their preferences. 

• Many libraries have databases from different disciplines, but no one know about 

it, which cost libraries lot of money, without much return on investment. 

• Insufficient datasets available in multilingual contexts, especially in Arabic 

language context. 

1.8 Thesis Structure 

The thesis is organised as follows. Chapter 2 is a comprehensive review of existing research 

that is relevant in recommender systems, digital libraries, deep learning, and sentiment analysis 

in both English and Arabic language context. It identifies and justifies the research context and 

the problems from which the research questions were derived. This chapter also explains the 

role of sentiment analysis approaches for building better recommendation systems. Finally, it 

gives the methodologies that have been used to build a recommendation system in digital 

libraries for both languages. 

 

Next, Chapter 3 presents the basic proof of concept prototype for the recommendation systems 

based on traditional data mining algorithms for a digital library use case scenarios. It presents 

details of digital library test bed developed using Librarika open-source tools for investigating 

different traditional data mining approaches for user/cohort segmentation. 

 

Chapter 4 presents the novel computation framework developed in this thesis based on deep 

machine learning and the experimental evaluation of the algorithmic approaches developed in 

the framework for several publicly available datasets.  The algorithms based on Collaborative 

Filtering (CF) and Collaborative Filtering based Multistage Deep Neural Network architecture 

(CFMDNN), with different rating scales have shown that CFMDNN algorithms results in good 

performance.  

 

Chapter 5 investigates sentiment analysis of users’ feedback involving text comments, based 

on different NLP text processing techniques including the Word2Vec model and bag of word 

(BOW) model. 
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Chapter 6 presents deep learning approaches based on natural neural networks for Arabic 

sentiment analysis by using SVM, MLP, CNN and MCNN models and investigates the 

performance of digital library recommendation system for multilingual contexts, comprising 

Arabic and English language contexts. 

 

Chapter 7 presents digital library recommendation system approach based on Metadata and 

hybrid deep learning techniques, and improvements in recommendation system performance 

achieved.  

 

Chapter 8 summarises the results and compares the improvements achieved with different data 

mining and deep learning approaches for different types of digital library services considered 

in this thesis (user segmentation and resource recommendation services). Also, the Chapter 

summarizes, how the proposed computational framework based on novel data mining and deep 

leaning techniques,  with the inclusion of  user preferences in terms of explicit ratings, 

sentiments with textual comments, and metadata information can enhance the quality and 

accuracy of recommendations in multilingual digital library system application scenarios. 

 Finally, the Chapter provides directions for future research based on the findings from this 

thesis and concludes with references and bibliography related to this work. 

1.9 Chapter Summary. 

This chapter presents an introductory information about the thesis topic. It gives you 

information and an explanation of topic and road map of the thesis. The chapter ends with 

research objectives, problem definition, research questions this thesis tries to address, and 

contributions from this work. The next chapter gives background information and a brief 

literature review on digital libraries, RDA, data mining algorithms, recommendation system, 

and the challenges associated with building a recommendation system for digital library 

application scenarios. It shows the application of the recommendation system and sentiment 

analysis and gives the methodologies that used to build a recommendation system in digital 

libraries for both languages Arabic and English. Finally, applies algorithms with metadata to 

build a digital library recommendation system
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Chapter 2 Literature review and Background 

2.1 Introduction. 

 After giving an introduction of the thesis, this chapter describes the background and the basic 

concepts of data mining technology, and the state of the art in the field for building 

recommendation systems in the digital library context. The definition of a recommender system 

has been improved over the past 14 years. In Resnick and Varian’s seminal article, the authors 

describe a recommender system as follows: 

“In a typical recommender system people provide recommendations as inputs, which the system 

then aggregates and directs to appropriate recipients” (Resnick and Varian, 1997). 

 

To be precise, a recommendation system involves modelling of human computer interaction, 

by embedding user’s preferences, finding the relationship between users and items, and 

understanding their needs.  This chapter will also provide a review of the literature relevant to 

the field of study, the line of investigation and the research methodology used. The aim is to 

review and analyse the current literature, which is considered as one of the most powerful tools 

in the hand of researchers, helps researchers to focus on the specific field and sets the 

background rationale.  This chapter describes the digital libraries field, data mining algorithms 

and RDA on recommendation system. Also, is going to explain sentiment analysis and deep 

learning and presents some applications. Followed by methodologies used for English and 

Arabic languages based on sentiment analysis. Finally, shows the deep learning recommender 

system in DLs based on metadata.  Figure 1 shows the literature review structure used for this 

thesis: 
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Figure 1: literature reviews structures 

Section 2.3 discusses previous studies about data mining and the benefits of RDA in digital 

libraries and related concepts. There are several data quality issues for information retrieval in 

digital libraries context, such as missing values. Also, there are differences between end goals 

of data mining and information retrieval process. The literature review tries to address some of 

these issues and validates the lack of prior work on studies covering data mining in digital 

libraries, with a focus on recommendation system, and use of open source data repositories for 

building a Digital Library (DL) systems.  

In this research, a novel computational framework is proposed, based on advances in data 

mining and machine learning technologies, including deep learning, text processing, sentiment 

analysis and RDA metadata to build better recommendation systems for Digital Library 

application scenarios.  

Section 2.4 reviews the traditional data mining algorithms used in recommendation system for 

DLs. Though there are few studies about building a recommendation system for books based 

on traditional data mining algorithms, there are not many approaches that leverage the benefits 

of recent advances in data mining, machine learning and associate technologies in text 

processing, metadata mining and deep learning, for enhancing the performance of 

recommendation systems. In this thesis, the novel computational framework proposed takes 

into consideration several of these recent advances. Also, since it is difficult to access the digital 

library databases, a prototype testbed developed has been developed, based on open source 

technology tools for assessing the personalization and user experience with different 

components of digital library services, and impact of apply data mining methodologies on them. 

Some of the methods include, the association rules, Support degree (Zhou et al., 2014), Apriori 
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algorithm, FP-Growth, classification, Naïve Bayes, Decision Tree and K-NN algorithms. 

Performance evaluation of each data mining method was done using several performance 

metrics, including the ROC (Receiver operating characteristic), the Confusion Matrix and the 

True /False positive rates. 

Section 2.5 investigates the literature regarding DLs recommender systems based on deep 

learning and sentiment analysis. The literature reviews show that all studies used deep learning 

and sentiment analysis for social media such as Twitter and used it on e- commerce and retail 

scenarios, such as Amazon and Netflix scenarios. Also, the literature review confirms that most 

of applications developed using deep learning and sentiment analysis are in the English 

language and did not include multilingual contexts. This shortcoming has been addressed in 

this work, by considering Arabic language sentiment analysis. 

 In this research, the focus of the computational framework proposed for Digital Library 

recommendations involves the use of explicit ratings, text based feedback for sentiment analysis 

in multilingual contexts (English and Arabic), for the development of novel deep learning 

architectures – MCNN and the CFMDNN algorithms, in addition to traditional Word2Vec, 

RNN, MLP, and SVM algorithms. The experimental evaluation of the proposed computational 

framework was done with several in-house, private, and publicly available databases, using 

several performance metrics, including Mean Absolute Error (MAE), RMSE and F-measure.  

Sections 2.6, 2.7 and 2.8 review the applications of recommendation system based on sentiment 

analysis and deep learning techniques. Section 2.9 discusses the methodologies used for English 

and Arabic sentiment analysis. Section 2.10 discusses the use of sentiment analysis for 

recommendation systems. Finally, section 2.11 reviews any works on recommender systems 

for DLs (Digital Libraries) based on metadata. The comprehensive literature review shows a 

gap in existing approaches, particularly in using a combination of explicit ratings, text-based 

sentiments, and metadata in multilingual contexts for recommendations in Digital Library 

application, which this thesis attempts to address.  Several data mining techniques to extract 

metadata from digital library. In this research, the proposed computational framework based on 

a combination of explicit ratings, text-based sentiments, and metadata in multilingual contexts 

for recommendations in Digital Library application context, leads to better recommendation 

system performance, and improved user experience. The next Section reviews the background 

work on Digital Library Systems. 
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2.2 Digital Libraries. 

The establishment and work of the digital library in Saudi Arabia are discussed in MOHE 

(Ministry of Higher education). (2010).  The digital libraries of Australia have shown increased 

activity in recent years. Several works are reporting the use of data mining techniques for 

providing personalized recommendations in digital libraries, including the investigations by 

Han  et al., (2012), Dushay (2002), Kim, Choo, and Chen (2003), Cullen (2005), Kovacevic, 

Devedzic, and Pocajt (2010), and others.   

It is a common saying that “We are living in the information age”. In reality, we are living in 

the data age, with Terabytes of data storage in our computer networks every day from 

information science, medicine and engineering fields. This growth is a result of the 

computerization of our society. (Han et al., 2012). 

Data mining process consists of several steps, including known as knowledge discovery, 

knowledge mining from data and the knowledge extraction step. The goal of a  data mining 

process is to find the patterns within data, and requires three main steps to discover the 

knowledge, comprising  exploration, pattern identification and deployment (Bharati and 

Ramageri, 2010),  as shown in  Figure 2 below: 

 

Figure 2: Data Mining Process [Source: Bharati and Ramageri, 2010 

2.3 Data mining Algorithms and RDA in digital libraries (DLs): 

This Section reviews the relation between data mining techniques and RDA enabled Digital 

Library systems, and whether they facilitated the creation of personalized recommendations. 

The first digital library was built in 1975 by Roger Christian, who reported it in the book 

Toward Paperless Information Systems (Chang and Chen, 2006).  Callan et al (2003) conducted 

a study on Selection Resource in multimedia at digital libraries. This study investigates the 

issues of resources selection at digital libraries. Moreover, Callan et al (2003) proposed a project 
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called the MIND that uses traditional data mining algorithms to provide recommendations in 

digital libraries. Another study by (Mishra and Mishra, 2013) have used data warehousing 

approach for analysing the data from different perspectives in digital libraries. Further, there 

are some studies which use similar algorithmic approaches, but their goal is information 

retrieval, rather than mining the data.  According to Bin (2013), the goal of the information 

retrieval process is to extract the information corresponding to the exact query request, whereas 

the goal of the data mining process is random knowledge discovery, within the documents. 

(Mishra and Mishra, 2013). Several studies have done previously show that the data mining and 

information retrieval can be made to complement each other, and benefit from advances in each 

field.  Yassir and Nayak (2012), reported a study by interviewing 50 participants with the 

targeted questionnaire.  The study showed that there are several issues with information 

retrieval systems, including missing values, ethical aspects, and attribution of value with 

meaning, that changes over time. By using tailored and efficient data mining techniques, it is 

possible to address the issues affecting information retrieval systems. Digital Library systems 

can be viewed as an information retrieval system, and by applying efficient data mining 

techniques, it is possible to tailor the digital library systems for personalized recommendations 

(Mishra and Mishra, 2013). Few other studies have revealed importance of data mining 

approaches for improving quality of services provided by digital libraries (Guenther, 2000), and 

provide personalized information services and recommendations, improving information and 

knowledge transfer process. According to Zhang (2011), data mining processes play an 

important role in improving the quality of service in digital library systems, as shown in the 

Figure 3 below: 
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Figure 3: Data Mining in Digital library [Source: Zhang , 2011] 
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2017), discussing  electronic resource and entities, attributes and relations. A different type of 
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statement, publication statement, publication date and copyright, extend and physical 

description of sound recording. RDA is a new standard for representing all types of resources 

in the digital environment. Also, another model, the FRBR (Functional Requirements for 

Bibliographic Records) is a 1998 recommendation of the International Federation of Library 

Associations and Institutions (IFLA) to restructure catalogue databases to reflect the conceptual 

structure of information resources, and it describes the grouping of different entities in the 

bibliographic environment and their arrangement in a hierarchical format. It is a conceptual 

model of the bibliographic environment which includes the data that the library wants to make 

available to the users (Strader, 2017). However, RDA is a content-based standard and not a type 

of metadata model,  but more suitable for use with any standard formats to describe information 

materials such Dublin Core, as it focuses on those parts of the information that the user often 

needs to know; and on what information should be recorded and how it is to be recorded to help 

the users to search large databases and indexes and then find, identify, select, and obtain the 

source that related to the information that they are looking for it (2010), and is shown in Figure 

4 below.  

 

Figure 4: FRBR Model . [Source :Tillett, B., 2005] 

The FRBR model meets these needs through the bibliographic network of entities, attributes 

and characteristics of Work, Expression, Physical Appearance and Item. However, as outlined 

earlier, there are many benefits when using RDA and data mining in digital libraries.  

Some of the prior work on using data mining techniques for digital libraries application contexts 

focussed on different end goals. Some of them were aimed at solving the classification 

problems, where the users/readers were categorized into five clusters, and each cluster has its 

own characteristics. Few other works focussed on using data mining techniques for not just 

classification, but also regression, rule generation, discovery, summarizing, dependency 

modelling and sequence analysis aspects. Chang  and Chen (2006), used three techniques 

involving data analysis, building of data warehouse and apply data mining algorithms for a 

digital library application context, resulting in better service provision, and conforming to the 

cataloguing standards of the country. Due to different cataloguing standards and protocols used 
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in each country, the data mining algorithm suite developed differs, and not uniform across the 

digital library application scenario.  For example, Libraries Australia adopted RDA as the 

preferred cataloguing standard from April 2013 and implemented several changes to support 

the creation and exchange of RDA data (Velasquez and Campbell, 2015). The OAI-PHM 

protocol used by Kim et al (2005), for MEDLIN database, uses a metadata harvesting method, 

to work with RDA, and extract metadata, helping in building better recommendations.  system. 

In general, in many of the previous work surveyed, seven steps appear to be the common 

practice for the data mining process for library data,  and these steps focus on how to select 

data, pre-process data, transform data, store data, mine data and evaluate mining result (Chang  

and Chen, 2006). 

In a multilingual context (focussing on Arabic language context), Saudi digital library (SDL) 

services are provided to all Saudi universities under one umbrella and these services were made 

available for universities users as well. SDL uses two ways to retrieve information, using 

Summon research engine or direct access to database library. The use of Summon Service 

research engine increases the value of library, by delivering an unprecedented research 

experience. This unique service increases resource usage, connects users with librarians, 

provides the easiest and most efficient way for users to discover library collection. 

The Australian digital libraries, on the other hand, use a different approach for providing the 

services, use a different approach to collect all digital collections’ information in one place. 

There are many tools for querying digital collections, including Trove which is a free search 

engine created by the National Library of Australia contains many electronic collections in a 

different field such as Books, Ephemera, Journals, Manuscripts, Maps & Aerial photographs, 

Music and Pictures ( National Library of Australia, 2010). However, in 2015 the National 

Library encouraged all its digital materials to a new platform and began digitizing content for 

partner organizations, and the old National Library digital delivery service was stopped in 2016. 

According to Burrows (1999), the new platform aimed to provide an integrated platform for all 

Australian digital libraries, allowing cooperation among different organizations and universities 

for providing resources from their website for their users.  

In addition, Libraries Australia provide a resource sharing service for sharing digital documents 

and is managed by the National Library of Australia for Australian libraries and their users. 

Their key mission is to support a seamless workflow between Australian libraries and provide 

data to underpin Trove, by using data from Australian National Bibliographic Database ANBD, 

which records the location details of over 50 million items held in most Australian academic, 

research, national, state, public and special libraries. (Libraries Australia, 2015). Thus, by 
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comparing the architecture of digital library systems across two different contexts, Australia 

and Saudi Arabia, it can be seen that Australia does not have a specific digital library but has 

many digital resources that comes from different sources. On the other hand, Saudi Arabia has 

a specific library which is called Saudi digital Library SDL as shown in Figure 5 below: 

 

Figure 5: Summaries of digital libraries in Saudi Arabia and Australia 

Due to these differences, the data mining approaches used by different digital library systems 

are not the same and use different algorithmic techniques to provide retrieval services. Yin and 

Han (2003) proposed a classification system called the predictive association rules algorithm 

call “CPAR”. Antonie and Zaine (2002) used association rules mining to build a classification 

model. Li et al (2001) proposed a classification model called CMAR which based on multiple 

association rules to construct a spatial classification system, whereas Chen et al (2001) have 

been used a classification model based on association rule to classify the data coming from a 

different application context (underwater acoustic signal).  

The architecture used in Kobson digital library in Serbia (Kovacevic et al., 2010) is based on 

k-means clustering and the naïve Bayes classification together to improve digital library 

services. This system also uses a combination of different data mining techniques for better 

retrieval performance and service provision, including association analysis, classification, and 

clustering. Uppal & Chindwani (2013), also used association analysis, clustering, and 

sequential pattern mining on library dataset to extract frequent book sequences borrowed by 

students. Their system uses four steps to extract knowledge from data, namely data cleansing 

and integration, data selection, data mining and pattern evaluation, as shown in Figure 6 below: 
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Figure 6: Steps of extracting knowledge from data [Source: Uppal & Chindwani, 2013]. 

The FP-Growth algorithm, proposed by Song and Wei, (2011) has gathered significant interest 

in the research community, due to its ability to capture the relationship between books and 

users, to find needs of readers more clearly. The findings from their work showed that the FP-

Growth algorithm can get high accuracy of reader’s need by analysing association rules. The 

approach proposed by Bin (2013) involving four data mining models for retrieval which are 

classification, association, clustering and regression models. The classification model was used 

to extract and segment important data into different classes. The Association model is used to 

make and construct relationship in database based on the entry. The Clustering model involves 

the grouping of data and features for similar categories, using the historical data to predict future 

trends. This combination of these different models in this work was one of the earliest 

personalized retrieval and recommendation technique available and served as a reference model 

for most of the subsequent works. Prior to this work, Chen and Chen, (2007) developed an 

approach for recommendation service for digital library context based on a combination of two 

algorithms, the Association rule mining and Ant colony optimization.  This approach allowed 

discovery of interesting association, and helped find the relationship from a large dataset as 

shown in Figure 7 below: 
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Figure 7: Data mining process in Digital library 

Moreover, Ant colony optimization algorithm used in this approach, attempts to find the shorted 

path for data, analogous to strategy used by real ants, for finding the shortest way to food. This 

method separated users into several clusters based on records, and then users who have similar 

interest are collected into one cluster, as showed in Figure 8 below: 
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Figure 8: Colony Optimization Algorithm [Source: Chen & Chen, 2007]. 

 

The Next Section discusses the subsequent work on different data mining approaches for 

recommender services for digital libraries context. 

2.4   Data mining algorithms used for providing recommendations in Digital 

libraries. 

There are four different steps involved in extracting knowledge from different data sources, 

repositories, and data stores. These steps include data cleansing and integration, data selection, 

data mining and pattern evaluation as shown in the Figures 9 and 10 below:  
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 Figure 9: The process of extracting knowledge from data [Source: Uppal & Chindwani,2013]. 

 

Figure 10: The process of data mining in digital library 

Providing recommendations is an additional step involved in this process, and can be the most 

useful step, for enhancing the quality of services and user experience in digital libraries 

contexts. This additional step of providing recommendations typically involves producing a list 

of recommendations to the user and may requires a different set of data mining algorithms. 

These algorithms help libraries personalise recommendation of books or any resources for users 
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based on borrower or personal loan records.  There have only been a few studies on book 

recommendations based on library loan records, due to the difficulty in accessing borrower and 

personal loan records (due to privacy issues). Thabtah et al. (2004), proposed one of the 

frequently used method based on collaborative filtering. other similar works, the Melvyl 

recommender project, proposed by Whitney and Schiff (2006), uses a weighted graph model, 

that is like the association rule method. One of the recent developments, using association rule 

mining on circulation records for book recommendation was proposed by Rustogi et al (2017), 

involves the use of collaborative filtering as well as association rules, showing this method has 

better performance. Further, the authors of “Comparative Study of K-NN, Naïve Bayes and 

Decision Tree Classification Techniques” have studied book recommender system using 

frequent pattern algorithm (FP-Growth) and showed that FP-Growth makes effective book 

recommendation to the users of the library and well applicable in analysing large data in a 

library in Taiwan. (Jadhav& Channe, 2013). The results showed that naïve Bayes classification 

can be used together to improve digital library services. Tsuji et al. (2012) in “Use of library 

loan records for book recommendation” did an empirical study of the application of data mining 

techniques in library system, and used association analysis, classification, and clustering 

approaches. This study discusses the application of association analysis, clustering, and 

sequential pattern mining on library dataset to extract frequent book sequences borrowed by 

students. According to this study involving the use of library loan records for book 

recommendations,  several methods were used for generating recommendations, namely the 

collaborative filtering, the association rules and the use of the Amazon system,  for mining 

1,854,345 loan records from 39,442 users of the university library and recommended books to 

33 undergraduate and graduate students based on the collaborative filtering, association rules 

and the Amazon system (method used not publicly available). The result was that the method 

used by Amazon (not publicly available) is the best, followed by association rules method, and 

least performing approach is the collaborative filtering.  

Data mining process at its heart uses machine learning algorithms for extracting the data or 

knowledge from one or more sources. The machine learning models here determines the 

performance of the data mining process. The different types of machine learning models used 

for this task are predictive, descriptive and correlation models. Predictive models are designed 

to predict the value of some properties such as predicting a potential purchase for the customer. 

Descriptive models are divided into two types: clustering patterns that allow the assembly of 

individuals, events, products in clusters, and the correlation models allow for the identification 

of relationships between them. Some of the recent works use different types of models called 
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deep machine learning models, that are completely data driven and discussed in the next section 

in detail.  

2.5  Deep learning models for recommendations in Digital Library Systems. 

Deep learning is known as deep structured learning or hierarchical learning. It is a new subfield 

of Artificial Intelligence (AI ) and Machine Learning (ML) area, and is completely data driven, 

using data from multiple sources such as images, sound, and text to make sense out of data. It 

should be mentioned that there are differences between machine learning and data mining. 

Machine learning provides algorithms to learn from data, extracting relationships between 

different attributes, and build a model, solve the problem using this model, and predict the future 

trend, such as identifying a new customer. Data mining on the other hand, is used to explain the 

data, discover knowledge from a large amount of information in database, for further decision-

making based on this data. Therefore, data mining is used to uncover unknown data and 

knowledge, and machine learning is used to uncover known data and knowledge (Jegan, 2017). 

Deep learning is a subfield of machine learning field and considered one of the most an 

important developments in the field, for understanding complex data representations at multiple 

levels, based on different types of  hierarchical learning architecture and algorithms driven by 

structure and functionality of the human brain, and used in artificial intelligence field. Deep 

Learning algorithms are useful when dealing with learning from a large amount of unsupervised 

data, and typically learn from data in a greedy layer-wise fashion (Najafabadi et al., 2015). 

Including recommender component in a data driven machine learning or AI system can lead to 

better personalisation, as it can include the end user in the decision making loop, and enhance 

the user experience and satisfaction, and is increasingly being used recently for online search 

and retrieval in different fields. There are many companies such as Amazon, Netflix and eBay 

providing personalisation retrieval, using recommender system components in AI/Machine 

Learning based search and retrieval platforms, to not only meet users’ needs, but also help them 

in finding what they really need (McGinty and Smyth, 2006). The traditional recommender 

systems without deep learning based algorithmic models, are based on using different set of 

criteria for capturing user preferences based on the content, users’ profile, and interaction 

between users and content. These algorithms are called collaborative filtering or content-based 

filtering methods and use matrix factorisation techniques to model the interaction between the 

user and the content. Though these methods work well if there is sufficient interaction between 

the users and content, as there is enough interaction data, but for users who don’t interact much 

with the system or for the new users, there is insufficient interaction data, and leads to poor 
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performance. The usage of deep learning techniques for providing recommendations led to 

good results in several other fields involving complex search and retrieval, including computer 

vision, speech recognition, language processing and so on. Therefore, other similar search and 

retrieval systems and associated end user experience as in personalized recommendations in 

digital library systems can see similar benefits with deep learning-based algorithm engines 

(Shokri and Shmatikov, 2015). However, the use of massive data collections, especially used 

for building deep learning models, might present critical privacy issues, and lead to 

compromised safety of the users (Yonetani et al., 2017). The data at the central storage system 

may also be the subject of surveillance, an implication that the essence of personal privacy is 

challenging to attain (He et al., 2017).  Hence the type of deep learning algorithms chosen or 

developed have to take into consideration security and privacy aspects and need to be privacy 

aware. These algorithms depending on the application and the security requirements, need to 

be customised or designed with due diligence (Willemsen et al., 2016), (Bendersky et al., 2017). 

Deep learning architectures due to their opaqueness and inherently black box type structures, 

tend to address these requirements well, as compared to other transparent shallow learning-

based algorithms.  

2.6 Sentiment analysis for recommendations in Digital Library Systems. 

For enhancing the quality of recommendations in any search and retrieval platforms, include 

the digital library systems, there have been several research efforts to include different types of 

user feedback. These include not only used of implicit and explicit ratings, but also the use of 

text-based feedback comments. Use of text-based feedback allows sentiments to be captured 

and can help understand user needs better. However, including sentiment analysis in decision 

making loop in providing recommendations, requires use of linguistic NLP (natural language 

processing) techniques for mining the text. This is more challenging as compared to simple 

ratings-based recommendations to be generated and the use of NLP techniques requires 

comprehensive language dictionaries to be used and created in different multilingual contexts 

and environments, the system is expected to perform. For an English language NLP system 

there are established language dictionaries tailored for different application scenarios, but this 

is not the case for other language contexts. Traditional English language processing approaches 

use of N-gram approaches and TF-IDF based statistical techniques for building bag-of-words 

models, More recently, some form of numeric representation of words, called word2vec models 

are being used, for words to be processed effectively and to ease processing complexity and 

load.  
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The bag-of-words model is an approach for extracting and representing specific features from 

text for use in NLP modelling. It is commonly applied in machine learning for text processing, 

due to its simplicity and flexibility. The Word2vec models, on the other hand, encompass a 

group of related models that create word embeddings. Further, the shallow neural networks 

used for text processing, are aimed to rebuild linguistic contexts of words. These models have 

featured predominantly in related works and past studies. Some of the related work is discussed 

next. Both Bag-of-Words and Word2vec Models have been explored widely for sentiment 

analysis of customer reviews (Chakraborty et al., 2018). Dai et al (2015) have adopted a 

standard bag of-features model to forecast the opinion class of film reviews based on 

consumer’s inputs. Their outcomes indicated that the bag-of-words models outdid simple 

decision-making frameworks that implemented hand-picked features for views classification 

(Bansal and Srivastava, 2018). One of the challenges in building NLP models for sentiment 

analysis, is time-consuming aspects involved in handling dominant human language to make 

an algorithm (Gehrmann et al., 2018). Further, many authors showed that such models were 

inefficient in terms of manual evaluation of lexicon and lend itself to low accuracy (Stojanovic 

et al.2017; Yuan et al. 2016; Nazir et al.2018). To address this problem, models based on semi-

supervised framework for sentiment analysis of consumer reviews were proposed by 

Walkowiak et al. (2018); Kim et al. (2017); Zhang et al. (2016); and Vinayakumar et al. (2018). 

Also, used para-graph vectors to determine the syntactic and semantic links of a review text 

using semi-supervised models were proposed by El-Din, (2016); Dehghani et al. (2017); and 

Zhang et al. (2016). The concatenation of review embedding, and product embedding gathered 

from paragraph vectors when applied, outperformed all previous approaches used in 

sentimental analysis of customer reviews. Several studies compared Bag-of-Words and 

Word2vec Models on sentiment classification (Campr & Ježek, 2015; Zhang et al.2017; Barry, 

2107) while (Joulin et al. 2016; Huang et al. 2019) performed sentiment analysis of clinical 

datasets. They found that these two models complemented each other.  Also, (Vinayakumar et 

al. 2018; Ragini et al. 2018; Krishna et al.2019) supported the combined use of Word2Vec and 

bag of words for sentiment analysis of patient’s summaries. In terms of accuracy, Stojanovic et 

al (2017) supported Word2Vec as the most precise and functional word embedding approach. 

It was highly effective in con-verting customer reviews into substantive vectors (Kaur, 2019).  

The only problem with the model was that it required huge chunks of reviews for training and 

yielding the exact vectors. 

As can be seen from the several works discussed above, for personalisation or recommendation 

generations in search and retrieval systems including digital library systems, Sentiment 
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Analysis (SA) plays an important role. It helps to extract opinions of the people opinions about 

different products. According to Abbasi et al. (2008) the text extraction and mining could be 

objective or subjective, as the text contains negatives and positives opinions, and can be inferred 

using machine learning based models for sentiment analysis at the sentence level.  However, 

most research studies of this type, have been using natural language network in English. Very 

few works in other multilingual contexts, particularly the Arabic language exist. Some of the 

studies reported are discussed here. Aly and Atiya used Large Arabic Book Review LABR, 

containing 63,257 book reviews, collected from Goodreads website. They divided reviews into 

positive and negative. Reviews with rating 4 or 5 labelled as positive and 1 or 2 labelled as 

negative. However, rated 3 considered as neutral reviews. They used deep learning by applying 

SVM (support vector machines), MNB (Multinomial Naïve Bayes) and BNB (Bernoulli Naïve 

Bayes). The result was 90% accuracy for sentiment classification based on NLP text, and 50% 

for rating classification based on explicit ratings (2013). Mourad and Darwish proposed 

lexicon-based approach by using two datasets which are MSA (modern standard Arabic) news 

articles and dialectal Arabic microblogs from Twitter (2013). They used two Lexicon MPQA 

(multi perspective question answering) for English subjectivity and ArSenti for Arabic. In 

addition, they clean all words in Tweets by using tokenization and stemming. Mountassir et al. 

(2012) used three different classification models, which are NB (Naïve Bayes), SVM (Support 

Vector Machine) and KNN (k- Nearest Neighbourhood) models built with two datasets Movies 

and Sports datasets. Before model building and evaluation, the authors performed pre-

processing. They found that the pre-processing helps to improve classification performance. 

Further, El-Beltagy and Ali used lexicon-based approach to provide a sentiment classification 

of Egyptian Arabic text. The result was 83.8% accuracy, accepted as a good result (2013). 

Sentiment analysis has been viewed as an important aspect in Arabic language context as well, 

because the number of internet users in Middle-East are increasing, and they are sharing their 

opinions, reviews and feedbacks. Around 69.2% of internet users use the internet in Middle 

East. They use Internet for searching about products or services (Ghallab et al.,2020), and well 

above world average, as can be seen in the Figure 11. 
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Figure 11: Internet World Usage. 

 

Refaee and Rieser built a multilingual sentiment analysis system, based on a hybrid rule-based 

and supervised learning approach. Their results show that the performance of the supervised 

method is higher than the unsupervised method for an English dataset, as compared to the 

accuracy achieved for an Arabic dataset (2016). 

According to Boudad et all. (2018) though the research on sentiment analysis has started in 

2008, there was limited work on classification at the sentence level and considered a problem 

in Arabic NLP. Next two Sections describe other related works done on recommendation 

systems and sentiment analysis for different application areas. 

2.7  Applications of Recommendation Systems. 

Due to the numerous benefits it offers to its user, recommendation systems have been widely 

used in various fields. The recommendation system is an application which offers 

personalisation and customized recommendation of a product or service on the internet 

(Christakopoulou et al., 2018). The system achieves this by reducing online data overload to 

improve the level of client satisfaction. To reduce information overload, the application sieves 

and analyses data and provides the client only with the information they require (Sandoval, 

2015). It is, therefore, an application which saves users’ time and enhances the satisfaction 
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level, by analysing large amount of information to bring out an accurate specific result to the 

user. 

They can be used for different applications. For example, the government uses e-government 

applications to help provide services and information to the citizens. As a result, there has been 

a surge in information request in government portals and websites (Vateekul et al., 2016). The 

abundance of information, which at times is not effectively categorised, has rendered people 

with little ability to make effective decisions (Cambria et al., 2017). The above situation can 

result in inefficiencies in service delivery since it hinders the retrieval of the required 

information. Therefore, the recommender systems can be used to help in solving such problems 

by offering the services or information the users may be interested based on the analysis of their 

user profiles (Dehghani et al., 2017). Besides, the governments have used the recommender 

systems to help citizens make decisions on the best candidate to vote for. The system provides 

information about each candidate during the election campaign and recommends the best one 

putting into consideration the user’s preferences (Dwork et al.,2015).  

Moreover, in businesses, recommender system can be used to help managers to maintain current 

databases through product recommender system. Besides, it is used to help business owners 

select authentic online sellers. In addition, recommender systems are used to assist in building 

stable business models by using intelligence, sourced online (Elkahky et al., 2015). Further, the 

banking sector has equally utilized the system to create effective investment portfolios by 

matching the client profiles with information from the system. In addition, Internet-based 

companies, such as Amazon, use the E-commerce recommender systems in their online 

platforms to assist clients in choosing the products to purchase (Ghosh et al., 2016). These 

recommender applications define the product to be recommended based on the information 

about the product total sales, the current trends in buying, the customer demography, and 

location of the customer (Hongliang and Xiaona, 2015). Using the said information, this system 

matches the needs of the client and the data from the website to customize a product for the 

customer. 

2.8  Applications of Sentiment Analysis.  

Businesses use sentiment analysis to improve their competitive edge by monitoring and 

managing company reputation (Thai et al., 2016). This helps businesses to implement flexible 

and insightful programs into the way they present their products. Also, organizations use 

sentiment analysis to track perception of the brand, find patterns and trends, and monitor the 

influencers of the industry (Li et al., 2017). As a result of monitoring the company can 
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implement various ways of counter-competition, such as using automated media monitoring 

systems and monitoring reviews of the brand on various online platforms. 

Sentiment analysis is also used in performing market research and competitor analysis by 

gathering information (reviews, comments, news articles, and general perception) from 

different platforms. Information such as competitor contents, perception, and insights can also 

be gathered by sentiment analysis (Poria et al., 2016). After obtaining such information, the 

company will be able to effect the necessary changes to remain relevant in the business 

environment. In doing so, the sentiment analysis tools can help investigate the demands and 

needs of the market to adjust the business to gain the edge over the competitors (Soni and 

Sharaff, 2015). Finally, sentiment analysis is used in product analytics. Here a specific item 

produced by the company is monitored in terms of the clients’ comments and remarks regarding 

the product. Sentiment analysis also assists in improving the performance of a product in each 

locality or a particular demographic space (Hassan and Mahmood, 2017). The comments used 

on a product will help to define its niche in the market and ascertain whether any adjustments 

are required to ensure market traction.  

 

2.9  Progress in Recommender Algorithms for Digital Libraries. 

Like other search and retrieval platforms, the algorithms for providing recommendation 

services in digital libraries are based on the retrieval techniques which utilize the algorithms for 

screening and sorting out the required information.  Thus, Content-based recommender 

algorithms receiver the customer requests, and then send distinct recommendations as per the 

client requirement. It does the above by filtering and sifting the information and offering content 

or products to the client depending on their profile (Véras et al., 2015). On the other hand, 

Collaborative filtering-based recommender algorithms coordinates, assesses and then gives 

information related to what other clients have done before, comparing it with the temperament 

of the current customer. Finally, a more sophisticated Hybrid recommendation algorithm uses 

a mixture of the above procedures, and results in higher efficiency, as compared to the said two 

systems.   

The CORE is a recommender service that goes through a large amount of data to find articles 

that are relevant to the client search query (Covington et al., 2016). The service is based on a 

plug-in algorithm that is inbuilt in the repository system, specifically for E-prints. When a client 

looks for a piece of information, the plug-in sends the data on a query to the CORE. The data 

query may range from the object identifier to the metadata, or when such information is 
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conceivable. By using the CORE suggestion calculator, the plug-in sends a list of recommended 

resources to the user. The above procedure eases the search for information, making the tool 

helpful in digital library systems.  

2.10  Use of Sentiment Analysis for Recommendation Systems. 

There are many methodologies used for English and Arabic recommendation system that 

incorporate sentiment analysis. Portugal and Cowan (2018) used a Caption Generation method, 

which works by associating parts of the image with certain words. In a study conducted to verify 

this methodology, researchers removed fragments on the image dataset. Then, they employed 

a Deep Belief Network (DBN) algorithm to model words that were closely related with the 

image, and those that were close to the fragments. After taking 10,000 pictures from Dataset 

and Al-Jazeera networks, the researchers generated sentences using the dependency tree 

relations. The results were positive and showed that both Arabic and English languages 

represented caption recognition (2018). The above technique, therefore, seems to fit well for 

including sentiment analysis in both the languages for recommendation systems. Aslanian et al. 

(2016), used an Automatic Speech Recognition (ASR) methodology based on deep learning 

and machine learning to recognize spoken Arabic and English digits. To ascertain its efficiency, 

an in-house dataset was used for building a model in a multi-speaker context with fixed settings. 

Consequently, the researchers found out that word error rate had significantly reduced, and the 

cross-entropy had a descent gradient (Aslanian et al. 2016). During the study, the researchers 

used the LSTMs algorithm to recognize words of the two languages. The switchboards used 

had an achievement rate of 16.4 WER, an indication of high efficiency using ASR in a 

recommendation system of English and Arabic based on the sentiment analysis (Abid et 

al.,2019). Bansal et al. (2016), and Alharbi & de Doncker, (2019) used a Language Modelling 

(LM) methodology on recommendation systems of English and Arabic by building an LM 

character that fits both phonemes (Bansal et al., 2016). The LM methodology allows both 

Convolutional Neural Network (CNN) or Deep Belief Network (DBN) algorithms to be 

incorporated into language modelling. In a study of English and Arabic, LM methodology gave 

better results than the baselines, which were tested using morpheme levels. The above results 

indicate that language modelling is crucial in the recommendation systems. Also, Dialect 

Detection methodology has been used by Batmaz et al (2018), for its ability to discriminate 

languages that share a common task as a way of identifying various English and Arabic dialects. 

The research showed that high-order character-based models such as N grams models and DBN 

algorithms are the best approaches (Batmaz et al., 2018). Also, their findings were that the 
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shallow classification methods such as Support-Vector Machines (SVM), and logistic 

regression methods are not very efficient in carrying out the functionalities of the technique. 

The reason for the above was based on the analysis that identification of the character level of 

the dialects of the two languages is challenging in the Digital Subscriber Line (DSL), because 

its model needs to stay fixed upon every character to enable it to run through several 

convolutions. As a result, the filter widths seek permission from the convolution algorithms to 

get the vector representation used for predicting the dialect of each language (Bisio et al., 2017). 

The result of the above research, when applied against the F –measure gave a 43.8% success 

rate, which indicates that dialect detection is a useful methodology in deep learning and 

machine learning used for language recommendation system based on sentiment analysis in 

multilingual contexts (Beel et al., 2016).   

Similar methods were used for a text categorisation task as well, and one such method based 

on deep learning and machine learning technique specific to the categorization of English and 

Arabic languages was proposed by Dai et al. (2018). This method utilizes three stages, with the 

first recognizing the placement of punctuation marks, pronouns and verbs. The rest of the words 

are given representation using weight and order schemes. Stage two clusters the wording using 

two methods, Markov and fuzzy C-means. The final stage includes training DBN algorithms in 

the clusters mentioned above. The research included evaluation of two datasets consisting of 

16, 000 linguistic units. The F-measure obtained was 91,3% indicating a significantly high text 

categorization performance (Cai et al., 2018). The methodology is, therefore, can be useful for 

deep and machine learning based approaches for language recommendation system 

incorporating sentiment analysis. In addition, Automatic Discretization (AD) is another such 

deep learning methodology, that uses simple discretization to perform a language analysis 

(Chen et al., 2017). Various algorithms are used in this technique to discretize automatically. 

Recurrent Neural Network (RNN) layers are placed on top of each other. The research carried 

out by Zhang et al, (2018) showed how this algorithm is applied in English and Arabic 

languages, where L1 which was an output for the first layer was observed to be an input for L2. 

In this manner, the bidirectional layers get both the input and output sources. At this point, the 

RNN algorithm can effectively work on either one network or several networks (Britz, 2015). 

The one-to-one coding is done on a single letter, so that the input and output sequences obtain 

the same measurements. At the same time, in the one-to-many networks, the input and output 

base differ in length. The researchers showed that the performance of the former is better than 

that of the latter, due to its high level of accuracy (Cao et al., 2017). Another study on the impact 

of the discretization on the levels of noise, network size and importance of post processing step 
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indicated error rates of 2% and 5.34 % respectively. This methodology is, therefore, seems 

promising for use in the English and Arabic language recommendation systems. 

2.11 Use of Metadata for Digital library recommendations. 

Metadata is useful for enhancing the performance of recommender algorithms for any search 

and retrieval platforms including digital libraries systems. The framework proposed by Ferran-

Ferrer is aimed at analysing information of learning from virtual environment to improve the 

quality of metadata (2007). However, it was found to be difficult to get a complete view of 

information of students from the metadata obtained, to improve their profile captures. This 

study did not use any deep learning techniques with metadata for building their model. In 

another similar work, National Library of Norway is automating Dewey classification, and the 

Library of Congress used machine learning to predict Library subject headings. There are many 

approaches have been used to build recommendation systems without metadata capture, and 

briefly discussed here.  Schnick and Knickelbin used lexical measure to measure the reading 

ability for users (2000). Zhuhadar and Nasraoui combined two recommendation techniques to 

achieve good performance (2010). They used hybrid recommender system for personalized user 

experience for reading online learning repository. Hsu (2008) proposed content data and 

feedbacks to personalized recommender system. Web-based personalized recommender system 

by using CBF (content based filtering) and Fuzzy algorithms on 10.000 books from different 

categories have been proposed by Omisore and Samueel (2014), and the experimental 

evaluation showed that 92.30% efficiency in providing recommendations. Siersdorfer et al, 

(2010) used user-based CF (collaboration filtering) to determine the user’s interest. Moreover, 

Zhu and Wang (2007), used apriori data mining algorithm to optimize book records. Mooney 

and Roy (2000), used content-based book recommendations to find book description and used 

machine learning to extract user profiles and find similarity by using Bayesian learning 

algorithms. Sohail et al, (2013) used sentiment analysis from user reviews to solve the book 

recommendation problem.  Not many works in literature have used metadata for building 

recommendations. Machin learning and deep learning techniques can also help extract metadata 

from digital libraries. Cai et al (2003) used SVM to extract metadata from the title of research 

papers, and showed that SVM leads to good performance in extracting metadata (2003). 

Recently, Safder et al, (2020), proposed a deep learning based approach for extraction of 

algorithmic metadata in full text scholarly document by using 93.000 text lines from the 

document. The result showed that 93.32% accuracy for Pseudo-code extraction.  Mai et al 

(2018) using deep learning model based on  MLP, CNN and RNN for subject indexing, and 
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Safder et al (2018) designed metadata sentence classification using LSTM deep learning models 

for learning words and sentences by combining CNN (Kim et al , 2014), RNN (Lai et al, 2015), 

LSTM (Greff, 2016) models.  We can also use machine learning models and algorithms by 

parsing the natural language processing text, and structure the descriptive metadata.  

 

2.12 Research Gap and Innovative Contributions. 

As can be seen from the comprehensive review of literature and shown in the Figure 12 and the 

Figure 13, though there are several methods available for recommendation systems, they have 

not been specifically targeted for Digital Library systems type applications context and focussed 

more on English language context for using sentiment analysis in recommendations. Not much 

research has been reported in multilingual contexts, particularly Arabic contexts. 

 

 

Figure 12: The difference in research that has been conducted in recommendation system and 

digital library. 
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Figure 13:The difference in research that has been conducted in recommendation system on 

Arabic and English. 

 

Figure 13 shows the difference between the research that has been conducted in the Arabic and 

English languages. The difference in research that has been conducted in Arabic and English 

collected by using relevant keywords in recommendation system and digital library field in both 

languages. The Dimensions website is used to collect the number of research work done. For a 

specific keyword, the Dimensions is used for a specific period between 2011 to 2020. The 

results that are retrieved are shown in the top page of the databases result. These results are 

used in our comparison.  It is clear, that there is a big gap between recommendation system as 

general concept and recommendation system in digital library application context, as well as 

between the work that has been achieved in Arabic and English. Further, there are not enough 

studies that use metadata to build digital libraries recommender systems in general, though there 

is large metadata available. Finally, each of these performance enhancing components of digital 

libraries system, including recommender components, ratings and sentiment analysis 

components in multilingual contexts and inclusion of metadata, all have been developed in 

isolation, for different application scenarios, with different databases, some publicly available 

open datasets, some private datasets, and some in-house datasets.  
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This thesis aims to address this gap and proposes a novel integrated computational framework 

based on several innovative and original contributions. For a baseline comparison, it uses 

existing approaches and compares with new approaches for assessing the performance 

improvements achieved.  

The main contributions include: 

• Development of novel deep learning algorithms for recommendation systems. 

• Use of explicit ratings and NLP sentiment analysis for enhancing recommender 

system performance for multilingual contexts, both English and Arabic 

language. 

• Use of metadata for enhancing the performance of recommendation systems.  

The proposed integrated computational framework based on these innovative contributions aim 

to address the current gap in the research field and can enhance the personalisation capability 

of information search and retrieval systems in general, and digital library systems in particular, 

where high quality personalized recommendations can be generated using explicit ratings, 

sentiment analysis and metadata information in multilingual contexts. 

 

2.13 Chapter Summary. 

This chapter has presented a review of the state of the art in data mining, deep learning 

recommender system techniques, and digital libraries. The review demonstrates that one of the 

main problems behind building digital library recommendation system based on sentiment 

analysis or explicit ratings is the isolated development of different approaches, lack of research 

in the field of multilingual contexts, and lack of availability of datasets in multilingual contexts, 

particularly the Arabic language. To address this shortcoming a comprehensive integrated 

computation framework has been proposed and has been presented in rest of the thesis, with 

each Chapter presenting the methodology, algorithmic implementation, experimental 

evaluation, and outcomes from each approach used. The next Chapter presents the work 

towards baseline comparison with a research Testbed/Workbench developed for emulating the 

digital Library data store. 

 

 



 

                                                                                                                                       38  



 

Chapter 3                                                                                                                                       39  

Chapter 3 Research Testbed/Workbench for Development of Digital 

Library Datastore. 

3.1 Introduction 

This chapter presents a novel experimental research testbed developed for evaluating the 

personalization and improved user experience with digital library services, based on open-

source technology tools and a data mining approach for personalizing the resources by 

segmenting the users and their preferences, using Apriori algorithm and Frequent pattern 

mining approach (FP-Growth).  

In this work, to investigate the personalisation and user centric modelling capabilities of 

different approaches, I have set up a research test bed/workbench for evaluating different 

machining learning algorithms for the proposed scheme. After researching several digital 

library systems in Australian libraries and Saudi libraries, it was found that most of the systems 

do not retain the details of the users’ borrowing records datasets. This is because of the general 

law, which states that circulation and registration records identifying the names, addresses, 

email addresses, and telephone numbers of library users, and the materials borrowed are not 

public records. Due to this constraint, it is very difficult to develop user centred modelling and 

personalisation schemes based on data mining and machine learning schemes. Hence, an 

experimental research test bed was developed, for emulating a digital library system, by 

developing a web platform based on open-source tools. This web platform emulates real digital 

library, by using open-source resource Librarika content management system, which allows 

building of cataloguing from online public access catalogue (OPAC) (Librarika, 2017). For 

preliminary proof-of-concept prototype, a small digital library was built, called the Knowledge 

to Action Digital Library and allowed users to engage in several library scenarios and borrow 

several resources from this online library platform. A friendly user interface, with multi-level 

user registration, authentication and login with borrower and administrator privileges was also 

included. Figure 14 shows the screen shot of the friendly user interface. They can use the library 

easily by simple interface and by clicking on request button and choose different types of 

resources, for borrowing, as shown in the Figure 16. This open-source platform was customized 

for creating reports such as circulation reports. The size of data sets for the study reported in 
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this chapter involves a sample of 2816 of users’ borrowing records. The dataset collection 

followed the protocols of ethics approval requirements of the University. 

Figure 15 shows the Data store design structure, and the Figure 16 shows the user interface 

screenshots of the web portal and retrieval of data with the proposed data mining approach. The 

dataset has subjects field corresponding to different disciplines, including Information 

technology, Science, History, Medicine, Music and Education with each subject given a 

catalogue number, as well as the multimedia sources.  

 

 

Figure 14:User interface Search page 
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Figure 15:Digital Library Prototype design structure 

 

Figure 16: Digital library User interface User interface. 

 

 

Figure 17:Dataset after pre-processing for mining. 
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3.2 Association Rules: 

Association rules were used for analysing data for frequent patterns and criteria to identify the 

most important relationships between items in database (Bussaban and Kularbphettong, 2014). 

The association rules searched for relationships or links that exist between several properties. 

In addition, association analysis refers to a set of methods used to link purchasing patterns 

across cross-sections or over time. For example, the market basket analysis uses the 

information in the goods purchased by consumers, to predict the goods they may purchase in 

future, if special offers made or if they are identified. 

3.2.1 Association Rule algorithms: 

Association rules are based on analysing data for frequent patterns and criteria to identify the 

most important relationships between items in database by analysis of the frequently items 

appear in the database. The association rules search for relationships or links that exist between 

several properties. Association analysis refers to a set of methods used to link purchasing 

patterns across cross-sections or over time. For example, the market basket analysis (a type of 

correlation) uses the information contained in the goods purchased by consumers to predict the 

goods they may purchase if special offers are made or if they are identified. There are several 

association rules algorithms that are developed in data mining field, including Apriori algorithm 

and FP-Growth algorithm, and the differences between these algorithms depend on the support 

and confidence of algorithms for the association rule formulation. A brief review of the two 

well-established association rule algorithms the Apriori and FP-Growth, by using real life 

example is presented, including the comparison based on certain performance measures, such 

as accuracy on circulation records of the digital library. 

 

3.2.2 Basic concept of association rule: 

Let A be a transaction set, = I {i1, i2,  … im} is in A composed of collection of all items including 

Ik (k=1,2,……m) called item set. The item set contains the set of k items called k-items. Also, 

let T={t1,t2…..tn} be a set of all transaction of subset of I. Each transaction t is assigned a number 

which is TID (Transaction ID). Different transaction together makeup the transaction set A and 

it contains a transaction association rules that found in database. 

Now, let F be a set of items. The transaction t is said to contain F if and only  

                                                          F ⊆ t. 
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Now, mathematically, an association rule will be an implication of the form  

                                                          F ⇒ B 

Where both F and B are a subset of A and F ∩ B = ∅ (“the intersection of sets A and B is an 

empty set”). 

3.2.2.1 Support degree: 

Support (sometimes called frequency) is simply A probability that a randomly chosen 

transaction t contains both items sets A and B. Mathematically, support (A ⇒ B) t = P (A ⊂ t ∧ 

B ⊂ t) = total of transactions of transactions containing both A and B we will use A (Zhou et al. 

2014). 

3.2.2.2 Confidence degree: 

Confidence (sometimes called accuracy) is simply a probability that an item set B is purchased 

in a randomly chosen transaction t given that the item set A is purchased. Mathematically, 

confidence (A ⇒ B) t = P(B ⊂ t | A ⊂ t) total  of transactions containing A  of transactions 

containing both A and B we will use a simplified notation that confidence  (A ⇒ B)= P (B | A). 

3.2.3 Apriori algorithms: 

Apriori algorithms for association rules, were designed to work on large databases to find the 

relationship between items. It has been developed in 1993 by Agrawal, Rakesh, Tomasz 

Imieliński, and Arun Swami (Zhichun and Fengxin, 2008). An advanced variant of these 

algorithms allows finding association rules on large data and allows implication outcomes that 

consist of more than one item. The Apriori algorithm is based on the fact if a subset B appears 

T times, any subset F that contains F will appear T times.  If F does not pass the minimum 

support, it is discarded a priori.  In this study, I applied Apriori algorithm on the dataset.  

 The results show that the reader who is borrowing the book A also is going to borrow book B 

according to the rules as shown below:  

Table 1: Support and Confident of Rules 

Rules Support Confident 

1278694=>1280470 
4.1 13.2 

1278677=>1279052 
6.3 19.8 

1279047=>1411279 
3.9 4 
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1279056=>1279052 
3.5 8.3 

1285064=>1285063 
7.1 2.3 

1285062=>1285063 
1.4 2.5 

• 4.1 % of users who borrowed Algorithms and Data Structures book, there is 13.2 % 

possibility of borrowing Study on the Open Source Digital Library Software book. 

• 6.3% of users who borrowed Data Mining: Concepts and Techniques book, there is 19.8 

% possibility of borrowing Data Mining: Practical Machine Learning Tools and 

Techniques book 

• 3.9% of users who borrowed Computer Viruses and Malware, there is 4 % possibility 

of borrowing User Acceptance of Information Technology book. 

• 3.5 % of users who borrowed Data Mining: Technologies, Techniques, Tools, and 

Trends book, there is 8.3% possibility borrowing Data Mining: Practical Machine 

Learning Tools and Techniques book. 

• 7.1 % of users who borrowed The Johns Hopkins University Press book there is 2.3 % 

possibility of borrowing China: Renaissance of the Middle Kingdom (Odyssey 

Illustrated Guides) book. 

• 1.4% of users who borrowed Chinese History Chart (English and Chinese Edition) 

book, there is 2.5% possibility of borrowing China: Renaissance of the Middle Kingdom 

(Odyssey Illustrated Guides) book. 

3.2.4 FP-Growth Algorithms: 

FP-Growth (frequent-pattern growth) algorithm is an improved version of the Apriori 

algorithm. It has been improved by Jiawei Han and others. (Zhichun and Fengxin, 2008). FP-

Growth algorithm attempts to find large item sets without candidate generation. This algorithm 

does not produce the candidate item sets in mining process and it still improves the mining 

efficiency. It creates FP-tree and contains all the dataset and scanning the datasets twice. (Zeng 

et al., 2015). There are many concepts related to FP-Growth, the FP-tree, the conditional pattern 

base and the condition tree. FP-Tree can put data items into a tree after support and inserts data 

items in each transaction with NULL as its root by descending items of each node. The 

conditional pattern base contains the set of suffix path in FP-Tree. And condition tree uses 

principles of the formation of FP-Tree from conditional pattern (Song and Wei 2011). 
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Application of these algorithms to the specific process of Library borrowing records can be 

described into the following steps: 

• Access the dataset of library borrowing records and set the minimum support 

which is 2. 

• Scan the database DB to get the frequent item sets B and the support for each 

item. 

• Create the root of FP-Tree noted T, and marked as ‘Null for all datasets 

 

 

 

 

Figure 18:FP-Tree 

The condition base pattern starts from the node with minimum support value is [B42] and 

excludes the node from maximum support value [B11]. The frequent pattern can be identified 

as: 

B5= {B4, B5:2} {B17, B5, 2} {B4, B17, B5:4} 

B4 {B5, B4:2} 

B3 {B2, B3:2} 

 

3.3 Classification. 

Classification is a method of data analysis that extracts important data classes from the model. 

Such method, called classifiers, predict categorical (discrete, unordered) class labels. For 

instance, bank loan applications can be built as a classification model as either safe or risky 
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(Han et al., 2012). The classification model is target function which is useful for descriptive 

and predictive models. 

3.3.1 Classification algorithms: 

The classification algorithms investigated for this task, include Naïve Bayes, J48 and K-NN and 

applied on a dataset of 2816 users’ borrowing records from Knowledge to action digital library 

developed. The dataset of users is shown in Figure 19: 

 

Figure 19:Dataset of users borrowing records. 

3.3.2 Naïve Bayes: 

The Naïve Bayes model is based on the frequency table and Bayes’ theorem with independence 

assumptions between predictors. Let A be a data sample whose class label is not known and let 

H be some hypothesis, such that the data sample A may belong to a specified class B. Bayes 

theorem is used for calculating the posterior probability P(B|A), from P(B), P(A), and P(A|B). 

Where P(B|A) is the posterior probability of target class. P(B) is called the prior probability of 

class. P(A|B) is the likelihood, that it is the probability of predictor of given class. P(A) is the 

prior probability of predictor of class. 

 

                                             

 

 

The Naive Bayes classifier works as follows:  

1. Let D be the training dataset associated with class labels. Each tuple is represented by n-

dimensional element vector, A=(a1, a2,a3,.....,an).  
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2. Consider that there are m classes B1, B2, B3...., Bm. Suppose that we want to classify an 

unknown tuple A, then the classifier will predict that A belongs to the class with higher posterior 

probability, conditioned on A. i.e., the Naive Bayesian classifier assigns an unknown tuple A to 

the class B if and only if P(Bi|X) > P(Bj|A) For 1 ≤ j ≤ m, and i≠j, above posterior probabilities 

are computed using Bayes Theorem (Joshua et al.,2016).  

The Naïve Bayes algorithm has many advantages, such as good performance and short time 

needed for evaluating test data. However, there are some disadvantages such as accuracy, which 

is lower as compared to other classifiers, and needs a large amount of data to get good results 

(Patil and Sherekar, 2013). After applying the Naïve Bayes algorithms on the dataset of 

borrowing records, the results show that the accuracy obtained is 95% which can be considered 

as high accuracy. Other performance measures, including the ROC (Receiver operating 

characteristic), False positive rate, True positive rate, precision, recall, F-measure, and the 

confusion matrix are also satisfactory. From figure 20 the results show that the ROC by class 

is between (0.99 – 1.00). and Recall is between (0.64 – 1.00). As can be seen from the confusion 

matrix, there are very few missclassifications, given that it is a multiclass unbalanced dataset 

with few data records.  

 

Figure 20: Performance of Naïve Bayes Classifier. 

 

 

TP Rate FP Rate Preci sion Recall F-Measure MCC ROC Area PRC Area Class 

0.993 0.094 0.930 0.993 0.961 0.909 0.990 0.992 1 

0.642 0.004 0,955 0.642 0.768 0.759 0.979 0.901 2 
1.000 0.000 1. 000 1.000 1.000 1. 000 1.000 1.000 3 

1.000 0.000 1. 000 1.000 1.000 1. 000 1.000 1.000 4 
1.000 0.000 1. 000 1.000 1.000 1. 000 1.000 1.000 5 

1.000 0.005 o, 971 1.000 0.985 0.983 1.000 0.997 6 
0.950 0.054 0.951 0.950 0.946 0., 916 0.992 0.982 
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Figure 21:Confusion Matrix of Naïve Bayes. 

 

3.4 Performance Analysis. 

In this section, the performance analysis of the Naïve Bayes classifier used for digital library 

dataset developed is discussed. The performance was assessed with different performance 

metrics, including the ROC (Receiver operating characteristic), False positive rate, True 

positive rate, precision, recall, F-measure, and the confusion matrix A confusion matrix 

contains information about actual and predicted classification. (Patil and Sherekar, 2013).  For 

example, when a naïve Bayes classifier, its performance can be assessed by calculating 

efficiency on correct and incorrect instance classifications and summarised with a confusion 

matrix. For the confusion matrix as shown in the Figure 21, true positive (TP) for class a (1) 

which is subject in information technology is 1569 while false positive (FP) is 11. In class b (2) 

which is subject in science is 233 TP and 120 FP. In class c (3) which is subject in history (TP) 

is 48 and there is no (FP). In class d (4) which is subject in medicine (TP) is 144 and no (FP). 

In class e (5) in subject Music (TP) is 296 and no (FP). Last class is f (6) in education (TP) 398 

and no (FP).  

So, 1569+233+48+144+296+398= 2688 represents the correct instances classified and the 

incorrect is 11+118+12=141. Now we calculate the rate of TP and FP as below: 

True positive rate (TPR) = 
diagonal element

𝑆𝑢𝑚 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑜𝑤
 

False positive rate (FPR) = 
Non diagonal element

𝑆𝑢𝑚 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑜𝑤
 

 

 

 

-- Confu sion Matrix --

a b C d e f <-- classi:fie d a s 
1569 11 0 0 0 0 a - 1 

118 233 0 0 0 12 b - 2 
0 0 48 0 0 0 C - 3 
0 0 0 144 0 0 d - 4 
0 0 0 0 296 0 e - 5 
0 0 0 0 0 398 f - 6 
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TPR for class a (1) = 1569 (1569+11) = 0.99 

FPR for class a (1) =118(118+233+12) = 0.325 

TPR for class b (2) =233(118+233+12) = 0.641 

FPR for class b (2) =11(1569+11) = 0.006 

TPR for class c (3) =48/ (48) = 1 

FPR for class c (3) =0/ (1569+11) = 0 

TPR for class d (4) =144/ (144) =1 

FPR for class d (4) = 0/ (1569+11) = 0 

TPR for class e (5) =296/ (296) =1 

FPR for class e (5) = 0/ (1569+11) = 0 

TPR for class f (6) = 398/ (398) = 1 

FPR for class f (6) =0/ (1569+11) = 0 

3.5 Decision Tree.  

 A decision tree is a classifier model that includes a root node, branches, and leaf nodes. The 

internal node represents a test on an attribute, the branch represents the outcome of a test, and 

the leaf node holds a class label. The topmost node in the tree represents the root node. The 

decision tree classification technique has two phases, tree building and tree pruning. The tree 

building is top-down approach, and trees pruning is button up approach (Joshua et 

al.,2016).  Decision tree has some advantages, including being simple, fast, has high accuracy 

and takes less storage on memory. The limitation of this algorithm is considered complex for 

some problems to construct the decision tree. There are many decision tree-based algorithms 

like ID3, C4.5, C5.0, J48. We applied J48 decision tree algorithm to the Library borrowing 

records, resulting in an accuracy of 96%, higher than the Naïve Bayes classifier, as shown in 

the Figure 22. The ROC by class is between (0.99 – 1.00). and Recall is between (0.744 – 1.00). 

Figure 23 shows the confusion matrix for this classifier. 

 

Figure 22:Accuracy by class for J48 decision tree classifier 

 

TP Rate FP Rate Preci s i on Recall F- Measur e KCC ROC Ar ea PRC Ar ea Cl ass 
0 . 987 0 . 065 0 . 951 0 . 987 0 . 969 0 . 928 0 . 995 0 . 996 1 
0 . 7 44 0 . 008 0 . 931 0 . 7 44 0 . 827 0 . 811 0 . 98 4 0 . 926 2 
1 . 000 0 . 000 1 . 000 1 . 000 1 . 000 1 . 000 1 . 000 1 . 000 3 
1. 000 0 . 000 1. 000 1. 000 1. 000 1. 000 1. 000 1. 000 4 
1 . 000 0 . 000 1 . 000 1 . 000 1 . 000 1 . 000 1 . 000 1 . 000 5 
1. 000 0 . 005 0 . 971 1. 000 0 . 985 0 . 983 0 . 999 0 . 991 6 
0 . 960 0 . 038 0 . 959 0 . 960 0 . 9S8 0 . 933 0 . 995 0 . 987 
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Figure 23:Confusion Matrix of J48 decision tree classifier 

 

From the confusion matrix shown in figure 23, the correct instances classified are 2617 and the 

incorrect is 113.  

Average TP rate = 0.96 

Average FP rate = 0.038 

3.6 K- Nearest Neighbour Classification (K-NN).  

The K-Nearest Neighbour Classifier algorithm is considered the simplest machine learning 

algorithms. It is based on a similar principle, relying on close vicinity. It is also called lazy 

learning algorithm, because it stores all the training samples and does not build a classifier until 

a new, unlabelled sample needs to be classified.  

 

Figure 24:Example of K-NN Classifier (Joshua et al.,2016). 

The K-NN classifier works with set value of K (K representing the number of neighbourhood 

samples), and  then calculates the distance between input sample and training samples,  sorts 

the distances, and  then takes top K- Nearest  Neighbours. (Joshua et al., 2016). The K-NN 

classifier was applied to the Library borrowing records performance achieved is 96.6% 

accuracy, with other performance metrics achieved is as shown in the Figure 25 and the 

confusion matrix in the Figure 26. 

Confus i ,on Macrix 
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0 0 0 0 0 398 f 6 
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Figure 25: Accuracy by class for K-NN classifier. 

 

The average ROC is 0.999. and average Recall is 0.97. From the confusion matrix, the correct 

instances classified are 2783, and the incorrect is 46 instances.  

Average TP rate = 0.97 

Average FP rate = 0.025 

 

Figure 26:Confusion Matrix of K-NN. 

3.7 Performance Comparison: 

A comparison of performance achieved by three different machine learning classifiers, the 

Naïve Bayes, J48 decision tree and K-NN classifier on 2888 library borrowing records dataset, 

shows that the correct instances classifier by the naïve Bayes are 2618, by J48 are 2617, and by 

K-NN are 2783 instances, with average F-measure, Precision and Recall across three classifiers 

shown in the Figure 27. 

 

 

 

 

 

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 
0 . 982 0 . 041 0 . 968 0 . 982 0 . 975 0 . 943 0 . 999 0 . 999 1 
0 .843 0 . 011 0 . 916 0 .843 0 .878 0 .862 0 . 996 0 . 973 2 
1. 000 0 . 000 1. 000 1.000 1.000 1. 000 1.000 1.000 3 
1 . 000 0 . 000 1 . 000 1.000 1.000 1 . 000 1.000 1.000 4 
1 . 000 0 . 000 1 . 000 1.000 1. 000 1 . 000 1.000 1.000 5 
1 . 000 0 . 002 0 . 985 1.000 0 . 993 0 . 991 1.000 0 . 999 6 
0 . 970 0 . 025 0 .969 0 . 970 0 . 969 0 .949 0 . 999 0 . 996 

Cont'us i -on Matri.x 

a b C d e ;f < -- cl.assified a s 
1552 28 0 0 0 0 a = 1 

12 345 0 0 0 6 b 2 
0 0 48 0 0 0 C = 3 
0 0 0 144 0 0 d = 4 
0 0 0 0 296 0 e - s 
0 0 0 0 0 398 f - 6 
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Classifier F measure Precision Recall 

Naïve Bayes 0.946 0.951 0.993 

J48 Decision Tree 0.958 0.959 0.960 

K-NN classifier 0.969 0.969 0.979 

Figure 27:Performance Comparison of three classifiers for digital library dataset. 

As can be seen in the Figure 27, the K-NN classifier performs best with average F-measure, 

Precision and Recall, higher than the Naïve Bayes and J48 Decision Tree classifiers. 

Based on the results, it can be concluded that the research into applying association rules 

algorithms and traditional established classification algorithms on digital library borrowing 

records have resulted good performance. Also, from the results, we can have insight into the 

most borrowed book, and the never borrowed book in the records, that can help library 

management to improve their services and give them constructive advice.  

Moreover, the number of copies available for the most borrowed book can be increased to 

support students’ access to learning resources. Further, it was found that the Apriori algorithm 

is slower than the FP-Growth and the counting method iterates through all the transactions each 

time. On the other hand, the FP-Growth algorithm reads the file twice, as opposed to Apriori 

which reads it once for every iteration. As a result, FP-growth algorithm can implement in a 

short time and get high accuracy when analysing the association rules of library borrowing 

records. In addition, the results of K-NN, Naïve Bayes and J48 show that the K-NN has 96.6% 

accuracy, highest among all three, and J48% has lesser error rate as compared to K-NN and 

Naïve Bayes. J48 is also easy for humans to understand because its’ structure is represented in 

the form of [IF-THEN] rules. Next Section presents a brief user experience survey of digital 

library web portal developed. 

3.8 Evaluation of overall digital library portal by usability survey: 

This section discussed the user experience survey developed for assessing the usability of the 

data mining based digital library web portal. There were 5 questions in the survey, and 85 

people participated in the survey. 

Question 1: The question one asked whether the users found the registration page easily. The 

results show that 40% of respondents disagree however, 60% agreed that it is easy (figure 28).  
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Figure 28:Respondent's Views of how easily they can use reregistration page. 

Question 2: The question two asked if they can managing their page navigations easily, and  

the results show that 70% of users can manage their page easily while 20% disagree and 10% 

they did not know,  as shown on the Figure 29. 

 

Figure 29:Respondent's Views of how easily they can be managing their page. 

Question 3: This question was to find out if the users of digital library can easily borrow items 

from the digital library. The result shows that 60% found it easily while 30% found it difficult 

and 10% they did not know.  The Figure 30 shows this distribution. 
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Figure 30:Respondent's Views of how easily they can be borrowing items from library. 

Question 4: The purpose of this question was to find out, if the interface graphics ,and colour 

scheme of the digital library web pages was pleasant, and response showed  40% of the 

participants agreed that the interface graphics and colour scheme were good, while 50% 

disagree and 10%, they did know,  as can be seen in  the Figure 31 below: 

 

 

Figure 31:Respondent's Views of the interface. 

Question 5: The final question in the survey was to check if the users could seek help easily 

from the web portal in using it. The response was that 60% of users agreed they could ask 

librarians if they faced any problems, while 20% disagree and 30% they did not, as depicted in 

the Figure 32 below: 

Agree Neither Agree Nor, Disagree Disagree Strongly Disagree• • • • 
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Figure 32:Respondent's Views of they can ask the librarian if they faced any problems. 

Overall, the in-house proof of digital library knowledge to action web portal has good 

satisfaction from users, but it needed few improvements on registration process, and other 

advanced features including personalized recommendations. However, it helped in getting an 

insight on the challenges involved in design and development of different aspects of complex 

search and retrieval systems, such as digital libraries, and how different technologies needs to 

be integrated to provide enhance services in terms of usability, visual interaction, and 

personalized recommendations.  

As the aim of the thesis to enhance the personalisation aspects in terms of providing better 

recommendations for complex application scenarios, the next step in the investigations was to 

examine the current state of the art in recommendations, particularly in the real-world digital 

library systems context for different multilingual settings, including Australia and Saudi Arabia. 

This has helped in designing the computational framework for recommender systems for this 

thesis. The next Section presents results from these findings. 

 

3.9 Study on the current status of recommender systems for digital libraries in 

Australia and Saudi Arabia. 

The findings from the study aimed at use of recommender systems in real digital libraries in 

Saudi Arabia and Australia, and to determine if they deployed the recommendation system and 

allowed user preferences to be entered, in the deployed digital library systems. The study design 

involved collection of data from publicly accessible website of Australian university libraries 

(https://www.australianuniversities.com.au/libraries/), and by accessing their catalogues. 
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 Table 2 shows a comparison of facilities available for different Australian libraries. Further, 

for Saudi Arabia, the access to digital libraries works in a slightly different manner, as Saudi 

Arabia has one digital library called Saudi Digital library SDL, which connects all university 

libraries in one place, as presented in Table 3.  

 

Table 2: Australian Libraries. 

Library name 
Recommender 

System 

User’s preferences 

1. Australian Catholic University 
NO NO 

2. Australia National University 
NO NO 

3. Bond University 
NO Yes, it has personalized 

profile 

4. Central Queensland University 
NO Yes, it has personalized 

profile  

5. Charles Darwin University 
NO Yes, it has personalized 

profile 

6. Charles Sturt University 
NO Yes, it has personalized 

profile 

7. Curtin University 
Yes NO 

8. Deakin University 
NO NO 

9. Edith Cowan University 
NO NO 

10. Federation University 
NO NO 

11. Flinders University 
NO NO 

12. Griffith University 
NO NO 

13. James Cook University 
NO NO 

14. La Trobe University 
NO Yes, it has personalized 

profile 
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15. Macquarie University 
No Yes, it has personalized 

profile 

16. Monash University 
Yes, it has 

suggestion 

NO 

17. Murdoch University 
NO NO 

18. Queensland University 
NO NO 

19. RMIT University 
NO NO 

20. Southern University 
Yes, it has 

suggestion 

NO 

21. Swinburne University 
NO NO 

22. University of Adelaide 
Yes, it has 

suggestion 

Yes 

23. University of Canberra 
NO NO 

24. University of Melbourne 
Cannot Access Cannot Access 

25. University of New England 
NO NO 

26. University of New South Wales 
NO NO 

27. University of Newcastle 
NO NO 

28. University of Notre Dame 
NO NO 

29. University of Queensland 
NO Yes, it has personalized 

profile 

30. University of South Australia 
NO NO 

31. University of Southern 

Queensland 

NO NO 

32. University of Sydney 
Yes, it has related 

searches by site 

NO 

33. University of Tasmania 
NO NO 

34. University of Technology 

Sydney 

NO NO 
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35. University of Sunshine Coast 
NO Yes, it has personalized 

profile 

36. University of Western 

Australia 

NO NO 

37. University of Wollongong 
NO NO 

38. Victoria University 
Cannot Access Cannot Access 

39. Western Sydney University 
Yes, Suggestion NO 

40. Australian National Library 
NO NO 

  

Table 3: Saudi Arabia Libraries 

Library Name 
Recommender System User’s Preferences 

Saudi Digital Library 
NO NO 

King Fahad National 

Library 

NO NO 

King Abdul Aziz Public 

library 

NO NO 

King Fahad Public Library 
NO NO 

 

3.9.1 Results: 

After analysing university libraries and public libraries website in Saudi Arabia and Australia,  

to assess the current status of digital libraries, in terms of availability of providing personalized 

recommendations and options to include user preferences, it was found that 85% of Australia 

libraries do not have recommender systems and 15% have suggestions for sources (Figure 33), 

that relate to previous search results, including Flinders University, Monash University and 

University of Sydney as shown in the Figure 34 below: 
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Figure 33:Recommender System in Australian libraries 

 

Figure 34:Suggestions provided for related search by users for the Australian library. 

 

For libraries in Saudi Arabia, none of the libraries are equipped with recommender systems and 

have options for including user preferences for personalized search and retrieval, because the 

overarching SDL library (under which separate libraries are implemented), does not have 

recommender system and options for including user’s preferences.  

However, this type of suggestions cannot qualify as providing recommendations because, it 

does not include the user profile, and just uses the items and related keyword in the items, and 

mostly general related topics. Also, 77% of Australian libraries do not have options of including 

user’s preference and 22.5% have personal customized search options, when the user searches 

for an item on the library website, including Bond University, Central Queensland University, 

University of Adelaide, and University of the Sunshine Coast, depicted in the Figure 35 and the 

Figure 36 below:  
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Figure 35:User's preferences in Australian Libraries 

 

 

Figure 36:Personalization results for a resource search in Australian digital library 

 

The personalized users result is not the same inclusion of user’s preferences because user’s 

preferences setup is done early in user profile, and it stays static, and does not take into account, 

dynamic changes in user search behaviour and updated preferences that need to be included for 
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every new search activity. Next Section discussion the status of recommendations and inclusion 

of user preferences for University of Canberra library system. 

3.10   University of Canberra Library. 

The University of Canberra library has a small digital library that helps students and staff to 

explore the resources online. The purpose of the digital library of the University of Canberra is 

to provide a range of high-quality information resources and services to the University 

community. In technical side, the UC library uses library management system called 

Millennium Acquisition System, which got replaced by a new library management system called 

Alma since December 2017. This system supports library collaboration and helps libraries to 

optimize user experience and collection with rich analytics. Mr West was confirmed during an 

interview (C West 2017, personal communication, 6 June), the system does not have 

recommender system and options for including user’s preferences for personalisation, but it 

better than the previous system.  

3.11 Chapter Summary: 

This chapter has presented preliminary proof of concept experimental work in understanding 

the challenges associated with design and development of digital library systems with the 

recommendation and personalisation features, and status of existing digital library systems 

deployed for different multilingual International settings. A novel experimental research testbed 

was developed based on open-source technology tool called Librarika and simple and adaptive 

data mining approaches for retrieving the resources, without any recommendation or 

personalisation options. The testbed, the prototype web portal implementation, and its 

evaluation helped provide an insight into complex search and retrieval requirements, and lack 

of advanced features in existing digital library systems deployments.  The results demonstrate 

that 85% of Australian libraries do not have recommender system and 15% have provide 

suggestions for similar sources that relate to the search results. In Saudi Arabia, there is no 

recommender system and options for including user’s preference. Very few Australian libraries 

have very preliminary personalisation features, and not dynamically updated. Hence, it could 

be confirmed, that currently, no recommendation systems are being used in digital libraries in 

Saudi Arabia and Australia.  

However, this is in contrast with existing large-scale resources search and retrieval systems, 

including Amazon, Google, Netflix, and other similar platforms, where the status of 
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recommendations and personalisation embedded in search and retrieval is better than the digital 

library settings.  

Therefore, to be able to develop robust and efficient computational frameworks and algorithmic 

approaches for better recommendations and personalisation options, it would be worthwhile to 

investigate these alternate settings, where large databases are publicly available. The improved 

approaches can then be translated and extended to digital library type settings, as they are 

similar resources search and retrieval systems. 

The rest of the Chapters in this thesis are based on this rationale, with each Chapter focussing 

on a unique aspect of enhancing the recommendation systems performance and robustness.   
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Chapter 4 Recommendation System Framework based on Machine and 

Deep Learning. 

4.1 Introduction. 

This Chapter presents the novel computation framework developed in this thesis for 

recommendation systems based on Deep Machine Learning. For a baseline comparison, 

traditional methods for recommender systems based on collaborative filtering and content-based 

recommendations were also examined. Collaborative Filtering (CF) and Content –Based 

Recommendation (CBR) are among the most popular recommender system techniques. The use 

of Collaborative Filtering as a new approach to searching digital libraries introduces many 

problems in existing search systems. While the CBR search algorithm is based on matching 

keywords in a user’s query to the keywords appearing in the full texts,   CF algorithm which is 

one of the traditional algorithms for implementing recommendations, and analyses user’s interests 

and the area of interesting information from all the information that user can access, share, and 

evaluate (Webster et al., 2004).  Many studies agree that the CF has many advantages for building 

recommender systems, though they do not necessarily succeed in outmatching user’s preference 

because one point of view will always dominate another in a community. For digital library 

systems application context, there are many challenges in using CF algorithm. The recommender 

system needs large dataset and user-item collaboration matrix for collaborative filtering, which 

could be extremely large and result in deterioration of performance. Moreover, CF method is 

based on users’ past performances. So, a new user cannot take the advantages of recommender 

system, until the person uses the system, and the system records the individual’s interactions with 

the items, to use them for the next time. Also, CF is based on the discrete set of description quality 

rather than its rating. Further, many research studies have reported that CF has a problem with a 

large data sparse rating. However, one of the studies based on clustering approach have reported 
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promising outcomes for a collaborative recommendation problem (Wang, 2012). Collaborative 

filtering involves filtering a set of similar information without considering user’s information 

content. According to the empirical analysis of predictive algorithms for collaborative filtering, 

the CF techniques can be memory-based or model-based techniques (Breese et al., 1998). 

Memory-based collaborative filtering as described by Breese, Heckerman, & Kadie involves 

finding users among active users, who apply their preferences to give the rating for popular 

information (1998). Memory-based collaborative filtering seems to have many advantages, 

including suitability for large datasets, easy updating of the database, and easy handling of new 

data. However, there are several limitations of the memory-based collaborative filtering 

technique,  mainly being very slow, because it uses entire database every time and makes data 

unreliable, leading to inaccurate prediction, if the active user has no items with other users’ 

recommendations (Zhang et al., 2017). Another type of approach used for recommender systems 

is a hybrid recommender approach, which combines the content based and collaborative filtering 

approach to obtain better recommender system performance (Agarwal and Chen, 2011). The 

content-based recommender system mechanism analyses description of items, user’s profile, and 

preferences to find the coordination in content. It uses the heuristic method of classification 

algorithms to make the recommendations. The content-based method on the other hand requires 

enough information to build the reliable a classifier, and content-based techniques suffer from the 

start-up problem. While collaborative filtering can make the recommendations without content 

information, content-based techniques have problem of overspecialization, which means they can 

only recommend items with high rating history. Many studies reported that the cold start is the 

common problem in recommender systems which can be resolved by using hybrid methods 

(Betru, et al., 2017).  Hence traditional methods used for recommender system address problems 

for a variety of different situations, and can be classified as shown in the Figure 37 below: 
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Figure 37:Traditional approaches for Recommendation systems 

While the traditional methods do not rely on learning representations and interactions between 

users and items, using machine learning approaches, particularly recent deep learning can address 

the problems, corresponding to cold starts and insufficient interaction data. Deep learning 
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system tasks, including raw retrieval tasks, manual selection, statistical summarization, attribute-
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to-item correction task uses the content-based approach, and user-to-user correction method uses 

the collaborative filtering approach. One of the most interesting study is about graph-based 

recommender approach for digital library that combines content-based and collaborative 

approaches together. This study found that the system gained improvement with respect to both, 

precision and recall by using a hybrid approach, or by combining two approaches (Huang et al., 
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the correlation between several users who rate the items and the number of items. One of the 

issues is based on the problem with the number of users rating the items, being much larger, than 

the number of users who maintain sustained similar interest or liking for items over the time. The 

second problem is cold–start, associated with new items or old items that received very few 

ratings, and will be unlikely to be recommended in a collaborative system, because they have no 

ratings (Nart and Tasso 2014). These issues can be addressed by using approaches based on 

learning representations, including deep learning-based approaches, which can be promising. 

Deep learning is the process of learning nonlinear features and functions from complex 

data, and a recent form of machine learning technique used for learning representations from data. 

It has resulted in good performance in other similar complex problem solving, including speech 

recognition, image recognition and face detection problems (Taigman, et al., 2014). Deep 

learning model development is based on learning of non-linear features and key functionalities in 

complex data. The deep learning concept surpasses most of the traditional considerations in the 

management of data (Zhang et al., 2017). The rectilinear activation functions used in the deep 

learning algorithms are quite powerful in yielding the specific results relative to the expectations 

(Zheng et al., 2015). Using deep learning-based approaches for solving complex search and 

resource retrieval problems in Digital libraries application contexts, can allow better 

recommendation and improved personalisation (Li et al., 2017), (Dwork et al., 2015). Two 

different approaches for recommendation systems based on Deep Machine Learning have been 

proposed in this thesis and is described in detail in the rest of the Chapter.  

 

4.2  Deep Learning Based Approaches for Recommendation Systems.  

In the recent years, the rate at which data and information is being captured is increasing so fast 

leading to the problem of information overload (Gantz and Reinsel, 2012).  



 

Chapter 4                                                                                                                                       67  

However, harnessing this large data using efficient big data analysis techniques using novel 

approaches in machine and deep learning can lead to enhancement in performance of search and 

retrieval systems (Adomavicius and Tuzhilin , 2005). Wang et al reported a recommendation 

system as essential component in search and retrieval applications with an aim to analyse use’s 

profiles (2015). However, the aim for recommendation systems in digital library contexts, needs 

to be more ambitious, and have ability to recommend resources to users, not just based on users’ 

interest, but also recommend unknown resources of interest to users. In addition, digital library 

recommendation system needs to provide such recommendations by selecting resources form 

massive datastores of information. Machine learning approaches, the recent deep learning 

approaches can learn representations from data at multiple levels from these massive data stores 

and can capture non-linear and non-trivial user-item relationships (Covington et al., 2016), 

(Mukherjee et al., 2016). However, deep learning method in digital library recommender system 

has not been well explored yet and most of the real-world systems using collaborative filtering or 

content-based filtering approaches.  

In this Chapter, two different Collaborative Filtering models based on deep learning have been 

developed, the Multistage Deep Neural Network (CFMDNN) algorithm and Collaborative 

Filtering based Deep Learning (CFDR) algorithm for addressing the problems with recommender 

systems and improving their performance is presented. CFDR and CFMDNN learn to model 

complex structures of user and item interactions using matrix factorization for extracting latent 

feature representations either separately (CFDR) or jointly (CFMDNN), with joint learning 

architecture (CFMDNN) with a capability to learn the joint space at a deeper level, through 

several stages of learning and discovery, without a need for feature engineering or manual 

handcrafting needed in extracting and combining the latent feature sets. However, they differ in 

joint modelling capability of interaction between users and ratings, and in turn in their ability for 

deep discovery in joint latent feature space. Both the models were built used K-fold cross-



 

Chapter 4                                                                                                                                       68  

validation for training and evaluation and used explicit rating prediction accuracy and the Mean 

Absolute Error (MAE) as the performance metrics for the evaluation. Also, by using dropout as 

a regularization technique to model complexity was reduced and overfitting was avoided. By 

applying densely, fully linked feed-forward neural network, and Adam optimization algorithm 

(an extension to stochastic gradient descent that has recently seen broader adoption for several 

deep learning applications), it was possible to achieve improve the performance of the system. 

The details of the experimental work and the two models are described in the next Section. 

4.2.1 Experimental Setup for CFDR and CFMDNN Models. 

In this Chapter section, the details of the experimental setup to evaluate the effectiveness of our 

proposed CFDR and CFMDNN algorithms is described and compared with the traditional 

Collaborative Filtering (CF) approach (which doesn’t use deep learning) as a baseline reference 

algorithm.  

Four different datasets were used, with each dataset with different rating system as outlined 

below: 

• Movielenes 20M dataset with 1- 5 rating scale,  

• Amazon digital Music dataset with 1-5 rating-scale, 

• Book-Crossing dataset with 0-10 Rating-scale and  

• Amazon books dataset with 1-5 rating scales.  

When the system has learned the user's previous ratings of items it will give recommendation 

higher for those items in the future for the user. Besides, the system needs to know the relationship 

between users and item to make predictions more accurate. It can be determined that by applying 

the Utility Matrix, giving for each user-item pair, a value that represents the degree of preference 

of that user for that item. The latent features extracted from the collaborative filtering stage with 

matrix factorization is processed through a different deep learning algorithmic pipeline for 

CFMDNN and CFDR architectures shown in the Figures 38 and 39 below: 
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Figure 38:Collaborative Filtering Deep Neural Network Model 

 

Figure 39:Collaborative Filtering Deep Recommender 
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A brief description of the two deep learning recommender models is described next. CFMDNN 

model uses User (u) and Item (i) to create embeddings (low-dimensional) for user and item. 

Generalized Matrix Factorisation (GMF) combines the two embeddings using the dot product. 

This is our regular matrix factorisation. We combine/concatenate them to create a joint feature 

vector which can be passed on to the several deep neural layers. For CFDR architecture, the joint 

latent feature vector goes through several layers of fully connected feedforward deep neural 

network, and for CFMDNN architecture, it undergoes additional processing with a second 

channel of processing with multilayer perceptron and then fused with several deep network layers, 

with an aim that this extended processing may discover and learn deeper interaction information 

between users, items and ratings, and can improve recommender system performance.  The two 

deep neural models (CFDR and CFMDNN) were built for each dataset using Keras Deep learning 

tools, and used an empirical selection of hyperparameters, with leave one out validation with 

validation split set to 0.1 (90% training data for building the model, and 10% data for 

testing/validation. For performance comparison, different performance metrics were used 

including accuracy in ratings class prediction, as well as precision, recall, True Positive and False 

Positive rates, and the RMSE. 

The  Root Means Square Error (RMSE) is computed as follows: 

 

𝑅𝑀𝑆𝐸 =
∑(𝑢, 𝑖) ∈ 𝑇𝑡𝑒𝑠𝑡(𝑇𝑢, 𝑖 − 𝑇𝑢, 𝑖)2

|Ttest|
 

 

where 𝑇𝑢, 𝑖 is the real rating value of user u on item , 𝑇ˆ𝑢, 𝑖 is the corresponding predicted rating 

value by the model, which is calculated as.|𝑇𝑡𝑒𝑠𝑡| is the number of user item in the test dataset.  
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4.2.2 Experimental Results: 

In this section, the evaluation of the two algorithms described above for different publicly 

available datasets in terms of different performance metrics including of accuracy, MAE and 

RMSE are presented. 

The details of the datasets are described first, before discussing the evaluation results. 

4.2.2.1 Datasets: 

A. MovieLens20M Dataset: 

MovieLens 20M Dataset is a movie recommender system project dataset and details of this 

dataset is provided in MovieLens web site. Also, it contains 20 million user ratings and 465,000 

movie tag which applied to 27,000 movies by 138,000 users and includes 1,100 tags . Table 4 

shows the data structure for the rating table, and rating distribution statistics. 

 

Table 4 MovieLens 20M Dataset table structure and ratings distribution 

 

B. Amazon Digital Music Dataset: 

Amazon Digital Music dataset is from the Amazon product dataset which contains product 

reviews (reviewer, reviewer name, ratings, text, helpfulness votes, review time) specifically for 

Digital Music purchase( Wong and  Factura, nod) The ratings distribution and data structure for 

this dataset is as shown in Table 5.  
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Table 5: Amazon Digital Music Dataset table structure and ratings distribution

 

C. Book crossing Dataset: 

The book-crossing dataset is collected by Cai-Nicolas Ziegler ( Nart & Tasso, 2014). 

 

Table 6: Book- Crossing Dataset structure 

 

  

D. Amazon Books dataset: 

Amazon books dataset is from the Amazon product dataset which contains only user’s ratings 

(user, item, rating, timestamp) it includes more than 150,000 user’s ratings (Li, 2017). 

Table 7: Amazon Books Dataset structure 
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4.2.2.2 Experimental Results. 

In this section, the results of applying two deep learning algorithms for all datasets are compared 

with traditional collaborative filtering (without deep learning) approach CF in terms of accuracy, 

MAE and RMSE. 

4.2.2.2.1 Ratings Prediction Accuracy.  

Figure 40 shows the effectiveness of models using accuracy measure. CFDR and CFMDNN both 

have excellent accuracy and it showed how the models can improve the accuracy of recommender 

system from 59.30% to 100% in Amazon Books dataset and 73.80% to 100% in Amazon Digital 

Music.  However, Book-Crossing dataset has improved with 98% in CFDR and got high accuracy 

in CFMDNN which is better than CFDR. Also, MovieLens 20M dataset got good accuracy in 

CFMDNN model rather than CFDR model. For baseline comparison, we also show simple 

Collaborative filtering approach performance as well, which uses a simple matrix factorization 

using direct dot product of users and items, without deep learning. 

 

Figure 40:Accuracy of CF, CFDR and CFMDNN. 
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4.2.2.2.2 Mean Absolute Error (MAE). 

Instead of classification accuracy or classification error, the most widely used metric in CF 

research literature is Mean Absolute Error (MAE), which computes the average of the absolute 

difference between the predictions and true ratings (Webster et al., 2004). From the Figure 41 it 

can be seen that the MAE get better in all datasets in CFMDNN models, validating our hypothesis 

that joint learning space with the CFMDNN model allows better discovery of joint latent features 

and can lead to a better recommender system rather than non-joint feature learning space as in 

CFDR model. 

 

Figure 41:MAE of CF, CFDR and CFMDNN. 
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Figure 42:Root Mean Square Error (RMSE) for CF, CFDR and CFMDNN. 

4.2.2.2.4 CFMDNN Prediction Model. 

Since CFMDNN model turned out be best performing, we examined the ratings prediction 

accuracy for this model for all datasets. Tables 8 to 11 show the ratings prediction 

performance for each dataset based on best performing CFMDNN model. 

 

Table 8: Ratings Prediction with CFMDNN prediction for MovieLens 20M dataset 
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Table 9: Ratings prediction on Amazon digital Music 

      

Table 10: Ratings prediction on Book-Crossing Dataset 

 

Table 11: Ratings prediction on Amazon Books Dataset 
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are insensitive of, grounded on the scores users offered for various commodities. Explicit 

consumer ratings are composed by way of graphical widgets known as a rating scale. Every 

website or system usually applies a certain rating scale in several instances opposing from scales 

applied by other networks in their numbering, granularity, existing of neutral position or visual 

metaphor. Several tasks in the area of survey design testified on the impact of ranking scales on 

consumer ratings, these, though, are usually considered impartial tools when in recommender 

systems. This section offers novel empirical data on the impact of rating scales on consumer 

ratings. We describe how the rating scale can affect the recommendation system user 

performance. In addition, we propose a novel approach based on deep learning-based 

augmentation of the collaborative filtering approach with deep neural networks for discovering 

the complex and deep interactions in the shared space between users, and ratings/reviews, and 

provide significant improvement for predicting user ratings. Recommender systems are termed 

as the data filtering network which addresses the issue of data surplus (Maxwell and Joseph, 

2015). They do so through filtering crucial material piece out of the vast quantity of dynamically 

produced info in line with user’s interests, likes or noted behavior about the item. Recommender 

system can forecast if a certain user may desire a product or not centered on his or her profile. 

They are crucial to both the users and service provider. They minimize operation expenses of 

selecting and finding commodities in virtual stores. Also, commendation networks have 

demonstrated to enhance quality and policy making procedure. In an e-commerce situation, 

recommender networks improve incomes in an e-commerce environment since they are efficient 

in selling products. Recommender system in logical archives users by enabling them to go past 

collection searches. In many recommender systems, the rating scales play an important key to 

develop the user’s needs. The rating scale is performance used by users to rate items such as 

movies, books, music, and product. 
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This system used in many fields and websites in different scales such as Amazon, YouTube, and 

Facebook. The scale could be numbered and Like or dislike. In addition, the effect of rating scales 

is described in many articles and researches works such as economics, survey design and 

psychology (Cena et al., 2017). In many recommender systems, the user ratings are considered 

the valued information for users and system. By using this technique the users increase their 

preferences for the item by rating them and based on these rating ( Adomavicius and Tuzhilin, 

2005). In addition, for improving user rating it should improve the rating scale. According to 

Cena et al, the rating scale affect the user's performance in the recommendation system and that 

shows in three experimental works (2017). Recommender systems are helping users to find 

information that they need very quickly and easily through information filtering. These systems 

are very important because they help to reduce the time for the user is searching. The e-commerce 

websites and social media platforms enable customers to have the chance to rank content for their 

benefits or others. For instance, You-Tube enables viewers to rate videotapes as well as share 

their ranking with other viewers. There is a rating scale that viewers offer their rating which is 

known as graphical widgets which are associated with certain characteristics. The customer rating 

is particularly beneficial in recommender networks for both service providers and users.  

4.4 The Impact of Granularity on Rating. 

Through comparison of Movielands, IMDb, and MovieLens with Filmeter and FilmCrave rating 

they show how granularity affects consumer rating. Criticker, for instance, has the finest 

granularity hence enables individuals to stricter and precise. MovieLen has 10- point granularity 

which is implicit via half-star ranking and enables an individual to select a neutral point while 

IMDb has an explicit 10- point (Cena et al.,  2017). Half-star rating is not usually used also 

Filmeter has the smaller average related with the extensive scoring range and lack neutral icons 

like the stars hence inhibiting the users rating. It should be noted that all the correlated scales 

express similar or closely associated granularity and share some objective characteristics. Scales 
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with a bigger granularity appears to inspire reasoning hence the expression of considerate rating. 

On the other hand, lower granularity scales result in extreme ranking in line with the state of the 

task (Preston and Colman, 2000). For instance, in the museum setting, ratings given to the similar 

product with various rating scales are different and granularity is beneficial to describe the 

collected information. For scales with the same granularity the rating was closer and where 

granularity was lower consumer’s rating was higher.  Another example is Amazon.com which an 

online endorsement engine which applies scalable product-to-product collaborative filtering 

methods to suggest virtual items for various customers. Amazon.com utilizes a clear information 

gathering approach to get information from users. (Koren et al., 2009).  Usually, the interface 

comprises of sections such as rate these products, customer’s surfing history, and develop one’s 

recommendations as well as one’s profile. User’s interests are predicted based on the product he 

or she has ranked. The customer surfing pattern is compared to the system and the system decides 

which product or products of preference to suggest to the customer (Lee et al., 2008). Also, 

Amazon.com has promoted a feature of an individual that has purchased these products. 

4.5 Using different rating scales in recommender systems. 

In the rating system there are two ways which are explicit and implicit ratings. In this section we 

focus on explicit rating which are the techniques that allow a user to clearly express her/his 

interest in an item. Usually, users use the score to these items through a process, such as the 5-

star rating system or like/dislike rating system, to indicate their interest in an object (Jawaheer et 

al., 2010).  Moreover, recommender systems collect users’ preferences using some of the rating 

systems such as like/dislike rating system such as social media application. On the other hand, 

online stores such as Amazon, AliExpress use the star ratings system. (Cena et al., 2017). 
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Figure 43:Most common explicit rating system. 

From the Figure 43 shows the most common explicit rating systems used by users. Many systems 

use the star ratings system that allows users to indicate which products are of their interest.  

Moreover, Google+1 is a new feature that Google added to its search engine which help users to 

evaluate websites that like them. So, they recommend website to their contacts. 

4.5.1 Experimental Results: 

4.5.1.1 Datasets. 

We used two different book datasets in data sizes and the number of classes (different ratings 

scales used). The Book crossing dataset has 10 ratings (10 classes) and the Amazon Book dataset 

contains 5 ratings (5 classes).  

A. Amazon Book Dataset: 

Amazon books dataset is from the Amazon product dataset which contains only user’s ratings 

(user, item, rating, timestamp) it includes more than 150,000 user’s ratings.  
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Table 12: Amazon Books Dataset structure 

 

B. Book crossing Dataset: 

The book-crossing dataset is collected by Cai-Nicolas Ziegler. The dataset contains 278,858 

users, about 271,379 books and 1,149,780 ratings. The Book-Crossing dataset includes 3 tables: 

BX-Users (user ID, location, age), BX-Books (ISBN, book title, author, publisher, year of 

publication) and BX-Book-Ratings (explicit ratings from 1 to 10, implicit ratings expressed by 0) 

(Nart, D. and Tass, 2014). 

Table 13: Book- Crossing Dataset structure 

 

4.5.2 Results: 

In this section, we describe the details of the experimental setup to evaluate the effectiveness of 

proposed deep learning models, CFMDNN and CFDR models, and compared with traditional 

Collaborative Filtering (CF) approach without deep learning. It was shown, how effective is 

CFMDNN algorithm, due to joint learning and deep discovery of latent interaction features 

userld itemld rating Time 

0 AH2L9G3DQHHAJ 

1 A2IIIDRK3PRRZY 

2 A 1T ADCM7YWPQ8M 

116 

116 

868 

3 AWGH?V0BDOJKB 13714 

4 A3UTQPQPM4TQO0 13714 

userlD ISBN 

0 276726 0155061224 

2 276729 052165615X 

3 276729 0521795028 

5 276736 3257224281 

6 276737 0600570967 

4 1019865600 

1 1395619200 

4 1031702400 

4 1383177600 

5 1374883200 

book Rating 

5 

3 

6 

8 

6 



 

Chapter 4                                                                                                                                       82  

between users and items with a multi-stage architecture, using different performance evaluation 

metrics including accuracy, MAE and RMSE. The ratings are often specified on a scale that 

indicates the specific level of like or dislike of the item at hand (Huang et al., 2015). Two datasets 

were used, and each dataset has a different rating system. Book-Crossing dataset used 0-10 

Rating-scale and Amazon books dataset used 1-5 rating scales. 

A. Mean Absolute Error (MAE).  

Here we applied CF and CFMDNN models on two datasets to see the improvement of MAE. 

From figure 44 it can be seen that the MAE got better result on both datasets in CFMDNN model. 

 

 

Figure 44:Mean Absolute Error (MAE) between Amazon books and Book-Crossing datasets. 

B. Root Means Square Error (RMSE). 
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Figure 45:Root Mean Square between Amazon books and Book-Crossing datasets. 
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Figure 46:Ratings Prediction Accuracy in CF and CFMDNN. 

4.6 Chapter Summary: 

This chapter has presented a new deep learning-based framework for augmenting the 

collaborative-filtering based recommendation systems for capturing the deep and latent hidden 

interactions between users and items and improves the recommender system performance in 

terms of rating prediction of unseen items and users. The evaluation of the proposed framework, 

with two different neural recommender models, on four different publicly available datasets, 

has shown an improved performance of the system, as compared to the traditional collaborative 

filtering-based approach based on matrix factorization techniques. Particularly, the multistage 

deep collaborative neural network model gives good performance and robustness due to its 

ability for joint modelling and discovery to deep interactions. Next chapter discusses another 

novel approach for improving the performance of recommendation systems using explicit 

feedback ratings, in terms of text-based comments, and use of natural language processing 

techniques for sentiment analysi
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Chapter 5 Enhanced Recommendation System Framework based on NLP 

techniques and Sentiment Analysis of Explicit Ratings. 

5.1 Introduction.  

In this chapter, an enhanced computation framework for recommendation systems based on 

analysis of sentiments expressed in explicit feedback from text-based comments in a multilingual 

context is described. For analysing the text-based comments from explicit feedback, and 

extracting the sentiments, natural language processing (NLP) techniques were used. The two 

models based on NLP techniques include a bag of words (BOW) model and Word2Vec model. 

For words to be processed effectively in computers, they need some form of numeric 

representation to ease processing by models such as the bag-of-words and the Word2vec models. 

The bag-of-words model is an approach for extracting and representing specific features from 

text for use in modelling. It is commonly applied in machine learning due to its simplicity and 

flexibility. The Word2vec models, on the other hand, encompass a group of related models that 

create word embeddings. These models are, however, shallow neural networks that are 

conditioned to rebuild linguistic contexts of words. These models have been featured prominently 

in several previous works and past studies. The Bag-of-Words and Word2vec Models have been 

explored widely when analysing customer reviews by sentimental analysis. (Chakraborty et al., 

2018). Dai and other have adopted a standard bag of-features model to forecast the opinion class 

of film reviews based on consumer’s inputs (2015). To defeat challenges with bag-of-words 

methods during customer reviews through sentiment analysis such as negation, Gabryel proposed 

the use of hand-written rules to reverse the semantic orientation of a consumer review preceded 

by a negative review (2018). While such rules were significant in dealing with negative issues 

(Betru, 2017). Gehrmann and others found it time-consuming to make an algorithm that could 
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handle dominant human language (2018). Yuan and others showed that the model was inefficient 

in terms of manual evaluation of lexicon and lend itself to low accuracy (2016). On the other 

hand, a semi-supervised framework relying on both models was more effective in semantic 

analysis of consumer reviews (Vinayakumar et al., 2018). Few other approaches were based on 

paragraph vectors to determine the syntactic and semantic links of a review text using both models 

(El-Din,2016). The concatenation of review embedding, and product embedding gathered from 

paragraph vectors outperformed   all previous approaches used in sentimental analysis of 

customer reviews. Campr and Ježek, compared Bag-of-Words and Word2vec Models on 

sentiment classification (2016). In terms of accuracy, Word2Vec proved to be most precise and 

functional word embedding approach. It was highly effective in converting customer reviews into 

substantive vectors (Zhang et al., 2018). The only problem with the model was that it ignored 

sentiment data of texts and required huge chunks of reviews for training and yielding the exact 

vectors. Next Section describes the dataset used for building the recommender system models 

based on NLP techniques. 

5.2 Experimental Work 

5.2.1 Datasets 

A. Booking Hotel dataset 

The dataset is from Booking.com. All data is publicly available. It contains 515,000 

customer reviews and scoring of 1493 hotels. 

B. Amazon fine food review 

This dataset consists of reviews of fine foods from amazon. It contains 500,000 reviews. 

Reviews include product and user information, ratings, and a plain text review.  

 

 

 



 

 Chapter 5                                                                                                                                       87  

C. Arabic Movie Review 

This dataset from elcinema.com contains 1524 reviews with positive and negative ratings 

and feedbacks. This dataset includes negative feedback inside positive sentence with a 

different accent but in the Arabic language. 

 

 

Figure 47:Booking Hotel Dataset. 

   

Figure 48:Food fine amazon Dataset 

 

Negative_Review Review_ Total_ Negative_ Word_ Counts Total_Number_of_Reviews Positive_Review 

I am so angry that 
i made this post 

available ... 

No Negative 

Rooms are nice 
but for elderly a 

Summary 
Do Not Buy 

bit difficul. .. 

my cat goes crazy for these! 

Very good coffee 

Bigelow Earl Grey Green Tea 

Only the park 
outside of the 397 1403 

hotel was 
beauti. .. 

No real 

0 1403 complaints the 
hotel was great 

great ... 

Location was 
42 1403 good and staff 

were ok It is cut. .. 

Text 
Do not purchase or support this company in any way 
until they clean up their act. And for whatever reason 
Amazon doesn't allow returns of this item, 
Best cat treat ever. There isn't anything comparable 
to the love my cat has for these treats, he snubs 
away any other kind now. 
I really liked this coffee, it was just as good as 
everyone claimed it was. Strong, bold and flavorful! I 
would recommend! 

Tastes like Earl Grey, but it's green tea so i!'.~. 
healthier. 
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Figure 49:Arabic Movie review dataset 

5.2.2 Data Preparation. 

Text data preparation is different for each problem. In each dataset, we clean it up as dataset 

contained only English reviews and for Arabic reviews contains only Arabic language. All text 

was converted to lowercase and deleting the white space like commas and brackets. Finally, the 

text has been split into one sentence per line. However, Arabic language has a different 

mechanism. We removed punctuations and white space. 

5.2.3 Clean Text. 

The clean text data is the most important part because different approaches in text cleaning can 

lead to varied results during model training. In this section we used Tokenization technique 

which helps to divide the textual information into individual words. In addition, in this 

experimental work we focused on text mining which is the process of extracting information 

from unstructured text. It is a multidisciplinary field that draws on data mining, machine 

learning and information retrieval. All these processes are requiring Pre-processing steps to 

reduces the size of the input text documents and this called Tokenization. In this study we used 

the split() function to split the loaded document into tokens separated by white space and we 

used NLTK to remove English stop words. All datasets include rating scales from 1 to 5 and 

contain text feedback. Here we are loading the raw data each textual review is grouped into a 

positive part and a negative part 0 for positive and 1 for negative. We want to use feedback and 

0 " ..::., ~ ! ) _►....:i-o '½l~ :, y<U.... " t ½YI ..w:;_ •. 

1 ~I~ !......a~~~ ~ I ..>-':' •• !3.£::U.) ~ --· 

2 ..,-~ ~ J'-l:--1! ~ I..> >: } ~ ~ I -:::-4-J __rA~ .•• 

3 J .; .'"; ? ~ n r--11 :!~ !"-~" j-:.J"~ .J" ~ " ... 

1 

1 

1 

1 

1 



 

 Chapter 5                                                                                                                                       89  

score together and test the model performance. We use ‘clean_text’ function by removing lower 

text, remove the punctuation, remove words that contain numbers and remove stop words. 

 

Figure 50:Booking Hotel Dataset 

 

Figure 51:Food Fine Amazon Dataset 

 

Figure 52:Arabic Movie Review Dataset 

5.2.4 Word2Vec Model. 

We can predict customers reviews about their feeling for food they bought or movie they watched 

or hotel they stayed by adding sentiment analysis features. We used NLTK module called Vader 

which was designed for sentiment analysis. We use Vader, which is a part of the NLTK module 
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designed for sentiment analysis. Vader uses a dictionary of words to find which ones are positives 

or negatives. It also considers the context of the sentences to determine the sentiment scores. We 

are extracting vector representations for each review by using Gensim module because it creates 

a numerical vector representation of every word called (Word2Vec). This is performed using 

neural networks which is similar words that will have similar representation vectors. Then we add 

the TF-IDF (Term Frequency Inverse Document Frequency). TF count number of times the word 

appears in the text IDF count the relative importance of this word which depends on how many 

texts the word can be found. 

 

Table 14: The accuracy of each dataset for testing model. 

Datasets Positive Reviews (0) Negative Review (1) 

Booking Hotel dataset 96% 4% 

Amazon fine food review 64% 36% 

Arabic Movie Review 0% 100% 

 

A.  Wordclouds. 

We used wordclouds to greater prominence to words that appear more frequently in reviews 
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Figure 53:Wordclouds for Food Fine Amazon Dataset. 

 

Figure 54:Wordclouds for Booking Hotel Dataset. 

 

 

Figure 55:Wordclouds for Arabic Movie Dataset 

Most of the words in Amazon fine food dataset are indeed related to the customer experience 

such as product, coffee, tasting, etc. In addition, in Booking Hotel review dataset is room, 

location and breakfast. In Arabic movie review dataset is film and prepositions. Arabic reviews 

have different way to use words and it need different techniques to clean all these problems 

because that the module does not work with Arabic language. The highest positive sentiment 

reviews and highest negative sentiment reviews for each dataset show how the test model work. 
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Figure 56:Highest positive sentiment reviews for Food fine Amazon Dataset. 

 

Figure 57: Highest Positive Sentiment Reviews for Booking Hotel Dataset. 

  

Figure 58:Highest Positive Sentiment Reviews for Arabic Movie Review Dataset 
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Figure 59:Highest negative sentiment reviews for Food fine Amazon Dataset 

 

Figure 60:Highest negative sentiment reviews for Booking Hotel Review Dataset. 

  

Figure 61:Highest Negative Sentiment Reviews for Arabic Movie Review Dataset. 
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We can see from the tables above the module is working perfectly for datasets with English 

language, but it does not work for Arabic language.  

 

Figure 62:Sentiment distribution for positive and negative reviews for Booking hotel dataset 

 

Figure 63:Sentiment distribution for positive and negative reviews for Food fine Amazon 

dataset 

 

Figure 64:Sentiment distribution for positive and negative reviews for Arabic movie review 

dataset 

 

100 

BO 

60 

40 

2..00 

L75 

1-50 

1-25 

1-00 

0.75 

0.50 

0.25 

5 

4 

-1.0 

Good reviews 
Bad reviews 

-0.5 

-l.O -0.5 

- 0 . 75 - 0 . 50 - 0 . 25 

0.0 
compound 

0 .0 
compound 

0 .00 
compound 

0.5 

0 .5 

0 . 25 

1.0 

LO 

-- Bad reviewis 

0 .50 0 . 75, LOO 



 

 Chapter 5                                                                                                                                       95  

From the Figure 64, we can result that, the model Word2Vec does not have good performance 

for any languages such as Arabic language. To address this problem, Random Forest classifier 

was used for Arabic dataset to improve the performance.  

5.2.5 Random forest (RF). 

Random Forest (RF) is considered one of the most flexible and easy machine learning method 

because it can be used for both classification and regression tasks. The RF classifier averages 

different decision trees from random samples of the database. A decision tree partitions the 

dataset into smaller subsets and simultaneously builds the tree with decision nodes and leaf 

nodes (Chakraborty et al., 2018). In Arabic movie dataset is shows the most important features 

are indeed the ones that come from the previous sentiment analysis. The feature of the words is 

from verbs and it does not make any meaning if it is positive or negative and because that the 

importance of the word is zero. 

  

Figure 65:Most important features for Arabic Movie Dataset. 
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5.2.6 Discussion. 

From the Figure 64, it can be seen, that the Sentiment distribution for Arabic language gives 

bad feedback but in the real dataset it contains positive feedback, but the system cannot predict 

as shown in the Figure 65 by using (RF) method because all words that appear are verbs. In 

addition, comparing the results of Word2Vec model in three datasets with different languages 

Word2Vec model does not work for Arabic language. On the other hand, the results obtained 

by Word2Vec are highly effective in sentiment analysis for English language datasets. In 

addition, Arabic language might be having a different and complex structure that affects the 

results. Firstly, the morphology and structure are very complex. Secondly, Arabic language has 

challenges because of its history, region, grammar, and culture. In addition, Arabic language 

has a different way of writing. It written from right to left. It contains 28 letters which 25 letters 

are consonants, and 3 letters are vowels. Arabic language used diacritical mark which is 

considered a challenging part for computer systems to recognize and for sentiment analysis by 

machine. Moreover, Arabic language has complex Morphology where one-word leads to many 

important meanings. For example, the word (  ِلبَس)   means (Wearing) and word (لبَْس) means 

(Confusing). So, the diacritical marks can affect Arabic sentiment analysis as is evident from 

the experimental results. 

5.3 Chapter Summary. 

In this Chapter, an enhanced recommendation system framework based on using text-based 

feedback comments, and NLP processing techniques in a multilingual context was presented. This 

chapter established that the Word2vec Model has attracted extensive research. However, 

Word2Vec was found to be working well for English language text processing better because of 

availability of better language dictionaries for computer-based processing, whereas it did not lead 

to any improvements for Arabic language contexts. This could be due to complex structure and 

morphology of Arabic language and lack of sufficient tools in terms of language dictionaries for 
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computer-based processing. Also, Arabic sentiment analysis research is very limited while 

sentiment analysis has many kinds of research in English. Next Chapter continues this line of 

research and proposes an improved model for Arabic language. The novel approach used for 

improving the performance of recommendation system is based on a combination of Bag of Words 

and Word2Vec methods. By using hybrid deep learning methods, based on natural neural networks 

for Arabic sentiment analysis with SVM and MLP, CNN and MCNN architectures, an attempt 

was made to improve prediction of user’s reviews on both language Arabic and English 

recommendation system contexts. 
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Chapter 6 Improvement Recommendation System Framework Based on 

Deep Learning and Sentiment Analysis. 

6.1 Introduction:  

This Chapter continues with a line of investigation from the previous Chapter and attempts to 

enhance the Recommender systems for multilingual contexts using deep learning and sentiment 

analysis approaches. With increased adoption of Artificial Intelligence AI, machine learning 

and data science technologies recently, it has become possible to develop real world 

computational platforms for e-Commerce environments, that are more user and customer 

centric. Recommendation systems are one such customer-centric computational platforms, that 

allow commercial eCommerce platforms to provide better services to customer service and user 

experience. They are evolving continuously, and progressively getting more efficient with 

improved personalization capabilities in offering   recommendations, by incorporating a 

multitude of tools to capture and collect different types of human input, in terms of user ratings, 

opinions, votes, sentiments, qualitative and quantitative feedback and customer reviews. As 

discussed in previous chapters, a recommender system, or a recommendation system (often 

used synonymously) is a sub class of information processing and filtering system that attempts 

to predict the "rating" or "preference" a user would give to an item. Sometimes instead of 

'system', they are also referred to as recommender platform or engine) and are extensively used 

in commercial applications and e-Commerce environments (Betru et al.2017; Boudad et 

al.2018). Moreover, recommender system platforms that are reflective, user inclusive and 

customer-centric provide better and personalized recommendations, and can empower users in 

finding what they need, and at the same time can help businesses to provide better customer 

service and user experience with their platform. Some of the tasks involved in providing 

recommendations in these platforms include, analysis of behaviour and engagement of users, 

with the products, items or services being made available, and provide personalized 

recommendation, that addresses their needs, and can lead to better customer satisfaction. This 

can lead to improvement in prediction of ratings, and dependent on many factors,  including 

their purchase history, online browsing behaviour with items, likes and preferences provided, 

their demographic profiles and life-style related aspects, and that of other similar users with 

similar profiles or life-styles. By including the user feedback, their votes, sentiments and 
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feelings about a product or a service, recommendation systems can help businesses and 

organizations to provide better service to customers, enhance revenue streams, reduce 

operational expenses, and identify new customer segments, and build targeted marketing 

campaigns, and customer retention strategies, with timely recognition of customer loyalty with 

incentives and rewards. 

Development of reflective, personalized and customer-centric e-Commerce computational 

platforms equipped with better recommendation capabilities, involve extensive use of 

individual customer profiles and similar cohorts, with either similar demographic profiles or 

purchase behaviour. These are the primary mechanisms for capturing the preferences, and this 

knowledge is used to target the products and services based on these preferences. Many large 

businesses and service providers such as Netflix, Amazon, YouTube and Facebook, have been 

using such computational platforms, equipped with recommendation tools at different scales 

for capturing user engagement and preferences with their products and service offering, based 

on extensive use of their individual profiles and behaviour, as well as that of other similar 

cohorts (Heikal et al., 2018). Some of the tools used for providing personalized 

recommendations include, individual profile capture, tracking of the customer shopping 

sessions of the individual users, and combine with user feedback from a similar cohort, with 

similar history with products, items or services, and match their demographics and behaviours 

(Lulu and Elnagar, 2018).  The quality and personalization capability of the recommendation 

platforms depends on the way they capture and collects the user ratings, votes, sentiments, or 

feedback. This could be either explicit or implicit data collection. The collection of explicit 

ratings and feedback from a user, involves a concrete rating scale (such as Likert scale for rating 

a movie from one to five stars). On the other hand, the implicit ratings capture involves 

collection of information implicitly and automatically, as the user engages with the system, and 

could involve certain activities, such as logging the actions of a user, or tracking the browsing 

behaviour of the user on the system. Explicit ratings collection is easier as the ratings that is 

captured from a user directly, can be directly interpreted as the user's preferences, and by using 

similar explicit ratings from other similar users, it is easier to extrapolate on the ratings 

predictions, and provide personalized product or service recommendation (Mandal and Maiti, 

2018). The drawback with explicit collection, however, is that the responsibility of gathering 

ratings is on the user or the customer, who may not be interested, or has the time to provide a 

rating or feedback. that it puts the responsibility of data collection on the user, who may not 

want to take time to enter ratings. In contrast, the implicit collection of feedback is implicit and 

does not involve the user or expects any extra effort on the part of the user, and it is possible to 
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collect large quantity of information implicitly. Implicit data is also easy to collect in large 

quantities without any extra effort on the part of the user. However, there are several 

complexities involved with both the explicit and implicit feedback collection, and some of the 

reasons are as outlined below: 

 

1. Ratings and feedback collection can just record the actions of a user and may not know 

the person engaging with the system, particularly, if more than one person uses the same system 

with shared logins.  

2. Explicit ratings with the collection of votes, and capture of sentiments, may not 

accurately represent true user preferences, as user is not sure and not deeply engaging with the 

system. Some studies in this area show that some ratings by users are impulsive and differ based 

on their mood or state of mind.  

3. Implicit collection of information, without the knowledge of the user raises several 

privacy and ethical issues, and it is overstepping on the part of corporate businesses and 

computational platforms to engage in implicit ratings collection without consent from the users 

or customers. 

 

Ideally, a combination of two, both explicit and implicit ratings would lead to better outcomes, 

with a recommendation system using explicit ratings strategy to provide more personalized 

recommendations and use implicit ratings for providing more pragmatic and practical 

recommendations. In this paper, we used explicit ratings based on publicly available datasets.   

The traditional methods for capturing and embedding these user ratings into the 

recommendation provided by the system are called collaborative filtering or content filtering-

based approaches or a hybrid combination of the two. is based on a concept called collaborative 

filtering technique. The collaborative filtering technique is more popular out of the two common 

approaches and relies on a technique called matrix factorization technique. Though the 

collaborative filtering and matrix factorization are more common and popular, there are several 

problems associated with collaborative filtering techniques, due to the complex correlation 

between users who rate the items and the number of items,  the cold-start problems involving 

new items, and insufficient ratings with some old items, particularly with lesser user 

engagement, and causing problems in modelling the user interaction with items. Many previous 

studies of similar complex nature, including speech recognition, computer vision and natural 

language processing, have proposed data driven machine learning and deep learning-based 

methods for capturing the complex and deep hidden interactions between users and items, and 
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offer much promise in  improving the performance of online recommendation systems (Albawi 

et al., 2017). Deep Learning is a subfield of Machine learning and Artificial Intelligence and 

allows end-to-end fully automated computer-based approaches for problem solving and 

automation, often requiring minimal or no human intervention. There are several deep learning 

architectures proposed in literature, depending on the processing task and application context 

involved.  Some of the popular architectures used for other similar areas including computer 

vision, speech processing and natural language processing include Feedforward Networks 

(FFNs), Convolutional neural networks (CNN), recurrent neural networks (RNN), recursive 

neural networks (RecNN), long short-term memory (LSTM) and memory network (MemNN).  

In this chapter, we propose a novel approach based on using deep machine learning to address 

problems. The work extends some of the previously reported work and shows the impact of 

using two different types of explicit feedback, both the ratings scale, and free text comments 

for collecting user experience. While the ratings score provides a quantitative feedback, the use 

of open text comments allows qualitative feedback and informs the sentiments associated with 

user-item interaction. Further, the proposed deep learning-based architecture includes sentiment 

analysis with multilingual support (English and Arabic language) support for capturing the open 

text qualitative comments on the items or service. The multilingual aspect of proposed 

recommendation system architecture allows different types of qualitative feedback to be 

collected and can allow better personalization to different demographic segments. In addition, 

Arabic language is considered the top six of the world's major languages. It includes 28 letters: 

25 consonants and only 3 vowels. In addition, diacritical marks are used in the Arabic script as 

short vowels placed either above or below the letters for correct pronunciation and clarification 

of the meaning (Lulu and Elnagar, 2018). The absence of short vowels in the majority of MSA 

texts cause a lexical ambiguity problem that challenges computational systems. For example 

the undiacritized word شعر may mean (   شِعْر poetry), (   شَعْر hair) or (  َشَعَر to feel).In the Arabic 

language, several morphological aspects exist for a word: derivation, inflection, and 

agglutination (Cena et al. 2017; Boudad et al. 2018). 

6.2  Multi-layer perceptron MLP for Arabic Language Sentiment Analysis.  

Multi-layer perceptron (MLP) is a neural network using simple models for solving difficult task 

such as prediction models. MLP allows robust algorithms to be applied to solve difficult 

problems (Brownlee, 2017). We used MLP, as it has the ability to learn the representation from 

the training data with the layered neural network model. For analysis text-based sentiment text 

for Arabic language, we built MLP models trained on a pre-trained word vector representation. 
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Two different datasets were used for building the Arabic Movie dataset and Booking Hotel 

dataset. The textual review in each of the two datasets used has positive and negative feedback 

comments, denoting the sentiment inferred from each review. For the English dataset, positive 

review has a 0 label, and 1 for negative review, For Arabic language dataset, 1 was used for 

positive review and 0 for negative reviews. This was done by original dataset designers, which 

we used as is. We want to use these feedback text comments to predict positive or negative 

sentiments using MLP model and evaluate/ test the model performance. To evaluate the 

performance of the model we used the different performance metrics (i.e. Precision, Recall and 

F1-Score) for both the datasets. The Precision metric measures the number of positive class 

predictions that belong to the positive class. The Recall metric, on the other hand measures the 

number of positive class predictions made of all positive examples in the dataset. Finally, F-

Measure provides a single score that balances both the concerns of precision and recall in one 

number. The results showed that MLP has good performance on Arabic dataset, as shown on 

table 15 , and the Arabic dataset performs with Word2Vec and MLP representation for Arabic 

language sentiment analysis, and can predict the user’s feedback from text as shown in the 

figure 66.   User engagement is a high priority for any recommendation system. The question 

is how to determine which users like which of the items and if the system presents an 

appropriate result based on their likings. The primary function of MLP is to classify and cluster 

information with multiple factors taken into consideration, and these features are precisely what 

you need for user profiling. 

Table 15: MLP Performance measures 

Datasets Accuracy Precision Recall F1-Score 

Booking Hotel 

Dataset 

96% 0.96 0.98 0.97 

Arabic Movie 

Dataset 

87% 0.56 0.50 0.53 
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Figure 66:Sentiment distribution for positive and negative reviews for Arabic movie review dataset by 

using MLP model. 

6.3 Collaborative Filtering based Multistage Deep Neural Network 

architecture (CFMDNN). 

This deep learning model, the Multistage Deep Neural Network architecture (CFMDNN), uses 

multiple layers of Feed-Forward Neural networks (FFNs) jointly with collaborative filtering for 

modelling complex structures of user and item interactions and   captures can extract latent 

features. The capability to learn the joint space at a deeper level, through several stages of 

learning and discovery with multiple FFN stages, does not require feature engineering or 

manual handcrafting for extracting and combining the latent feature sets.  

Due to the joint modelling capability of the proposed deep learning model based on CFDMDNN 

architecture, it is possible to capture the interactions between users and feedback, at a deeper 

level in the joint latent feature space, with multiple layers of fully connected feed forward neural 

network layers (FFN). The models were built using Keras deep learning tools, and the validation 

and testing were done using K-fold cross-validation, with prediction accuracy used as the 

performance metric for the performance evaluation. Also, to prevent overfitting, the model 

complexity was reduced by using dropout as a regularization technique, along with Adam 

optimizer for iterative updating of network layer weights.  Chapter 4 proposed CFMDNN 

architecture. 

6.4 Multistage Convolutional Neural Networks Model.  

The second model for the proposed deep learning framework is the MCNN which uses multiple 

Convolution neural networks (CNN), instead of Feed-Forward Neural networks (FFNs) for 

implementing the CFMDNN architecture. The Convolutional Neural Network (CNN) is 
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considered as one of the most popular deep neural networks. The name ‘convolution’ in CNN 

comes from mathematical linear operation between matrixes called convolution (Al-sallab et 

al., 2015). Many studies proposed the use of CNNs for processing images and extracting 

features for complex Computer Vision and Image Classification tasks. Recently, some of the 

studies have also applied CNNs to problems corresponding to Natural Language Processing 

tasks and achieved some interesting results. CNN contains multiple layers, and includes a 

convolutional layer, non-linearity layer, pooling layer and fully connected layer.  

The MCNN model allows qualitative feedback in terms of short comments in two different 

languages, English and Arabic to be included, and allows a multilingual information to be 

captured for analysing user sentiments about the products or service, and embedding it 

embedded in recommendation system predictions. Figure 70 show the MCNN model for 

proposed deep learning architecture.   

The first channel in MCNN model includes NLP processing, and involves following steps for 

processing the text comments captured from users: 

• Sentences or documents are represented as a matrix. 

• Each row of the matrix corresponds to one token which is a word, and a word2vec 

approach is used for word-embedding.  

For example, if we have 5 words and used 100 Embedding, we then have a matrix with 5×100. 

The CNN stage used has multiple layers that do different tasks. 

Input Layer is the first one in CNN stage, and it reads the text or image, and is followed by a 

convolution stage for extracting features from the input, and the extracted CNN features are fed 

to a linear classifier. In general, use of several CNN stages and the Pooling stages for building 

the CNN based models allows better learning and extraction of latent features and hidden 

interactions between inputs.     

For example, if processing NLP texts, the combination CNN and Pooling layers have the 

advantage of reducing the size of the feature (Sentence Matrix) as shown in the Figures 68 and 

69.  

After combining several CNN and Pooling layers, the final layer for our NLP processing stage 

includes fully connected layer followed by the SoftMax and the classification layer. The Figure 

67 shows this NLP channel processing for the proposed MCNN model and for the proposed 

deep learning-based recommender system framework. The Figure 68 and 69 show the 

word2vec NLP processing for English and Arabic language comments fed as input to this stage. 
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.  

 

Figure 67:Illustration of the multiple-channel convolutional neural network for text 

 

Figure 68:Sentence Matrix  for English Language 

 

Figure 69:Sentence Matrix for Arabic language 

The CNN based NLP stage for modelling the sentiments captures as text feedback comments 

in either English or Arabic language is combined with the user and items based processing 

stages with CNN, and this multistage CNN model allows collaborative filtering based on both 

qualitative feedback in terms of text comments and quantitative feedback in terms user ratings 

to be modelled. The use of CNNs allows the latent interactions between the users and the items 

to be captured at a deeper level, leading to improved recommender system performance. The 
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Figure 70 shows the architecture for this multistage CNN (MCNN) model for the proposed 

deep learning framework. 

 

 

Figure 70:Multichannel Convolutional Neural Network (MCNN) Model. 

6.5 Experimental Evaluation. 

Different datasets were used for evaluation of two deep learning models (CFMDNN and 

MCNN) for the proposed deep learning framework. This section presents details of the 

experimental evaluation done, starting with description of publicly available datasets used. 

A. Datasets: 

• Booking Hotel dataset 

The dataset is from Booking.com. All data is publicly available. It contains 515,000 customer 

reviews and scoring of 1493 hotels. 

cmall~I -~ >-i'l"_-,._IN.,_,100_1--< 
"'" ili.w,100 ,11! 

'ii" 1:..,1001 
-oi.!&d!dd,1 >---+-----< 

Gllpt (S..,!00,1001 



 

Chapter 6                                                                                                                                      108  

 

Figure 71: Booking Hotel dataset Design Structure. 

 

Figure 72:Booking Hotel dataset Design Structure after processing 

• Arabic Hotel Review dataset 

This dataset from Booking.com contains 93700 hotel reviews with positive and negative ratings 

and feedbacks. This dataset includes negative feedback inside positive sentence with different 

accent but in Arabic language. 

  

Figure 73: Arabic Hotel review dataset Design Structure after processing 
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Figure 74:Number of Negative and Positive reviews after processing for English language 

 

Figure 75:Number of Negative and Positive reviews after processing for Arabic language 

 

6.5.1 Data Processing for NLP stage.  

Text data preparation for NLP processing stage is different for each language. We clean datasets 

up by keeping original languages.  All text was converted to lowercase, white space was deleted, 

including punctuation marks and brackets. Also, stop words from files for each dataset were 

deleted.  The next step involves tokenization, which helps in dividing the textual information 

into individual words. We used NLTK kit for pre-processing the text, and using different NLTK 

functions, removed the stop words and tokenized each word in each dataset. Finally, the text 

was split into one sentence per line. Availability of clean text data is the most important part in 

extracting the sentiments from the text data captured in comments either in the portal, because 

different approaches in text cleaning can lead to very different results and influence model 

building. Some of the NLTK functions used for text processing involved split() and clean_text() 

functions (Yuan et al., 2016). Apart from this pre-processing step, no further NLP feature 
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engineering and other language modelling related steps were included in the NLP processing. 

It was left to CNN to extract the latent text features from minimally processed words from the 

text comments. Each textual review in the dataset used has positive and negative annotation, 

denoting the sentiment inferred from each review. For English dataset positive review has a 0 

label, and 1 for negative review, as shown in the Figure74. For Arabic language dataset used, 1 

was used for positive review and 0 for negative reviews, as shown in Figure 75. We want to use 

feedback and rating score together to build the collaborative filtering based deep neural model 

and test the model performance.  

 

6.5.2 Results. 

In this section, we describe the performance of CFDMNN and MCNN models for different 

datasets.  

The MCNN model performs better than the CFMDNN model for English language-hotel 

bookings dataset, with 96% ratings prediction accuracy for MCNN model, and 95% accuracy 

for CFMDNN model. The improvement in accuracy for English language dataset with 

multichannel CNN model (MCNN)could be due to inclusion of third channel for embedding 

the textual reviews, or due to the use of CNN architecture. For Arabic Hotel dataset, the 

CFMDNN model performed better than the MCNN model, with 86% ratings prediction 

accuracy for CFMDNN and 83% for MCNN model. The Arabic Hotel dataset is smaller than 

English language dataset, with 515,000 reviews for English language dataset, and 93700 

reviews for Arabic dataset. Further, the language structure for Arabic language and vocabulary 

is completely different as compared to the structure of English language vocabulary, and 

without any NLP feature engineering, the CNN in the NLP stage might not have captured the 

structural features specific to Arabic language. Figure 76 shows the ratings prediction accuracy 

for the CFDMNN and MCNN models for different datasets. As can be seen in Table 16 and the 

Figure 76, the rating prediction accuracy is improved for MCNN model as compared to 

CFDMM model for English language dataset (hotel-bookings dataset, as the CNN layer used 

in MCNN is able to extract the NLP features better  as compared to FFN used in CFDMM. On 

the other hand, as can be seen in Table 17 and the  Figure 76 for Arabic dataset, the FFN used 

for CFDMNN network can extract the latent features corresponding to interaction between the 

users and items better than the CNN used in MCNN, in spite of the limited data availability for 

building this model. However, the addition of NLP channel for embedding sentiments 
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expressed via text comments, even with sophisticate CNN processing layer does not seem to 

improve the overall model performance. 

 

Table 16:Accuracy of Testing Prediction model for English dataset 

ID 
Text Is_Bad_Review Prediction Model 

0 
My room was dirty, 

and I was afraid to 

walk 

1 Negative 

1 
Rooms are nice but 

for elderly a bit 

difficult 

0 Positive 

2 
I am so angry 1 Negative 

Table 17:Accuracy of Testing Prediction model for Arabic dataset 

 

 

Figure 76 : Models Accuracies for English and Arabic Language datasets 

 

6.6 Chapter Summary. 

In this chapter we propose a deep learning based collaborative filtering framework for building 
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comments for English and Arabic language contexts.  Two different deep neural models which 

are the CFDMNN model, based on feedforward neural network layer, and MCNN based on 

multichannel CNN were developed for enhancing the performance for recommendation 

systems. The deep neural models with minimal feature engineering done have resulted in better 

performance in terms of ratings prediction accuracy, as compared to traditional approach based 

on collaborative filtering.    The evaluation of the proposed deep learning based collaborative 

filtering framework, and two models (MCNN and CFDMNN) for English language and Arabic 

language dataset show better recommendation system performance, when traditional 

collaborative filtering layer is augmented with deep learning layers, and additional channels of 

input in terms of embedding sentiments expressed in the textual reviews is included. Next 

chapter discusses another novel approach to enhance the performance and robustness of 

recommendation systems, based on applying metadata, as digital library systems are equipped 

with large meta data information, and shows the benefits of using metadata. 
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Chapter 7 Deep Machine Learning for Digital library recommendation 

system based on Metadata. 

7.1 Introduction. 

Nowadays, massive information about anything available in the public domain, makes the 

finding of specific information about an item, very difficult for users. Digital libraries are such 

massive search and resource retrieval systems, it is important to provide tailored information 

retrieval for users of such systems and enhance their user experience. It helps users to find what 

they need directly, on can make the digital libraries, a valuable information and knowledge 

warehouse. FRBR (Functional Requirements for Bibliographic Records) is a model that 

describes the grouping of different entities in the bibliographic environment and their 

arrangement in a hierarchical format, illustrating the bibliographic relationship between the 

different entities within the registers. It is a conceptual model of the bibliographic environment 

which includes the data that the library wants to make available to the users (Strader, 2017). It 

should be noted, that the FRBR has a digital objective with RDA (Resource Description and 

Analysis) as its complementary component, and they work together to provide a strong resource 

descriptor to the items. With the rapid advancements in information and communication 

technologies, the range and quality of services offered by digital libraries have improved 

significantly, with better user experience, improved tailored and personalized 

recommendations, and sensitivity to user preferences. 

 

In this Chapter, we discuss a new approach proposed in this research that uses word embedding 

techniques such as Word2Vec and FastText for both Arabic and English datasets, for pre-

processing and helping to convert language text vectors to real numbers. By combining the 

strengths of the deep learning models with that of word embedding techniques for enhancing 

the metadata classification, is the key contribution presented in this topic for enhancing the 

performance of recommendation system. By considering metadata to build better 

recommendations, it is possible to help many users to discover resources and tailored and 

personalized information needed. Chapters 3,4,5 and 6 showed how machine learning and deep 

learning algorithms can improve recommendation system, and lead to high retrieval accuracy, 

by taking into consideration explicit ratings from users, sentiments expressed in feedback 
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comments in terms of free text. In this chapter we investigate algorithmic approaches to 

incorporate   metadata information to enhance the performance of recommendation system, and 

provide better references.  There are a lot of advantages of using metadata, for improving the 

system performance,  as it available easily for any digital resource search and retrieval system, 

and more so in digital library application scenario, as libraries use detailed cataloguing 

standards, that inherently contain rich metadata,  and this can solve the cold start problem for 

recommendation systems with much ease. With rich metadata, we do not need users to use the 

system, for item recommendations to be created, or to recommend to them similar items they 

are searching for, because metadata stored for the item being searched, will help in comparing 

the bibliographic results, and then it can recommend resources based on the analysis of 

metadata. By combining additional support from metadata along with explicit ratings and 

sentiment analysis of feedback text, it could be possible to enhance the recommender system 

performance for complex application contexts and address the short-comings such as cold-

starts. The rest of the chapter discussed this approach in detail. 

 

7.2 Digital Library Metadata. 

Metadata is providing information about information. It means information which is 

comprehensible to the computer to define, locate, or describe web resources. For a long time, 

metadata has been involved by library by a card catalogue. They called it as cataloguing rules, 

controlled vocabulary Indexing format etc. For machines they have developed. Metadata is 

standard bibliographic information summaries, indexing terms and abstracts for discovery, 

evaluation, fitness for use, access, transfer, and citation. It also can be Information about 

authenticity availability and accessibility, digital signature, copyright, reproduction. E-

resources, textual information graphics and any electronic works are the application of 

metadata. DLs contain a wealth of information and resources that users can use to help them 

find what they need. Users usually try to ascertain other user’s opinions that are found online. 

As a result of that, much opinion and sentiment about specific topics could be collected and 

analysed from these websites. Therefore, the need to automate the process of text sentiment 

analysis has now arisen. It will be helpful for users to be able to access opinions and sentiments 

about a specific resource in a reasonable manner.  
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7.2.1 Types of metadata. 

There are many kinds of metadata, mainly divided into three main categories. The first one is 

administrative metadata which is contain rights metadata that contains information related to 

rights and use information. It used to provide resource management information, e.g. when and 

how the resource was developed. Also, technical metadata which contains technical details such 

as file size. Preservation metadata which contains information about object. Second type is 

descriptive metadata which is describes a resource. Third type is structural metadata which 

describes how the information fits together and it information required to document an item 's 

internal layout so it can be rendered to the user in a sensible form (for example, a book needs 

to be presented in the order of its page). This type of metadata is required because it may often 

consist of several (sometimes thousands) files. (University Library, 2020). 

7.2.2 Metadata role. 

Metadata plays a significant role in the digital information system with important purposes like 

data description, data browsing, data transfer (Solodovnik, 2011). 

• Metadata increases accessibility. 

• Metadata's main function is to search for resource discovery and its location.  

• Metadata for Interoperability 

• Compatibility of metadata with the information structures for information retrieval 

and exchange. 

• Metadata for Multi-Versioning 

• The creation of multi-versions for the same object has many purposes: preservation 

research, dissemination / product development purpose. 

• Metadata for right management 

• Metadata lets depositors monitor the various layers rights and reproductions of 

information that exist for information objects and their different versions. 

• Metadata for system Improvement 

Metadata is also beneficial for systems evaluation and refinement to make them more effective 

from a technological and economical point of view. The data can also be used to design new 

system. 
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7.3 Semantic web. 

It is one of the modern technologies in the field of web technology and developed in the field 

of educational technology which is based on artificial intelligence in the processes of 

classification, research and management of websites. By indexing what is placed in it and 

reconciling it with its synonyms, then the ability to distribute that information for use in more 

than one context. This technology is the third generation for the Web (or Web 3.0). In addition, 

one of the most useful techniques of semantic web is semantic search. It is one of the recent 

trends that rely on semantic web applications to retrieve information from the system, 

depending on the significance of the terms that the beneficiary wants to get results about, instead 

of the system retrieves results based on the common arrangement of sites, the focus in the 

semantic search is to provide results consistent with the meanings of words. Thus, when the 

user directs a query to the retrieval system that includes a word or phrase, the semantic search 

mechanism aims to provide the results most relevant to his inquiry, according to the meaning 

of the words that the user is searching for. Furthermore, semantic similarity used mathematical 

tools to evaluate the strength of the semantic relationship between units by a numerical 

description based on assessment of information that related to meaning (Harispe et al.,2015).  

Hence, we propose to use this application with metadata to build recommendation system, and 

the experimental results show that the semantic similarity gives good results. 

7.4 Support Vector Machine (SVM). 

SVM is a supervised machine learning model that uses classification algorithms as follow: 

 

Several researchers have used classification for classifying system search results into different 

topic such as sport, games, cooking, travel, etc, and help users to identify results quickly in the 

area of interest. In addition, we used SVM to classify subjects of digital library metadata by 

present prototype system that has been developed to perform categorization of digital library 

recommendation system results. Also, we applied this automatic classifier based on a 

supervised machine learning algorithm, support vector machine (SVM) for classifying 

recommendation system results based on library metadata, user’s review and ratings. This help 

to improve prediction of item for users based on their needs and interests. 
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7.5 Similarity Measures. 

7.5.1 TF-IDF Term Frequency Inverse Document Frequency similarity. 

TF-IDF is a feature vector that helps to compute semantic similarities between text. TF-IDF is 

an abbreviation for Term Frequency-Inverse Document Frequency, is algorithm that used to 

transform a text into numbers. 

 

where, tfi,d is the number of occurrences of i th term in document d, dfi is the number of 

documents containing i th term, N is the total number of documents (Sitikhu et al, 2019). We 

used fidfVectorizer which is transforming text to feature vectors that can be used as input to the 

estimator. We applied it on Abstract and title as shown below: 

 

Figure 77: Fi-DF Vectorizer for Arabic language. 

 

  

Figure 78:TF-IDF Matrix for Arabic Language. 
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7.5.2 Cosine similarity. 

The Cosine Similarity is finding the similarity between items. It is a symmetrical algorithm, 

which means that the result from computing the similarity of source A to source B is the same 

as computing the similarity of source B to source A 

 

7.5.3 Jaccard similarity (JS). 

Is finding textually similar documents in a large corpus or data such as news. Jaccard similarity 

is looking to find text at character-level similarity not meaning. (Niwattanakul et al.,2013). 

Jaccard similarity measurement by coefficient between two datasets is the result of division 

between the number of features divided by the number of properties as shown below: 

𝐽𝑆 =
|A ∩  B|

|A ∪ B|
 

For example, Consider two sets A = {8, 9, 2, 4, 6} and B = {0, 8, 6, 5, 7, 2} 

𝐽𝑆 =
|{8,6}|

|{0,8,6,5,7,2,4,9}|
=

2

8
= 0.25 

7.5.4 Semantic Similarity. 

Semantic similarity measure is one of the most important tools in the recent years. It has a great 

interest Natural Language Processing (NLP).  It is an important role in the field of linguistics, 

especially those related to the similarity of words meaning based on paradigmatic relations. 

Semantic similarity measures compute the similarity between ideas included in knowledge 

sources by measure distance between items based on the likeness of the meaning. There are 

many tools for semantic similarity such as WordNet and Word2Vec. In addition, Word2Vec is 

an open sourced word embedding training toolkit. Word2vec was created and published in 2013 

by Tomas Mikolov at Google (Mikolov et al., 2013). 

 

n 

similarity(A,B) = 
A·B L A; XB; 

i=1 
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Figure 79:Examples of the word pair relationships by Mikolov (2013). 

 

Figure 80: Flowchart of Semantic Recommender System Based on Metadata. 

 

7.6 Top N Accuracy metrics. 

The evaluation of the performance of these methods was done by measuring the top-N accuracy. 

Top N accuracy is the conventional accuracy in which the answer from the model must be the 

expected answer. (Sitikhu et al.,2019). So, the subjects of each source the most similar sources 

were checked and compared. If sources are in the same subjects then it is noted as correctly 

classified, otherwise not. We used title, abstract for creating model and comparing results. 

7.7 Experimental works. 

In our experimental work, we are going to extract metadata and datasets from Saudi digital 

library website. We used Support Vector Machine classification-based method for metadata 

extraction (SVM) algorithm. In addition, Dublin Core it used as a metadata standard and defines 

15 elements for resource description: Title, Creator, Subject, Description, Contributor, 

Publisher, Date, Type, Format, Identifier, Source, Relation, References, Is Referenced By, 

Language, Rights and Coverage (Han et al. ,2003). We classify the Subject, Title and Abstract 

( 
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of the metadata into 28 classes for Arabic dataset and 14 for English dataset. Then we applied 

similarity techniques on metadata to find the relationship between users and resources for both 

languages Arabic and English. Moreover, in our experimental work, we used cosine similarity, 

Jaccard similarity, TF-IDF similarity and semantic similarity to find the relationship between 

source title and Abstract. We used these four methods to find firstly the best method to 

representing words. After that we used Convolutional Neural Network (CNN) to improve the 

text classification and gives good result for both datasets. Additionally, we applied RNN and 

Long Short-Term Memory (LSTM) because RNN shows poor result when it used alone LSTM 

gives good result as shown in result section. Besides, in this experimental study we produced a 

high-performance recommender system for digital library by using hybrid deep leaning 

techniques based on metadata for both languages Arabic and English. 

7.7.1 Datasets. 

Dataset is from Saudi Digital Library (SDL) which was established to provide an advanced 

information services, including making available digital sources of information, and making it 

accessible to all researchers and students. In addition. SDL contains the largest gathering of 

digital information sources in the Arab world, as it currently contains more than (446) digital 

books with full texts and (169) global and Arabic data base that includes the full texts of millions 

of academic articles and more than (5,200,000) million university theses and (461) A thousand 

of multimedia includes images and scientific films in various scientific disciplines, which fall 

within the scope of interest of educational institutions and were obtained through more than 

300 international publishers.  We used Saudi Digital library resources dataset by using data 

mining techniques and extracting data from library website.  The data is extracting for both 

Arabic and English languages. We have 10.000 resources for both languages. The datasets have 

different categories which are (Computer science, Education, Electronic computer, Human 

computer interaction, Technology, Children and Islamic History. Furthermore, dataset contains 

Metadata of each resource such as title, Author, abstract, categories and description. As shown 

below:  
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Figure 81: Dataset metadata for Arabic language. 

 

                                    Figure 82: Dataset metadata for English language.                        

7.7.2 Data processing. 

In each dataset, we clean it up as dataset contained only English and Arabic metadata. All text 

converted to lowercase, delete the white space like commas and brackets. Moreover, the text 
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has been split into one sentence per line. However, Arabic language has a different mechanism. 

We removed punctuation, comma and white space. All these processing was in, Title, Abstract, 

Subjects and Journal title. Furthermore, we clean text which is the most important part because 

different approaches in text cleaning can lead to very various results during model training. In 

addition, we used Subjects features which contain keywords we build this function to transform 

the Subjects into a list of keywords. Moreover, we computed similarity between two documents 

as flowing steps: first we gave the title similarity a weight of 3.5 then abstract similarity a weight 

of 4.0. After that subject’s similarity a weight of 1.5 and the journal similarity a weight of 1. 

The similarity between two documents is then: 

𝑆𝑖𝑚𝑖𝑙𝑖𝑟𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥

= 𝑡𝑖𝑡𝑙𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

+  𝑗𝑜𝑢𝑟𝑛𝑎𝑙 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 

If a feature does not exist, we do not consider it in the final score, for instance a document does 

not have a title, then the similarity score will be computed following: 

 

𝑆𝑖𝑚𝑖𝑙𝑖𝑟𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 = 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 +  𝑗𝑜𝑢𝑟𝑛𝑎𝑙 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 

 

 All these processes are required Pre-processing steps to reduces the size of the input text 

documents and this called Tokenization which helps to divide the textual information into 

individual words. We used the split() function to split the loaded document into tokens 

separated by white space and we used NLTK to remove English and Arabic stop words. 

Besides, we used word Embedding methods such as Wors2Vec and Fasttext. Also, we used 

python libraries for many functions. 

 

7.7.3 Results: 

7.7.3.1 SVM Classification 

In Arabic dataset we used 28 classes and in English dataset we used 14 classes that are going 

to extract the text from Abstract and title to classify a document into a Subject automatically as 

shown below: 
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Figure 83:Classification classes for Arabic Dataset. 

 

 

Figure 84:Classification classes for English Dataset. 

Moreover, some classes are underrepresented, they have only 1 member and in order to split 

the dataset we need to add at least one example to these classes. 
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Figure 85:Saudi Digital library metadata for Arabic and English datasets. 

Performance is evaluated using accuracy for both datasets based on title and abstract classifiers. 

Arabic dataset for title classifier gives 91% accuracy more than English dataset which gives 

70%. Besides, Arabic dataset for abstract classifier gives 93% accuracy more than English 

dataset which gives 73% as shown on table 18. In our view, these results are English dataset 

classes of subjects are overlapping which make accuracy low and it cannot handle by SVM.  

Table 18:SVM classification model accuracy 

 
title_classifier abstract_classifier 

Arabic Dataset 
91% 93% 

English Dataset 
70% 73% 

In addition, we Compute title vector by averaging the words within title and compute abstract 

vector by averaging the words within abstract. From accuracy results we can see that both 

datasets got good accuracy and the test classifier gives right prediction as shown below: 

 

 

Figure 86: SVM prediction model for Arabic Dataset based on title and abstract. 

 

Title Subjects Abstracts 

2454 Creation of a consulting tool and LCC:Computer engineering. Computer In this paper, a manual ontology for a 
implementati ... hardwareLCC ... Compute ... 

2455 Computer Science and Metaphysics: A Computer ScienceMathematics Computational philosophy is the use of 
Cross-Fert ... mechani ... 

2456 Educated to Learn : How to enhance the UPSALLA1 The very nature of computer science 
educati ... with its c ... 

2457 Training future teachers in natural Computer ScienceMathematicsPhysics The monograph defines the conditions 
sciences a ... (Other) of traini ... 

2458 Survey on Perception of People 
LCC:Technology (General)LCC:Science 

this research explores the manipulation 
Regarding Utili ... of bio ... 

Classification of document with title: ...,JWI ._:,__,ill ~ ~~y, :;.r- .lll 

The predi c tion lab e l according to title is: :i.1...\.SJI c.JL.=~1 
The predicti on lab el according t o abstract is : ... ,;r";y,,._, r I -.,.,l'-11 
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Figure 87:SVM Prediction Model for English Dataset based on Title and Abstract. 

Moreover, SVM classifier has shown significant dimensionality reduction and accuracy 

improvement in text classification. 

7.7.3.2 Similarity Methods. 

In similarity methods. We used the same title for all methods to compare the similarity scores 

and accuracy based on Top N accuracy. We   recommended three sources similar to source title 

in Arabic dataset. 

(الآلات والتعلم العميق)         . 

The cosine similarity gave score as show in the table below: 

Table 19:Cosine similarity results for Arabic dataset. 

 

 

From Table 19, we can see that the highest score is 0.34. In Jaccard similarity the highest score 

is 0.34 the same as cosine similarity, however, the other titles gave score high than cosine 

similarity as show below: 

Classifi cation of document with title : DEEVA : A Deep Learning and IoT 
Based computer Vision system to Address Safety and security of 
Production sites in Energy Industry 

The prediction label according to title is : Deep Learning 
The prediction label according to abstract is : Machine Learning 

Title Subjects Si m i larity 
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Table 20:Jaccard similarity results for Arabic dataset 

 

 

TD-FID similarity gives better score which is 0.52 as shown in the table below: 

Table 21:TD-FID similarity results for Arabic Dataset 

 

The last method is Word2Vec semantic similarity which gives a good score compared to other 

which is 0.63 which is considered good score and distance as shown in the table below: 

Table 22:Word2Vec semantic similarity results for Arabic Dataset 

.                             

 

In English dataset we used recommend item based on this title (Gender trends in computer 

science authorship) the cosine similarity gave 0.06 to 0.09 for recommender sources as shown 

below: 

Title Subjects Similarity 
Score 
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Table 23:Cosine similarity results for English Dataset 

 

Jaccard Similarity gave better result than cosine similarity which is 0.4 as shown below: 

 

Table 24:Jaccard Similarity results for English Dataset 

 

In addition, TD-FID similarity gave 0.5 which is better than JS as shown below: 

Table 25:TD-FID similarity results for English Dataset 

 

Besides, semantic similarity based on Word2Vec gave best score which is 0.7 similarity to 

source title that given as shows below: 

Title Subj e cts Similarity 

Sc ore 
Advance gender prediction too l Sc ienc e and T e chnology 0 .06 
o f fi r .st name.s and its u.se in 
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er Sci e n ce Capstone Proj e cts a 
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Title Subjects Simit.1rity 
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a nal.y:,ing gender di:,parit.y in 
Co,aput.'"r Sci .. nce in t.h'" UK, H<> 
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.,r Sci,.nc., Cnp,.tone Project" .. 
nd Stude n t Outco mes 



 

Chapter 7                                                                                                                                      128  

Table 26:Word2Vec semantic similarity results for English Dataset. 

 

7.7.3.3 Top N Accuracy. 

We calculated accuracies based on total correct recommended sources for both datasets as 

shown below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
total no of correctly recommended sources  

Total no of sources
∗ 100 

We used SDL datasets for Arabic and English languages and recommended items based on 

Title, Subject and Abstract as metadata of digital library. We 2447 items under computer 

sciences categories for English dataset and 2098 items for Arabic dataset. In addition, each 

similarity method has different accuracy and semantic method gave a great result than other 

because it depends on meaning rather than antonyms and synonyms as shown in the table 

below: 

Table 27:Accuracy results for English and Arabic Datasets for similarity methods 

 

From Table 27, semantic similarity for Arabic dataset has good accuracy which is 96% and 

84% for English dataset. Arabic dataset used a specific Arabic language library for Python 

which helps to remove unnecessary characteristics and remove diacritics. The recommender 

system based on semantic similarity has been recommend items more than other methods 

because other similarity methods depend on the weight of words not on the meaning and there 

are many items on dataset have different words which related to the same meaning which other 

Dataset 
Cosine 

Similarity 

Jaccard 

Similarity  

TD-FID Semantic 

similarity  

SDL Arabic 
30% 20% 20% 96% 

SDL English 
4% 55% 14% 84% 

Titl e Subj ects S i milarity 

Score 
Adva nce gender prediction tool Science and T echnology 0.66 
of firs t name s and i ts u s e i n 
analysing gender di.:s:parity i n 
Computer Science in the UK , Ma 
l ay.s ia and C hina 

I nve.stigat i ng the I nter.sect i o n Computer Science - Human- Computer 0.5 
o f Sc i ence Fictio n, Human ~ Comp Inte raction computer sc ience 
ute r I nte raction and Compute r 
Science Research 

Effective Asses s ment o f Compu t Computer Science 0.7 
e r Sc i e n ce Cap.ston e Pro j ects a 
nd Student Outcomes 
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methods cannot detect. For example, we recommended sources based on (Gender Balance in 

Computer Science and Engineering in Italian Universities) Title and the highest recommended 

item is (When Human-Computer Interaction Meets Community Citizen Science) if we are 

looking on the abstracts and categories of both titles and used the Cloud word for each abstract 

of title and recommended item we can see that, the (Science word and computer are the most 

used ). However, the meaning of both articles is about applying computer science on community 

and how human computer interaction impact the community and society. Hence, the semantic 

method is depending on the meaning rather than the words distance. As shown below: 

 

 

 

Figure 88: Cloud Words for English Titles. 

Moreover, for Arabic language we use title [ العم والتعلم  يقالآلات  ] the highest recommended is 

 if we look on the abstracts of both items we [الذكاء لاصطناعي والتعلم الالي والتعلم العميق .. كيف نميز  ]

found that both articles describe how can the intelligent artificial effect deep learning and how 

we can make differences between them and the most words used are [Deep learning( يقوالتعلم العم ) 

and intelligence(الذكاء) ] as show in the cloud words below: 
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Figure 89:Cloud Words for Arabic Titles. 

 

From the results, applying machine learning and deep algorithms with metadata can improve 

digital library recommendation system and provide a new way to use digital library 

recommendation system. 

 

7.7.3.4  Convolution neural networks (CNN) Text classification.  

We used the same datasets and classes of SVM classifier. CNN is a class of deep, feed-forward 

artificial neural networks can improve the metadata classification for production to build digital 

library recommendation system. We are using accuracy to evaluate the model. From results 

CNN text classification for English dataset based on title classifier gives 93.70% accuracy than 

Arabic dataset which gives 88% which is better than SVM classification model. Also, abstract 
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classifier for English dataset improved the accuracy and gives 90% rather than SVM 

classification which gave 70% as shown in Table 18. From my point of view, CNN has 

approved good results in many fields on computer sciences and shows good performances on 

many experimental works. SVM works relatively well when there is clear margin of separation 

between classes because that is giving good result for Arabic dataset. 

Table 28:Result of CNN text classification for English and Arabic datasets 

 

 

We test the classifier for both dataset and gives good prediction as shown below: 

 

Figure 90:CNN prediction model for Arabic Dataset. 

 

 

                                      Figure 91: CNN Prediction Model foe English Dataset.    

7.7.3.5 RNN and LSTM. 

RNN model shown poor result for both datasets because RNN cannot capture information from 

input text and the ratio of classes is highly different as well as it the Abstracts are long. Hence, 

we used LSTM to improve the results. LSTM gives good performance for Arabic dataset more 

than English dataset as shown in  Table 29. For Arabic dataset title classifier give accuracy 86% 

and 44% for English dataset. Also, abstract classifier gives 81% accuracy for Arabic dataset 

title classifier I abstract classifier - -
,_____ 

Arabic Dataset 88% 93% 

English Dataset 93.70% 90% 

Classif ication of document with title: +o).:i ..;.ll ~ I ~ IJ ¼hill ~ .. 1_)]1 ..::...1..J4-- ~ 
~ l.ll:' )' I V""'G..11 .....i...::J I j 

The prediction l abel according to t i tle is: -.s-lJp)'I F l 
The prediction l abel according to abstract is: ... ~ Jp~ I F l 

Classification of doc ument with title: Pedagogical problems encountered by teachers of English to Computer Science students 
in the Indonesian context 

The prediction label according to title is: Human-Computer Interaction 
The prediction label according to abstract is: Human-Computer Interaction 
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and 45% for English dataset. We test the model to see if it is working for predication.  The 

Figures 92 and 93 show that the model is working well. 

 

Table 29:Result of LSTM model for English and Arabic datasets. 

 title_classifier abstract_classifier 

Arabic Dataset 86% 81% 

English Dataset 44 % 45% 

 

We test the classifier for both dataset and gives good prediction for title but not very accurate 

for Abstract because the performance of RNN is poor on full text, but it is strong on titles as 

shown below: 

 

Figure 92: RNN and LSTM prediction model for Arabic Dataset. 

 

 

Figure 93: RNN and LSTM prediction model for English Dataset. 

 

7.8 Chapter Summary. 

This chapter presents the methodology we followed to construct our metadata digital library 

recommender system. First, the metadata for SVM, CNN, RNN and LSTM classifications were 

parsed for titles, subjects and Abstract and stored in a text file to be distributed among nodes. 

Classificat ion of document with ti t le : .,,..s, ~I • LS.LIi ~ ~ 

o .J ..,_b...i....o u ~ <l...,>.J ~ J 4--J:, J ~ j u Lo I ~ I ~ ~ _9---J J ~ I ~ I J 

o_p-.s--J I .,...U: ._j~ 

The prediction label according to title is : .,,..s, Li...,_J 1 ~ LS LJ 1 

The predict ion label according t o abstract is : .,,..s, ~I ~ L5Ll l 

Classification of document with t itle : Gender trends i n computer science aut horshi p 

[15] 
The prediction l abel according to title i s: Information Technology 
The prediction l abel according to abstract is: Informat ion Technology 
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Then the classifiers process begins by preparing the system for title and abstract. In addition, 

text pre-processing is applied to the title, subjects and Abstract, by applying cleaning, 

segmenting and stop-word removal techniques for both Arabic and English datasets. However, 

text pre-processing for Arabic is different from English each dataset has its process. The third 

step involves applying similarity method, called the semantic similarity, because it shows good 

performance accuracy for both datasets as compared to the Cosine, TD-IDF and Jaccard 

similarity. Next Chapter summarises the results and findings from this thesis, discusses the 

challenges and proposes directions for future research, and the thesis concludes with references 

and bibliography related to this work. 
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Chapter 8 Conclusion and Future Works 

The main objective of this thesis is to enhance performance for digital library recommendation 

systems. This thesis also provides an alternative way to alleviate the problems with 

recommendation problems involving cold starts, by using metadata and deep machine learning 

techniques. The novel computation framework proposed algorithmic approaches to examine the 

relationship between users and resources based on ratings, sentiment analysis and metadata. The 

main idea is to understand how the novel recommendation system developed is likely to generate 

what users want, according to their relationship with system, in terms of previous behavior, and 

other similar users’ behavior. Also, while most of the investigations focused on English language, 

multilingual contexts were explored as well, particularly the Arabic language context. While there 

are several works available for English Language, here is a limited amount of work in the case of 

the Arabic language, and some of the findings in this thesis can contribute significantly to the 

body of knowledge in this field, as the Arabic language is one of the rich morphology based 

languages that need more and efficient approaches for analysing the sentiments from Arabic text 

processing, and  ratings classification for building multilingual digital library recommendation 

system in future.  

This thesis has proposed a new computational framework and algorithmic model to use explicit 

ratings, user's feedback expressed as text-based sentiments and metadata to describe knowledge 

regarding user information needs. The novel algorithmic models have been proposed to enhance 

performance of recommender systems by processing multiple channels of feedback, including 

the use of  new users’ preferences, when there is limited information about these users by using 

deep machine learning techniques and used user's' feedbacks from explicit and implicit ratings 

about sources. The contributions made in this thesis allow extending the data mining techniques 

for improve digital library borrowing system services and personalize the services, by capturing 
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user’s preferences.  Further, by including multilingual contexts, as well as RDA and metadata 

information, and using open source tools and datasets, the user experience and personalization 

with large scale search and retrieval systems, such as digital library systems, can be extended to 

several other languages and dialects in the world. The novel deep learning models proposed in 

this work improve the quality of item recommendations. The combination of user feedbacks from 

rating and sentiment analysis with the item metadata representation, based on the deep machine 

learning lead to improved performance of digital library recommendation systems. The 

experimental evaluation was done on the different real world publicly available data sets collected 

from the BookCrossing community, the Amazon website such as (Amazon digital music, Food 

fine Amazon and Amazon book), MovieLen20M, Arabic Movie, Booking hotel, as well as in-

house dataset with Librarika open source platform, and a private dataset obtained with necessary 

approvals (The Saudi Digital Library -SDL datasets) . 

To summarise, this thesis proposes four novel deep learning approaches to improve the 

performance of the digital library recommendation system and reduce the new user (cold-start) 

problem,  which are the CFMDNN, the MCNN, and use of multilingual sentiment text, and the 

Metadata  in the deep learning Models.  The experimental results were compared with the state-

of-the-art baseline approaches and other experimental results reported in the literature. It was 

found that the proposed recommendation models can quality of digital library recommendations, 

and improve the state of the art, particularly for multilingual contexts. 

8.1 Research Challenges. 

Recommendation system for digital libraries needs to be more flexible and dynamic because 

models will need to develop according to changing in terms of time and space. This thesis work 

focussed on making contributions to this end. However, datasets were difficult to find, because 

libraries do not keep user records, as most digital library systems are based on American 

systems and due to privacy concerns. This problem is more acute if sentiment-based 
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recommendations in multilingual context are needed, such as for the Arabic language contexts, 

as publicly available datasets were so limited.  

 

8.2 Future works. 

The research presented in this thesis has opened new opportunities for future research, some of 

which are summarised below: 

• The main idea of this thesis is to make use of the relationship between users and 

items based on different deep machine learning techniques, and building 

recommendations for digital library like application contexts, by including user 

feedbacks, preferences, explicit ratings, sentiments, and metadata. This 

relationship between users and items should be explored further for improving the 

quality of recommendations and user profiling, without compromising the privacy 

issues. To this end, some of the recent privacy preserving data mining and deep 

learning approaches could be the future directions coming out of this work. 

Particularly, in multilingual contexts, novel word-embeddings that are privacy 

preserving, could be promising to improve the quality and performance of 

recommender systems. Therefore, this thesis work can be extended further by 

focussing on privacy preserving deep learning techniques for improving the quality 

of recommendations for complex application scenarios, such as multi-lingual 

digital library systems, that may include implicit and explicit ratings, sentiment 

text feedback as well as the metadata information.   

 

• Digital libraries provide information services for users who have diverse needs. 

Due to the large amount of data that archived in digital library systems, including 

text, and multimedia resources, and information about different users, it is quite 

challenging to maintain the conflicting requirements of privacy and user-

experience, as inherently focus towards privacy, can make it less user-friendly. As 

main aim of recommendation system is to provide personalized experience to users 

in large scale search and retrieval environments, such as multi-lingual digital 

library systems, some of the future research efforts need to be towards the 

appropriate redesign of cataloguing standards, used in the current modern digital 

library systems, so that  quality of the user experience is improved with better and 

personalized recommendations, without compromising the privacy aspects. 
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• One of the key elements of any projects that use data mining techniques and deep 

learning are the amount and quality of the data available. It would be useful if more 

publicly available datasets are available for complex application scenarios as 

discussed in this thesis.  

 

• The findings in Chapters 4, 6, 7 have shown that the deep machine learning, data 

mining and neural networks are ideal computational approaches to predict user's 

opinions from the text in multilingual contexts, and used for improving the quality 

of recommendations. While this work has focussed on Arabic and English 

languages,  which have different morphologies and structures, this could be useful 

to extend the same models to other languages, as well, leading to a global 

recommendation system application, that can interpret user feedback expressed in 

multiple different languages. Although the combination of techniques used in this 

thesis has produced very good results.  

 

• Further research is planned in collaboration with the Saudi Digital library and 

university libraries in Saudi Arabia and Australia to obtain actual datasets of 

libraries and users and extend the proposed models and computational framework 

proposed in this thesis. 
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