

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

Progger 3: A Low-Overhead,

Tamper-Proof Provenance System

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Master of Cyber Security

at

The University of Waikato

by

Tristan Corrick

2021

Abstract

Data provenance, which describes how data is accessed and used since the time

it is created, is a valuable resource with a wide range of uses. It can be used

simply to know who has accessed one’s data, or be used in more complex sce-

narios such as detecting malware. One method for collecting data provenance is

to observe system calls. This thesis presents Progger 3, a system that observes

system calls on Linux in order to collect data provenance. There are several

existing provenance systems that observe system calls, but they have limita-

tions regarding security, efficiency, and usability. Progger 3 remedies many

of these limitations. As a result, Progger 3 is a working implementation of a

provenance system that can observe any system call, guarantee tamper-proof

provenance collection as long as the kernel on the client is not compromised,

and transfer the provenance to other systems with confidentiality and integrity,

all with a relatively low performance overhead.

Acknowledgements

I would like to thank my supervisor, Dr Vimal Kumar, for his guidance and

support with my work. I would also like to thank the University of Waikato

and the STRATUS project for providing a Research and Enterprise Study

Award, which provided financial assistance with this research.

Contents

1 Introduction 2

1.1 Design goals of Progger 3 . 4

1.2 Thesis outline . 5

2 Background 6

2.1 System calls . 6

2.2 Kernel space and user space 7

2.3 TPMs . 7

2.4 Trusted kernels . 8

2.5 XChaCha20-Poly1305 . 9

3 Existing Provenance Systems 11

3.1 Progger 1 . 12

3.1.1 Kernel-only implementation in Progger 1 13

3.2 Progger 1 trusted framework 14

3.3 Progger 2 . 14

3.3.1 Kernel-only implementation in Progger 2 15

3.4 PASS . 16

3.5 CamFlow . 17

3.6 Sysdig . 17

3.7 SystemTap . 18

3.8 bpftrace . 18

3.9 Comparison to Progger 3 . 19

4 The Architecture of Progger 3 21

4.1 Chapter outline . 22

4.2 An overview of Progger 3 . 22

4.3 Record format . 24

4.3.1 Header format . 25

4.3.2 Body format . 25

4.3.3 Server JSON output 28

4.4 Kernel-only operation . 29

v

4.4.1 Trusted kernels . 29

4.4.2 Kernel-only implementation in Progger 3 30

4.4.3 Conclusion . 31

4.5 Cryptography . 32

4.5.1 Confidentiality . 33

4.5.2 Integrity . 33

4.5.3 Cryptography approach in Progger 3 33

4.5.3.1 Private key storage 36

4.6 Trusted platform module . 38

4.6.1 TPM provisioning . 39

4.6.2 TPM unsealing . 40

4.6.3 TPM benefits . 41

4.7 Performance improvements . 41

4.8 Ability to trace any system call 42

4.9 Stability . 44

4.10 Maintainability . 45

4.11 Conclusion . 46

5 TPM Usage Proof of Correctness 47

6 Evaluation 51

6.1 Impact on system throughput 52

6.1.1 Impact on CPU throughput 53

6.1.1.1 Time to compile Linux 5.8.3 53

6.1.1.2 Time to compile Linux 5.8.3 with no traced

system calls occurring 58

6.1.1.3 Impact on a CPU-bound program making no

system calls 60

6.1.2 Impact on network throughput 60

6.2 Impact on system latency . 61

6.2.1 Impact on a system call being traced 62

6.2.2 Impact on a system call not being traced 67

6.3 Correctness . 69

6.4 Summary . 69

7 Discussion 71

7.1 Chapter outline . 71

7.2 Comparison with similar work 71

7.2.1 Progger 1 and a TPM 71

7.2.2 Detecting commands executed as a different user . . . 73

7.3 Future work . 76

vi

7.3.1 Utilising the disk to store buffers 77

7.3.2 User space network interface control 77

7.3.3 Task priority . 78

7.3.4 Copying system call pointer arguments 79

7.3.5 Reducing bandwidth usage 80

7.3.6 Information leakage . 80

7.3.7 Namespaces . 80

7.3.8 The Progger 3 server 81

7.3.9 Choosing which system calls to trace 81

7.4 Summary . 82

8 Conclusion 83

References 84

Appendices 88

A Progger 3 source code 89

A.1 Kconfig (diff) . 89

A.2 drivers/net/Makefile (diff) . 89

A.3 drivers/net/progger/Kconfig 90

A.4 drivers/net/progger/Makefile 90

A.5 drivers/net/progger/kernel/Kconfig 90

A.6 drivers/net/progger/kernel/Makefile 93

A.7 drivers/net/progger/kernel/crypto.c 94

A.8 drivers/net/progger/kernel/crypto.h 95

A.9 drivers/net/progger/kernel/generated/gen-ip.py 96

A.10 drivers/net/progger/kernel/generated/gen-syscalls.py 96

A.11 drivers/net/progger/kernel/init.c 98

A.12 drivers/net/progger/kernel/kthread.c 99

A.13 drivers/net/progger/kernel/kthread.h 100

A.14 drivers/net/progger/kernel/net.c 100

A.15 drivers/net/progger/kernel/net.h 104

A.16 drivers/net/progger/kernel/ringbuf.c 104

A.17 drivers/net/progger/kernel/ringbuf.h 107

A.18 drivers/net/progger/kernel/tpm.c 108

A.19 drivers/net/progger/kernel/tpm.h 116

A.20 drivers/net/progger/kernel/tracepoints.c 116

A.21 drivers/net/progger/kernel/tracepoints.h 124

A.22 drivers/net/progger/scripts/tpm/provision 124

A.23 drivers/net/progger/scripts/tpm/provision-inner 125

vii

A.24 drivers/net/progger/scripts/tpm/provision-setup 129

A.25 drivers/net/progger/server/Makefile 129

A.26 drivers/net/progger/server/crypto.c 130

A.27 drivers/net/progger/server/crypto.h 131

A.28 drivers/net/progger/server/server.c 131

A.29 drivers/net/progger/server/syscall-table.c 140

A.30 drivers/net/progger/server/syscalls.h 146

A.31 include/progger/compiler.h . 147

A.32 include/progger/crypto.h . 147

A.33 include/progger/net.h . 148

A.34 include/progger/record.h . 148

A.35 include/progger/types.h . 149

B The new-session program 151

List of Figures

2.1 TPM architecture overview [5] 8

4.1 Progger 3 configuration with make nconfig 23

4.2 Progger 3 configuration: tracepoints sub-menu 24

4.3 The record header format . 25

4.4 The RECORD SYSCALL X86 64 format 26

4.5 Format of messages sent over the network by Progger 3 34

6.1 Linux compile test results . 56

6.2 Linux compile test results . 59

6.3 Time taken for openat to complete 63

6.4 Median time taken for openat to complete 65

6.5 99th percentile of the time taken for openat to complete . . . 66

6.6 Median time taken for openat to complete while not being traced 67

6.7 99th percentile of the time taken for openat to complete while

not being traced . 68

List of Tables

3.1 Comparison of Progger 3’s design goals with other provenance

systems, to the best of our understanding 20

6.1 Real time to compile Linux 57

6.2 Real time to compile Linux, no traced system call occurring . 59

Chapter 1

Introduction

For a set of data, its provenance is the metadata that is required to answer

certain questions about the history of that set of data [1]. These questions may

include: “Where did this set of data originate?”, “What transformations has

this set of data undergone over time?”, “Who has used this set of data?”, and

“How was this set of data obtained?” [1]. This thesis uses “provenance” on its

own to mean “data provenance”. No other types of provenance are discussed.

Provenance is a powerful tool that has the potential to solve many prob-

lems. For example, in an experiment it can provide a link between final results

and initial parameters, even when the data passes through many complex

stages [1], aiding in scientific reproducibility. Furthermore, if one separates re-

sults into expected and unexpected, comparing the differences in provenance

between the two groups can be used to help identify the cause of the unex-

pected results [1]. This is especially useful for software debugging, and also

allows retroactive debugging. To give a final example: provenance can as-

sist with system intrusion detection, by monitoring for abnormalities in the

provenance that is being generated.

The exact metadata constituting provenance is not fixed. Instead, there

are multiple approaches to collecting provenance. One might choose to trace

C library calls an application makes, for example, or instead choose to trace

system calls. The approach of tracing system calls to collect provenance is

3

what the focus of this thesis is.

To give a more concrete example of tracing system calls to collect prove-

nance, consider the provenance consisting of records of all open , openat , and

openat2 system calls executed by Linux on a given system. These records

could contain the system call arguments, such as file paths, the time the sys-

tem call occurred, the user making the system call, as well as whether the

operation was successful. This provenance, in particular, could be useful for

monitoring system intrusion.

Provenance is collected by provenance systems. This thesis presents Prog-

ger 3: a low-overhead, tamper-proof provenance system. Progger 3 traces

Linux system calls in order to collect provenance. As its name suggests, there

have been two earlier iterations of Progger on Linux.

The first iteration was Progger 1. Progger 1’s name is really just “Prog-

ger”, but we have retroactively named it Progger 1 to distinguish it from later

iterations. Progger 1 was created by Ryan K. L. Ko and Mark A. Will [2].

The second iteration, Progger 2 was developed at the University of Waikato,

but has not seen a public release. It began to use tracepoints to observe system

calls, rather than rewriting the addresses of system call functions as done by

Progger 1.

Given these two iterations, there were still problems that could be re-

solved. Primarily: performance. When using Progger 1 or Progger 2, our tests

showed a considerable reduction in system performance. Additionally, Prog-

ger 2 showed instability in our tests, causing user space programs to experience

segmentation faults, and causing system crashes. Both Progger 1 and Prog-

ger 2 have only a limited set of system calls that can be traced. Also, they have

user space components or bugs that mean they are not kernel-only provenance

systems, and hence prone to a malicious user space tampering with provenance

collection to some extent. Neither offers confidentiality and complete integrity

of data as it is transferred over the network. There is a proposed framework

for Progger 1 that provides this transit confidentiality and integrity [3], but

4

it requires an existing provenance client implementation, and it is also only

intended for a few specific use cases.

Progger 3 was created to remedy these issues. Progger 3 was designed to be

truly kernel-only so that a malicious user space cannot tamper with the prove-

nance at any stage. Progger 3 combines its kernel-only mode with a Trusted

Platform Module (TPM), which allows it to extend the tamper-proof property

to the provenance as it is sent over the network to a remote server. This is be-

cause combining a TPM with the kernel-only mode secures a cryptographic key

from user space. This has two effects. First, the provenance can be transferred

over the network encrypted, providing confidentiality and integrity, meaning

attackers on the network path cannot tamper with or read the provenance.

Secondly, as user space can never access the cryptographic keys, it cannot

generate false provenance records. Furthermore, Progger 3 was designed with

efficiency as a primary objective, and as such is realistically usable with many

workloads without causing an unacceptable drop in performance. It also has

the ability to trace any system call, greatly enriching the provenance that can

be collected. We believe that Progger 3 is the first iteration of Progger that

can realistically be used under a wide range of workloads.

1.1 Design goals of Progger 3

The following are the design goals of Progger 3. They are presented early, as

later sections will be clearer with these in mind. It is very important to keep

in mind that Progger 3 is designed to prevent an untrusted user space from

being able to maliciously impact Progger 3’s operation (in kernel space), as

some design decisions might seem counterproductive otherwise.

A The provenance system is kernel-only, meaning that user space cannot

alter the provenance system client’s code, configuration (except during

compilation), or any data generated by the provenance system client,

both at rest and at runtime.

5

B User space is never able to generate false provenance that would go un-

detected when received by the server.

C The provenance has confidentiality in transit.

D The provenance has integrity in transit.

E Collecting and transferring the provenance has a minimal performance

impact.

F Any system call can be traced.

G Provenance collection can begin before user space starts.

H The provenance system cannot be unloaded once loaded.

I The provenance system is stable; that is, crashes are rare.

J Existing APIs are used to trace system calls.

1.2 Thesis outline

Chapter 2 briefly explores some concepts that are fundamental to the under-

standing of later chapters. Chapter 3 investigates some existing provenance

systems and distinguishes them from Progger 3. Chapter 4 details the archi-

tecture of Progger 3 and explains how the architecture allowed Progger 3’s

design goals to be achieved. Chapter 5 proves the correctness of Progger 3’s

TPM usage. Chapter 6 evaluates the performance of Progger 3, as well as

some other relevant provenance systems. Chapter 7 discusses several aspects

of Progger 3, such as future work and similarities with other research. Chap-

ter 8 summarises the thesis. Finally, in Appendix A, the source code of the

implementation of Progger 3 can be found.

Chapter 2

Background

To aid with understanding the later chapters, this chapter will discuss some key

background topics relating to Progger 3. These topics are: system calls, kernel

space and user space, TPMs, trusted kernels, and XChaCha20-Poly1305.

2.1 System calls

System calls are functions that an operating system kernel provides so that

user space can request that the kernel perform certain operations. These exist

because the kernel is in charge of managing many aspects of the system, such

as file systems in many cases, so user space has to make requests to the kernel if

it wants to use the file systems. For example, Linux provides system calls such

as open to open a file on a file system, given a file path, and read / write to

modify that file.

The use of system calls in Linux is particularly relevant, as Progger 3 is a

Linux kernel module. There are over 300 system calls for x86-64, as of Linux

5.8 [4]. These range from performing file accesses, to creating new processes,

to networking [4].

Given how extensively system calls are required on Linux for accessing and

modifying data, observing the system calls and their arguments provides an

avenue for data provenance collection with high levels of comprehensiveness.

7

2.2 Kernel space and user space

When code executes on a system, it is generally in either kernel space or user

space. As the names suggest, kernel space is where code from the operating

system kernel executes, and user space is where code run by the users of the

system executes. These two spaces are isolated from each other, as kernel

space code has higher privileges than user space. This isolation is achieved

through several measures, such as having separate address spaces, so user

space cannot access the memory of kernel space. That is, unless the kernel

opts to offer this access to user space. This isolation is an important security

measure, as it means that errant user space programs cannot crash the whole

system by overwriting important structures in kernel memory. By making sure

the kernel doesn’t provide user space with any access that would subvert this

separation, it is possible to consider the code running in kernel space trusted

while considering the code in user space untrusted. This idea of a trusted

kernel and untrusted user space is fundamental to Progger 3.

2.3 TPMs

A Trusted Platform Module (TPM) is “a system component that has state

that is separate from the system on which it reports” [5]. In more concrete

terms, it is a device that provides cryptographic services to a system, such as

storing the state of the system as SHA256 hashes and encrypting data. Such

a device is generally useful when one has some level of distrust in the code

running on the system. This is because, by the TPM storing the state of the

system as a cryptographically secure hash, it is possible to determine if the

system is in a state that is considered good, and take actions dependent on

that. For example, as a system boots, it can verify each successive component

in the boot sequence, and represent this as a hash stored in one of the many

platform configuration registers (PCRs). Then, one can inspect these PCRs

to determine whether the system has booted using only trusted components.

8

TPMs have a wide range of uses, and as such are quite complex. In terms

of understanding their use with Progger 3, it is generally enough to know that

TPMs can reflect system state, as previously described, and seal data so that

the TPM must be used to decrypt it. Furthermore, the TPM can enforce that

decryption is only allowed when a PCR equals a particular value. This is the

mechanism that Progger 3 will use to secure cryptographic keys. An overview

of the components in a TPM can be seen in Figure 2.1.

Figure 2.1: TPM architecture overview [5]

2.4 Trusted kernels

There are many ways to achieve trust in the kernel on a running system. A

comprehensive explanation of how to achieve this trust is outside the scope of

Progger 3, but an overview is still relevant.

The first requirement to achieve trust in the kernel is that each component

in the boot process must verify the next. For a typical x86-64 system, starting

from the reset vector, the host firmware executes, such as BIOS/UEFI/core-

boot. The host firmware will perform its tasks, then verify the bootloader,

such as GRUB, usually through checksumming, and pass control to the boot-

loader if verification succeeds. Then, the bootloader is able to verify the kernel

in a similar manner and boot it.

Perhaps the most natural question to ask, when hearing about each com-

ponent verifying the next in the boot flow, is: what verifies the host firmware?

This can be done in many ways. One approach is to use a system that supports

9

Intel Boot Guard [6]. Using Boot Guard means that any firmware image not

signed by the system manufacturer will be rejected [7]. Alternatively, the host

firmware could write-protect the flash chip it resides upon, enforcing it either

through the platform controller hub [8] or the flash chip itself [9]. Flash chip

write-protection is different from verifying the host firmware signature at each

boot; rather, it ensures that the host firmware cannot be modified through

software. Only users with physical access to the system and the appropriate

hardware to write to the flash chips can modify the firmware. This approach is

preferable to some, as it means the owner has more control over their system.

Secondly, Linux must boot with lockdown=confidentiality set in the

kernel command line. For the lockdown parameter, specifying integrity

prevents user space from being able to alter the running kernel. Specifying

confidentiality maintains the restrictions from integrity while also pre-

venting user space from extracting secrets from the kernel [10].

With the above recommendations in place, the kernel can be considered

secure and trusted in case of a user space compromise. This is, of course,

barring bugs in the hardware, kernel, host firmware, and bootloader that might

allow an attacker to boot unsigned kernels, or alter the running kernel. It is

worth noting that there are other domains of execution on modern systems that

could alter the kernel at runtime. For an x86-64 system, System Management

Mode (SMM) is one such domain. Defending against attacks in these domains

is outside the scope of Progger 3, so we will leave the discussion at that.

With this knowledge, it should be possible to create a system with a trusted

kernel that can take advantage of Progger 3’s kernel-only mode.

2.5 XChaCha20-Poly1305

XChaCha20-Poly1305 is a cryptographic algorithm used in Progger 3 to pro-

vide confidentiality and integrity of provenance in transit. To understand

XChaCha20-Poly1305, this section first explores ChaCha20-Poly1305.

10

ChaCha20-Poly1305 is an Authenticated Encryption with Associated Data

(AEAD) algorithm [11]. It takes as input a 256-bit key K, a 96-bit nonce n (in

the IETF specification of the algorithm), a plaintext of arbitrary length, and

additional authenticated data (AAD) of arbitrary length [11]. The algorithm

produces a ciphertext that is the same length as the plaintext, and a 128-

bit tag t that is used for authentication [11]. To be clear, the plaintext is

encrypted, but the AAD is not. When decryption occurs, the input is K, t,

n, the ciphertext, and the AAD. This produces the plaintext, but only if the

ciphertext and AAD are successfully authenticated against t [11]. This means

that a ciphertext will fail to authenticate if a different set of AAD is present,

even if that AAD is valid with some other ciphertext encrypted with K.

XChaCha20-Poly1305 is essentially the same algorithm as ChaCha20-Poly1305,

but the nonce is 192-bits in XChaCha20-Poly1305 [12]. The larger nonce is

the reason that Progger 3 uses XChaCha20-Poly1305, and the reason that the

larger nonce is needed is discussed in subsection 4.5.3.

Chapter 3

Existing Provenance Systems

A large number of provenance systems exist today. Pérez et al. have re-

cently systematically reviewed provenance systems and identified 251 prove-

nance systems in total [13]. Provenance systems have a wide range of scope,

from database provenance, to specific scientific workflows, to operating sys-

tem events [1]. Progger 3 is based on operating system events, system calls

in particular. So, to keep the overview of provenance systems in this chap-

ter relevant, this chapter only covers provenance systems that trace operating

system events.

Provenance systems that are based on operating system events are impor-

tant for several reasons. Their use means that user space programs do not

have to be modified for collection of provenance and provides a wide overview

of activity on a system. It is also possible for a trust boundary between the

operating system kernel and user space can be established, as described in

section 2.4. With a provenance system operating in kernel space, collecting

data based on operating system events, one can have high assurances that the

provenance collected is accurate (in particular, has not been falsified).

This chapter explores existing provenance systems, and briefly analyses

how they differ from Progger 3. The exploration focuses mostly on the limi-

tations of these provenance systems; however, this is because we wish to show

where Progger 3 has made improvements. These systems certainly have their

12

own merits, but it is not always as relevant to detail them here. The improve-

ments Progger 3 has made over some of these existing provenance systems are

described in more detail throughout chapter 4.

At the end of this chapter, Table 3.1 summarises the existing provenance

systems explored in this chapter in terms of Progger 3’s design goals.

3.1 Progger 1

The first provenance system this chapter will look at is Progger 1. As previ-

ously mentioned, Progger 1 was created by Ryan K. L. Ko and Mark A. Will

[2].

Progger 1 collects provenance by monitoring a predefined set of system

calls, including, but not limited to, open , read , write , sendmsg . The log

format varies depending on the particular system call. The exact formats can

be found in [2], but it largely consists of the system call arguments, as well as

the user and process IDs associated with the current running task. The log

format is text-based, which leads to a slight decrease in the efficiency of data

transfer compared to a binary format. These logs are written to the kernel log

buffer with printk , and rsyslog takes care of transferring the logs to remote

systems.

In order to observe the system calls, Progger 1 rewrites the address of the

system call functions to ones defined by Progger 1, which wrap the original

system calls. This is not ideal, as the system call table is marked read-only,

and hardware write protection (bit 16 of register CR0) is temporarily disabled

for a short time to rewrite the function addresses. This gives a small window

of time where read-only data may be updated, whether maliciously or not,

which could harm the system.

One of Progger 1’s significant breakthroughs was providing a level of tamper-

evident logging, so that falsified provenance could be detected in many (but not

all) cases [2]. While the provenance collected by Progger 1 has some integrity,

13

there is no confidentiality when it is in transit [2].

Being a nascent development, Progger 1 had not been optimised much for

performance, so it can increase the execution time of the open system call by

up to 21,000% [2].

One notable issue is that Progger 1 is available only as a standalone module:

there is no option for it to be built into the kernel. So, there will be a gap

where provenance is not collected before user space loads the module.

3.1.1 Kernel-only implementation in Progger 1

This section will see how Progger 1 fares in terms of Progger 3’s design goal A.

Progger 1 is a standalone Linux kernel module, but there are some aspects that

are dependent on user space programs. One such program is rsyslog , used for

transferring collected provenance [2]. There are two classes of issue here: the

availability of the provenance, and the tamper-resistance of the provenance.

Some issues are:

1. The rsyslog process could be killed or stopped, preventing the prove-

nance from being logged.

2. A compromised root user could alter rsyslog so that it doesn’t transfer

certain provenance records, or adds false provenance records.

3. An arbitrary kernel module could generate false provenance records.

These issues are similar to, or were exactly specified, in [2]. The recom-

mended approach in [2] places trust in the rsyslog process by passing the

process ID of rsyslog to the kernel module as it is inserted. Unfortunately,

this means that, if rsyslog is killed, it will almost certainly respawn with a

different PID, so the provenance gathering would halt.

An approach presented by [2] to solve the issue of false records being added

was a hash-chaining approach. They came to the conclusion that such an

approach makes log tampering difficult, but not impossible [2].

14

So, Progger 1 is not a kernel-only implementation, and some issues arise

as a result. Yet, Progger 1 was never developed with an entirely kernel-only

mode as an objective [2].

3.2 Progger 1 trusted framework

M. M. M. Bany Taha explored creating a trusted framework built upon Prog-

ger 1 [3]. It has some similar goals to Progger 3; namely, providing confiden-

tiality and integrity for the collected provenance. However, it goes beyond

the scope of Progger 3 to present a framework that encompasses collecting

provenance from clients, securely storing the provenance in servers, then later

archiving the provenance. This framework uses software around an existing

provenance client in order to make improvements. Progger 3, meanwhile, ad-

dresses existing shortcomings by improving the provenance client itself. Due

to this approach, some issues in Progger 1, such as efficiency, are not dealt

with by this framework.

This framework is compared with Progger 3 in more detail in subsec-

tion 7.2.1, which shows more clearly why there is still a need for Progger 3

given the existence of this extension to Progger 1.

3.3 Progger 2

Progger 2 was developed at the University of Waikato, but has not seen a pub-

lic release. It began to use tracepoints in order to observe system calls, rather

than rewriting the addresses of system call functions as done by Progger 1.

Like Progger 1, it supports only a fixed subset of the available system calls. It

opted to create a direct TCP connection to a server for sending provenance,

rather than the rsyslog -based approach in Progger 1, removing the need for

user space components during run-time. As a whole, Progger 2 was, unfortu-

nately, quite unstable in our tests, causing system crashes when used. From

the brief evaluation in chapter 6, the performance hit was too high for many

15

workloads. For the provenance logged, there was no guarantee of integrity or

confidentiality. These issues can mostly be explained by the fact that Progger 2

had not finished development to at least a release-quality level.

As with Progger 1, Progger 2 is available only as a standalone kernel mod-

ule, so cannot capture provenance early in the boot process.

3.3.1 Kernel-only implementation in Progger 2

As done for Progger 1, this section evaluates how closely Progger 2 meets

Progger 3’s design goal A. Progger 2 is a standalone Linux kernel module. In

contrast to Progger 1, it doesn’t have any user space components.

There is at least one subtle but serious flaw in Progger 2: it uses sock_create

instead of sock_create_kern (which is what Progger 3 uses) to create the

socket used for sending the provenance over TCP. Following the code in Linux,

one arrives at the code found in Listing 3.1.

Listing 3.1: Linux’s inet6 create function

1 static int inet6_create(struct net *net, struct socket *sock,

2 int protocol, int kern)

3 {

4 [...]

5 if (!kern) {

6 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk);

7 if (err) {

8 sk_common_release(sk);

9 goto out;

10 }

11 }

12 out:

13 return err;

14 [...]

This means that, as the socket is being created, an eBPF program of the

type BPF_PROG_TYPE_CGROUP_SOCK can be run. This eBPF program, created

by user space, can determine whether to allow or block the creation of the

socket [14]. The code example above is specifically for an IPv6 socket, but this

holds true for IPv4 sockets too. Hence, user space is able to block Progger 2

from starting. Of course, it would be simple to replace the call to sock_create

16

with sock_create_kern , but this does highlight how easy it is to make subtle

mistakes.

Although not strictly related to being kernel-only, it is an opportune mo-

ment to point out that, since Progger 2 does not authenticate what it sends, a

malicious user space process could start generating false provenance. It could

be possible to detect this: consider receiving two streams of provenance at

once. However, combined with user space’s ability to deny Progger 2 from

starting, a malicious process could quite realistically masquerade as the legit-

imate Progger 2 process.

So, Progger 2 strived to be a kernel-only implementation, but there are,

unfortunately, some issues that stop it from getting there completely.

3.4 PASS

PASS [15] is a provenance system with a slightly larger scope than Progger 3:

it seeks to collect provenance through observing system calls, managing the

storage of the provenance, and allow queries to be performed on the provenance

[15, 16]. For storage, local file systems, network file systems, or cloud storage

can all be used [16].

PASS is a Linux kernel module, but to our knowledge has not described

steps to ensure that user space is unable to impact the operation of PASS

maliciously. Indeed, if transferring the provenance to the cloud, it is described

that a file system in user space (FUSE), named PA-S3fs, is used [16]. Fur-

ther, the authors of PASS state that work on provenance tamper-proofing is

complimentary to their work [16].

Additionally, although it is up to the user of PASS to configure their remote

file systems and cloud storage correctly, it would be possible to ensure the

integrity and confidentiality of the provenance in transit if the selected storage

mechanism supports it.

17

3.5 CamFlow

CamFlow [17] is a provenance system that has both user space and kernel

space components. Some of its authors were involved in the development of

PASS [17].

In kernel space, CamFlow has a Linux Security Module (LSM), as opposed

to a traditional Linux kernel module like each Progger iteration. An LSM is

able to provide code to run at specific security-critical points in the kernel [18].

The potential advantages of an LSM-based approach are briefly discussed in

subsection 7.3.9.

CamFlow doesn’t have the ability to trace only a select few system calls. In

fact, system calls are not its primary target: its LSM-based approach centres

around determining what objects are being accessed, rather than how the

objects are being accessed [17]. Still, it can collect provenance based on several

filters, such as provenance of specific files or users [17]. Whether this approach

is more useful than Progger 3’s depends on the particular user’s needs.

As CamFlow has user space components, it is not a kernel-only provenance

system. Of course, with different threat models, CamFlow’s architecture can

be perfectly suitable; but it doesn’t fill the niche that Progger 3 does.

Unfortunately, we experienced a kernel panic and a user space utility seg-

mentation fault after only a short time of testing, so stability has room for

improvement.

3.6 Sysdig

Sysdig [19] is not typically described as a provenance system, but it has the

capabilities to collect the same information from system calls as Progger 3.

It acts similarly to the Progger iterations: it has a Linux kernel module that

obtains provenance from system calls using tracepoints. It then writes that

provenance to a user space buffer, where user space utilities manage reading it.

It does not indicate a goal of tamper-proof provenance, and certainly, by design

18

does not prevent user space attacks. This is not surprising, as it presents itself

as more of a debug and system observation tool, not a security tool.

3.7 SystemTap

SystemTap [20] is very similar to Sysdig. All the information given in the

above section about Sysdig applies to SystemTap, except that SystemTap

uses kprobes as well as tracepoints. The main difference is in their features,

implementation, and performance. What is relevant here is their difference in

performance, with chapter 6 showing that SystemTap performs better gener-

ally.

3.8 bpftrace

bpftrace [21] is again not typically described as a provenance system, but can

be used as one, much like Sysdig and SystemTap. The main difference from

the other provenance systems explored in this chapter is that bpftrace uses

eBPF. (Sysdig can use eBPF, but its support is not entirely stable.) eBPF is a

way of running sandboxed programs within the Linux kernel, allowing access

to kernel programming interfaces while minimising the risk of errant programs

damaging the kernel [22]. With eBPF, both tracepoints, kprobes, and more

can be used to observe system calls. bpftrace makes it easy to compile an eBPF

program and get the program’s output into user space. The eBPF programs

are loaded into the kernel from user space, so naturally the provenance is not

protected from user space attacks. Again, this is not a security tool so much

as it is a debugging tool that happens to be able to function as a provenance

system.

19

3.9 Comparison to Progger 3

The design goals of Progger 3 are listed in section 1.1. As this thesis will later

show, they have all been met.

Table 3.1 shows how the provenance systems from this chapter fare in terms

of Progger 3’s design goals. None of the other provenance systems comes close

to meeting all of the design goals for Progger 3, and the difference is rather

marked when comparing Progger 3 to Progger 1 and Progger 2. As such, we

believe that the development of Progger 3 is justified and a useful contribution.

Progger 3 was tested on only two systems during development: one bare-

metal system, and one virtual machine. This may mask stability issues with

Progger 3, as any issues arising from system-specific quirks would have been

fixed during development. It is possible that, on a different system, Progger 3

could exhibit reduced stability. Still, the experience of developing Progger 3 did

not suggest much room for system-specific quirks to lead to reduced stability.

Hence, it is likely that Progger 3 is widely stable.

20

Design goal of Progger 3 (as given in section 1.1)

A B C D E F G H I J

Progger 1 × partial × partial × × × × a ? ×

Progger 2 × × × × × × × × × X

Progger 3 X X X X X X X X X X

PASS × × X X borderline [15] ? X ? ? ?

CamFlow × × N/A N/A borderline [17] N/A X × b × X

Sysdig × × N/A N/A borderline X × × X X

SystemTap × × N/A N/A X X × × X X

bpftrace × × N/A N/A borderline X × × X X

Table 3.1: Comparison of Progger 3’s design goals with other provenance sys-

tems, to the best of our understanding

aThe code indicates an attempt at preventing module unloading, but doing so hangs the

system.
bThe LSM component cannot be removed, but the user space components can be in-

structed to stop provenance collection.

Chapter 4

The Architecture of Progger 3

Section 1.1 presents the design goals of Progger 3. Progger 3 has achieved

all of its design goals, and this chapter will describe how the architecture of

Progger 3 lends itself to achieving those goals. These goals can be roughly

grouped into the following:

Efficiency. Progger 3 has been designed with efficiency as a primary objec-

tive. As can be seen in chapter 6, provenance systems such as Progger 1 and

Progger 2 have so much overhead that they reduce performance to levels that

may not be realistically usable. Progger 3 has remedied this, and is efficient

enough to be used in many real workloads.

Security. By using a TPM, as well as ensuring a true kernel-only mode of

operation exists, Progger 3 can essentially guarantee tamper-proof provenance

collection, even as the provenance is transferred over the network to a remote

server (assuming the kernel is not compromised).

Usability. Progger 3 allows one to easily select which system calls to mon-

itor, and supports tracing any system call. With Progger 1 and Progger 2,

the selection of system calls being monitored is fixed, and only a relatively

small subset of all system calls are supported. Additionally, Progger 3 is very

stable, meaning that it can be deployed with confidence and relied upon to

continuously collect provenance without crashing.

22

4.1 Chapter outline

Section 4.2 gives an overview of Progger 3, exploring what Progger 3 is capable

of and how it can be configured. Section 4.3 details the data format that the

Progger 3 client uses to send records of system calls to a server. Section 4.4

describes how Progger 3 ensures a kernel-only mode of operation to guard

against malicious user space activity. Section 4.5 discusses the cryptography

used in Progger 3 to ensure the provenance’s confidentiality and integrity. Sec-

tion 4.6 explores the way in which Progger 3 utilises a TPM to fully achieve

its cryptography and kernel-only design goals. Section 4.7 lists the steps taken

to achieve performance improvements. Section 4.8 describes how Progger 3 is

able to trace any system call without needing individual functions to support

each specific system call. Section 4.9 covers the level of stability shown by

Progger 3. That is, how much one can rely on Progger 3 to operate without

errors or crashes. Section 4.10 discusses how the design of Progger 3 allows for

easy maintenance and easy modification of features. Finally, section 4.11 sum-

marises Progger 3’s architecture and what Progger 3 has achieved by meeting

its design goals.

4.2 An overview of Progger 3

Progger 3 is a Linux kernel module that collects data provenance through

monitoring system calls. It uses tracepoints 1, an API of Linux allowing code to

execute on entry and exit of certain functions, in order to log information about

each system call. Progger 3 can be configured easily through Linux’s kbuild

system, by running make menuconfig or any other configuration interface, an

experience that will be familiar to many who have compiled Linux before. The

configuration interface is presented in Figure 4.1, and the tracepoint sub-menu,

which allows one to provide a regular expression to select which system calls

are traced, is presented in Figure 4.2. Any system call can be traced.

1This achieves design goal J

23

Figure 4.1: Progger 3 configuration with make nconfig

Values such as the system calls to trace and destination IP address have

to be set at compile time, and cannot be changed during run time. This is

because Progger 3 is designed so that user space cannot maliciously impact the

operation of Progger 3, say by setting the list of traced system calls to be empty,

or sending the (encrypted) provenance records to a different destination. This

partially achieves design goal A.

Every time a system call that Progger 3 has been instructed to trace oc-

curs, a provenance record is generated. There is currently no configuration to

generate records for only a subset of the system calls that have been selected

to be traced. For example, it is not possible to trace system calls made by only

a specific process. As just mentioned, configuration must be made at compile

time, not run time, and it is highly impractical to predetermine the PID of a

particular process, except the init process. A process is able to change its own

comm value, so that is not reliable either. Of course, process filtering can be

done later by a program that processes the data collected by Progger 3.

While there are some limitations with flexibility, as just described, these

limitations do exist for security purposes. In determining whether to use Prog-

ger 3, one should assess whether Progger 3’s security advantages are beneficial

24

Figure 4.2: Progger 3 configuration: tracepoints sub-menu

under their threat model, and weigh those advantages up against Progger 3’s

more limited flexibility compared to other provenance systems.

When it comes to transferring the collected provenance, Progger 3 sends

the data it collects over TCP to a server, which runs in user space. The

server can be running on the same host as the Progger 3 client (for testing and

debugging), or on a physically separate host that is reachable over the network.

The remote server, collecting provenance from potentially multiple Progger 3

clients, is assumed to have a trusted user space. The implementation of the

server can vary, but we have created an implementation that takes the data it

receives and prints it as JSON. The next sections will define the record format

Progger 3 uses to send data over the network, and then show the server’s JSON

output.

4.3 Record format

Each message Progger 3 sends across the network contains a set of records that

are encrypted and authenticated by XChaCha20-Poly1305. A record is com-

posed of two parts: a header and a body. The header allows for multiple record

types in the future, but currently there is only one: RECORD_SYSCALL_X86_64 .

25

4.3.1 Header format

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| length |

+-+

| ID | reserved |

+-+

Figure 4.3: The record header format

The record header format is set out in Figure 4.3. Its fields have the

following meanings:

• length — The length in bytes of the whole record, including the header.

A 4-octet field.

• ID — The ID of the record. A 2-octet field.

• reserved — A reserved value to ensure the data following the header has

a 4-octet alignment for performance. A 2-octet field.

4.3.2 Body format

Due to the record header just described, record types other than an x86-

64 system call record can be easily added in the future. However, currently

that is the only record that exists. Its record ID is RECORD_SYSCALL_X86_64 .

The format is set out in Figure 4.4. Each record represents one system call

occurrence. Its fields have the following meanings:

• tracepoint src — The tracepoint that is the source of the data. MUST be

either TP_SRC_SYS_ENTER (2) or TP_SRC_SYS_EXIT (4). Naturally, these

values respectively refer to the sys_enter and sys_exit tracepoints.

A 1-octet field.

• reserved — A reserved value so that successive fields have a 4-octet

alignment. A 1-octet field.

26

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| tracepoint src| reserved | system call number |

+-+

| |

+ timestamp +

| |

+-+

| |

+ system call return value +

| |

+-+

| process ID |

+-+

| user ID |

+-+

| effective user ID |

+-+

| |

+ system call argument 0 +

| |

+-+

| |

+ system call argument 1 +

| |

+-+

| |

+ system call argument 2 +

| |

+-+

| |

+ system call argument 3 +

| |

+-+

| |

+ system call argument 4 +

| |

+-+

| |

+ system call argument 5 +

| |

+-+

| |

+ system call string arguments +

| |

+-+

Figure 4.4: The RECORD SYSCALL X86 64 format

27

• system call number — The system call number, as given by Linux. A

2-octet field.

• timestamp — A timestamp representing the number of nanoseconds since

the system booted. Some other time formats, such as the real value of the

system clock, could be more desirable in some cases. However, the system

clock can be modified by user space, so it is not suitable. Furthermore,

the timestamp should be monotonic, which is not guaranteed of the

system clock. A 4-octet field.

• system call return value — The return value of the system call, if the

tracepoint source is TP_SRC_SYS_EXIT . 0 otherwise. A 4-octet field.

• process ID — The process ID of the process that made the system call,

as seen from the initial PID namespace. A 4-octet field.

• user ID — The real user ID of the process that made the system call, as

seen from the initial user namespace. A 4-octet field.

• effective user ID — The effective user ID of the process that made the

system call, as seen from the initial user namespace. A 4-octet field.

• system call argument 0..5 — The arguments to the system call. If, for

some n, the system call doesn’t use argument n, the system call argument

n field is undefined and should be ignored. Each is a 4-octet field.

• system call string arguments — If a system call takes a C-string for

an argument, its value will appear here. The strings are concatenated

from argument 0 to argument 5. Each string is limited to 4096 octets,

including the NUL byte. Linux defines the maximum length of a file

path to be 4096 bytes, also including the NUL byte, so string truncation

should not lose any meaningful information. A variable-length field, up

to 24576 octets.

28

A notable omission is that this record does not contain the contents pointed

to by pointer arguments, other than C-strings. The approach taken by Prog-

ger 3, where only integer arguments and C-strings are copied, seeks to minimise

complexity and maximise efficiency while still providing the most useful infor-

mation for many use cases. Pointer arguments can point to complex struct s,

which would take a lot of care to serialise and deserialise, increasing the risk

for error. Errors are crucial to avoid in kernel code, as an error can lead to a

system crash, or compromise at a very high privilege level.

4.3.3 Server JSON output

Listing 4.1 provides a sample of the output of our Progger 3 server implemen-

tation when the system calls openat , setuid , setreuid , and setresuid are

being monitored. Refer to section 4.3 for more detail.

Listing 4.1: Progger 3 server output

1 { "id": "openat", "tp_src": "sys_exit", "ts": 8901772142832, "ret":

6, "pid": 12300, "uid": 0, "euid": 0, "args": [4294967196,

140735053210000, 591872, 0, 140735053211440, 32], "strings": [

"\/etc\/gss\/mech.d"] }

2 { "id": "setresuid", "tp_src": "sys_exit", "ts": 8901772503698,

"ret": 0, "pid": 12300, "uid": 105, "euid": 105, "args": [105,

105, 105, 7, 94176267341920, 94176267341824], "strings": [] }

3 { "id": "setuid", "tp_src": "sys_exit", "ts": 8901772511526, "ret":

-1, "pid": 12300, "uid": 105, "euid": 105, "args": [0, 0, -1,

7, 94176267341920, 94176267341824], "strings": [] }

4 { "id": "setresuid", "tp_src": "sys_exit", "ts": 8901772513575,

"ret": -1, "pid": 12300, "uid": 105, "euid": 105, "args": [-1,

0, -1, 7, 94176267341920, 94176267341824], "strings": [] }

5 { "id": "openat", "tp_src": "sys_exit", "ts": 8901826793176, "ret":

27, "pid": 217, "uid": 0, "euid": 0, "args": [4294967196,

140736600249456, 524288, 0, 0, 1], "strings": [

"\/proc\/12299\/comm"] }

6 { "id": "openat", "tp_src": "sys_exit", "ts": 8901827120638, "ret":

-2, "pid": 217, "uid": 0, "euid": 0, "args": [4294967196,

140736600249184, 524288, 0, 0, 1], "strings": [

"\/run\/systemd\/units\/log-extra-fields:ssh.service"] }

29

4.4 Kernel-only operation

The Progger 3 client operates in kernel-only mode, which means that there are

no user space components in the client, and that user space cannot alter the

code of the client or any data produced by the client. Additionally, operating

entirely in kernel mode means that data doesn’t have to be copied between

user space and kernel space, leading to efficiency gains. The following sections

explore how Progger 3 achieves its kernel-only mode of operation; that is,

achieves design goal A.

4.4.1 Trusted kernels

Having the Progger 3 client run entirely as a kernel module is necessary for

a kernel-only mode of operation (design goal A), but it is not sufficient. To

ensure kernel-only operation, the user must verify that the kernel itself cannot

be tampered with; that is, that the kernel can be trusted. Achieving a trusted

kernel is outlined in section 2.4. Since Progger 3 has a secret key in kernel mem-

ory, the user must boot with the kernel argument lockdown=confidentiality ,

as mentioned in section 2.4. Now, the kernel has dominion over user space, and

user space is no longer able to modify the trusted kernel, assuming no bugs

compromise this separation. Yet, these steps are still not entirely sufficient

to achieve design goal A. The final steps taken to achieve design goal A of

Progger 3 are listed shortly in subsection 4.4.2.

To see why the measures given so far are necessary, consider a clean in-

stallation of Debian 10 GNU/Linux running without lockdown set. Any root

user is able to insert arbitrary kernel modules, one of which may probe for

Progger 3’s secret key, or try to stop the two tasks Progger 3 runs (tasks are

essentially processes). A root user could also use kexec to load a new kernel

with an altered or absent Progger 3. Furthermore, if the /dev/kmem interface

is available, one might have a chance of recovering Progger 3’s secret key by

reading from that interface, These attacks are all negated by booting with

30

lockdown=confidentiality [10].

However, using a trusted kernel can be a hindrance to the operation of

some systems. For example, a user may be an administrator of their own

personal computing device and want to be able to easily modify the kernel.

For this user, the traditional trust boundary between regular users and root

users may provide sufficient security. Progger 3 can still be used in this case,

without any modification, so it not a requirement that users implement a

trusted kernel if they decide it is unnecessary for their threat model. Of course,

the tamper-resistance is lower in that case, as a compromised user space could,

potentially, read kernel memory to find the encryption/authentication key, and

then produce false records.

In contrast, some example deployments where these trusted-kernel require-

ments may be easier to satisfy are virtual machine deployments, and organi-

sations issuing many devices to its members through an IT department. So,

while the use of Progger 3’s kernel-only mode with a trusted kernel is not fea-

sible in every system, there are certainly areas where it can be used, and these

areas are quite significant ones.

4.4.2 Kernel-only implementation in Progger 3

The Progger 3 client has no user space components. It can be compiled as

a standalone kernel module, or a be compiled built-in to the kernel. The

standalone module is intended for development and debugging, as it must be

loaded by user space. Being loaded by user space, there will be a duration be-

fore the module is loaded where provenance is not collected, which is sufficient

to disqualify the module from being able to collect provenance of all activity

on a system. Being built-in to the kernel, which is a new feature of version 3

of Progger, means that every system call made can be logged, achieving de-

sign goal G. Furthermore, the built-in approach means that there is no risk

that user space might be able to remove Progger 3 at run time. (Standalone

modules can try to prevent user space from unloading them, but it is nice not

31

to have this risk at all by being built-in.) Hence, design goal H is achieved.

In addition to having no user space components, we spent time trying to

ensure that there were no bugs in Progger 3’s kernel code that could let user

space programs influence Progger 3 in some undue way. An example of such

an issue in Progger 2 is described in subsection 3.3.1.

Unfortunately, there are two issues related to user space being able to

maliciously affect the availability of the data generated by Progger 3. These are

listed in subsection 7.3.2 and subsection 7.3.3 These issues stem from the fact

that a root user has some influence over task priority and network interfaces.

To the best of our knowledge, fixing these issues would require quite invasive

changes to Linux, and is far outside the scope of Progger 3.

Still, given the measures in place, user space is unable to modify the code

of the Progger 3 client or any data produced by the Progger 3 client. As

discussed earlier, in section 4.2, user space cannot change the configuration of

Progger 3. So, design goal A is met.

That this kernel-only mode provides protection of Progger 3’s data from

user space is essential for Progger 3’s use of a TPM, as will soon be described.

The TPM is used to seal a cryptographic key, and when that key is loaded

into Progger 3, the kernel-only mode means that user space cannot access the

key.

4.4.3 Conclusion

Progger 3 has a true kernel-only mode, while Progger 1 and Progger 2 do not,

as described in chapter 3. This means that only Progger 3, being built-in to

the kernel, can ensure comprehensive logging of provenance, from the moment

user space starts. It further means that Progger 3 cannot have its code or

data altered by user space. Having a true kernel-only mode paves the way for

Progger 3’s enhanced tamper-resistance relative to its predecessors through

the use of a TPM, which is detailed shortly.

32

4.5 Cryptography

Progger 3 is the first implementation of Progger to provide strong cryptography

to ensure that the collected provenance is confidential and cannot be tampered

with in-flight, and to allow the receiver to verify the provenance truly came

from the expected provenance client.

In contrast, Progger 2 does not provide any assurances of confidentiality

or integrity: data is sent in plaintext and unauthenticated.

With Progger 1, there is a proposed framework that provides confidential-

ity and integrity [3]. This framework is discussed in detail in subsection 7.2.1.

What is relevant here is that this framework describes how to combine an ex-

isting provenance client with other software and a TPM in order to achieve

confidentiality and integrity. Meanwhile, Progger 3 makes these improvements

in the provenance client itself. When looking at Progger 1 by itself, as described

in [2], the provenance records contain hashes based upon the last provenance

record of the same system call. This is useful for detecting whether a malicious

entry may have been added locally, but does not allow a receiver to authen-

ticate that the provenance as a whole has not been tampered with in-flight.

Consider, for example, an attacker in the network path that can intercept

and modify every message sent by Progger 1. This attacker could modify

all of the hashes so their alterations to the provenance would go undetected.

Furthermore, there is no confidentiality. This may be because the envisioned

usage of Progger 1 is within a cloud environment, where the network paths

from systems running the Progger client to a server collecting the data are

trusted. However, Progger 3’s approach means that it can be used in many

more scenarios, not just environments with trusted networks. It also means

that tampering with the provenance is essentially impossible, assuming trust

in the kernel, as opposed to being only “very difficult” in Progger 1 [2].

The following sections explain why confidentiality and integrity are essen-

tial. Then, the sections after that cover the measures implemented in Progger 3

to achieve confidentiality and integrity.

33

4.5.1 Confidentiality

Progger 3 can be configured to collect very detailed information about a sys-

tem. This information can include the file names on a system, the time of

each file access, as well as the programs being executed. So, by having access

to the information generated by such a configuration of Progger 3, one could

readily determine, in real-time or retroactively, what activities are, or might

be taking place, on the system.

4.5.2 Integrity

An attacker in the network path between the Progger 3 client and server is able

to modify any packet it forwards. Without any action to prevent it, this could

give an attacker the ability to spoof packets, asserting that a phony action

occurred; to modify packet contents, potentially hiding activity; or to drop

packets entirely without the server knowing, again masking activity. Since

there must be a high level of confidence in the collected provenance, such

attacks must be thwarted.

4.5.3 Cryptography approach in Progger 3

In Progger 3, both confidentiality and integrity can be assured. In kernel mode,

a complete TLS implementation is not available 2. Such an implementation

would be a serious undertaking, and likely add significant complexity and

attack surface to the kernel [24]. Instead, Progger 3 uses a simpler approach

based on XChaCha20-Poly1305.

When a message is to be sent over the network, it is encrypted and authen-

ticated with XChaCha20-Poly1305. This process also binds some plaintext,

known as the associated data, to the cipher text. When decryption takes

place, the message and the associated data must both be untampered for ver-

2There is a feature of Linux called “kernel TLS”, but that deals with data encryption

only; the more complicated handshake is left to user space [23].

34

ification to succeed. The format of this message, as it appears “on the wire”,

can be seen in Figure 4.5.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+\

| Message length (32 bits) | \

+-+ | Associated

| | | data

+ Client ID (64 bits) + |

| | /

+-+/

| |

+ +

| |

+ +

| |

+ Nonce (192 bits) +

| |

+ +

| |

+ +

| |

+-+

| |

+ Record set encrypted by ChaCha20 (arbitrary length) +

| |

+-+

| Poly1305 tag (16 bits) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 4.5: Format of messages sent over the network by Progger 3

The algorithm is performed by the function xchacha20poly1305_encrypt ,

which is part of the Linux kernel’s crypto library. Progger 3 does not have its

own implementation of any cryptographic algorithm; instead, it uses existing

implementations that have been reviewed by many people.

The reason that XChaCha20-Poly1305 was chosen over ChaCha20-Poly1305

is due to the longer nonce in XChaCha20-Poly1305, which offers a 192-bit

nonce as opposed to a 96-bit nonce [12]. Given that the keys used on each

system running the Progger 3 client are static, as is explained later, a sim-

ple counter nonce is unsuitable, as that would lead to reuse of {key, nonce}

when the system reboots. Such reuse is to be avoided at all costs, as it reveals

35

the XOR of the plaintexts [11]. Use of a random nonce for each message is

also unsuitable, due to the overhead of repeatedly generating a random nonce.

Progger 3 opts to construct the nonce by concatenating a random value R,

generated once when Progger 3 starts, with a counter n that increments once

with each message. 96 bits is not enough to allow for a large enough R and n,

but 192 bits is. Progger 3 uses R for the first 128 bits of the nonce, and n for

the final 64 bits. This construction is not security-affecting compared to using

an entirely random nonce, or an entirely counter-based nonce [12]. With 128

bits for R, it would take 2128/2 = 264 ≈ 1.84 × 1019 reloads of Progger 3 for

there to be a 50% chance of reuse of R. Further, Progger 3 would have to send

264 messages without the system rebooting before the counter cycles, which,

at an absurd rate of 1,000,000 messages per second would take over 500,000

years. So, nonce reuse will not occur with this construction.

The associated data used in Progger 3 is simple: a 32-bit unsigned integer

indicating the length of the message, so the server receiving the message knows

when it has a complete message, and a 64-bit unsigned integer to act as a

unique client ID, as seen in Figure 4.5. Ideally, Progger 3 would not reveal the

client ID. Yet, it seems to be the best approach, given that each client should

have its own unique key used for encryption, and the server needs to be able

to determine which key to use to decrypt each message it receives.

The message length placed in the associated data, unfortunately, needs to

be used by the server before the message is authenticated, as the whole message

must be received before it can be authenticated. If a malicious actor changed

this value, it could cause Progger 3 to read too much or too little data. Upon

receipt of the incorrect amount of data, the message would not authenticate, so

it could be determined that the message was tampered with, but there would

be no way of knowing what length of data is out of sync. So, Progger 3 would

have to reinitiate the connection, losing some data in the process. However,

this requires a network carrier to perform the attack, and they could simply

drop part or all of the traffic anyway. So, effectively, there is no difference in

36

security due to the fact that Progger 3 uses the length value in the associated

data before it can authenticate it. That is, as long as Progger 3 sanitises

repeated extremely large values that might cause memory exhaustion. In the

end, this in no way deals with a compromise of confidentiality or integrity.

It is also vital to avoid replay attacks and detect dropped messages. This

could be accomplished by adding a message sequence number to the authen-

ticated data. However, a message sequence number already exists: it’s the

counter in the nonce. So, if the server successfully decrypts a message, it

knows that the nonce is correct, and it can use the embedded sequence num-

ber to check if the message has been replayed, or potentially determine if a

message has been lost in transmission.

When considering confidentiality, one should consider how the message

length might reveal information about its contents. For example, if an attacker

knows that the messages being sent are records generated by Progger 3 for the

openat system call, the message length could reveal the length of the path of

the file opened, assuming the message contains only a single openat record,

and no padding is added to the message. To avoid this information leak,

Progger 3 pads its messages to a multiple of 16 bytes.

With all this considered, one can be assured that messages transferred by

Progger 3 are done so with confidentiality and integrity. This means that

design goals C and D have been met.

4.5.3.1 Private key storage

In order to utilise XChaCha20-Poly1305, Progger 3 requires a symmetric key

that both the client and receiving server know, but which is kept secret from

user space. If user space could access the key, it could forge messages. These

forged messages could potentially arrive at the receiving server before the real

messages, causing the real messages to be discarded in favour of the forged

messages. This would mean that design goal B would not be met.

So, to prevent user space from being able to access the key, the approach

37

taken by Progger 3 is to use a key that is sealed by a TPM when the system

is provisioned. A TPM policy is used so that the key can only be unsealed

when a chosen PCR is in a specific state. When Progger 3 has unsealed the

key, before user space has had an opportunity to execute, the chosen PCR is

extended so that the key can never be unsealed again until the system’s power

is cycled.

The key would also be stored on the receiving server. However, it is as-

sumed that user space is trusted on the receiving server, so the key can be

stored without precautions such as the use of a TPM. As long as the disk the

key is stored on is encrypted, and the key is only readable by the appropriate

user space processes, the key on the receiving server can be considered secure.

This approach has the following disadvantages:

• A TPM is required.

• Extra work has to be done to seal the key when the system is provisioned.

• The key is also stored on the receiving server. If it is compromised from

there, a client could be impersonated.

• A key compromise is more difficult to recover from, as the replacement

key has to be re-sealed with the TPM.

Another approach that might, at first, seem a reasonable solution, is to

use an ephemeral Diffie–Hellman key exchange. But it is essential that the

receiving server can verify that it is communicating with the kernel client of a

particular system, and the ephemeral Diffie–Hellman key exchange does not,

on its own, achieve that. In order for the kernel client to authenticate itself

to the receiving server, it needs a private key that must, again, be kept secret

from user space. This ends up back at the original problem of requiring a

method to keep a persistent secret hidden from user space.

However, this does raise a question: what if Progger 3 sealed the private

key for client authentication with the TPM and used a Diffie–Hellman key

38

exchange to generate the XChaCha20-Poly1305 key? In this case, the private

key couldn’t be compromised from the receiving server, as it would only store

the public part of the client key. This does offer a slight security benefit, but

the following are disadvantages:

• The Progger 3 kernel client would have to process data that it receives

from the network, increasing the kernel attack surface.

• There is no existing interface for directly performing a Diffie–Hellman

key exchange in the Linux kernel. Having to implement this would be a

considerable undertaking.

• The communication protocol between the Progger 3 kernel client and

receiving server becomes more complex. Instead of the client simply

sending a single type of message to the receiving server with no associated

state (except a sequence number), the client and receiving server have to

carefully keep track of what state they are in so that they can determine

the correct type of message to send.

As the disadvantages were deemed to outweigh the advantages, it was not

considered appropriate to utilise an ephemeral Diffie–Hellman key exchange in

the kernel client of Progger 3.

A TPM is not the only way to store a key on a system such that it is only

accessible to the kernel. This thesis focuses on the TPM approach, as that

is what Progger 3 implements, but it is worth noting that the key could, for

example, be stored on read-protected flash storage. As such, it is possible for

Progger 3 to be modified to run on systems without a TPM and still provide

its highest guarantees of tamper resistance.

4.6 Trusted platform module

As just described, Progger 3 makes use of a TPM to store the secret key used for

XChaCha20-Poly1305. The following sections explore how Progger 3 utilises

39

a TPM and what requirements exist. A proof of correctness of Progger 3’s

TPM operations can be later found in chapter 5. The reader may be aware

that the usage of a TPM with Progger 1 was previously explored by M. M. M.

Bany Taha [3]. Compared to Progger 3, the reasons for TPM usage and the

way in which the TPM is used are quite different. A comparison can be found

in subsection 7.2.1.

4.6.1 TPM provisioning

When a system that is to use Progger 3 is provisioned, a symmetric key that

is unique to the system must be generated and then sealed with the TPM of

the system. Progger 3 requires that the TPM support version 2.0 of the TPM

specification [5], and version 2.0 of the TPM specification is assumed for all

the discussion here.

When a TPM seals data, the final product is an object, split into a public

and encrypted private part, that can be used in combination with the TPM

to recover the data. This object is known as a sealed data object [5]. The data

itself isn’t persistently stored in the TPM, nor are the parts of the sealed data

object. To unseal the data, the sealed data object parts must be reloaded into

the TPM, and then the TPM must be instructed to perform the unsealing.

TPM commands are very low-level, having many variables with very spe-

cific requirements. Few would construct these commands manually; instead,

software can be used to abstract them away to more simple commands. For

example, tpm2-tools[25]. There are some choices the provisioner must make

when using tpm2-tools[25]. The requirements for these choices are listed

shortly.

We have created a script, which is provided in the Progger 3 source code,

that performs the provisioning using tpm2-tools[25], meeting all of the re-

quirements listed below. It can be useful for further understanding of the

steps required. It also ensures that the symmetric key never touches the disk

of the system that is being provisioned. It may be found in section A.22.

40

To begin the requirements, the parent key used for sealing the symmetric

key must:

• Be a persistent object

• Be a child of the storage root key (SRK), or be the SRK itself

• Specify strong encryption algorithms. Strong is subjective, but SHA256

and RSA2048 can be considered strong at this point in time.

Additionally, the lockdown and owner authorisation values must be set and

kept secret. The last requirement is that a policy is added to the sealed data,

so that it may only be unsealed when a chosen PCR is in a specific state, such

as its default state.

The reasons for all of these requirements are made clear in the proof of

correctness chapter.

Reprovisioning is possible by using the owner authorisation value, but care

should be taken to ensure there is no malware on the system that might be

able to intercept the authorisation or new symmetric key and use it later

maliciously.

4.6.2 TPM unsealing

Once the TPM has been provisioned, the public and private part of the sealed

data object, as well as the chosen PCR, can be provided to Progger 3 during

compilation. Then, whenever Progger 3 starts, it performs algorithm 1.

Algorithm 1: tpm unseal and lock key

1 Load the sealed data object into the TPM.

2 Use the TPM to unseal the symmetric key.

3 Extend the PCR allocated to Progger 3.

4 Flush the loaded objects from the TPM.

If Progger 3 fails at any point, meaning that the PCR cannot be extended,

which would leave the key potentially available to user space, a kernel panic

41

is induced. Any TPM object loaded by Progger 3 is also flushed in the error

paths, so that the TPM does not reach its limit of loaded objects.

Having described the TPM operations within Progger 3, a proof its cor-

rectness can be found in chapter 5.

4.6.3 TPM benefits

Combining the use of a TPM with Progger 3’s kernel-only mode means that

a cryptographic key is available to Progger 3 and user space can never access

it. This means that it is impossible for user space to create forged provenance

records that would verify when decrypted by the remote server. Thus, the

tamper-proof property extends to cover sending provenance over the network

while in the presence of a malicious user space. This is the achievement of

design goal B.

4.7 Performance improvements

The improvement to performance in Progger 3 is one of its significant ad-

vancements over Progger 1 and Progger 2. The improvements, in terms of

benchmarks, can be found in chapter 6. This section focuses on the steps

taken to achieve the performance increase.

The primary reason that a provenance system that monitors system calls

would reduce system performance is that extra code is run each time a system

call executes. This code does not run in parallel with the system call; instead,

it runs as a step in the system call’s execution, increasing the total execution

time of the system call. With system calls being a common operation, this

can significantly slow down many workloads if work is not done to minimise

the length of time this extra code takes to run. Minimising this extra code

run upon each system call is primarily the reason that Progger 3 is so much

faster than its predecessors. Essentially, all Progger 3 does when a system call

executes is collect information about the system call and write it to a ring

42

buffer. Any further processing, such as encryption and transferring the data

over TCP, is done by a separate kernel task (which is essentially a separate

process or thread). These separate kernel tasks run in parallel with other tasks

on the system, so they do not directly add to system call execution time. As

long as one ensures that these tasks do not use excessive CPU time, the overall

decrease in system performance is not too severe.

As previously mentioned, one of the steps Progger 3 takes that adds to a

system call’s execution time is adding data to a ring buffer. As such, time

has been spent ensuring that the ring buffer implementation in Progger 3 is

efficient. One ring buffer is created for each CPU, to reduce contention, which

naturally improves efficiency. Having to support elements of variable length

means that the ring buffer is not entirely lockless, but care has been taken to

ensure that the locks are held only very briefly. As a result, adding data to

the ring buffer is a relatively quick operation.

So, Progger 3 has achieved its efficiency by separating system call data

collection from data processing and having code that works in an efficient

manner. We consider Progger 3 to be the first iteration of Progger that can

be reasonably used in a wide range of workloads without reducing system

performance to an unacceptable level. So, design goal E is achieved.

4.8 Ability to trace any system call

Progger 3 is able to trace any Linux system call, of which there are over 300 on

x86-64 [4] (the exact number depends on the kernel configuration). In contrast,

Progger 1 is only able to trace 32 system calls [2], and Progger 2 only supports

23. This is because Progger 3 uses a single, simple function for handling every

system call, while Progger 1 and Progger 2 both use a separate function for

each system call that they support (although sometimes one function is used

for multiple similar system calls).

The design of Progger 1, where system calls were wrapped by replacing the

43

address of the system call functions, naturally led to writing a new function for

each supported system call. Meanwhile, with tracepoints, which Progger 2 and

Progger 3 use, one callback function is executed upon each system call entry

and another upon each system call exit. Details about the executing system

call can be collected from inside the callback. Progger 3 provides a single

function as the callback to the both the system call entry and exit tracepoints,

and as such can trace any system call with a single function. However, the

callback function used in Progger 2 for the system call entry tracepoint still

ends up calling individual functions for different system calls.

So, how is it that Progger 3 uses a single, simple function to trace every

possible system call? A lot of the information can be collected in the same

way across different system calls. For example, the system call number, the

system call return value, process and user IDs of the currently executing task.

But there is some variation in, for example, the system call arguments needing

to be collected. Progger 3 tries to keep the management of these differences

simple by using a single code path for each system call. It does this by keeping

a table with a small amount of metadata about each system call. Most of

this metadata is concerned with which of the arguments are C-strings and, in

fact, most system calls do not need any metadata added to this table. This

metadata doesn’t need to include the number of arguments to the system call.

Copying the maximum of six arguments each time ensures that each system

call will always have all its arguments copied, and is probably even faster than

trying to copy exactly only the number required, as that increases the size of

the metadata table that has to be loaded into cache. Any excess arguments

can be ignored when the data is processed later by other programs. With this

approach, a single code path can deal with tracing any system call, as can be

seen in section A.20, particularly the syscall_tp function.

It is worth pointing out that Progger 3’s syscall_tp function, which deals

with tracing each system call, is not very long or complex. In fact, it is only

45 lines, excluding whitespace. So, in addition to the extra usability of being

44

able to trace any system call, the single code path massively reduces code

complexity and increases maintainability.

Naturally, design goal F is met.

4.9 Stability

During the development of Progger 3, extensive care was taken to ensure that

it can be run for extended periods of time without crashing or harming the

system. Having completed development, no system instability has been ob-

served with the completed version of Progger 3 loaded. Further, no warnings

or errors from any kernel subsystem were printed to the kernel log 3 (as read

with dmesg), even when running on a kernel with many of the debug options

enabled under the “kernel hacking” configuration section.

We estimate that Progger 3 has been run for at least two hundred hours

during testing, with the longest single run perhaps being eight hours. Progger 3

is likely to be able to run for much longer than eight hours, however; perhaps

months or years. In addition to the runtime testing, we carefully checked the

code itself for correctness.

This improvement is quite noticeable when comparing with Progger 2. In

the tests presented in chapter 6, Progger 2 caused a lot of system instability.

This instability prevented us from being able to measure Progger 2’s perfor-

mance to the same accuracy as other programs.

Hence, design goal I is met.

3The only exceptions to this were that Progger 3 warned when running without using the

TPM—which is benign when done intentionally during testing—and that some ring buffer

overflows occurred, as sometimes the test server didn’t receive the data sent by Progger 3

fast enough, due to data reception and processing being on the same thread in the server.

45

4.10 Maintainability

While not explicitly listed in the design goals of Progger 3, as it is a somewhat-

difficult metric to quantify, part of Progger 3’s architecture is to have a main-

tainable code base.

Progger 3 was developed against Linux 5.8.y. It very slightly modifies two

files already present in Linux 5.8.y: Kconfig , and drivers/net/Makefile ,

adding just three lines of code to each. Then, it rewrites the README file to

give information on Progger 3. The rest of the added code is self-contained.

So, rebasing against later versions of Linux should be straightforward.

The patch in this thesis implementing Progger 3 adds 2465 source lines of

code, 130 lines of comments, and 655 blank lines. This includes the kernel

client, the server, and the TPM provisioning scripts. As such, with a small

amount of code, maintenance should be relatively easy.

Additionally, since Progger 3 uses a single code path to process each system

call, it is straightforward to make changes to the data that is gathered for

each system call. Subsection 4.3.2 explains why the timestamp collected by

Progger 3 uses nanoseconds since system boot. If a user decides that the

system clock’s value would better suit their use case, the change could be

made simply, only needing to change one line in a single location, as the diff

in Listing 4.2 shows.

Listing 4.2: Changing Progger 3’s timestamp collection

1 --- a/drivers/net/progger/kernel/tracepoints.c

2 +++ b/drivers/net/progger/kernel/tracepoints.c

3 @@ -251,7 +251,7 @@ static void syscall_tp(struct pt_regs *regs, u8

tp_src)

4
5 data->nr = id;

6 data->tp_src = tp_src;

7 - data->ts = ktime_get_mono_fast_ns();

8 + data->ts = ktime_get_real_fast_ns();

9 data->ret = tp_src == TP_SRC_SYS_EXIT ?

regs_return_value(regs) : 0;

10
11 data->pid = current->pid;

46

4.11 Conclusion

Progger 3 has an architecture with many parts, but still retains simplicity,

with each architectural decision having been made carefully and purposefully.

The final architecture achieves all the design goals laid out in section 1.1, with

each individual design goal’s achievement being described in this chapter. But,

by meeting these goals, what exactly does Progger 3 achieve?

By ensuring kernel-only operation, along with the use of strong cryptogra-

phy and a TPM, Progger 3 can provide tamper-proof logging of provenance.

This prevents tampering of provenance, both on the system running the Prog-

ger 3 client, and while the provenance is in transit to another system. Addi-

tionally, the provenance is confidential while in transit. Although we could not

guarantee high levels of availability in the Progger 3 client, due to system de-

sign outside the scope of Progger 3, one can still be confident that all collected

provenance is correct.

Also, the message format that Progger 3 uses to send provenance to a

remote server allows for future expansion. If desired, additional sources of

provenance could be implemented, or existing sources could have more detail

collected from them. All this can be done while allowing the servers receiving

the provenance to maintain compatibility with older versions of the Progger 3

client. The message format is also designed so that data is transferred in

binary form, reducing the bandwidth needed.

Furthermore, an efficiency-focused design means that Progger 3 can realis-

tically be used under many workloads, as is explored in chapter 6. The focus

on simplicity resulted in increased usability: one can trace any system call;

expect continuous, error-free operation; and easily modify Progger 3 to suit

their needs.

Chapter 5

TPM Usage Proof of

Correctness

This chapter proves that Progger 3’s use of a TPM prevents user space from

retrieving Progger 3’s symmetric key from the sealed data object. The proof

makes the following assumptions:

• The lockdown and owner authorisation values are not known to an at-

tacker, are infeasible to guess, and no traces of them were left on the

system during provisioning.

• Progger 3 is compiled built-in to Linux, not as a kernel module.

• The TPM provisioning met the requirements in subsection 4.6.1.

• The TPM implements the TPM 2.0 library specification [5] and PC

Client TPM specification [26] correctly.

• Linux’s TPM 2.0 driver follows the specification correctly and doesn’t

attempt to restore state when no state has been saved.

For this proof, a power cycle is defined as the system changing from ACPI

state S4 or S5 to state S0, so that it involves Linux going through a full reboot.

Of the values specified during TPM provisioning for Progger 3, let n be

the index of the PCR, and h be the value of this PCR that is embedded in the

sealed data object’s policy. Note that Progger 3 enforces n ∈ [8, 15].

48

Lemma 1: PCR[n] must equal h for the symmetric key to be unsealed.

As the symmetric key is sealed during provisioning, a policy is specified

that states that PCR[n] must be equal to h in order for the TPM to unseal

the object. As user space cannot obtain the owner authorisation value, it is

unable to create an alternative policy that is valid in the context of unsealing

the symmetric key. The result follows.

Lemma 2: Once PCR[n] has its value extended from h, it can only regain

a value of h after the system power cycles.

According to part 1 section 11.6.2 of the TPM 2.0 specification [5], “[t]he

two ways to modify a PCR are to reset it or Extend it”.

First, consider extending PCR[n]. Let v be the current value of PCR[n]. As

chosen during Progger 3’s provisioning process, the hash algorithm associated

with this PCR is SHA256. For PCR[n] to be extended to h, it follows from

the definition of the extend operation [5] that one would have to find a string

of data s such that SHA256(v ‖ s) = h. Finding such an s would be finding

a SHA256 preimage, which, with the current best cryptanalysis, would take

2254.9 operations [27]. This is infeasible, so, extending PCR[n] is not an avenue

to obtain a value of h.

Now, consider resetting the PCR. If the reset value of PCR[n] is not h,

then there is no issue. However, it is expected (although not required) that

h will be the reset value, so it is important to consider how PCR[n] may be

reset. Two of the ways in which a PCR may be reset are the TPM2 PCR Reset

command, and a D-RTM event [5]. However, Progger 3 only allows n ∈ [8, 15].

For each such n, PCR[n] cannot be reset by TPM2 PCR Reset or a D-RTM

event [26]. It should be noted that the guarantee that these PCRs are not

resettable comes from the TPM PC client specification (table 6) [26], not the

TPM library specification, so it is not necessarily true for all TPMs. But, by

assumption, only a PC client TPM needs to be considered. The only other

methods listed in the TPM library specification (part 1 section 17.1) [5] to

reset a PCR is through a TPM Reset/Restart/Resume, which, as per the

49

TPM library specification (part 1 section 12.2.3.2) [5], respectively correspond

to a system reboot, resume from hibernation, and resume from suspend. A

system reboot and resume from hibernation require a power cycle, but a system

resume from suspend does not. So, further investigation of the TPM Resume

sequence is required.

Section 12.2.3.2 of the TPM library specification [5] defines a TPM Resume

as a Startup(STATE) that follows a Shutdown(STATE). This section explains

that sequence as calling TPM2_Startup with startupType == TPM_SU_STATE

after TPM2_Shutdown was called with startupType == TPM_SU_STATE . There

is a copy-and-paste error, and TPM2_Shutdown should instead be called with

shutdownType == TPM_SU_STATE , corroborated by the fact that section 9.4 of

part 3 of the TPM library specification [5] lists only a shutdownType param-

eter, not a startupType parameter, for TPM2_Shutdown . Turning to section

9.3.1 of part 3 of the TPM library specification [5], it is shown that a TPM

Resume sequence results in the values of specified PCRs being saved and then

restored, but the exact PCRs are determined by the platform-specific specifi-

cation. Turning to the relevant platform-specific specification, the TPM PC

client specification [26], Table 6 shows that PCRs 0–15 are preserved. So, fi-

nally, it can be seen that the TPM Resume sequence will not reset PCR[n], as

n ∈ [8, 15].

One may wonder what happens if Startup(STATE) occurs without a previ-

ous Shutdown(STATE). As per the TPM library specification (part 1 section

12.2.3.2) [5], TPM_RC_VALUE is returned. The PCR values will be undefined and

may be cleared. This would provide an avenue for PCR[n] regaining the value h

without going through a power cycle. However, it also depends on Linux incor-

rectly issuing the Startup(STATE) and Shutdown(STATE) sequences, which,

by assumption, will never happen.

Having looked at all the methods to modify a PCR, it follows that PCR[n]

can only have its value reset through a power cycle.

Lemma 3: Once Progger 3 has initialised, PCR[n] will always have its

50

value extended from h.

If Progger 3 is unable to unseal the key and then extend PCR[n], it will

induce a kernel panic. Thus, PCR[n] will always be extended by the time user

space runs. The extension must be from h, as if the value of PCR[n] were not

h, the unseal would fail so Progger 3 would cause a kernel panic.

Theorem: User space cannot retrieve Progger 3’s symmetric key from the

sealed data object.

When Progger 3 is in kernel-only mode, it will always be initialised before

user space runs. From lemmas 1, 2, and 3, it follows that a power cycle

is required for the object to be unsealed again. But a power cycle would

result in Progger 3 reinitialising before user space has any chance to unseal

the symmetric key. Thus, user space cannot unseal the symmetric key.

All that remains is to verify that the sealed data object stores the sym-

metric key securely at rest, and not in an unencrypted form. The public part

of the sealed data object contains metadata about the object, as described

in the TPM library specification (part 3 section 12.1, along with part 2 sec-

tion 12.2) [5]. Furthermore, part 3 section 12.1 and part 2 section 12.3 of

the TPM library specification [5] show that the private part consists of an

integrity hash, along with an encrypted sensitive area. For the following TPM

specification references, ensure that you are reading the version that contains

the code samples. The code sample in part 3 section 12.1.3 [5] shows how the

encryption is applied to the sensitive area. This code reveals that the private

part, referred to as outPrivate , is created in the SensitiveToPrivate func-

tion. Using part 4 of the TPM specification [5], it follows that the sensitive

data area is encrypted with the algorithm from the parent key supplied to

TPM2_Create . As Progger 3’s provisioning process requires the use of strong

encryption algorithms for the parent key, it follows that the sealed data object

does protect the symmetric key at rest.

Hence, user space cannot recover the symmetric key from the sealed data

object.

Chapter 6

Evaluation

This chapter evaluates Progger 3 by determining what performance impacts

may occur under a wide range of workloads. That is, it seeks to evaluate how

much Progger 3 slows these workloads down. Rather than testing a multitude

of individual workloads, this evaluation seeks to provide an understanding at

a more general level about what impacts Progger 3 has on system throughput

and latency. Then, by knowing where the bottlenecks are in specific workloads,

one can have a good idea of how Progger 3 will impact performance under that

workload. The main tests used for this evaluation are: compiling Linux to

determine the impact on system throughput, and running a micro-benchmark

of the openat system call to determine changes in latency. The list of system

calls traced will also be varied to understand how the performance impact can

vary when many or few traced system calls occur.

This evaluation compares Progger 3 to other programs. Some of these

other programs may have scope greater than just a provenance system; so, the

programs are collectively referred to as (system) tracers, of which provenance

systems are a subset.

This evaluation compares tracers that are able to monitor the entire system

call activity on a system and selectively choose subsets to trace, as this is

exactly what Progger 3 does. Some of the provenance systems mentioned

in chapter 3 do not have the ability to do this, so their performance is not

52

evaluated here. This evaluation only tests programs that can produce (nearly)

the exact same output as Progger 3.

The following evaluations were performed on a bare-metal system running

on an Intel i3-2120 CPU at 3.30GHz, microcode revision 0x2f. It had 7.73 GiB

of DRAM available. The system was running Debian GNU/Linux 10 (Buster).

The kernel running was Linux 5.8.18, with the patches adding Progger 3 ap-

plied.

In each test, the version used of Sysdig was 0.27.1 , the version of Sys-

temTap was 4.3-119-gacd978b01 (as described by git), and the version of

bpftrace was 0.11.2 .

6.1 Impact on system throughput

Having a tracer running on a system will occupy some of that system’s re-

sources. As such, there will be fewer resources for other programs to make

use of. Fewer resources available means that programs are likely to experience

reduced throughput; that is, programs will take longer to process a certain

amount of data, or, worded differently, will be able to process less data in a

given time period.

For a given program, its throughput is constrained at any specified moment

by a single bottleneck. These bottlenecks could be the available CPU time,

available memory, disk read/write speed, or available network bandwidth, to

name some common ones.

CPU bottlenecks are quite common, and so are what this evaluation focuses

on first. The disk read/write speed is not relevant to Progger 3. Progger 3

does not require a considerable amount of memory, so it is not meaningful to

pursue an analysis of memory-bottlenecked workloads. Network bandwidth is

relevant, as Progger 3 sends its output over the network, so this evaluation

spends some time analysing Progger 3’s impact in this regard.

53

6.1.1 Impact on CPU throughput

As each tracer operates, it takes CPU time to process each system call. If

a system mostly has spare CPU capacity, the impact on throughput may be

negligible. Yet, in situations with no spare CPU capacity, each moment a CPU

spends executing a tracer is time that another program has lost.

If a tracer is opting to trace more system calls, or the system calls being

traced occur more frequently, the tracer will spend more CPU time process-

ing the system calls, reducing the throughput of CPU-bound programs. The

frequency of system calls not being traced is of less importance: if a tracer

is notified of a system call occurring that it isn’t tracing, it should not spend

any time processing it, so only a small amount of time would be spent in

determining that the system call is not to be traced.

So, we conducted tests to assess the throughput of some workloads that

make full utilisation of available CPU time. The results of these tests are

presented in the following sections. The first test is compiling a Linux kernel

while tracing some common system calls. The second test repeats compiling

the Linux kernel, but traces only a system call that never occurs. The third

test is a program that utilises all free CPU time without making system calls.

Given that the throughput impact depends only on the frequency of system

calls and the portion of system calls traced, these tests should give a reliable

overview of each tracer’s impact on system throughput where the CPU is the

bottleneck.

6.1.1.1 Time to compile Linux 5.8.3

In this test, Linux 5.8.3 was compiled 48 times per tracer evaluated. The

.config file was generated by running make allnoconfig . Compiling Linux

involves lots of system calls being made, such as openat , read , and write .

With each tracer tested, the following system calls were traced: open ,

openat , openat2 , rename , renameat , renameat2 . There were three reasons

for this selection. First, the system calls should occur frequently during the

54

test, and openat certainly does. Second, they should be system calls that

have C-strings as arguments, but not any other pointers as arguments. This is

because Progger 3 copies C-string arguments, such as file paths, but no other

pointer values. Copying C-strings is a relatively expensive operation, so it is

important to account for its overhead in this test. Furthermore, this selection

of arguments ensures that the comparison between tracers is fair, as it means

that no tracer is copying arguments that Progger 3 is not. Third, only a small

number of system calls are traced, to reflect what may be a reasonable real-

world use of tracing. It is unlikely that one would want to collect information

about every read and write performed on the system, but recording all files

openings is somewhat more realistic.

Continuing with pursuing fairness, the output of each tracer has to be di-

rected somewhere. Progger 3 encrypts its output and sends it over TCP, and

is the only tracer of those tested in this evaluation with a built-in method of

doing so. Instead of using separate programs to encrypt and transfer the out-

put over TCP, each tracer other than Progger 3 simply had its output directed

to /dev/null . This is so the results are not influenced by the efficiency of

external programs used for encryption and transferring the output over TCP;

rather, the results reflect only the actions performed by the tracer itself. This

does give Progger 3 a slight disadvantage, but, as the results will show, Prog-

ger 3 still manages to be comfortably faster than the rest. There is little need

for this analysis to determine exactly how much greater that margin could be.

Each tracer has its own mode of operation, so a list now follows providing

any notable information about the use of each tracer in these tests.

Progger 3 — The output was sent via TCP to a physically separate

system, so the system running the Progger 3 client did not incur any undue

overhead from running the Progger 3 server. It was also confirmed by checking

the output of dmesg that Progger 3’s ring buffer never overflowed.

Sysdig — The following command was used to run Sysdig:

1 sudo ./userspace/sysdig/sysdig -p ’%evt.arg.name’ evt.type=open or

55

evt.type=rename or evt.type=openat or evt.type=renameat or

evt.type=renameat2 or evt.type=openat2 >/dev/null

SystemTap — The following command was used to run SystemTap:

1 sudo stap syscall.stp >/dev/null

where syscall.stp is

1 probe

2 syscall.open,

3 syscall.openat,

4 syscall.rename,

5 syscall.renameat,

6 syscall.renameat2

7 {

8 printf("%s\n", argstr);

9 }

The system call openat2 was not supported by SystemTap at the time of

testing. However, openat2 was never called while compiling Linux.

bpftrace — The following command was used to run bpftrace :

1 sudo bpftrace bpftrace-probes >/dev/null

where bpftrace-probes is

1 tracepoint:syscalls:sys_enter_open {

2 printf("%s\n", str(args->filename));

3 }

4
5 tracepoint:syscalls:sys_enter_openat {

6 printf("%s\n", str(args->filename));

7 }

8
9 tracepoint:syscalls:sys_enter_openat2 {

10 printf("%s\n", str(args->filename));

11 }

12
13 tracepoint:syscalls:sys_enter_rename {

14 printf("%s %s\n", str(args->oldname), str(args->newname));

15 }

16
17 tracepoint:syscalls:sys_enter_renameat {

18 printf("%s %s\n", str(args->oldname), str(args->newname));

19 }

20
21 tracepoint:syscalls:sys_enter_renameat2 {

22 printf("%s %s\n", str(args->oldname), str(args->newname));

23 }

56

Figure 6.1: Linux compile test results

Each sample in this test is the real time for a single Linux compile. Before

collecting the samples, Linux was compiled once with make -j6 bzImage , so

that further compilations would be using cached files, leading to more consis-

tent results. The following command was used to collect the samples:

1 for n in {1..48}; do (make clean && time make -j6 bzImage); done

The results are presented in Figure 6.1 and Table 6.1. These results appear

reliable, as shown by the small standard error in Table 6.1. Progger 3 performs

excellently in this test, causing by far the smallest performance reduction.

Progger 1 was not tested, as, being developed against Linux 2.6.32, it no

longer compiles on Linux 5.8.18 without significant changes. However, the

latency impact of Progger 1 is evaluated in subsection 6.2.1.

There was one other tracer tested: Progger 2. Unfortunately, there were

several issues that prevented an analysis as thorough as the other traces.

It should be noted that the source code of Progger 2 had to be modified

57

Tracer Sample size Sample mean / seconds Standard error

None 48 61.427 0.010

Progger 3 48 62.084 0.010

SystemTap 48 62.468 0.015

Sysdig 48 64.736 0.019

bpftrace 48 65.205 0.014

Table 6.1: Real time to compile Linux

slightly to get it to compile with Linux 5.8.18, but this amounted to a Make-

file change and switching to 64-bit time structures. Neither of these should

meaningfully impact performance.

To start with, Progger 2 supports only the following system calls: open ,

read , pread64 , write , pwrite64 , close , mkdir , rmdir , rename , dup ,

dup2 , sendfile , link , unlink , unlinkat , symlink , chmod , fchmod ,

chown , fchown , lchown , pipe , pipe2 . This is not compatible with the

system call set used for testing the other tracers, as openat is missing. Fur-

thermore, openat is the only system call that was used for opening files when

compiling Linux during these tests. This is because open has been deprecated

and openat2 has not seen widespread adoption yet. So, for this comparison,

the system call set used is simply all of the system calls traced by Progger 2.

The second issue is that Progger 2 caused system instability. The system

was prone to crashing, so only one sample was collected. Furthermore, gcc

would often segfault while compiling Linux. The one sample collected is shown

in Listing 6.1. As with Progger 3, the output of Progger 2 was sent over TCP

to a physically separate system.

Listing 6.1: Linux compile time while running Progger 2

1 real 0m57.405s

2 user 3m0.655s

3 sys 0m33.194s

This is an interesting result, as it appears that Linux has been compiled

58

in a time faster than with no tracer running. The reality is that, since gcc

terminated with a segfault many times, Linux was not properly compiled, and

the lower time reflects that fact that less work was done. While the difference

in real time is unsuitable for comparison, it can be seen that the system CPU

time taken was 33.194 seconds, an increase compared to the mean of 21.951

seconds with no tracer loaded, and the mean of 22.149 seconds (n = 8) with

Progger 3 loaded and tracing this new system call set. From this increase in

system CPU time taken, we coarsely estimate that Progger 2 causes a 50%

reduction in CPU throughput when compiling Linux.

It should be noted that Progger 2 sends somewhat different data to Prog-

ger 3. For example, Progger 2 always sends the inode number of files read and

written. Still, there is an exceptional difference in performance between the

two, to the point that one could reasonably expect that Progger 3 could be

modified to collect the same data as Progger 2 while maintaining its perfor-

mance lead.

6.1.1.2 Time to compile Linux 5.8.3 with no traced system calls

occurring

In this test, Linux 5.8.3 was compiled in the same manner as in subsubsec-

tion 6.1.1.1. But this time, Progger 3 traces only tuxcall , which is an unim-

plemented system call that no longer has any legitimate use. This means that

Progger 3 does attach to the sys_exit tracepoint, but its tracepoint handler

exits very quickly, as Progger 3 never encounters a system call that it has been

instructed to trace. Sysdig also traces tuxcall for this test. In contrast, bpf-

trace and SystemTap trace sched_rr_get_interval , as they do not support

tuxcall . This difference isn’t significant, as sched_rr_get_interval is never

called during the test.

The results in Figure 6.2 and Table 6.2 show that Progger 3 is performing

respectably in this metric, being on par with bpftrace and SystemTap, and

indeed performing better than Sysdig.

59

Figure 6.2: Linux compile test results

Tracer Sample size Sample mean / seconds Standard error

None 48 61.233 0.009

Progger 3 48 61.395 0.013

SystemTap 48 61.374 0.011

bpftrace 48 61.423 0.014

Sysdig 48 63.062 0.010

Table 6.2: Real time to compile Linux, no traced system call occurring

60

6.1.1.3 Impact on a CPU-bound program making no system calls

In this test, the program shown in Listing 6.2 was run, with one instance for

each available CPU:

Listing 6.2: Test program making no system calls

1 #include <stdint.h>

2
3 int main(void)

4 {

5 for (volatile uint64_t i = 0; i < 64ULL * 1000 * 1000 * 1000; i++)

6 ;

7
8 return 0;

9 }

This caused 100% CPU utilisation. Meanwhile, Progger 3 was loaded, and

tracing the same system calls as in subsubsection 6.1.1.1.

The execution time was measured 48 times with the following command:

1 for n in {1..48}; do time (for m in $(seq "$(nproc)"); do

/tmp/no-syscall & done; wait); done

After excluding extreme outliers that occurred both with no tracer running

and with Progger 3 running, there was only a 0.01% difference in the mean

execution time when Progger 3 was loaded, with a standard error of 0.049%.

We conclude that there is no meaningful difference present in these results.

Hence, there is no need to test any of the other tracers for comparison, as

Progger 3 is performing ideally in this metric, so no other tracer could perform

better.

6.1.2 Impact on network throughput

In this test, Linux 5.8.3 was compiled as described in subsubsection 6.1.1.1.

But, this time, the test measures the network traffic generated. Performing

the compilation once, 171 MiB of traffic was generated, which is an average

throughput of 21.3 Mbps. This is quite a significant impact, and would not

be desirable in many cases where the network is the bottleneck of a workload.

Progger 3 tries to efficiently pack the data it sends, keeping data in binary form

61

instead of translating it to human-readable strings. So, to reduce the amount

of data sent, there are two options: use compression, or further restrict what

Progger 3 traces. Compression would involve extra CPU time, and, in many

cases, this could nullify any benefit from the reduction in data sent. Still, it

may be worth at least investigating in some cases. With regards to further

restricting what Progger 3 traces, restrictions are currently limited to which

system calls are selected to be traced. In the future, one could implement in

Progger 3 the ability to restrict tracing of system calls based on the system

call’s arguments. For example, it could be enforced that openat would only

be traced for paths under /example/secret/dir , which has great potential to

reduce network overhead.

6.2 Impact on system latency

Progger 3 operates by attaching to Linux tracepoints, resulting in extra code

being run when a system call is made. One would expect this to introduce

additional latency to system calls. This section seeks to determine precisely

how significant the latency increases of Progger 3 and similar system tracers

are.

The latency increase may not be constant between different system calls.

Some system calls may take less time to process, such as those with only integer

arguments, having no C-strings to be copied. Furthermore, system calls may

incur increased latency even when they are not specifically being traced. This

can arise, as is the case with Progger 3, by the fact there are only two system

call tracepoints available: one for system call entry, and one for the system

call exit. That is, a tracepoint handler will always be executed when a system

call runs, no matter the system call. If the system call is not being traced,

then the tracepoint handler can be exited quickly, but some time will still be

spent.

Given these facts, we conducted two tests. The first analyses the time

62

taken for openat to complete while it is being traced. This system call has a

string argument specifying the file to open, so the latency increase will include

the impacts of string copies. The file opened each time is /dev/null . The

second test is similar, except it analyses the time taken for openat to complete

while it is not being traced. For Progger 3 at least, one can expect the latency

increase shown to be true of every system call not being traced, as Progger 3

uses a single code path for each system call.

The commands used to run each tracer were the same as given in the CPU

throughput tests. It was also verified that Progger 3 did not experience any

ring buffer overflows.

To reduce variance in the results, the following measures were taken: Tur-

boBoost was disabled, giving a constant maximum CPU frequency; the pro-

gram executing openat was pinned to a single CPU, which the program had

exclusive use of (at least, among user space tasks, as kernel tasks cannot be

arbitrarily prevented from running on specific CPUs), and any of that CPU’s

siblings were also reserved; the performance CPU governor was used, so that

the CPU would always run at its maximum frequency; a high-resolution timer

was used: a constant-rate time stamp counter (TSC); and openat was called

1,000,000 times before the timing started so that it would be warm/cached.

Time was measured in CPU clock cycles. This can be approximately con-

verted to µs by dividing by 3,300, since the CPU these tests were performed

on ran at a (near-)constant 3.30 GHz.

Unfortunately, Progger 2 could not be tested, as it would cause the system

to crash as soon as the test started.

6.2.1 Impact on a system call being traced

This analysis begins by looking at a sample of 50,000 openat calls taken with

no tracer running. To allow a graph of this sample to be readable, any value

above the 99.9th percentile is excluded, amounting to excluding 50 of the sam-

ples. The five largest samples excluded are 1,091,496, 1,196,196, 1,256.292,

63

Figure 6.3: Time taken for openat to complete

64

1,795,448, and 1,797,332 clock cycles. This sample is presented in Figure 6.3.

The distribution is bimodal and appears to be composed of two separate dis-

tributions, each non-normal with a right skew. Given this distribution, along

with the extreme outliers excluded, it is clear that the mean is not an appro-

priate statistic for this analysis. Still, the median and 99th percentile of the

samples can be calculated as reasonable indicators of performance.

For each tracer, 48 samples, S1, . . . , S48, were collected, where each sample

Sn is a set of 5,000,000 execution times of openat . This approach is taken so

that, when the median and 99th percentile are estimated, the distribution of

Sn gives some idea of what confidence can be placed in the results. To estimate

the median and 99th percentile for each set of samples S := {S1, . . . , S48}, the

following calculations are used:

median(S) = median(median(S1), . . . ,median(S48)),

percentile99(S) = median(percentile99(S1), . . . , percentile99(S48)).

In Figure 6.4, the error bars show the range of median(Sn) for each n.

Similarly, in Figure 6.5, the error bars show the range of percentile99(Sn) for

each n.

Looking at Figure 6.4 and Figure 6.5, Progger 3 can be seen quite com-

fortably leading in terms of system call latency overhead. Furthermore, the

error bars in Figure 6.4 and Figure 6.5, which represent the range of values,

give confidence in these measurements, despite the unfavourable distribution

of samples shown in Figure 6.3,

Finally, this metric can also compare the performance of Progger 3 to

Progger 1. We could not test Progger 1 directly, as it would have to be

modified too much to compile on Linux 5.8. However, the results from the

paper outlining Progger 1 [2] lists execution time of calls to open increasing

from 3.54µs to 758.7 µs, a 21,000% increase, and calls to write increasing from

299.06µs to 2072.08µs, a 590% increase. Progger 3 performs well relative to

this, with a median 10% increase in openat time when opening /dev/null .

As the read system call involves no string copies in Progger 3, the increase

65

Figure 6.4: Median time taken for openat to complete

66

Figure 6.5: 99th percentile of the time taken for openat to complete

67

Figure 6.6: Median time taken for openat to complete while not being traced

in execution time would be even less than openat in absolute duration, and

likely less in terms of percentage too.

6.2.2 Impact on a system call not being traced

For this test, as with subsubsection 6.1.1.2, Progger 3 and Sysdig trace only the

system call tuxcall , and bpftrace and SystemTap trace only the system call

sched_rr_get_interval . Again, it was verified that sched_rr_get_interval

was never called during these tests.

Using the same methodology as in subsection 6.2.1, the latency overhead

can be estimated, which is shown in Figure 6.6 and Figure 6.7. The results

are similar to subsubsection 6.1.1.2. Progger 3 performs adequately, with

approximately the same overhead as bpftrace. It is interesting to see that

SystemTap shows no overhead. This is potentially because SystemTap uses

kprobes to instrument the system calls, not tracepoints.

68

Figure 6.7: 99th percentile of the time taken for openat to complete while not

being traced

69

6.3 Correctness

It would be for naught if Progger 3 were not producing correct results. To

check for correctness, a program was run that opened each file found on the

system. It then checked the output of Progger 3 to see if each file opening

was logged, in the correct order, with the correct PID and return code. The

program also opened a small random number of other files before opening the

next file in its list, so that the file descriptor returned by openat would be

varying considerably. This test program has been run several times, completing

each time without error.

Furthermore, many less-structured observations were made of Progger 3’s

output, such as creating and renaming files, ssh ing in to the system running

Progger 3, and background activity. Nothing incorrect was observed in these

situations.

The TPM code paths, from provisioning to unsealing the secret key, have

been tested with a virtual TPM 2.0 device, using swtpm [28] and qemu [29].

Again, these code paths worked without a problem.

We have no reason to suspect that there are any significant flaws in Prog-

ger 3’s correctness.

6.4 Summary

These results are very favourable for Progger 3. They show that, while Prog-

ger 3 is loaded, the impact on system performance can be relatively small.

So, Progger 3 could be reasonably deployed on systems that can afford slight

drops in performance. For workloads that perform few to no system calls, the

performance impact may be effectively zero.

Unfortunately, the network overhead can be quite high, even in somewhat

reasonable configurations of Progger 3, such as tracing all file openings. This

presents opportunities for future improvement: conditionally tracing system

calls based on their arguments, and compression of transferred data.

70

While we found a precise comparison between Progger 1, Progger 2, and

Progger 3 to be infeasible, the observations that we were able to make suggest

that Progger 3 has achieved a significant increase in performance and system

stability relative to its predecessors.

When it comes to Progger 3’s performance relative to the other tracers

tested, it should be noted that Progger 3 is developed with very different

goals to the others. The other tracers are more like debugging tools, whereas

Progger 3 is focused on being a provenance system. As such, it is perhaps

not a surprise that Progger 3, designed to run continuously, as part of regular

system use, is more performance-optimised.

Chapter 7

Discussion

7.1 Chapter outline

This chapter will discuss some miscellaneous topics relating to Progger 3, pro-

viding a better idea of where Progger 3 fits within the bigger picture.

Section 7.2 compares some aspects of Progger 3 to similar work, expanding

on what sets Progger 3 apart. Then, section 7.3 explores some issues facing

Progger 3, and presents suggestions for future work to Progger 3 that could

help to resolve these issues.

7.2 Comparison with similar work

7.2.1 Progger 1 and a TPM

The use of a TPM with Progger 1 has been explored by M. M. M. Bany

Taha [3]. We will refer to this work hereafter as Progger 1 (TPM). There

are similarities in objectives between Progger 3 and Progger 1 (TPM): both

centre mostly around providing confidentiality and integrity of the collected

provenance, but there are significant differences in scope.

Firstly, an important distinction is that Progger 1 (TPM) presents a frame-

work design that combines a provenance client with other software, while Prog-

ger 3 is instead focused on providing a high-quality provenance client. We

72

consider many aspects of using Progger 3, such as the secure storage of the

logs generated by Progger 3, and the route to achieving a trusted kernel, to be

outside the scope of what Progger 3 should dictate, as there are many possible

approaches depending on the circumstances. Meanwhile, Progger 1 (TPM) in-

corporates methods to store provenance logs with confidentiality, availability,

and integrity, using a TPM to do so, while also detailing means to achieve a

trusted execution environment.

Progger 3 uses a TPM for exactly one task: to store a cryptographic key so

that the kernel may access it, but user space may not. When it comes to the

client, Progger 1 (TPM) does not use the TPM for this at all, instead opting to

require that data be transferred over TLS. Yet, as previously discussed, there

is no full TLS implementation in the Linux kernel, so a user space program

would be required. This thesis avoids evaluating Progger 1 (TPM) in terms

of Progger 3’s design goals, as the evaluation is mostly dependent on the

underlying provenance client used. Yet, in this case, a requirement of Progger

1 (TPM) is to use a user space program. So, Progger 1 (TPM) would not satisfy

design goal A of Progger 3 unless it was amended to utilise a provenance client

like Progger 3 instead of using user space programs.

What Progger 1 (TPM) does use the TPM for on the client, apart from a

trusted execution environment (including remote attestation), is maintaining

the integrity of the data produced by Progger 1. Unlike Progger 3, Progger

1 (TPM) stores raw provenance records on the disk, as files on a regular file

system. This leads to complexities around ensuring that any malicious modi-

fication of the files can be detected. However, in Progger 3, there is no need

for the somewhat-complex client data integrity measurement that is presented

in Progger 1 (TPM). This is because Progger 3 stores all of its data in kernel

memory, which, by assumption, an attacker cannot manipulate when a trusted

kernel is running. If kernel memory could be manipulated by an attacker, the

attacker could modify the collected provenance before any confidentiality or

integrity measures are applied. So, if an attacker could manipulate Progger 3’s

73

data locally, Progger 1 (TPM) would also be vulnerable. Furthermore, if one

were to extend Progger 3 to store data on-disk, it would not be necessary

to implement extra integrity checks. This could be achieved by storing data

on the disk only once it has had its confidentiality and integrity imposed by

XChaCha20-Poly1305. Then, no additional special action needs to be taken

to ensure the integrity of the data, as any manipulation will be immediately

picked up when the data is decrypted. Either way, if Progger 3 is storing data

on-disk or not, it can offer a much simpler environment for the client.

So, while the use of a TPM with Progger has been explored previously,

it was for a different use case than Progger 3’s use of a TPM. Progger 3

could be integrated with the framework proposed in Progger 1 (TPM), but

is also able to be more versatile and can be integrated into environments

with different requirements. Progger 3 provides a provenance client that can

send the provenance it collects with confidentiality and integrity from a client

running a trusted kernel to a remote server. Meanwhile, Progger 1 (TPM)

provides a framework that utilises an existing provenance client, and where

the scope extends to setting up a trusted execution environment on the client,

securely storing the provenance logs, and providing remote attestation of the

client.

7.2.2 Detecting commands executed as a different user

One of the four major breakthroughs Progger 1 lists is being able to determine

when a non-root user executes a command with root privileges, logging the

user that executed that command.

We have tested this. As Progger 1 was developed using CentOS 6.4 [2],

the test used a virtual machine running the latest CentOS 6 series release:

CentOS 6.10. Unfortunately, Progger 1 did not log the user running sudo

as user* , as suggested by [2], instead printing root , demonstrated in List-

ing 7.1.

74

Listing 7.1: Progger 1 output
1 $ cat /secret-file

2 $ dmesg | grep ’^Progger:0’ | grep /secret-file

3 Progger:0,user,1948,1517,1517,1516,cat,/secret-file,/home/user/,0,1654284880,3

4 $ sudo cat /secret-file

5 $ dmesg | grep ’^Progger:0’ | grep /secret-file

6 Progger:0,user,1948,1517,1517,1516,cat,/secret-file,/home/user/,0,1654284880,3

7 Progger:0,root,1953,1952,1517,1516,cat,/secret-file,/home/user/,0,1452952576,3

This section does not seek to determine the issue in the source code respon-

sible for the output in Listing 7.1. Instead, it analyses the ideas put forward in

the paper presenting Progger 1 [2] for detecting users that execute commands

as a different user. Then, it presents a way to detect this using Progger 3,

which we consider more reliable than the approach in Progger 1.

To start the analysis, it is noted in [2] that, when a user executes sudo ,

some system calls are made as that user before the real and effective user IDs

of the process are switched to the other user (usually 0, which is root). The

example given in [2] is that /etc/passwd is opened by sudo before any user

IDs are switched. It is further suggested by [2] that this can be used to detect

when a user runs sudo . As we understand it, the suggestion here is that

one could analyse the logs generated by Progger 1 to find entries containing

a comm of sudo . From these entries, one might then look for /etc/passwd

being opened before any user IDs are switched. Unfortunately, this can be

circumvented, as shown in Listing 7.2.

Listing 7.2: Replacing the comm of sudo

1 $ ln -s /usr/bin/sudo arbitrary

2 $./arbitrary id

3 uid=0(root) gid=0(root) groups=0(root)

context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

4 $./arbitrary

5 ^Z

6 [1]+ Stopped ./arbitrary

7 $ pgrep arbitrary

8 1697

9 $ pgrep sudo

10 $ cat /proc/1697/comm

11 arbitrary

This shows that, by making a symlink to sudo , one can run sudo with

the process’s comm set arbitrarily. So, this method is not viable for detecting

75

when a user runs a command as a different user. Furthermore, the proposed

method would have to account for any executables with the setuid bit set, not

all of which will necessarily be named sudo .

The other idea presented in [2] to detect users running commands as other

users is to look at session IDs. The idea is that the command executed by sudo

(or any other privilege escalation program) will have the same session ID as the

user that initiated sudo . We have created a simple program, new-session ,

whose code is in Appendix B, that shows that this idea does not always hold

true. Listing 7.3 shows running new-session and its output.

Listing 7.3: Output of new-session

1 $ sudo ./new-session id

2 Orig. session ID: 502.

3 Orig. process ID: 1347.

4 New session ID: 1347.

5 Child process ID: 1348.

6 New session ID: 1348.

7 Child process ID: 1349.

8 execvp("id", ["id"])

9 uid=0(root) gid=0(root) groups=0(root)

What happens in Listing 7.3 is that sudo is used to gain privileges and

execute the program new-session , which creates a new session. In this new

session, the program is free to do as it wishes using the raised privileges. It

creates multiple new sessions for a reason that is explained very shortly.

We ran sudo strace -ff ./new-session and found that, apart from sys-

tem calls arising from printing debug information, the only system calls that

occurred in the main function (which does not include the system calls made

by the C library during program setup and exit) were clone , setsid , and

exit_group . None of these system calls is traced by Progger 1. Additionally,

new-session calls setsid and fork twice so that the final process’s parent

exits without performing any system calls traced by Progger 1. Hence, one

also cannot look for the parent process ID or parent session ID to determine

the user that ran sudo .

So, as we understand it, the methods proposed in [2] cannot be guaranteed

76

to always detect processes that are executed as a user different from the one

that initiated the process. To be able to detect processes executed as a different

user reliably, we have devised the following procedure. In the list of system calls

being traced by Progger 3, include fork , vfork , clone , clone3 , setuid ,

setreuid , and setresuid . Since Progger 3 provides the PID, UID, and EUID

in its system call records, the server receiving the records can then keep a per-

process list of changes in the (E)UID of a process. It could even just record

the original (E)UID the first time any UID-changing system call is executed,

for a simpler implementation. For any system call that occurs later, the server

can check if that process was previously executing as a different user. If it

was executing as a different user, one could find the first user it was executing

as, and thus find the user that initiated the process. This must be repeated

recursively for each parent of the process, to see if any ancestor was initially

running as a different user. To see why, consider sudo sudo <command> . When

determining the ancestors of a process, the server should look at the fork and

clone system call records. This is because processes can change parents, but

what is important is the process that initiated the process in question. The

server can also use the fork and clone records to tell when a PID has been

reused.

The ability to detect processes being executed as another user with this

procedure is new in Progger 3, as previous iterations had no ability to trace

fork , vfork , clone , clone3 , setuid , setreuid , and setresuid .

7.3 Future work

Progger 3 has made advancements, but there are still issues that could be fixed

or improved. The following sections will discuss these issues.

77

7.3.1 Utilising the disk to store buffers

Progger 3 stores all of its buffers that contain provenance in kernel memory.

This is useful, as it means that data is easily protected from user space access,

but it is a limited resource. Progger 3 can configure the amount of memory

to use for buffers, and around 512 KiB per CPU has been found to be suf-

ficient when tracing only openat and having a fast network connection to

the Progger 3 server. But, if a large number of traced system calls occur

in a short space of time, or the network connection is unstable, the buffers

could overflow, losing information. In this scenario, the larger amount of stor-

age available from disks could be utilised to avoid losing data. Having data

stored on-disk provides a new avenue by which user space could potentially

tamper with the provenance. Yet, since Progger 3 protects its buffers with

XChaCha20-Poly1305, one wouldn’t need to take extra care in terms of data

confidentiality and integrity, as any tampering could be detected during de-

cryption. Still, care would need to be taken to ensure that user space could

not delete the data stored on the disk by Progger 3.

7.3.2 User space network interface control

In most, if not all Linux-based systems, user space is in control of bringing

network interfaces up and down. This means that user space could bring the

required network interface down to stop Progger 3 from being able to send

provenance. During this time, Progger 3 is still collecting the provenance and

will send it when the connection is restored. However, if the interface is down

for long enough, Progger 3 could run out of room in its ring buffer to store

more data, and provenance would be lost. At least, one may be able to detect

a network interface being disconnected by observing a cessation of system call

records being received by the server without the system call records indicating

a shutdown took place.

In addition to user space being able to control the network interfaces mali-

ciously, there is also the issue that, when using Progger 3 as a built-in module,

78

as intended, there is a delay between when system call tracing starts and when

the network interfaces have been brought up by user space. This delay means

that, without reasonably large buffers, Progger 3 is prone to experiencing buffer

overflows early on in the system startup sequence.

This issue could be mitigated to some extent by extending Progger 3 to

store buffers on the disk(s), as we have previously suggested, but it would not

truly fix the problem. User space could disconnect the interface indefinitely, or

just long enough for even the disk space allocated for buffers to run out. One

must also consider that the physical network interface, such as an Ethernet

cable, can be disconnected, or an attacker in the network path could drop

packets, in order to achieve a similar effect.

7.3.3 Task priority

One aspect we considered when designing Progger 3 is that tasks running in

the kernel still have to compete with user space tasks for scheduling priority.

If many high-priority tasks were spawned in user space, and Progger 3’s tasks

were not at a sufficiently high priority, Progger 3 may only get a very small

amount of time to run. By design, using tracepoints, Progger 3 will always be

able to record each system call, regardless of the priority at which Progger 3’s

tasks are running. However, the issue lies in the sending of the data Progger 3

collects. If the tasks Progger 3 spawns do not have a chance to run often enough

to empty the ring buffer of system call records, by sending these records over

TCP to the server, ring buffer overflows may occur. In other words, records

about system calls may be lost.

In order to make such an event less likely, Progger 3 sets the priority of

its tasks to the maximum possible. This does carry some risk, as an errant

Progger 3 task caught in an infinite loop could completely consume a CPU core.

However, we are confident enough in Progger 3’s code quality to implement

this.

This measure protects against systems that genuinely may be experiencing

79

high workloads with high-priority tasks. Unfortunately, a malicious actor can

easily lower the priority of kernel tasks using chrt , and then create their own

tasks with higher priorities. When it comes to preventing malicious processes

raising their priority to deny other tasks CPU time, Linux leaves that task to

the administrator in user space (using setrlimit and cgroups , for example),

to the best of our understanding.

One might be able to resolve this issue by making user space unable to

change the priority of kernel tasks, and ensuring the maximum priority of a

kernel task is greater than that of a user space task (at least for the SCHED_FIFO

scheduling policy). We consider this to be absolutely outside the scope of

Progger 3.

So, through creating very high priority tasks, a malicious user space could

affect the availability of system call records generated by Progger 3.

It is at least worth pointing out that this could be fixed by having Progger 3

send the system call record to the remote server while still in the tracepoint.

However, Progger 3 has been designed explicitly not to do this, and use a ring

buffer instead, so that the performance impact is minimal. Any action made

in a system call tracepoint blocks that system call entirely. Sending data over

TCP could take time on the order of milliseconds to complete, compared to

microseconds for a typical system call.

7.3.4 Copying system call pointer arguments

As noted previously, Progger 3 opts to copy only integer and C-string argu-

ments of system calls. This is primarily to reduce code complexity while still

providing the most pertinent information for many use cases. However, should

one desire, judging the increased code complexity to be worthwhile, Progger 3

could be modified to copy all system call arguments, including pointer values.

These pointers may point to complicated structures, so it would take a lot of

care to do correctly.

80

7.3.5 Reducing bandwidth usage

As discussed in subsection 6.1.2, Progger 3 can use quite a lot of network

bandwidth. Being able to configure Progger 3 to send data on system calls

where some predicate is matched, such as paths for openat being in a specific

directory, has potential to reduce this bandwidth usage considerably. However,

it would also come at the cost of increased code complexity, and could cause

at least a slight performance hit.

7.3.6 Information leakage

On a system running Progger 3, activity can be inferred by observing network

activity. If Progger 3 is monitoring file accesses, opening a file will almost

immediately cause a network packet to be sent. The details of the action

will be protected from an attacker, but that an action simply occurred can

potentially be useful to an attacker. One potential case is that an attacker

could determine times that a system is in use, and times when it is not, with

higher accuracy than if Progger 3 were not running. This may give the attacker

a better idea of suitable times to carry out other attacks. Actions could be

taken, such as batching messages, to reduce the impact of this information

leakage.

One might also consider periodically rotating the client ID and fixed part of

the XChaCha20-Poly1305 nonce so that it is harder for an observer to match

network traffic to individual systems using Progger 3.

7.3.7 Namespaces

With each system call record collected by Progger 3, the PIDs and UIDs are

relative to their initial namespaces. So, for example, PID 1 inside a container

will be logged with its PID as viewed from outside the container. It is simple

to add support for namespace-relative PIDs and UIDs, but it wasn’t included

in the end as it does make each system call take a reasonable amount of time

81

longer to complete. Should there be a case where this tradeoff is worthwhile,

one may wish to implement such support.

7.3.8 The Progger 3 server

Chapter 4 discusses our implementation of a server to receive the data gen-

erated by the Progger 3 client. We consider our implementation to be more

than adequate for the purposes of testing and debugging the Progger 3 client.

The Progger 3 client is by far the most important component of the two: there

could be many different servers for Progger 3, each with their own goals, but

the design and goals of the Progger 3 client remain constant. As such, we

wanted to perfect the Progger 3 client, but a server with some minor issues

remained consistent with our goals.

As a result, while our server implementation is quite usable, there are

some minor bugs and unimplemented security features, such as checking the

sequence number of messages (embedded in the nonce). If one desires, there

is work that could be done to create a more secure and widely-useful server

for Progger 3 that may be suitable for real-world deployments.

7.3.9 Choosing which system calls to trace

For comprehensive provenance collection, it can be challenging to determine

exactly which system calls need to be traced. For opening a file, there are three

system calls: open , openat , and openat2 . There is a multitude of system

calls relating to file writing, such as write , pwrite , and lseek , that would

all need to be traced to get a complete picture. Furthermore, a file can be

memory-mapped with with mmap and then written to as a standard memory

object without using system calls.

In contrast, the approach taken in CamFlow [17] of using a Linux Security

Module (LSM) is “guaranteed to capture every event that is deemed security-

sensitive and focus on the objects being accessed, instead of the actions being

carried out on those objects.” This approach could reduce the complexities of

82

selecting and processing the correct system calls.

As such, one may wish to explore implementing Progger 3 as an LSM,

seeing if the design goals of Progger 3 (listed in section 1.1) can still be met.

7.4 Summary

This chapter has explored some ways in which Progger 3 differs from similar

work, which may not have been apparent from earlier chapters. It should now

be clear how the existing framework that combines Progger 1 with a TPM [3]

differs from Progger 3; particularly, the framework does not provide a prove-

nance client implementation. Compared to this framework, Progger 3 is able

to be used in a wider variety of environments, owing to its more focused scope.

Additionally, Progger 3 is better equipped to deal with detecting commands

being executed as different users, compared to previous versions of Progger.

This chapter has also covered some issues we have identified in Progger 3,

and made suggestions for how one may approach fixing these issues. For all

of these issues, there was a reason that we did not resolve the issue in Prog-

ger 3: either that the issue is outside the scope of Progger 3 (subsections 7.3.2

and 7.3.3); or fixing the issue involves trade-offs, such as increased complexity

(subsections 7.3.1, 7.3.4, 7.3.5, and 7.3.6) or reduced performance (subsec-

tion 7.3.7); or that the issue is not one to be fixed per se, but rather a project

in its own right for future exploration (subsections 7.3.8 and 7.3.9). Although

these issues exist, they do not stop Progger 3 from achieving its design goals.

Chapter 8

Conclusion

This thesis has presented Progger 3, a provenance system that traces Linux

system calls in order to collect provenance of data. Progger 3 has made many

advancements relative to its predecessors: Progger 1 and Progger 2. In partic-

ular, Progger 3 is vastly more performant, to the point where we consider it

the first iteration of Progger that can be realistically used in many real-world

workloads without causing an unacceptable loss in performance. In addition

to performance, Progger 3 offers a new level in security, being able to ensure

the collected provenance cannot be tampered with, so long as the kernel on

the client is not compromised. The provenance is tamper-proof even in the

event of a compromised user space on the client. Furthermore, Progger 3 is

a working implementation of our ideas, and it shows excellent stability and

ease of use. Finally, Progger 3 is able to trace any system call, compared to

the relatively small subsets supported in Progger 1 and Progger 2. We believe

that, should one desire to use a secure, efficient data provenance system that

traces system calls, Progger 3 will likely meet their needs better than any other

existing system.

References

[1] L. Carata et al., “A primer on provenance,” Communications of the

ACM, vol. 57, no. 5, pp. 52–60, 2014.

[2] R. K. L. Ko and M. A. Will, “Progger: An efficient, tamper-evident

kernel-space logger for cloud data provenance tracking,” in IEEE 7th

International Conference on Cloud Computing, 2014, pp. 881–889. doi:

10.1109/CLOUD.2014.121.

[3] M. M. M. Bany Taha, “Tamper-evident data provenance,” Master of

Engineering thesis, University of Waikato, Hamilton, New Zealand, 2016.

[Online]. Available: https://hdl.handle.net/10289/9972.

[4] L. Torvalds et al., 64-bit system call numbers and entry vectors, ver-

sion 5.8.18, May 14, 2020. [Online]. Available: https://git.kernel.

org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/

x86/entry/syscalls/syscall_64.tbl?h=v5.8.18.

[5] Trusted Computing Group, Trusted Platform Module Library, Family

“2.0”, Rev. 01.59, Nov. 8, 2019. [Online]. Available: https://trustedcomputinggroup.

org/resource/tpm-library-specification/.

[6] J. Yao and V. J. Zimmer, “Intel R© Boot Guard,” in Understanding the

UEFI Secure Boot Chain. Jun. 2019. [Online]. Available: https://edk2-

docs.gitbook.io/understanding-the-uefi-secure-boot-chain/

secure_boot_chain_in_uefi/intel_boot_guard.

[7] W. Liu and S. Jones, “Cyber-resiliency in chipset and BIOS,” Tech. Rep.,

2017. [Online]. Available: https://downloads.dell.com/solutions/

https://doi.org/10.1109/CLOUD.2014.121
https://hdl.handle.net/10289/9972
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/x86/entry/syscalls/syscall_64.tbl?h=v5.8.18
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/x86/entry/syscalls/syscall_64.tbl?h=v5.8.18
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/x86/entry/syscalls/syscall_64.tbl?h=v5.8.18
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/intel_boot_guard
https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/intel_boot_guard
https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/intel_boot_guard
https://downloads.dell.com/solutions/servers-solution-resources/Direct%20from%20Development%20-%20Cyber-Resiliency%20In%20Chipset%20and%20BIOS.pdf

85

servers-solution-resources/Direct%20from%20Development%20-

%20Cyber-Resiliency%20In%20Chipset%20and%20BIOS.pdf.

[8] Intel Corporation, Intel R© 8 Series/C220 Series Chipset Family Plat-

form Controller Hub (PCH), May 2014, pp. 729–732. [Online]. Avail-

able: https://www.intel.com/content/dam/www/public/us/en/

documents/datasheets/8-series-chipset-pch-datasheet.pdf.

[9] Winbond Electronics Corporation, W25Q64FV, Oct. 26, 2016. [Online].

Available: https://www.winbond.com/resource-files/w25q64fv%

20revr%2010262016.pdf.

[10] L. Torvalds et al., The kernel’s command-line parameters, version 5.8.18,

Sep. 7, 2020. [Online]. Available: https://git.kernel.org/pub/scm/

linux/kernel/git/stable/linux.git/tree/Documentation/admin-

guide/kernel-parameters.txt?h=v5.8.18.

[11] Y. Nir and A. Langley, “ChaCha20 and Poly1305 for IETF protocols,”

RFC 8439, Jun. 2018. [Online]. Available: https://tools.ietf.org/

html/rfc8439.

[12] S. Arciszewski, “XChaCha: eXtended-nonce ChaCha and AEAD XChaCha20 Poly1305,

draft-irtf-cfrg-xchacha-03,” Tech. Rep., Jan. 10, 2020. [Online]. Avail-

able: https://tools.ietf.org/html/draft-irtf-cfrg-xchacha-03.

[13] B. Pérez, J. Rubio, and C. Sáenz-Adán, “A systematic review of prove-

nance systems,” Knowledge and Information Systems, vol. 57, no. 3,

pp. 495–543, 2018.

[14] Red Hat, Inc., “Understanding the eBPF networking features in RHEL,”

in Configuring and Managing Networking, A guide to configuring and

managing networking in Red Hat Enterprise Linux 8. [Online]. Avail-

able: https://access.redhat.com/documentation/en-us/red_hat_

enterprise_linux/8/html/configuring_and_managing_networking/

assembly_understanding-the-ebpf-features-in-rhel_configuring-

and-managing-networking.

https://downloads.dell.com/solutions/servers-solution-resources/Direct%20from%20Development%20-%20Cyber-Resiliency%20In%20Chipset%20and%20BIOS.pdf
https://downloads.dell.com/solutions/servers-solution-resources/Direct%20from%20Development%20-%20Cyber-Resiliency%20In%20Chipset%20and%20BIOS.pdf
https://downloads.dell.com/solutions/servers-solution-resources/Direct%20from%20Development%20-%20Cyber-Resiliency%20In%20Chipset%20and%20BIOS.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/8-series-chipset-pch-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/8-series-chipset-pch-datasheet.pdf
https://www.winbond.com/resource-files/w25q64fv%20revr%2010262016.pdf
https://www.winbond.com/resource-files/w25q64fv%20revr%2010262016.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/admin-guide/kernel-parameters.txt?h=v5.8.18
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/admin-guide/kernel-parameters.txt?h=v5.8.18
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/admin-guide/kernel-parameters.txt?h=v5.8.18
https://tools.ietf.org/html/rfc8439
https://tools.ietf.org/html/rfc8439
https://tools.ietf.org/html/draft-irtf-cfrg-xchacha-03
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/assembly_understanding-the-ebpf-features-in-rhel_configuring-and-managing-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/assembly_understanding-the-ebpf-features-in-rhel_configuring-and-managing-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/assembly_understanding-the-ebpf-features-in-rhel_configuring-and-managing-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/assembly_understanding-the-ebpf-features-in-rhel_configuring-and-managing-networking

86

[15] K.-K. Muniswamy-Reddy, D. Holland, U. Braun, and M. Seltzer, “Provenance-

aware storage systems,” in Proceedings of the USENIX 2006 Annual

Technical Conference, Jan. 2006, pp. 43–56.

[16] K.-K. Muniswamy-Reddy, P. Macko, and M. Seltzer, “Provenance for

the cloud,” in Proceedings of the 8th Conference on File and Storage

Technologies (FAST’10), Feb. 2010.

[17] T. Pasquier et al., “Practical whole-system provenance capture,” in Sym-

posium on Cloud Computing (SoCC’17), ACM, 2017.

[18] L. Torvalds et al., Linux Security Modules: General security hooks for

Linux, version 5.8.18, Apr. 21, 2020. [Online]. Available: https://git.

kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/

Documentation/security/lsm.rst?h=v5.8.18.

[19] “Sysdig,” sysdig.com. [Online]. Available: https://sysdig.com/ (ac-

cessed Nov. 16, 2020).

[20] “SystemTap,” sourceware.org. [Online]. Available: https://sourceware.

org/systemtap/index.html (accessed Nov. 16, 2020).

[21] “bpftrace,” bpftrace.org. [Online]. Available: https://bpftrace.org/

(accessed Nov. 16, 2020).

[22] “What is eBPF?” ebpf.io. [Online]. Available: https://ebpf.io/what-

is-ebpf/ (accessed Dec. 10, 2020).

[23] L. Torvalds et al., Kernel TLS, version 5.8.18, Oct. 4, 2019. [Online].

Available: https://git.kernel.org/pub/scm/linux/kernel/git/

stable/linux.git/tree/Documentation/networking/tls.rst?h=

v5.8.18.

[24] E. Rescorla, “The transport layer security (TLS) protocol version 1.3,”

RFC 8446, Aug. 2018. [Online]. Available: https://tools.ietf.org/

html/rfc8446.

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/security/lsm.rst?h=v5.8.18
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/security/lsm.rst?h=v5.8.18
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/security/lsm.rst?h=v5.8.18
https://sysdig.com/
https://sourceware.org/systemtap/index.html
https://sourceware.org/systemtap/index.html
https://bpftrace.org/
https://ebpf.io/what-is-ebpf/
https://ebpf.io/what-is-ebpf/
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/networking/tls.rst?h=v5.8.18
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/networking/tls.rst?h=v5.8.18
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/networking/tls.rst?h=v5.8.18
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446

87

[25] W. Roberts et al., tpm2-tools, version 4.2, Apr. 8, 2020. [Online]. Avail-

able: https://github.com/tpm2-software/tpm2-tools.

[26] Trusted Computing Group, TCG PC client platform TPM profile spec-

ification for TPM 2.0, version 1.05, revision 14, Sep. 4, 2020. [Online].

Available: https://trustedcomputinggroup.org/wp-content/uploads/

PC - Client - Specific - Platform - TPM - Profile - for - TPM - 2p0 -

v1p05p_r14_pub.pdf.

[27] D. Khovratovich, C. Rechberger, and A. Savelieva, Bicliques for preim-

ages: Attacks on Skein-512 and the SHA-2 family, Cryptology ePrint

Archive, Report 2011/286, 2011. [Online]. Available: https://eprint.

iacr.org/2011/286.

[28] S. Berger et al., swtpm, version 0.3.1, Mar. 30, 2020. [Online]. Available:

https://github.com/stefanberger/swtpm.

[29] F. Bellard et al., QEMU, version 3.1, Dec. 11, 2018. [Online]. Available:

https://www.qemu.org/.

https://github.com/tpm2-software/tpm2-tools
https://trustedcomputinggroup.org/wp-content/uploads/PC-Client-Specific-Platform-TPM-Profile-for-TPM-2p0-v1p05p_r14_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/PC-Client-Specific-Platform-TPM-Profile-for-TPM-2p0-v1p05p_r14_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/PC-Client-Specific-Platform-TPM-Profile-for-TPM-2p0-v1p05p_r14_pub.pdf
https://eprint.iacr.org/2011/286
https://eprint.iacr.org/2011/286
https://github.com/stefanberger/swtpm
https://www.qemu.org/

Appendices

Appendix A

Progger 3 source code

These files are placed in the Linux source tree. Development was done against

Linux 5.8.y, but it would be straightforward to rebase to a later version.

Progger 3 is licensed under the GPLv2.

A patch file for this code against Linux 5.8.y is attached to this PDF

for easier access if you want to use the source code. Right-click and save

to obtain it.

A.1 Kconfig (diff)

1 diff --git a/Kconfig b/Kconfig

2 index 745bc773f567..f3ad6ff1ad80 100644

3 --- a/Kconfig

4 +++ b/Kconfig

5 @@ -7,6 +7,9 @@ mainmenu "Linux/$(ARCH) $(KERNELVERSION) Kernel Configuration"

6
7 source "scripts/Kconfig.include"

8
9 +# Only placed near the top for development purposes.

10 +source "drivers/net/progger/Kconfig"

11 +

12 source "init/Kconfig"

13
14 source "kernel/Kconfig.freezer"

A.2 drivers/net/Makefile (diff)

1 diff --git a/drivers/net/Makefile b/drivers/net/Makefile

2 index 94b60800887a..887b8ca2cfb0 100644

3 --- a/drivers/net/Makefile

The user space server code has some minor bugs and doesn't implement
some possible security measures, but it's still very much usable.

This patch organises itself to make development easy, so do not be
surprised to see style inconsistent with the rest of Linux.

Please see my thesis [0] for more information if you are interested.

[0]: Tristan Corrick, "Progger 3: A Low-Overhead, Tamper-Proof Provenance
 System", Master of Cyber Security thesis, University of Waikato,
 Hamilton, New Zealand, 2021.

 Kconfig | 3 +
 README | 62 ++-
 README.orig | 18 +
 drivers/net/Makefile | 3 +
 drivers/net/progger/Kconfig | 26 +
 drivers/net/progger/Makefile | 7 +
 drivers/net/progger/kernel/Kconfig | 132 +++++
 drivers/net/progger/kernel/Makefile | 56 ++
 drivers/net/progger/kernel/crypto.c | 81 +++
 drivers/net/progger/kernel/crypto.h | 14 +
 .../net/progger/kernel/generated/.gitignore | 1 +
 .../net/progger/kernel/generated/gen-ip.py | 45 ++
 .../progger/kernel/generated/gen-syscalls.py | 79 +++
 drivers/net/progger/kernel/init.c | 81 +++
 drivers/net/progger/kernel/kthread.c | 40 ++
 drivers/net/progger/kernel/kthread.h | 12 +
 drivers/net/progger/kernel/net.c | 184 +++++++
 drivers/net/progger/kernel/net.h | 12 +
 drivers/net/progger/kernel/ringbuf.c | 176 +++++++
 drivers/net/progger/kernel/ringbuf.h | 82 +++
 drivers/net/progger/kernel/tpm.c | 436 ++++++++++++++++
 drivers/net/progger/kernel/tpm.h | 33 ++
 drivers/net/progger/kernel/tracepoints.c | 448 ++++++++++++++++
 drivers/net/progger/kernel/tracepoints.h | 9 +
 drivers/net/progger/scripts/tpm/provision | 19 +
 .../net/progger/scripts/tpm/provision-inner | 231 ++++++++
 .../net/progger/scripts/tpm/provision-setup | 38 ++
 drivers/net/progger/server/Makefile | 30 ++
 drivers/net/progger/server/crypto.c | 52 ++
 drivers/net/progger/server/crypto.h | 11 +
 drivers/net/progger/server/server.c | 492 ++++++++++++++++++
 drivers/net/progger/server/syscall-table.c | 408 +++++++++++++++
 drivers/net/progger/server/syscalls.h | 10 +
 include/progger-host/progger | 1 +
 include/progger/compiler.h | 32 ++
 include/progger/crypto.h | 27 +
 include/progger/net.h | 8 +
 include/progger/record.h | 73 +++
 include/progger/types.h | 18 +
 39 files changed, 3477 insertions(+), 13 deletions(-)
 create mode 100644 README.orig
 create mode 100644 drivers/net/progger/Kconfig
 create mode 100644 drivers/net/progger/Makefile
 create mode 100644 drivers/net/progger/kernel/Kconfig
 create mode 100644 drivers/net/progger/kernel/Makefile
 create mode 100644 drivers/net/progger/kernel/crypto.c
 create mode 100644 drivers/net/progger/kernel/crypto.h
 create mode 100644 drivers/net/progger/kernel/generated/.gitignore
 create mode 100755 drivers/net/progger/kernel/generated/gen-ip.py
 create mode 100755 drivers/net/progger/kernel/generated/gen-syscalls.py
 create mode 100644 drivers/net/progger/kernel/init.c
 create mode 100644 drivers/net/progger/kernel/kthread.c
 create mode 100644 drivers/net/progger/kernel/kthread.h
 create mode 100644 drivers/net/progger/kernel/net.c
 create mode 100644 drivers/net/progger/kernel/net.h
 create mode 100644 drivers/net/progger/kernel/ringbuf.c
 create mode 100644 drivers/net/progger/kernel/ringbuf.h
 create mode 100644 drivers/net/progger/kernel/tpm.c
 create mode 100644 drivers/net/progger/kernel/tpm.h
 create mode 100644 drivers/net/progger/kernel/tracepoints.c
 create mode 100644 drivers/net/progger/kernel/tracepoints.h
 create mode 100755 drivers/net/progger/scripts/tpm/provision
 create mode 100755 drivers/net/progger/scripts/tpm/provision-inner
 create mode 100755 drivers/net/progger/scripts/tpm/provision-setup
 create mode 100644 drivers/net/progger/server/Makefile
 create mode 100644 drivers/net/progger/server/crypto.c
 create mode 100644 drivers/net/progger/server/crypto.h
 create mode 100644 drivers/net/progger/server/server.c
 create mode 100644 drivers/net/progger/server/syscall-table.c
 create mode 100644 drivers/net/progger/server/syscalls.h
 create mode 120000 include/progger-host/progger
 create mode 100644 include/progger/compiler.h
 create mode 100644 include/progger/crypto.h
 create mode 100644 include/progger/net.h
 create mode 100644 include/progger/record.h
 create mode 100644 include/progger/types.h

diff --git a/Kconfig b/Kconfig
index 745bc773f567..f3ad6ff1ad80 100644
--- a/Kconfig
+++ b/Kconfig
@@ -7,6 +7,9 @@ mainmenu "Linux/$(ARCH) $(KERNELVERSION) Kernel Configuration"

 source "scripts/Kconfig.include"

+# Only placed near the top for development purposes.
+source "drivers/net/progger/Kconfig"
+
 source "init/Kconfig"

 source "kernel/Kconfig.freezer"
diff --git a/README b/README
index 669ac7c32292..81de76dbcc8a 100644
--- a/README
+++ b/README
@@ -1,18 +1,54 @@
-Linux kernel
-============
+Example usage
+-------------

-There are several guides for kernel developers and users. These guides can
-be rendered in a number of formats, like HTML and PDF. Please read
-Documentation/admin-guide/README.rst first.
+If you're using a TPM, you can use the provided script for provisioning

-In order to build the documentation, use ``make htmldocs`` or
-``make pdfdocs``. The formatted documentation can also be read online at:
+ $ sudo ./drivers/net/progger/scripts/tpm/provision

- https://www.kernel.org/doc/html/latest/
+Configure Progger (and the rest of the kernel)

-There are various text files in the Documentation/ subdirectory,
-several of them using the Restructured Text markup notation.
+ $ make menuconfig

-Please read the Documentation/process/changes.rst file, as it contains the
-requirements for building and running the kernel, and information about
-the problems which may result by upgrading your kernel.
+Compile and install the kernel
+
+ $ make -j"$(nproc)" bindeb-pkg
+ $ sudo apt install ../linux-image*.deb ../linux-headers*.deb
+
+Reboot. If Progger was not compiled built-in, it can be loaded with
+
+ $ sudo modprobe progger
+
+Run the server on the host you specified in the kernel config
+
+ $./server [listen-addr [keyfile]]
+
+The server should now print received syscall data in JSON format, like so
+
+ {
+ "id": "openat",
+ "tp_src": "sys_exit",
+ "pid": 1,
+ "ts": 6679638179104,
+ "ret": 20,
+ "args": [
+ 4294967196,
+ 140736476511504,
+ 524288,
+ 0,
+ 0,
+ 1
+],
+ "strings": [
+ "/proc/219/cgroup"
+]
+ }
+
+If you want to (re)compile only the Progger kernel module
+
+ $ make -j"$(nproc)" modules_prepare
+ $ make syncconfig
+ $ make -j"$(nproc)" M=drivers/net/progger
+ $ sudo make M=drivers/net/progger modules_install
+ $ sudo depmod
+ $ sudo modprobe -r progger
+ $ sudo modprobe progger
diff --git a/README.orig b/README.orig
new file mode 100644
index 000000000000..669ac7c32292
--- /dev/null
+++ b/README.orig
@@ -0,0 +1,18 @@
+Linux kernel
+============
+
+There are several guides for kernel developers and users. These guides can
+be rendered in a number of formats, like HTML and PDF. Please read
+Documentation/admin-guide/README.rst first.
+
+In order to build the documentation, use ``make htmldocs`` or
+``make pdfdocs``. The formatted documentation can also be read online at:
+
+ https://www.kernel.org/doc/html/latest/
+
+There are various text files in the Documentation/ subdirectory,
+several of them using the Restructured Text markup notation.
+
+Please read the Documentation/process/changes.rst file, as it contains the
+requirements for building and running the kernel, and information about
+the problems which may result by upgrading your kernel.
diff --git a/drivers/net/Makefile b/drivers/net/Makefile
index 94b60800887a..887b8ca2cfb0 100644
--- a/drivers/net/Makefile
+++ b/drivers/net/Makefile
@@ -82,3 +82,6 @@ thunderbolt-net-y += thunderbolt.o
 obj-$(CONFIG_USB4_NET) += thunderbolt-net.o
 obj-$(CONFIG_NETDEVSIM) += netdevsim/
 obj-$(CONFIG_NET_FAILOVER) += net_failover.o
+
+obj-$(CONFIG_PROGGER) += progger/
+subdir-$(CONFIG_PROGGER) += progger
diff --git a/drivers/net/progger/Kconfig b/drivers/net/progger/Kconfig
new file mode 100644
index 000000000000..0f28336b5304
--- /dev/null
+++ b/drivers/net/progger/Kconfig
@@ -0,0 +1,26 @@
+# SPDX-License-Identifier: GPL-2.0-only
+
+menu "Progger configuration"
+
+config PROGGER
+	tristate "Progger support"
+	depends on X86
+	depends on 64BIT
+	depends on NET && INET
+	select CRYPTO
+	select CRYPTO_LIB_CHACHA20POLY1305
+	select CRYPTO_CHACHA20_X86_64
+	select CRYPTO_POLY1305_X86_64
+	select TRACING
+
+if PROGGER
+
+source "drivers/net/progger/kernel/Kconfig"
+
+config PROGGER_CLIENT_ID
+	hex "Client ID"
+	default 0xcafe1337
+
+endif # Progger
+
+endmenu # Progger configuration
diff --git a/drivers/net/progger/Makefile b/drivers/net/progger/Makefile
new file mode 100644
index 000000000000..f68bb3382822
--- /dev/null
+++ b/drivers/net/progger/Makefile
@@ -0,0 +1,7 @@
+# SPDX-License-Identifier: GPL-2.0-only
+
+subdir-$(CONFIG_PROGGER) += kernel
+subdir-$(CONFIG_PROGGER) += server
+
+obj-$(CONFIG_PROGGER) += kernel/
+obj-$(CONFIG_PROGGER) += server/
diff --git a/drivers/net/progger/kernel/Kconfig b/drivers/net/progger/kernel/Kconfig
new file mode 100644
index 000000000000..d5507af23fc4
--- /dev/null
+++ b/drivers/net/progger/kernel/Kconfig
@@ -0,0 +1,132 @@
+# SPDX-License-Identifier: GPL-2.0-only
+
+menu "Tracepoints"
+
+#
+# Each tracepoint config must be of the form PROGGER_TRACEPOINT_x, where x is
+# the name of an available tracepoint. This is so the resulting config can be
+# parsed to automatically generate code listing the tracepoints to use.
+#
+
+config PROGGER_TRACE_SYSCALLS
+	bool "Trace syscalls"
+	default y
+	select PROGGER_TRACEPOINT_SYS_ENTER
+	select PROGGER_TRACEPOINT_SYS_EXIT
+
+config PROGGER_TRACEPOINT_SYS_ENTER
+	bool
+
+config PROGGER_TRACEPOINT_SYS_EXIT
+	bool
+
+config PROGGER_TRACED_SYSCALLS
+	string "System calls to trace"
+	depends on PROGGER_TRACE_SYSCALLS
+	help
+	 A regular expression that matches the system calls to be traced.
+
+	 For example:
+	 - "openat|rename(at)?2?|u?mount2?"
+	 - ".*"
+	 - ".*xattr.*"
+
+endmenu # Tracepoints
+
+config PROGGER_USE_TPM
+	bool "Use the TPM"
+	default y
+	select TCG_TPM
+	select TCG_TIS
+	help
+	 For development or testing, it may be preferable to use a
+	 system without a TPM. Only say N if that is the case.
+
+if PROGGER_USE_TPM
+
+config PROGGER_TPM_PCR
+	int "PCR to allocate to Progger"
+	range 8 15
+	default 15
+
+config PROGGER_TPM_KEY_HANDLE
+	hex "Parent key handle"
+	help
+	 The handle of the key used to seal the ChaCha20-Poly1305 key.
+	 It is not the handle of the ChaCha20-Poly1305 key.
+
+config PROGGER_TPM_PUBLIC_BLOB
+	string "Public blob path"
+	help
+	 The path to the public blob generated while sealing the crypto key.
+
+config PROGGER_TPM_PRIVATE_BLOB
+	string "Private blob path"
+	help
+	 The path to the private blob generated while sealing the crypto key.
+
+config PROGGER_PANIC_WHEN_KEY_UNSECURED
+	bool "Panic when the sealed crypto key is left unsecured"
+	default y
+	help
+	 The crypto key can only be unsealed once per boot. If an error occurs
+	 when the crypto key is being unsealed, user space could potentially
+	 unseal the key later. The only option left to protect the crypto key
+	 from user space is to force a kernel panic.
+
+	 This should only be set to N for development or testing.
+
+config PROGGER_PANIC_WHEN_NO_TPM_FOUND
+	bool "Panic when no TPM device can be found"
+	depends on PROGGER_PANIC_WHEN_KEY_UNSECURED
+	default y
+	help
+	 To be extra sure that the crypto key is not accessible to user space,
+	 Progger can panic if it doesn't find a TPM.
+
+	 Suppose Progger is compiled built-in, and the TPM driver is compiled
+	 only as a loadable module. In this case, Progger will not find the
+	 TPM during initialisation, but the TPM will become available to
+	 the system when the TPM module is loaded from user space. As
+	 such, Progger is unable to unseal the crypto key and secure it
+	 from user space.
+
+	 If you have ensured that the relevant TPM driver is compiled
+	 built-in, then this option is not needed. In such a case, it
+	 could be beneficial to disable this option, as that would mean
+	 that system is still bootable if the TPM hardware fails.
+
+config PROGGER_PANIC_WHEN_TPM_IS_NOT_VERSION_2
+	bool "Panic when TPM device is not a TPM 2.0 device"
+	depends on PROGGER_PANIC_WHEN_KEY_UNSECURED
+	default y
+	help
+	 Progger requires a device supporting TPM 2.0. If this is not the
+	 case, Progger cannot protect the sealed crypto key from user space.
+	 The only option left to protect the crypto key from user space is to
+	 panic the kernel.
+
+	 If this option is not set, and Progger encounters a device that
+	 does not support TPM 2.0, Progger won't try to unseal the key;
+	 instead, Progger will just fail its initialisation.
+
+endif # PROGGER_USR_TPM
+
+config PROGGER_NET_DSTADDR
+	string "Destination IP address"
+	default "::1"
+	help
+	 The IP address to send records to. Both IPv4 and IPv6 are supported.
+
+config PROGGER_RINGBUF_SIZE
+	int "Record ringbuffer size (KiB per CPU)"
+	default 256
+	help
+	 The number of kilobytes per CPU to use as a buffer for records.
+	 Large buffers might be required to prevent data loss when a lot
+	 of traced events occur in a small timeframe.
+
+	 If Progger is compiled built-in instead of as a module, there will be
+	 a period where Progger is collecting records but is unable to send
+	 them, as the network interfaces are not yet up. The ringbuffer size
+	 can be increased to compensate for that.
diff --git a/drivers/net/progger/kernel/Makefile b/drivers/net/progger/kernel/Makefile
new file mode 100644
index 000000000000..95d4866e778a
--- /dev/null
+++ b/drivers/net/progger/kernel/Makefile
@@ -0,0 +1,56 @@
+# SPDX-License-Identifier: GPL-2.0-only
+
+obj-$(CONFIG_PROGGER) := progger.o
+
+progger-y := init.o
+progger-y += tracepoints.o
+progger-y += crypto.o
+progger-y += net.o
+progger-y += ringbuf.o
+progger-y += kthread.o
+progger-$(CONFIG_PROGGER_USE_TPM) += tpm.o
+
+ccflags-y += -O3
+ccflags-y += -D'pr_fmt(fmt)=KBUILD_MODNAME ": " fmt'
+
+syscall-tbl := $(srctree)/arch/x86/entry/syscalls/syscall_64.tbl
+
+generated := $(obj)/generated
+
+tpm-blobs := tpm-public-blob.h
+tpm-blobs += tpm-private-blob.h
+
+clean-files += generated/ip.h
+clean-files += generated/syscalls.h
+clean-files += $(addprefix generated/,$(tpm-blobs))
+clean-files += $(addprefix generated/,$(tpm-blobs).tmp)
+
+quiet_cmd_progger_gen = GEN $@
+ cmd_progger_gen = $< $(KCONFIG_CONFIG) $@ $(2)
+
+quiet_cmd_tpm_blob_gen = GEN $@
+ cmd_tpm_blob_gen = \
+		xxd -i >$@.tmp <$(CONFIG_PROGGER_TPM_$(2)_BLOB) && \
+		if ! diff -N $@ $@.tmp >/dev/null; then mv $@.tmp $@; fi
+
+$(obj)/net.o: $(generated)/ip.h
+$(obj)/tracepoints.o: $(generated)/syscalls.h
+$(obj)/tpm.o: $(addprefix $(generated)/,$(tpm-blobs))
+
+$(generated)/ip.h: $(generated)/gen-ip.py
+	$(call cmd,progger_gen)
+
+$(generated)/syscalls.h: $(generated)/gen-syscalls.py $(syscall-tbl)
+	$(call cmd,progger_gen,$(syscall-tbl))
+
+$(generated)/tpm-public-blob.h: FORCE
+	$(call cmd,tpm_blob_gen,PUBLIC)
+
+$(generated)/tpm-private-blob.h: FORCE
+	$(call cmd,tpm_blob_gen,PRIVATE)
+
+$(wildcard $(generated)/*.h): $(KCONFIG_CONFIG)
+
+$(wildcard $(generated)/gen-*.py): ;
+
+FORCE: ;
diff --git a/drivers/net/progger/kernel/crypto.c b/drivers/net/progger/kernel/crypto.c
new file mode 100644
index 000000000000..cf4fedeb1955
--- /dev/null
+++ b/drivers/net/progger/kernel/crypto.c
@@ -0,0 +1,81 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+#include "crypto.h"
+
+#include <crypto/chacha20poly1305.h>
+#include <linux/cache.h>
+#include <linux/compiler.h>
+#include <linux/errno.h>
+#include <linux/init.h>
+#include <linux/kconfig.h>
+#include <linux/kernel.h>
+#include <linux/limits.h>
+#include <linux/mm.h>
+#include <linux/overflow.h>
+#include <linux/random.h>
+#include <linux/spinlock.h>
+#include <linux/string.h>
+
+#include <progger/crypto.h>
+#include <progger/types.h>
+
+#include "tpm.h"
+
+static u8 __read_mostly key[CHACHA20POLY1305_KEY_SIZE];
+static u8 nonce[XCHACHA20POLY1305_NONCE_SIZE];
+static DEFINE_SPINLOCK(nonce_lock);
+static u64 counter;
+
+int progger_xchacha20poly1305(void **out, size_t *outlen,
+			 void *data, size_t datalen,
+			 void *ad, size_t adlen)
+{
+	size_t extralen = CHACHA20POLY1305_AUTHTAG_SIZE + sizeof(nonce);
+
+	if (unlikely(counter == U64_MAX)) {
+		pr_err_once("Nonce counter has reached its maximum!");
+		return -EOVERFLOW;
+	}
+
+	if (unlikely(check_add_overflow(datalen, extralen, outlen)))
+		return -EOVERFLOW;
+
+	*out = kvmalloc(*outlen, GFP_KERNEL);
+	if (unlikely(!*out))
+		return -ENOMEM;
+
+	spin_lock(&nonce_lock);
+	*((u64 *)nonce + 2) = counter++;
+	memcpy(*out, nonce, sizeof(nonce));
+	spin_unlock(&nonce_lock);
+
+	xchacha20poly1305_encrypt(*out + sizeof(nonce), data, datalen,
+				 ad, adlen, *out, key);
+
+	return 0;
+}
+
+int __init crypto_init(void)
+{
+	int err;
+
+	if (IS_ENABLED(CONFIG_PROGGER_USE_TPM)) {
+		err = tpm_get_chacha20poly1305_key(&key);
+		if (err)
+			return err;
+	} else {
+		pr_warn("Not using TPM, using insecure testing key.\n");
+		memcpy(key, progger_crypto_testkey, sizeof(key));
+	}
+
+	err = get_random_bytes_wait(&nonce, sizeof(nonce));
+	if (err)
+		return err;
+
+	return 0;
+}
+
+void crypto_exit(void)
+{
+	memset(key, 0, sizeof(key));
+}
diff --git a/drivers/net/progger/kernel/crypto.h b/drivers/net/progger/kernel/crypto.h
new file mode 100644
index 000000000000..6d60ae5c7710
--- /dev/null
+++ b/drivers/net/progger/kernel/crypto.h
@@ -0,0 +1,14 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+
+#ifndef PROGGER_CRYPTO_H
+#define PROGGER_CRYPTO_H
+
+#include <progger/types.h>
+
+int progger_xchacha20poly1305(void **out, size_t *outlen,
+			 void *data, size_t datalen,
+			 void *ad, size_t adlen);
+int crypto_init(void);
+void crypto_exit(void);
+
+#endif /* PROGGER_CRYPTO_H */
diff --git a/drivers/net/progger/kernel/generated/.gitignore b/drivers/net/progger/kernel/generated/.gitignore
new file mode 100644
index 000000000000..d4c66e8764a6
--- /dev/null
+++ b/drivers/net/progger/kernel/generated/.gitignore
@@ -0,0 +1 @@
+/*.h
diff --git a/drivers/net/progger/kernel/generated/gen-ip.py b/drivers/net/progger/kernel/generated/gen-ip.py
new file mode 100755
index 000000000000..1a58a9cf0d22
--- /dev/null
+++ b/drivers/net/progger/kernel/generated/gen-ip.py
@@ -0,0 +1,45 @@
+#!/usr/bin/env python3
+# SPDX-License-Identifier: GPL-2.0-only
+
+import ipaddress
+import sys
+
+
+def main():
+ if len(sys.argv) != 3:
+ print(f"Usage: {sys.argv[0]} <.config> <output-file>", file=sys.stderr)
+ exit(1)
+
+ dot_config = sys.argv[1]
+ output_file = sys.argv[2]
+ output_lines = []
+
+ with open(dot_config, 'r') as f:
+ for line in f.readlines():
+ if line.startswith('CONFIG_PROGGER_NET_DSTADDR='):
+ addr = line.split('=')[-1].strip().replace('"', '')
+ addr = ipaddress.ip_address(addr)
+
+ formatted = None
+
+ if type(addr) == ipaddress.IPv4Address:
+ v4addr = f'{int(addr)} /* {addr} */'
+ v6addr = '{ 0, } /* None */'
+ output_lines.append('#define PROGGER_IPv6 0')
+ else:
+ v4addr = '0 /* None */'
+ v6addr = ','.join([f'0x{byte:02x}' for byte in addr.packed])
+ v6addr = f'{{ {v6addr} }} /* {addr} */'
+ output_lines.append('#define PROGGER_IPv6 1')
+
+ output_lines.append((f'#define PROGGER_IPv4_DSTADDR {v4addr}'))
+ output_lines.append((f'#define PROGGER_IPv6_DSTADDR {v6addr}'))
+
+ output = '\n'.join(output_lines) + '\n'
+
+ with open(output_file, 'w') as f:
+ f.write(output)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/drivers/net/progger/kernel/generated/gen-syscalls.py b/drivers/net/progger/kernel/generated/gen-syscalls.py
new file mode 100755
index 000000000000..580a1d9a2a69
--- /dev/null
+++ b/drivers/net/progger/kernel/generated/gen-syscalls.py
@@ -0,0 +1,79 @@
+#!/usr/bin/env python3
+# SPDX-License-Identifier: GPL-2.0-only
+
+import re
+import sys
+
+TRACEPOINT_CONFIG_START = 'CONFIG_PROGGER_TRACEPOINT_'
+
+
+def format_c_array(array_name, member_type, contents):
+ newline = '\n'
+ tab = '\t'
+
+ if not member_type.endswith('*'):
+ member_type += ' '
+
+ return f'''\
+static {member_type}{array_name}[] = {{
+{tab}{(',' + newline + tab).join(contents)}
+}};\
+'''
+
+
+def main():
+ if len(sys.argv) != 4:
+ print(f"Usage: {sys.argv[0]} <.config> <output-file> <syscall-tbl>",
+ file=sys.stderr)
+ exit(1)
+
+ dot_config = sys.argv[1]
+ output_file = sys.argv[2]
+ syscall_tbl = sys.argv[3]
+ tracepoints = []
+ traced_syscalls = []
+ syscall_regex = ''
+
+ with open(dot_config, 'r') as f:
+ for line in f.readlines():
+ if line.startswith(TRACEPOINT_CONFIG_START):
+ line = line[len(TRACEPOINT_CONFIG_START):]
+ tracepoint = (line.split('=')[0].strip().lower())
+ tracepoints.append(f'{{ {tracepoint}_tp, "{tracepoint}" }}')
+
+ if line.startswith('CONFIG_PROGGER_TRACED_SYSCALLS'):
+ syscall_regex = line.split('=', 1)[1].strip()[1:-1]
+
+ syscall_regex = re.compile(syscall_regex)
+
+ with open(syscall_tbl, 'r') as f:
+ for line in f.readlines():
+ line = line.strip()
+
+ if not line or line.startswith('#'):
+ continue
+
+ parts = line.split()
+ name = parts[2]
+
+ if syscall_regex.fullmatch(name):
+ traced_syscalls.append(f'__NR_{name}')
+
+
+ tp_type = '''\
+const struct {
+	void *fn;
+	const char *name;
+}'''
+
+ output = '\n'.join((
+ format_c_array('init_tracepoints', tp_type, tracepoints), '',
+ format_c_array('init_syscalls', 'const long', traced_syscalls), '',
+))
+
+ with open(output_file, 'w') as f:
+ f.write(output)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/drivers/net/progger/kernel/init.c b/drivers/net/progger/kernel/init.c
new file mode 100644
index 000000000000..93af61061627
--- /dev/null
+++ b/drivers/net/progger/kernel/init.c
@@ -0,0 +1,81 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/printk.h>
+
+#include "crypto.h"
+#include "net.h"
+#include "ringbuf.h"
+#include "tpm.h"
+#include "tracepoints.h"
+
+static int __init progger_init(void)
+{
+	int err;
+
+	err = tpm_init();
+	if (err) {
+		pr_err("TPM init failed!\n");
+		goto fail_tpm_init;
+	}
+
+	err = crypto_init();
+	if (err) {
+		pr_err("Crypto init failed!\n");
+		goto fail_crypto_init;
+	}
+
+	err = net_init();
+	if (err) {
+		pr_err("Net init failed!\n");
+		goto fail_net;
+	}
+
+	err = ringbuf_init();
+	if (err) {
+		pr_err("Ringbuf init failed!\n");
+		goto fail_ringbuf;
+	}
+
+	err = tracepoint_init();
+	if (err) {
+		pr_err("Tracepoint init failed!\n");
+		goto fail_tracepoints;
+	}
+
+	return 0;
+
+fail_tracepoints:
+	tracepoint_exit();
+fail_ringbuf:
+	ringbuf_exit();
+fail_net:
+	net_exit();
+fail_crypto_init:
+	crypto_exit();
+fail_tpm_init:
+	tpm_exit();
+
+	return err;
+}
+
+static void __exit progger_exit(void)
+{
+	tracepoint_exit();
+	ringbuf_exit();
+	net_exit();
+	crypto_exit();
+	tpm_exit();
+}
+
+/*
+ * We need to use `late_initcall` so that the TPM driver is initialised
+ * before `progger_init` runs. It's fine for `progger_init` to run earlier
+ * when the TPM isn't being used, but there's also no need as there will be
+ * nothing for Progger to trace until user space starts.
+ */
+late_initcall(progger_init);
+module_exit(progger_exit);
+
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/net/progger/kernel/kthread.c b/drivers/net/progger/kernel/kthread.c
new file mode 100644
index 000000000000..52675140f96e
--- /dev/null
+++ b/drivers/net/progger/kernel/kthread.c
@@ -0,0 +1,40 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+#include "kthread.h"
+
+#include <linux/err.h>
+#include <linux/kthread.h>
+#include <linux/sched.h>
+#include <linux/sched/prio.h>
+#include <linux/sched/task.h>
+#include <linux/stddef.h>
+#include <uapi/linux/sched/types.h>
+
+int progger_create_task(struct task_struct **task, int (*threadfn)(void *data),
+			const char *name)
+{
+	struct task_struct *new;
+	const struct sched_param sp = { .sched_priority = MAX_RT_PRIO - 1 };
+
+	new = kthread_run(threadfn, NULL, name);
+	if (IS_ERR(new))
+		return PTR_ERR(new);
+
+	sched_setscheduler(new, SCHED_FIFO, &sp);
+
+	*task = get_task_struct(new);
+
+	return 0;
+}
+
+void progger_destroy_task(struct task_struct **task)
+{
+	if (!*task)
+		return;
+
+	kthread_park(*task);
+	kthread_stop(*task);
+	put_task_struct(*task);
+
+	*task = NULL;
+}
diff --git a/drivers/net/progger/kernel/kthread.h b/drivers/net/progger/kernel/kthread.h
new file mode 100644
index 000000000000..e21725741e91
--- /dev/null
+++ b/drivers/net/progger/kernel/kthread.h
@@ -0,0 +1,12 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+
+#ifndef PROGGER_KERNEL_KTHREAD_H
+#define PROGGER_KERNEL_KTHREAD_H
+
+#include <linux/sched.h>
+
+int progger_create_task(struct task_struct **task, int (*threadfn)(void *data),
+			const char *name);
+void progger_destroy_task(struct task_struct **task);
+
+#endif /* PROGGER_KERNEL_KTHREAD_H */
diff --git a/drivers/net/progger/kernel/net.c b/drivers/net/progger/kernel/net.c
new file mode 100644
index 000000000000..a577f01aed72
--- /dev/null
+++ b/drivers/net/progger/kernel/net.c
@@ -0,0 +1,184 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include "net.h"
+
+#include <crypto/chacha20poly1305.h>
+#include <linux/byteorder/generic.h>
+#include <linux/err.h>
+#include <linux/errno.h>
+#include <linux/in6.h>
+#include <linux/in.h>
+#include <linux/init.h>
+#include <linux/jiffies.h>
+#include <linux/kthread.h>
+#include <linux/limits.h>
+#include <linux/mm.h>
+#include <linux/net.h>
+#include <linux/printk.h>
+#include <linux/sched.h>
+#include <linux/socket.h>
+#include <linux/uio.h>
+#include <net/ipv6.h>
+#include <net/net_namespace.h>
+#include <net/sock.h>
+
+#include <progger/net.h>
+#include <progger/record.h>
+#include <progger/types.h>
+
+#include "crypto.h"
+#include "kthread.h"
+#include "generated/ip.h"
+
+static struct net *net = &init_net;
+static struct socket *sock;
+static bool sock_ready;
+
+static struct task_struct *tcp_worker;
+
+static void progger_release_sock(void)
+{
+	if (!sock)
+		return;
+
+	sock_ready = 0;
+	kernel_sock_shutdown(sock, SHUT_WR);
+	sock_release(sock);
+	sock = NULL;
+}
+
+static int progger_connect(void)
+{
+	int err;
+	int dstaddrlen;
+	struct sockaddr *dstaddr;
+	const __kernel_sa_family_t family = PROGGER_IPv6 ? AF_INET6 : AF_INET;
+
+	static struct sockaddr_in6 dstaddr6 = {
+		.sin6_family = AF_INET6,
+		.sin6_addr = { .s6_addr = PROGGER_IPv6_DSTADDR },
+		.sin6_port = htons(PROGGER_SERVER_PORT),
+	};
+
+	static const struct sockaddr_in dstaddr4 = {
+		.sin_family = AF_INET,
+		.sin_addr = { htonl(PROGGER_IPv4_DSTADDR) },
+		.sin_port = htons(PROGGER_SERVER_PORT),
+	};
+
+	progger_release_sock();
+
+	err = sock_create_kern(net, family, SOCK_STREAM, IPPROTO_TCP, &sock);
+	if (err)
+		return err;
+
+	sock_set_reuseaddr(sock->sk);
+
+	if (family == AF_INET6) {
+		err = ip6_sock_set_v6only(sock->sk);
+		if (err)
+			return err;
+
+		dstaddr = (struct sockaddr *)&dstaddr6;
+		dstaddrlen = sizeof(dstaddr6);
+	} else {
+		dstaddr = (struct sockaddr *)&dstaddr4;
+		dstaddrlen = sizeof(dstaddr4);
+	}
+
+	err = kernel_connect(sock, dstaddr, dstaddrlen, 0);
+	if (err)
+		return err;
+
+	sock->sk->sk_sndbuf = INT_MAX;
+	sock->sk->sk_allocation = GFP_ATOMIC;
+
+	sock_ready = 1;
+
+	return 0;
+}
+
+static int conn_loop(void *data)
+{
+	while (1) {
+		set_current_state(TASK_RUNNING);
+
+		if (kthread_should_stop())
+			return 0;
+
+		if (kthread_should_park()) {
+			kthread_parkme();
+			continue;
+		}
+
+		if (!sock_ready) {
+			if (progger_connect() == 0)
+				pr_info("TCP connection established.\n");
+		}
+
+		set_current_state(TASK_INTERRUPTIBLE);
+		schedule_timeout_interruptible(msecs_to_jiffies(100));
+	}
+}
+
+int send_encrypted(void *data, size_t len)
+{
+	int err;
+	void *crypt_output;
+	size_t crypt_output_len;
+	struct msghdr msg = {};
+	struct kvec iov[2];
+	struct record_ad ad;
+	size_t total_len;
+
+	if (!sock_ready)
+		return -EAGAIN;
+
+	ad.len = len;
+	ad.len += XCHACHA20POLY1305_NONCE_SIZE + CHACHA20POLY1305_AUTHTAG_SIZE;
+	ad.client_id = CONFIG_PROGGER_CLIENT_ID;
+
+	err = progger_xchacha20poly1305(&crypt_output, &crypt_output_len,
+					data, len, &ad, sizeof(ad));
+
+	if (unlikely(err))
+		return err;
+
+	iov[0].iov_base = &ad;
+	iov[0].iov_len = sizeof(ad);
+	iov[1].iov_base = crypt_output;
+	iov[1].iov_len = crypt_output_len;
+
+	if (unlikely(check_add_overflow(crypt_output_len, sizeof(ad),
+					&total_len))) {
+		kvfree(crypt_output);
+		return -EOVERFLOW;
+	}
+
+	err = kernel_sendmsg(sock, &msg, iov, ARRAY_SIZE(iov), total_len);
+
+	kvfree(crypt_output);
+
+	if (unlikely(err < 0)) {
+		if (err == -ECONNRESET || err == -EPIPE) {
+			pr_info_ratelimited("TCP connection reset.\n");
+			sock_ready = 0;
+			return -EAGAIN;
+		}
+
+		return err;
+	}
+
+	return 0;
+}
+
+int __init net_init(void)
+{
+	return progger_create_task(&tcp_worker, conn_loop, "progger-net");
+}
+
+void net_exit(void)
+{
+	progger_destroy_task(&tcp_worker);
+	progger_release_sock();
+}
diff --git a/drivers/net/progger/kernel/net.h b/drivers/net/progger/kernel/net.h
new file mode 100644
index 000000000000..84e297159f39
--- /dev/null
+++ b/drivers/net/progger/kernel/net.h
@@ -0,0 +1,12 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+
+#ifndef PROGGER_KERNEL_NET_H
+#define PROGGER_KERNEL_NET_H
+
+#include <progger/types.h>
+
+int send_encrypted(void *data, size_t len);
+int net_init(void);
+void net_exit(void);
+
+#endif /* PROGGER_KERNEL_NET_H */
diff --git a/drivers/net/progger/kernel/ringbuf.c b/drivers/net/progger/kernel/ringbuf.c
new file mode 100644
index 000000000000..680030d91c4f
--- /dev/null
+++ b/drivers/net/progger/kernel/ringbuf.c
@@ -0,0 +1,176 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+#include "ringbuf.h"
+
+#include <asm/barrier.h>
+#include <linux/cache.h>
+#include <linux/cpu.h>
+#include <linux/cpumask.h>
+#include <linux/err.h>
+#include <linux/errno.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/kthread.h>
+#include <linux/mm.h>
+#include <linux/percpu.h>
+#include <linux/printk.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/topology.h>
+
+#include <progger/compiler.h>
+#include <progger/types.h>
+
+#include "kthread.h"
+#include "net.h"
+
+static struct task_struct *rb_worker;
+struct record_ringbuf __percpu __read_mostly *ring;
+DEFINE_SPINLOCK(rb_pde_lock);
+
+static int ringbuf_alloc(struct record_ringbuf *rb, int cpu, size_t size)
+{
+	if (size < MAX_RECORD_SIZE) {
+		size = MAX_RECORD_SIZE * 4;
+		pr_info("ringbuf: Alloc size increased to %zu.\n", size);
+	}
+
+	rb->buf = kvzalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
+	if (!rb->buf)
+		return -ENOMEM;
+
+	rb->size = size;
+	rb->data_end = 0;
+	rb->consumer = 0;
+	rb->producer = 0;
+
+	return 0;
+}
+
+static int send_records(int cpu)
+{
+	struct record_ringbuf *rb = get_ringbuf(cpu);
+	size_t consumer, producer, data_end;
+	unsigned int retries = 7;
+	void *padded;
+	size_t len;
+	size_t paddedlen;
+	int err;
+
+	consumer = rb->consumer;
+	spin_lock(&rb_pde_lock);
+	producer = smp_load_acquire(&rb->producer);
+	data_end = smp_load_acquire(&rb->data_end);
+	spin_unlock(&rb_pde_lock);
+
+	if (rb_is_empty(consumer, producer))
+		return 0;
+
+	if (producer > consumer)
+		len = producer - consumer;
+	else if (likely(data_end != 0))
+		len = data_end - consumer + 1;
+	else
+		return 0;
+
+	/*
+	 * If `len` is incorrect due to underflow, it should be caught by
+	 * checking `len > rb->size`. However, `consumer + len` could result
+	 * in `len` overflowing, returning `len` to a reasonable value.
+	 * Hence, the two separate checks are done.
+	 */
+	if (unlikely(len > rb->size || consumer + len > rb->size)) {
+		pr_err_once("%s: Length miscalculation!\n", __func__);
+		return -E2BIG;
+	}
+
+	paddedlen = ALIGN(len, PROGGER_RECORD_PADDING_ALIGN);
+
+	padded = kvzalloc(paddedlen, GFP_KERNEL);
+	if (!padded)
+		return -ENOMEM;
+
+	memcpy(padded, rb->buf + consumer, len);
+
+	do {
+		err = send_encrypted(padded, paddedlen);
+	} while (err == -EAGAIN && retries--);
+
+	kvfree(padded);
+
+	if (err)
+		return err;
+
+	rb_mark_consumed(rb, len, consumer);
+
+	return 0;
+}
+
+static int rb_send(void *data)
+{
+	int cpu;
+	size_t i;
+
+	while (1) {
+		set_current_state(TASK_RUNNING);
+
+		if (kthread_should_stop())
+			return 0;
+
+		if (kthread_should_park()) {
+			kthread_parkme();
+			continue;
+		}
+
+		for_each_possible_cpu(cpu) {
+			for (i = 0; i < 2; i++) {
+				int err = send_records(cpu);
+
+				if (err < 0 && err != -EAGAIN)
+					pr_warn_once("%s: err %d.\n", __func__,
+						 err);
+			}
+		}
+
+		set_current_state(TASK_INTERRUPTIBLE);
+		schedule_timeout_interruptible(1);
+	}
+
+	return 0;
+}
+
+int __init ringbuf_init(void)
+{
+	int err;
+	int cpu;
+
+	ring = alloc_percpu(typeof(*ring));
+	if (!ring)
+		return -ENOMEM;
+
+	for_each_possible_cpu(cpu) {
+		err = ringbuf_alloc(per_cpu_ptr(ring, cpu), cpu,
+				 1024 * CONFIG_PROGGER_RINGBUF_SIZE);
+		if (err)
+			return err;
+	}
+
+	err = progger_create_task(&rb_worker, rb_send, "progger-rb");
+	if (err)
+		return err;
+
+	return 0;
+}
+
+void ringbuf_exit(void)
+{
+	int cpu;
+
+	progger_destroy_task(&rb_worker);
+
+	for_each_possible_cpu(cpu)
+		kvfree(per_cpu_ptr(ring, cpu)->buf);
+
+	free_percpu(ring);
+}
diff --git a/drivers/net/progger/kernel/ringbuf.h b/drivers/net/progger/kernel/ringbuf.h
new file mode 100644
index 000000000000..db10f9c9cc01
--- /dev/null
+++ b/drivers/net/progger/kernel/ringbuf.h
@@ -0,0 +1,82 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+
+#ifndef PROGGER_KERNEL_RINGBUF_H
+#define PROGGER_KERNEL_RINGBUF_H
+
+#include <asm/barrier.h>
+#include <linux/percpu.h>
+#include <linux/spinlock.h>
+
+#include <progger/record.h>
+#include <progger/types.h>
+
+struct record_ringbuf {
+	void *buf;
+	size_t size;
+	size_t data_end;
+	size_t consumer;
+	size_t producer;
+};
+
+extern spinlock_t rb_pde_lock;
+extern struct record_ringbuf *ring;
+
+static inline struct record_ringbuf *get_ringbuf(int cpu)
+{
+	return per_cpu_ptr(ring, cpu);
+}
+
+static inline size_t rb_nextpos(struct record_ringbuf *rb, size_t pos,
+				size_t len)
+{
+	size_t newpos = pos + len;
+
+	if (unlikely(newpos + MAX_RECORD_SIZE > rb->size))
+		newpos = 0;
+
+	return newpos;
+}
+static_assert(__alignof__(struct record) == 1, "Record alignment != 1.");
+
+static inline bool rb_has_space_left(struct record_ringbuf *rb,
+				 size_t consumer, size_t producer)
+{
+	if (producer > consumer) {
+		size_t nextpos = rb_nextpos(rb, producer, MAX_RECORD_SIZE);
+
+		return nextpos > producer || nextpos < consumer;
+	} else if (consumer > producer) {
+		return producer + MAX_RECORD_SIZE < consumer;
+	} else {
+		return true;
+	}
+}
+
+static inline bool rb_is_empty(size_t consumer, size_t producer)
+{
+	return producer == consumer;
+}
+
+static inline void rb_mark_produced(struct record_ringbuf *rb, size_t len,
+				 size_t consumer, size_t producer)
+{
+	spin_lock(&rb_pde_lock);
+
+	if (producer >= consumer)
+		smp_store_release(&rb->data_end, producer + len - 1);
+
+	smp_store_release(&rb->producer, rb_nextpos(rb, producer, len));
+
+	spin_unlock(&rb_pde_lock);
+}
+
+static inline void rb_mark_consumed(struct record_ringbuf *rb, size_t len,
+				 size_t consumer)
+{
+	smp_store_release(&rb->consumer, rb_nextpos(rb, consumer, len));
+}
+
+int ringbuf_init(void);
+void ringbuf_exit(void);
+
+#endif /* PROGGER_KERNEL_RINGBUF_H */
diff --git a/drivers/net/progger/kernel/tpm.c b/drivers/net/progger/kernel/tpm.c
new file mode 100644
index 000000000000..7b103c94d9dd
--- /dev/null
+++ b/drivers/net/progger/kernel/tpm.c
@@ -0,0 +1,436 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+#include "tpm.h"
+
+#include <crypto/chacha20poly1305.h>
+#include <linux/byteorder/generic.h>
+#include <linux/err.h>
+#include <linux/errno.h>
+#include <linux/init.h>
+#include <linux/printk.h>
+#include <linux/random.h>
+#include <linux/random.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/tpm.h>
+
+#include <progger/types.h>
+
+#define TPM_CC_Load			0x00000157
+#define TPM_CC_Unseal			0x0000015e
+#define TPM_CC_FlushContext		0x00000165
+#define TPM_CC_StartAuthSession		0x00000176
+#define TPM_CC_PolicyPCR		0x0000017f
+#define TPM_RH_NULL			0x40000007
+#define TPM_RS_PW			0x40000009
+#define TPM_ALG_NULL			0x0010
+#define TPM_ALG_SHA256			0x000b
+#define TPM_SE_POLICY			0x01
+
+#define TPM_SESSION_ATTR_RETAIN		(1 << 0)
+
+/* PC clients are specified to have at least 24 PCRs, and 24 / 8 = 3. */
+#define PCR_SELECT_MIN			3
+#define TPM_NONCE_SIZE			0x20
+
+static struct tpm_chip *tpm_chip;
+static u8 crypto_key[CHACHA20POLY1305_KEY_SIZE];
+
+static u8 public_blob[] = {
+#include "generated/tpm-public-blob.h"
+};
+
+static u8 private_blob[] = {
+#include "generated/tpm-private-blob.h"
+};
+
+struct tpm_state {
+	u32 blob_handle;
+	u32 auth_session_handle;
+	u8 auth_session_nonce[TPM_NONCE_SIZE];
+};
+
+static int tpm_get_response_item(struct tpm_buf *buf, size_t item_offset,
+				 void *out, size_t outlen)
+{
+	u32 response_size = be32_to_cpu(((struct tpm_header *)buf->data)->length);
+
+	if ((u64)item_offset + outlen > response_size)
+		return -E2BIG;
+
+	memcpy(out, buf->data + item_offset, outlen);
+
+	return 0;
+}
+
+static int get_nonce(u8 (*nonce)[TPM_NONCE_SIZE])
+{
+	return get_random_bytes_wait(*nonce, sizeof(*nonce));
+}
+
+static void append_auth_cmd(struct tpm_buf *buf, u32 session_handle,
+			 u8 *nonce, u16 noncelen, u8 session_attrs,
+			 u8 *auth, u16 authlen)
+{
+	tpm_buf_append_u32(buf, 9 + authlen + noncelen);
+	tpm_buf_append_u32(buf, session_handle);
+
+	if (nonce && noncelen) {
+		tpm_buf_append_u16(buf, noncelen);
+		tpm_buf_append(buf, nonce, noncelen);
+	} else {
+		tpm_buf_append_u16(buf, 0);
+	}
+
+	tpm_buf_append_u8(buf, session_attrs);
+
+	if (auth && authlen) {
+		tpm_buf_append_u16(buf, authlen);
+		tpm_buf_append(buf, auth, authlen);
+	} else {
+		tpm_buf_append_u16(buf, 0);
+	}
+}
+
+static int start_auth_session(struct tpm_state *tpm_state)
+{
+	int err;
+	__be32 handle;
+	struct tpm_buf buf;
+
+	err = get_nonce(&tpm_state->auth_session_nonce);
+	if (err)
+		return err;
+
+	err = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM_CC_StartAuthSession);
+	if (err)
+		return err;
+
+	tpm_buf_append_u32(&buf, TPM_RH_NULL);
+	tpm_buf_append_u32(&buf, TPM_RH_NULL);
+
+	tpm_buf_append_u16(&buf, sizeof(tpm_state->auth_session_nonce));
+	tpm_buf_append(&buf, tpm_state->auth_session_nonce,
+		 sizeof(tpm_state->auth_session_nonce));
+
+	tpm_buf_append_u16(&buf, 0);
+	tpm_buf_append_u8(&buf, TPM_SE_POLICY);
+	tpm_buf_append_u16(&buf, TPM_ALG_NULL);
+	tpm_buf_append_u16(&buf, TPM_ALG_SHA256);
+
+	err = tpm_send(tpm_chip, buf.data, tpm_buf_length(&buf));
+	if (err)
+		goto fail;
+
+	err = tpm_get_response_item(&buf, TPM_HEADER_SIZE + 0,
+				 &handle, sizeof(handle));
+	if (err)
+		goto fail;
+
+	tpm_state->auth_session_handle = be32_to_cpu(handle);
+
+fail:
+	tpm_buf_destroy(&buf);
+	return err;
+}
+
+static inline int is_blob_size_congruent(u8 *blob, size_t expected)
+{
+	if (expected < sizeof(__be16))
+		return false;
+
+	return be16_to_cpup((__be16 *)blob) == expected - sizeof(__be16);
+}
+
+static inline void print_blob_size_err(const char *blob_name)
+{
+	pr_err("TPM: Length embedded in the blob '%s' doesn't match the length "
+	 "of the blob given.\n", blob_name);
+}
+
+static int load_blob(struct tpm_state *tpm_state, u32 keyhandle,
+		 u8 *private, size_t private_size,
+		 u8 *public, size_t public_size)
+{
+	int err;
+	__be32 handle;
+	struct tpm_buf buf;
+
+	if (!is_blob_size_congruent(private, private_size)) {
+		print_blob_size_err("private");
+		return -EFAULT;
+	}
+
+	if (!is_blob_size_congruent(public, public_size)) {
+		print_blob_size_err("public");
+		return -EFAULT;
+	}
+
+	err = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM_CC_Load);
+	if (err)
+		return err;
+
+	tpm_buf_append_u32(&buf, keyhandle);
+
+	append_auth_cmd(&buf, TPM_RS_PW, NULL, 0, 0, NULL, 0);
+
+	tpm_buf_append(&buf, public, public_size);
+	tpm_buf_append(&buf, private, private_size);
+
+	if (buf.flags & TPM_BUF_OVERFLOW) {
+		pr_err("TPM: Blob is too large.\n");
+		err = -E2BIG;
+		goto fail;
+	}
+
+	err = tpm_send(tpm_chip, buf.data, tpm_buf_length(&buf));
+	if (err)
+		goto fail;
+
+	err = tpm_get_response_item(&buf, TPM_HEADER_SIZE + 0,
+				 &handle, sizeof(handle));
+	if (err)
+		goto fail;
+
+	tpm_state->blob_handle = be32_to_cpu(handle);
+
+fail:
+	tpm_buf_destroy(&buf);
+	return err;
+}
+
+static int policy_pcr_extend(struct tpm_state *tpm_state)
+{
+	int err;
+	struct tpm_buf buf;
+	u32 pcr = CONFIG_PROGGER_TPM_PCR;
+	u8 pcr_selection[PCR_SELECT_MIN] = {};
+
+	/* Kconfig should enforce this, but just to be sure... */
+	if (pcr < 8 || pcr > 15) {
+		pr_err("TPM: Invalid PCR, must be in the range [8, 15].\n");
+		return -EINVAL;
+	}
+
+	pcr_selection[1] |= 1U << (pcr % 8);
+
+	err = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM_CC_PolicyPCR);
+	if (err)
+		return err;
+
+	tpm_buf_append_u32(&buf, tpm_state->auth_session_handle);
+
+	tpm_buf_append_u16(&buf, 0);
+
+	tpm_buf_append_u32(&buf, 1);
+	tpm_buf_append_u16(&buf, TPM_ALG_SHA256);
+	tpm_buf_append_u8(&buf, sizeof(pcr_selection));
+	tpm_buf_append(&buf, pcr_selection, sizeof(pcr_selection));
+
+	err = tpm_send(tpm_chip, buf.data, tpm_buf_length(&buf));
+
+	tpm_buf_destroy(&buf);
+	return err;
+}
+
+static int tpm_get_unsealed_data(struct tpm_buf *buf, void *out,
+				 size_t expected_size)
+{
+	int err;
+	u16 size;
+	__be16 response_size;
+
+	err = tpm_get_response_item(buf, TPM_HEADER_SIZE + 4, &response_size,
+				 sizeof(response_size));
+	if (err)
+		return err;
+
+	size = be16_to_cpu(response_size);
+
+	if (size != expected_size) {
+		pr_err("Unsealed data was %u bytes, expected %zu.\n",
+		 size, expected_size);
+		return -EINVAL;
+	}
+
+	return tpm_get_response_item(buf, TPM_HEADER_SIZE + 6, out, size);
+}
+
+static int tpm_unseal(struct tpm_state *tpm_state, void *out, size_t outlen)
+{
+	int err;
+	struct tpm_buf buf;
+
+	err = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM_CC_Unseal);
+	if (err)
+		return err;
+
+	tpm_buf_append_u32(&buf, tpm_state->blob_handle);
+	append_auth_cmd(&buf, tpm_state->auth_session_handle,
+			tpm_state->auth_session_nonce,
+			sizeof(tpm_state->auth_session_nonce),
+			TPM_SESSION_ATTR_RETAIN,
+			NULL, 0);
+
+	err = tpm_send(tpm_chip, buf.data, tpm_buf_length(&buf));
+	if (err)
+		goto fail;
+
+	err = tpm_get_unsealed_data(&buf, out, outlen);
+	if (err)
+		goto fail;
+
+fail:
+	tpm_buf_destroy(&buf);
+	return err;
+}
+
+static int flush_context(u32 handle)
+{
+	int err;
+	struct tpm_buf buf;
+
+	err = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM_CC_FlushContext);
+	if (err)
+		return err;
+
+	tpm_buf_append_u32(&buf, handle);
+	err = tpm_send(tpm_chip, buf.data, tpm_buf_length(&buf));
+
+	tpm_buf_destroy(&buf);
+	return err;
+}
+
+static int pcr_extend(u32 pcr)
+{
+	int i;
+	int res = 0;
+	struct tpm_digest *digests;
+	u8 hash[TPM_DIGEST_SIZE] = { 0 };
+
+	digests = kcalloc(tpm_chip->nr_allocated_banks, sizeof(*digests),
+			 GFP_KERNEL);
+	if (!digests)
+		return -ENOMEM;
+
+	for (i = 0; i < tpm_chip->nr_allocated_banks; i++) {
+		digests[i].alg_id = tpm_chip->allocated_banks[i].alg_id;
+		memcpy(digests[i].digest, hash, TPM_DIGEST_SIZE);
+	}
+
+	res = tpm_pcr_extend(tpm_chip, pcr, digests);
+
+	kfree(digests);
+	return res;
+}
+
+static int tpm_unseal_and_lock_key(void)
+{
+	int err;
+	struct tpm_state tpm_state = {};
+
+	err = start_auth_session(&tpm_state);
+	if (err)
+		goto fail;
+
+	pr_debug("TPM: Auth session: 0x%08x.\n", tpm_state.auth_session_handle);
+
+	err = load_blob(&tpm_state, CONFIG_PROGGER_TPM_KEY_HANDLE,
+			public_blob, sizeof(public_blob),
+			private_blob, sizeof(private_blob));
+	if (err)
+		goto fail;
+
+	pr_debug("TPM: Blob: 0x%08x.\n", tpm_state.blob_handle);
+
+	err = policy_pcr_extend(&tpm_state);
+	if (err)
+		goto fail;
+
+	err = tpm_unseal(&tpm_state, crypto_key, sizeof(crypto_key));
+	if (err)
+		goto fail;
+
+	err = pcr_extend(CONFIG_PROGGER_TPM_PCR);
+	if (err)
+		goto fail;
+
+fail:
+	if (tpm_state.auth_session_handle) {
+		pr_debug("TPM: Flushing auth session context.\n");
+		if (flush_context(tpm_state.auth_session_handle) != 0)
+			pr_warn("Failed to flush context.\n");
+	}
+
+	if (tpm_state.blob_handle) {
+		pr_debug("TPM: Flushing blob context.\n");
+		if (flush_context(tpm_state.blob_handle) != 0)
+			pr_warn("Failed to flush context.\n");
+	}
+
+	if (err < 0)
+		return err;
+
+	if (err > 0)
+		return -ENOTRECOVERABLE;
+
+	return 0;
+}
+
+int tpm_get_chacha20poly1305_key(u8 (*key)[CHACHA20POLY1305_KEY_SIZE])
+{
+	static_assert(sizeof(*key) == sizeof(crypto_key));
+	memcpy(*key, crypto_key, sizeof(*key));
+
+	return 0;
+}
+
+int __init tpm_init(void)
+{
+	int err;
+	int is_tpm2;
+
+	tpm_chip = tpm_default_chip();
+
+	if (IS_ERR_OR_NULL(tpm_chip)) {
+		if (IS_ENABLED(CONFIG_PROGGER_PANIC_WHEN_NO_TPM_FOUND))
+			panic("Unable to find TPM!\n");
+
+		return -ENODEV;
+	}
+
+	is_tpm2 = tpm_is_tpm2(tpm_chip);
+
+	if (is_tpm2 != 1) {
+		if (IS_ENABLED(CONFIG_PROGGER_PANIC_WHEN_TPM_IS_NOT_VERSION_2))
+			panic("TPM: tpm_is_tpm2 returned %d.", is_tpm2);
+
+		if (is_tpm2 < 0)
+			return is_tpm2;
+
+		pr_err("TPM 2.0 is required.\n");
+		return -ENODEV;
+	}
+
+	err = tpm_unseal_and_lock_key();
+
+	if (err) {
+		if (IS_ENABLED(CONFIG_PROGGER_PANIC_WHEN_KEY_UNSECURED))
+			panic("TPM: crypto key is unsecured!\n");
+
+		pr_alert("TPM: crypto key is unsecured!\n");
+		return err;
+	}
+
+	pr_info("TPM: Key unsealed and locked.\n");
+
+	return 0;
+}
+
+void tpm_exit(void)
+{
+	if (tpm_chip)
+		put_device(&tpm_chip->dev);
+
+	memset(crypto_key, 0, sizeof(crypto_key));
+}
diff --git a/drivers/net/progger/kernel/tpm.h b/drivers/net/progger/kernel/tpm.h
new file mode 100644
index 000000000000..1fc22814a5e4
--- /dev/null
+++ b/drivers/net/progger/kernel/tpm.h
@@ -0,0 +1,33 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+
+#ifndef PROGGER_KERNEL_TPM_H
+#define PROGGER_KERNEL_TPM_H
+
+#include <crypto/chacha20poly1305.h>
+#include <linux/errno.h>
+#include <linux/kconfig.h>
+
+#include <progger/types.h>
+
+#if IS_ENABLED(CONFIG_PROGGER_USE_TPM)
+int tpm_get_chacha20poly1305_key(u8 (*)[CHACHA20POLY1305_KEY_SIZE]);
+int tpm_init(void);
+void tpm_exit(void);
+#else
+static inline int
+tpm_get_chacha20poly1305_key(u8 (*key)[CHACHA20POLY1305_KEY_SIZE])
+{
+	return -EPERM;
+}
+
+static inline int tpm_init(void)
+{
+	return 0;
+}
+
+static inline void tpm_exit(void)
+{
+}
+#endif /* IS_ENABLED(CONFIG_PROGGER_USE_TPM) */
+
+#endif /* PROGGER_KERNEL_TPM_H */
diff --git a/drivers/net/progger/kernel/tracepoints.c b/drivers/net/progger/kernel/tracepoints.c
new file mode 100644
index 000000000000..064708b2b7c8
--- /dev/null
+++ b/drivers/net/progger/kernel/tracepoints.c
@@ -0,0 +1,448 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+#include "tracepoints.h"
+
+#include <asm/barrier.h>
+#include <asm/current.h>
+#include <asm/ptrace.h>
+#include <asm/syscall.h>
+#include <linux/bits.h>
+#include <linux/cache.h>
+#include <linux/cred.h>
+#include <linux/errno.h>
+#include <linux/init.h>
+#include <linux/list.h>
+#include <linux/pid.h>
+#include <linux/printk.h>
+#include <linux/slab.h>
+#include <linux/smp.h>
+#include <linux/string.h>
+#include <linux/timekeeping.h>
+#include <linux/tracepoint.h>
+#include <linux/uaccess.h>
+#include <linux/uidgid.h>
+
+#include <progger/compiler.h>
+#include <progger/record.h>
+#include <progger/types.h>
+
+#include "ringbuf.h"
+
+struct progger_syscall_info {
+	/*
+	 * Non-zero if the syscall is being traced by Progger.
+	 */
+	u8 being_traced;
+
+	/*
+	 * If bit n is set, then the nth argument to the syscall is a C string.
+	 */
+	u8 cstr_args;
+
+	/*
+	 * A bitmask indicating the tracepoints to generate records from.
+	 */
+	u8 tp_srcs;
+};
+
+/*
+ * If `tp_srcs` is left unset, it will be later set to the default of
+ * `TP_SRC_SYS_EXIT`.
+ *
+ * See include/linux/syscalls.h and the man page for each syscall.
+ */
+static struct progger_syscall_info __read_mostly
+syscalls_info[__NR_syscall_max + 1] = {
+	[__NR_setxattr] = { .cstr_args = BIT(0) | BIT(1) | BIT(2) },
+	[__NR_lsetxattr] = { .cstr_args = BIT(0) | BIT(1) | BIT(2) },
+	[__NR_fsetxattr] = { .cstr_args = BIT(1) | BIT(2) },
+	[__NR_getxattr] = { .cstr_args = BIT(0) | BIT(1) },
+	[__NR_lgetxattr] = { .cstr_args = BIT(0) | BIT(1) },
+	[__NR_fgetxattr] = { .cstr_args = BIT(1) },
+	[__NR_listxattr] = { .cstr_args = BIT(0) },
+	[__NR_llistxattr] = { .cstr_args = BIT(0) },
+	[__NR_removexattr] = { .cstr_args = BIT(0) | BIT(1) },
+	[__NR_lremovexattr] = { .cstr_args = BIT(0) | BIT(1) },
+	[__NR_fremovexattr] = { .cstr_args = BIT(1) },
+	[__NR_inotify_add_watch] = { .cstr_args = BIT(1) },
+	[__NR_mknodat] = { .cstr_args = BIT(1) },
+	[__NR_mkdirat] = { .cstr_args = BIT(1) },
+	[__NR_unlinkat] = { .cstr_args = BIT(1) },
+	[__NR_symlinkat] = { .cstr_args = BIT(0) | BIT(2) },
+	[__NR_linkat] = { .cstr_args = BIT(1) | BIT(3) },
+	[__NR_renameat] = { .cstr_args = BIT(1) | BIT(3) },
+	[__NR_umount2] = { .cstr_args = BIT(0) },
+	[__NR_mount] = { .cstr_args = BIT(0) | BIT(1) | BIT(2) },
+	[__NR_pivot_root] = { .cstr_args = BIT(0) | BIT(1) },
+	[__NR_statfs] = { .cstr_args = BIT(0) },
+	[__NR_truncate] = { .cstr_args = BIT(0) },
+	[__NR_faccessat] = { .cstr_args = BIT(1) },
+	[__NR_faccessat2] = { .cstr_args = BIT(1) },
+	[__NR_chdir] = { .cstr_args = BIT(0) },
+	[__NR_chroot] = { .cstr_args = BIT(0) },
+	[__NR_fchmodat] = { .cstr_args = BIT(1) },
+	[__NR_fchownat] = { .cstr_args = BIT(1) },
+	[__NR_openat] = { .cstr_args = BIT(1) },
+	[__NR_openat2] = { .cstr_args = BIT(1) },
+	[__NR_quotactl] = { .cstr_args = BIT(1) },
+	[__NR_readlinkat] = { .cstr_args = BIT(1) },
+	[__NR_newfstatat] = { .cstr_args = BIT(1) },
+	[__NR_utimensat] = { .cstr_args = BIT(1) },
+	[__NR_acct] = { .cstr_args = BIT(0) },
+	[__NR_init_module] = { .cstr_args = BIT(2) },
+	[__NR_delete_module] = { .cstr_args = BIT(0) },
+	[__NR_sethostname] = { .cstr_args = BIT(0) },
+	[__NR_setdomainname] = { .cstr_args = BIT(0) },
+	[__NR_mq_open] = { .cstr_args = BIT(0) },
+	[__NR_mq_unlink] = { .cstr_args = BIT(0) },
+	[__NR_add_key] = { .cstr_args = BIT(0) | BIT(1) },
+	[__NR_request_key] = { .cstr_args = BIT(0) | BIT(1) | BIT(2) },
+	[__NR_execve] = {
+		.cstr_args = BIT(0),
+		/*
+		 * `execve` doesn't return to the caller when it succeeds,
+		 * and as a result the arguments available in the `sys_exit`
+		 * tracepoint are all zero. To get any useful information,
+		 * the arguments must be copied during `sys_enter`.
+		 *
+		 * `TP_SRC_SYS_EXIT` is added so that failed `execve` calls
+		 * can be detected. It does add some noise for successful
+		 * calls, but that noise can be easily filtered out by the
+		 * program that processes the records.
+		 */
+		.tp_srcs = TP_SRC_SYS_ENTER | TP_SRC_SYS_EXIT,
+	},
+	[__NR_swapon] = { .cstr_args = BIT(0) },
+	[__NR_swapoff] = { .cstr_args = BIT(0) },
+	[__NR_fanotify_mark] = { .cstr_args = BIT(4) },
+	[__NR_name_to_handle_at] = { .cstr_args = BIT(1) },
+	[__NR_finit_module] = { .cstr_args = BIT(1) },
+	[__NR_renameat2] = { .cstr_args = BIT(1) | BIT(3) },
+	[__NR_memfd_create] = { .cstr_args = BIT(0) },
+	[__NR_execveat] = {
+		.cstr_args = BIT(1),
+		/*
+		 * See the entry for `__NR_execve` to see why this is done.
+		 */
+		.tp_srcs = TP_SRC_SYS_ENTER | TP_SRC_SYS_EXIT,
+	},
+	[__NR_statx] = { .cstr_args = BIT(1) },
+	[__NR_open_tree] = { .cstr_args = BIT(1) },
+	[__NR_move_mount] = { .cstr_args = BIT(1) | BIT(3) },
+	[__NR_fsopen] = { .cstr_args = BIT(0) },
+	[__NR_fsconfig] = { .cstr_args = BIT(2) | BIT(3) },
+	[__NR_fspick] = { .cstr_args = BIT(1) },
+
+	/* Deprecated syscalls. */
+	[__NR_open] = { .cstr_args = BIT(0) },
+	[__NR_link] = { .cstr_args = BIT(0) | BIT(1) },
+	[__NR_unlink] = { .cstr_args = BIT(0) },
+	[__NR_mknod] = { .cstr_args = BIT(0) },
+	[__NR_chmod] = { .cstr_args = BIT(0) },
+	[__NR_chown] = { .cstr_args = BIT(0) },
+	[__NR_mkdir] = { .cstr_args = BIT(0) },
+	[__NR_rmdir] = { .cstr_args = BIT(0) },
+	[__NR_lchown] = { .cstr_args = BIT(0) },
+	[__NR_access] = { .cstr_args = BIT(0) },
+	[__NR_rename] = { .cstr_args = BIT(0) | BIT(1) },
+	[__NR_symlink] = { .cstr_args = BIT(0) | BIT(1) },
+	[__NR_utime] = { .cstr_args = BIT(0) },
+	[__NR_utimes] = { .cstr_args = BIT(0) },
+	[__NR_futimesat] = { .cstr_args = BIT(1) },
+	[__NR_creat] = { .cstr_args = BIT(0) },
+	[__NR_uselib] = { .cstr_args = BIT(0) },
+	[__NR_kexec_file_load] = { .cstr_args = BIT(3) },
+	[__NR_stat] = { .cstr_args = BIT(0) },
+	[__NR_lstat] = { .cstr_args = BIT(0) },
+	[__NR_readlink] = { .cstr_args = BIT(0) },
+};
+
+static inline bool arg_is_cstr(const struct progger_syscall_info info,
+			 u8 argnum)
+{
+	return info.cstr_args & BIT(argnum);
+}
+
+static inline void record_add_str_user(struct record *record,
+				 const char __user *str)
+{
+	char *dst;
+	ssize_t len;
+
+	if (!str)
+		return;
+
+	if (unlikely(record->len >= MAX_RECORD_SIZE))
+		return;
+
+	dst = (char *)record + record->len;
+
+	pagefault_disable();
+	len = strncpy_from_user(dst, str, MAX_RECORD_STR_SIZE);
+	pagefault_enable();
+
+	if (unlikely(len < 0))
+		return;
+
+	if (unlikely(len == MAX_RECORD_STR_SIZE)) {
+		dst[MAX_RECORD_STR_SIZE - 1] = '\0';
+		record->len += len;
+	} else {
+		record->len += len + 1;
+	}
+}
+
+static inline unsigned long get_arg_x86_64(struct pt_regs *regs,
+					 unsigned int n)
+{
+	static const unsigned int argument_offs[] = {
+		offsetof(struct pt_regs, di),
+		offsetof(struct pt_regs, si),
+		offsetof(struct pt_regs, dx),
+		offsetof(struct pt_regs, r10),
+		offsetof(struct pt_regs, r8),
+		offsetof(struct pt_regs, r9),
+	};
+
+	return regs_get_register(regs, argument_offs[n]);
+}
+
+static void syscall_tp(struct pt_regs *regs, u8 tp_src)
+{
+	int cpu;
+	long id;
+	size_t i;
+	struct progger_syscall_info syscall;
+	struct record *record;
+	struct record_syscall_x86_64 *data;
+	struct record_ringbuf *rb;
+	size_t producer, consumer;
+
+	id = syscall_get_nr(current, regs);
+
+	if (id < 0 || id >= ARRAY_SIZE(syscalls_info))
+		return;
+
+	syscall = syscalls_info[id];
+
+	if (!syscall.being_traced)
+		return;
+
+	if (!(syscall.tp_srcs & tp_src))
+		return;
+
+	cpu = smp_processor_id();
+	rb = get_ringbuf(cpu);
+
+	producer = rb->producer;
+	consumer = smp_load_acquire(&rb->consumer);
+
+	if (unlikely(!rb_has_space_left(rb, consumer, producer))) {
+		pr_warn_once("%s: Ringbuf overflow.\n", __func__);
+		return;
+	}
+
+	record = (struct record *)(rb->buf + producer);
+
+	record->len = sizeof(*record) + sizeof(*data);
+	record->id = RECORD_SYSCALL_X86_64;
+
+	data = (struct record_syscall_x86_64 *)record->data;
+
+	data->nr = id;
+	data->tp_src = tp_src;
+	data->ts = ktime_get_mono_fast_ns();
+	data->ret = tp_src == TP_SRC_SYS_EXIT ? regs_return_value(regs) : 0;
+
+	data->pid = current->pid;
+	data->uid = __kuid_val(current_uid());
+	data->euid = __kuid_val(current_euid());
+
+	for (i = 0; i < ARRAY_SIZE(data->args); i++) {
+		unsigned long arg = get_arg_x86_64(regs, i);
+
+		data->args[i] = arg;
+
+		if (arg_is_cstr(syscall, i))
+			record_add_str_user(record, (const char __user *)arg);
+	}
+
+	rb_mark_produced(rb, record->len, consumer, producer);
+}
+
+static void __used sys_enter_tp(void *p, struct pt_regs *regs, long id)
+{
+	syscall_tp(regs, TP_SRC_SYS_ENTER);
+}
+
+static void __used sys_exit_tp(void *p, struct pt_regs *regs, long ret)
+{
+	syscall_tp(regs, TP_SRC_SYS_EXIT);
+}
+
+#include "generated/syscalls.h"
+
+struct tp_item {
+	struct list_head list;
+	struct tracepoint *tp;
+	void *probe;
+	void *data;
+	const char *name;
+};
+
+static LIST_HEAD(tp_list);
+
+static int set_traced_syscalls(void)
+{
+	size_t i;
+
+	for (i = 0; i < ARRAY_SIZE(syscalls_info); i++)
+		syscalls_info[i].being_traced = 0;
+
+	for (i = 0; i < ARRAY_SIZE(init_syscalls); i++) {
+		long nr = init_syscalls[i];
+
+		if (nr < 0 || nr >= ARRAY_SIZE(syscalls_info))
+			return -EINVAL;
+
+		syscalls_info[nr].being_traced = 1;
+	}
+
+	return 0;
+}
+
+static inline int tp_item_register(struct tp_item *tp)
+{
+	if (!tp->tp)
+		return -EFAULT;
+
+	return tracepoint_probe_register(tp->tp, tp->probe, tp->data);
+}
+
+static inline int tp_item_unregister(struct tp_item *tp)
+{
+	if (!tp->tp)
+		return -EFAULT;
+
+	return tracepoint_probe_unregister(tp->tp, tp->probe, tp->data);
+}
+
+static void tp_search_fn(struct tracepoint *tp, void *priv)
+{
+	struct tp_item *tp_item = (struct tp_item *)priv;
+
+	if (strcmp(tp->name, tp_item->name) == 0)
+		tp_item->tp = tp;
+}
+
+static int tp_register(void *probe, const char *name)
+{
+	int err;
+	struct tp_item *new = kzalloc(sizeof(*new), GFP_KERNEL);
+
+	if (!new)
+		return -ENOMEM;
+
+	new->probe = probe;
+	new->data = NULL;
+	new->name = name;
+
+	for_each_kernel_tracepoint(tp_search_fn, new);
+
+	if (!new->tp) {
+		pr_err("Couldn't locate tracepoint: %s.\n", name);
+		kfree(new);
+		return -EINVAL;
+	}
+
+	err = tp_item_register(new);
+	if (err) {
+		kfree(new);
+		return err;
+	}
+
+	list_add(&new->list, &tp_list);
+	pr_info("Registered tracepoint: %s\n", new->name);
+
+	return 0;
+}
+
+static void tp_unregister_all(void)
+{
+	struct tp_item *tp_item;
+
+	list_for_each_entry(tp_item, &tp_list, list) {
+		if (tp_item_unregister(tp_item) != 0) {
+			pr_warn("Failed to unregister tracepoint: %s\n",
+				tp_item->name);
+		} else {
+			pr_info("Unregistered tracepoint: %s\n", tp_item->name);
+		}
+	}
+
+	tracepoint_synchronize_unregister();
+}
+
+static bool is_sys_enter_tp_needed(void)
+{
+	size_t i;
+
+	for (i = 0; i < ARRAY_SIZE(init_syscalls); i++) {
+		long nr = init_syscalls[i];
+
+		if (syscalls_info[nr].tp_srcs & TP_SRC_SYS_ENTER)
+			return true;
+	}
+
+	return false;
+}
+
+static void set_default_syscall_tp_src(u8 default_tp_src)
+{
+	size_t i;
+
+	for (i = 0; i < ARRAY_SIZE(syscalls_info); i++) {
+		if (!syscalls_info[i].tp_srcs)
+			syscalls_info[i].tp_srcs = default_tp_src;
+	}
+}
+
+int __init tracepoint_init(void)
+{
+	int err;
+	size_t i;
+
+	/*
+	 * Set the list of traced syscalls before enbling the tracepoints,
+	 * so that we don't end up momentarily generating data for only
+	 * subsets of the syscalls.
+	 */
+	err = set_traced_syscalls();
+	if (err)
+		return err;
+
+	set_default_syscall_tp_src(TP_SRC_SYS_EXIT);
+
+	for (i = 0; i < ARRAY_SIZE(init_tracepoints); i++) {
+		void *fn = init_tracepoints[i].fn;
+		const char *name = init_tracepoints[i].name;
+
+		if (fn == sys_enter_tp && !is_sys_enter_tp_needed())
+			continue;
+
+		err = tp_register(fn, name);
+		if (err) {
+			pr_err("Failed to register tracepoint: %s.\n", name);
+			return err;
+		}
+
+		pr_debug("Registered tracepoint: %s.\n", name);
+	}
+
+	return 0;
+}
+
+void tracepoint_exit(void)
+{
+	tp_unregister_all();
+}
diff --git a/drivers/net/progger/kernel/tracepoints.h b/drivers/net/progger/kernel/tracepoints.h
new file mode 100644
index 000000000000..55cd01ab53a6
--- /dev/null
+++ b/drivers/net/progger/kernel/tracepoints.h
@@ -0,0 +1,9 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+
+#ifndef PROGGER_KERNEL_TRACEPOINTS_H
+#define PROGGER_KERNEL_TRACEPOINTS_H
+
+int tracepoint_init(void);
+void tracepoint_exit(void);
+
+#endif /* PROGGER_KERNEL_TRACEPOINTS_H */
diff --git a/drivers/net/progger/scripts/tpm/provision b/drivers/net/progger/scripts/tpm/provision
new file mode 100755
index 000000000000..149f8d521f8b
--- /dev/null
+++ b/drivers/net/progger/scripts/tpm/provision
@@ -0,0 +1,19 @@
+#!/usr/bin/env bash
+# SPDX-License-Identifier: GPL-2.0-only
+
+script_dir="$(dirname "$(realpath "$0")")"
+
+set -u
+
+tmp_dir="$(mktemp -d)"
+output_path="${1:-sealed-data}"
+output_dir="$(dirname "${output_path}")"
+output_basename="$(basename "${output_path}")"
+
+cmd=(
+	"${script_dir}/provision-setup" "${tmp_dir}" "${output_dir}" '&&'
+	chroot "${tmp_dir}" "${script_dir}/provision-inner" "${output_basename}"
+)
+
+unshare --mount bash -c 'eval "$@"' progger-tpm "${cmd[@]}"
+rmdir "${tmp_dir}"
diff --git a/drivers/net/progger/scripts/tpm/provision-inner b/drivers/net/progger/scripts/tpm/provision-inner
new file mode 100755
index 000000000000..6e7b98bfac0a
--- /dev/null
+++ b/drivers/net/progger/scripts/tpm/provision-inner
@@ -0,0 +1,231 @@
+#!/usr/bin/env bash
+# SPDX-License-Identifier: GPL-2.0-only
+
+##
+## Do not run this directly unless you're sure of what you're doing.
+## Instead, run ./provision, which wraps this script to prevent data leaks.
+##
+## Limitations:
+## - Only accepts password auth for lockdown/owner.
+## - The PCR value used in the policy is fixed to whatever it is when this
+## script is run.
+## - Assumes the hashalg is SHA256.
+##
+
+set -eu
+set -o pipefail
+
+keyfile='/tmp/key'
+
+check_installed() {
+	local cmd="$1"
+	local pkg="$2"
+
+	if ! type "${cmd}" >/dev/null 2>&1; then
+		printf >&2 'Cannot find `%s`. Try running `apt install %s`.\n' \
+			"${cmd}" "${pkg}"
+		return 1
+	fi
+}
+
+check_tpm2_tools_version() {
+	local tmp
+	local version
+	local minver="$1"
+
+	version="$(tpm2_create --version | grep -Po 'version=".+?"' | \
+			cut -d \" -f 2)"
+	tmp="$(printf '%s\n' "${version}" "${minver}" | sort -V | head -1)"
+
+	# This is actually checking if ${version} >= ${minver}.
+	[["${tmp}" == "${minver}"]]
+}
+
+check_swap_space() {
+	local swaptotal
+
+	swaptotal="$(grep SwapTotal /proc/meminfo | awk '{print $2}')"
+
+	if [["${swaptotal}" != "0"]]; then
+		printf >&2 'Found %d KiB of swap space. ' "${swaptotal}"
+		printf >&2 'Having swap enabled can lead to memory leaks.\n'
+		printf >&2 'To prevent memory leaks, consider disabling swap '
+		printf >&2 'or using encrypted swap.\n'
+
+		read -r -p 'Continue with swap enabled? [y/N] '
+
+		if ! [["${REPLY}" =~ [Yy]([Ee][Ss])?]]; then
+			return 1
+		fi
+	fi
+}
+
+get_pass() {
+	local prompt="$1"
+	local outvar="$2"
+
+	read -r -s -p "${prompt}" "${outvar}"
+	echo
+
+	if [[-z "${!outvar}"]]; then
+		echo >&2 'Value cannot be empty.'
+		return 1
+	fi
+}
+
+get_pass_confirm() {
+	local prompt="$1"
+	local outvar="$2"
+
+	get_pass "${prompt}" "${outvar}"
+
+	read -r -s -p 'Repeat to confirm: ' pass_confirmation
+	echo
+
+	if [["${!outvar}" != "${pass_confirmation}"]]; then
+		echo >&2 'Values did not match.'
+		return 1
+	fi
+}
+
+auth() {
+	local hierarchy="$1"
+	local authval_var="${1}_pass"
+	shift
+
+	# Ensure that the auth value isn't visible to other processes
+	# though the command line arguments.
+	"$@" -C "${hierarchy}" -P file:- <<<"${!authval_var}"
+}
+
+setauth() {
+	local hierarchy="$1"
+	local authval_var="${1}_pass"
+	local authval_file='/tmp/authval'
+	local currauthval_var="${2:-}_pass"
+	local currauthval_file='/tmp/currauthval'
+	local _pass=''
+
+	cat <<<"${!authval_var}" | tr -d '\n' >"${authval_file}"
+	cat <<<"${!currauthval_var}" | tr -d '\n' >"${currauthval_file}"
+
+	tpm2_changeauth -c "${hierarchy}" \
+		-p file:"${currauthval_file}" \
+		file:"${authval_file}"
+
+	rm "${authval_file}"
+	rm "${currauthval_file}"
+}
+
+is_auth_set() {
+	local hierarchy="$1"
+
+	! tpm2_changeauth -c "${hierarchy}" >/dev/null 2>&1
+}
+
+get_user_input() {
+	local progger_crypto_key_b64
+	local key_required_len='32'
+	local key_actual_len
+
+	# We only need to ensure that the lockdown auth is set. If it is,
+	# we have no need to know the passphrase.
+	if ! is_auth_set lockout; then
+		echo 'Lockout auth is unset. Please set it.'
+		get_pass_confirm 'Lockout passphrase: ' lockout_pass
+		setauth lockout
+	fi
+
+	if ! is_auth_set 'owner'; then
+		echo 'Owner auth is unset. Please set it.'
+		get_pass_confirm 'Owner passphrase: ' owner_pass
+		setauth owner
+	else
+		get_pass 'Owner passphrase: ' owner_pass
+
+		# Set the passphrase to itself to test whether we have
+		# the correct passphrase.
+		if ! setauth owner owner; then
+			echo >&2 'Owner passphrase is incorrect.'
+			return 1
+		fi
+	fi
+
+	get_pass_confirm 'Crypto key (base64): ' progger_crypto_key_b64
+
+	read -r -p 'PCR: ' pcr
+	echo
+
+	if ((pcr < 8)) || ((pcr > 15)); then
+		echo >&2 'PCR value must be in the range [8, 15].'
+		return 1
+	fi
+
+	# Remember that the keyfile is being saved to a location on a tmpfs
+	# that is only visible in this process's mount namespace.
+	base64 -d <<<"${progger_crypto_key_b64}" >"${keyfile}"
+
+	key_actual_len="$(<"${keyfile}" wc -c)"
+	if [["${key_required_len}" != "${key_actual_len}"]]; then
+		printf >&2 'Crypto key must be %d bytes. Got %d bytes.' \
+			"${key_required_len}" "${key_actual_len}"
+		return 1
+	fi
+}
+
+provision() {
+	local output_stem="$1"
+	local hashalg='sha256'
+	local persistent_handle
+	local tmphash
+
+	tpm2_createpolicy -l "${hashalg}:${pcr}" --policy-pcr \
+		--policy /tmp/policy >/dev/null
+	auth owner tpm2_createprimary -c /tmp/ctx >/dev/null
+
+	# XXX: The output is YAML, but grep/awk are used.
+	persistent_handle="$(auth owner tpm2_evictcontrol -c /tmp/ctx | \
+			grep '^persistent-handle: ' | awk '{print $2}')"
+
+	tpm2_create -C "${persistent_handle}" \
+		--public "${output_stem}-public" \
+		--private "${output_stem}-private" \
+		-g sha256 -L /tmp/policy -i - \
+		<"${keyfile}" >/dev/null
+
+	printf 'Persistent handle: %s\n' "${persistent_handle}"
+
+	tpm2_load -C "${persistent_handle}" \
+		--public "${output_stem}-public" \
+		--private "${output_stem}-private" \
+		-c /tmp/load-ctx >/dev/null
+
+	tpm2_unseal -c /tmp/load-ctx -p "pcr:${hashalg}:${pcr}" >/tmp/unseal
+
+	if ! diff "${keyfile}" /tmp/unseal >/dev/null 2>&1; then
+		echo >&2 "Unsealed data didn't match sealed data!"
+		return 1
+	fi
+
+	echo 'Unsealed data matches sealed data.'
+
+	printf 'Extending PCR %d.\n' "${pcr}"
+	# It doesn't matter what it's extended to, only that it can't get back.
+	tmphash="$(echo -n progger | sha256sum | awk '{print $1}')"
+	tpm2_pcrextend "${pcr}:${hashalg}=${tmphash}"
+}
+
+main() {
+	local output_basename="$1"
+
+	check_installed "tpm2_create" "tpm2-tools" || exit 1
+	check_tpm2_tools_version '4.2' || \
+		echo >&2 'Warning: tpm2-tools version < 4.2, commands may fail.'
+
+	check_swap_space || exit 1
+
+	get_user_input
+	provision "/output/${output_basename}"
+}
+
+main "$@"
diff --git a/drivers/net/progger/scripts/tpm/provision-setup b/drivers/net/progger/scripts/tpm/provision-setup
new file mode 100755
index 000000000000..cfb58e447fd4
--- /dev/null
+++ b/drivers/net/progger/scripts/tpm/provision-setup
@@ -0,0 +1,38 @@
+#!/usr/bin/env bash
+# SPDX-License-Identifier: GPL-2.0-only
+
+set -eu
+set -o pipefail
+
+tmpdir_mount() {
+	local dst="${!#}"
+	local realdst="${tmpdir}/${dst}"
+	local end=$(($# - 1))
+
+	mkdir -p "${realdst}"
+	mount "${@:1:$end}" "${realdst}"
+}
+
+main() {
+	tmpdir="$1"
+	local outputdir="$2"
+
+	mount -t tmpfs none "${tmpdir}"
+
+	tmpdir_mount -o bind,rw "${outputdir}" /output
+	tmpdir_mount -t tmpfs none /tmp
+	tmpdir_mount -t proc proc /proc
+	tmpdir_mount -t sysfs sys /sys
+	tmpdir_mount --rbind /dev /dev
+
+	for dir in /bin /etc /home /lib /lib32 /lib64 /opt /root \
+			/run /sbin /usr /var; do
+		if ! [[-d "${dir}"]]; then
+			continue
+		fi
+
+		tmpdir_mount -o bind,ro "${dir}" "${dir}"
+	done
+}
+
+main "$@"
diff --git a/drivers/net/progger/server/Makefile b/drivers/net/progger/server/Makefile
new file mode 100644
index 000000000000..41f3e0d9574e
--- /dev/null
+++ b/drivers/net/progger/server/Makefile
@@ -0,0 +1,30 @@
+# SPDX-License-Identifier: GPL-2.0-only
+
+server-cflags += -O2 -std=c11 -march=native -g -fPIE -D_FORTIFY_SOURCE=2
+server-cflags += -pipe -fstack-protector-strong -fno-strict-aliasing
+server-cflags += -D_DEFAULT_SOURCE -D_GNU_SOURCE
+server-cflags += -I $(srctree)/include/progger-host
+
+server-cflags += -Werror -Wall -Wextra -Wstack-protector -Wformat=2 -Wshadow
+server-cflags += -Wundef -Wcast-qual -Wcast-align -Wlogical-op -Winit-self
+server-cflags += -Wstrict-overflow=5 -Wredundant-decls -Wnull-dereference
+server-cflags += -Wshift-overflow=2 -Wduplicated-cond -Wjump-misses-init
+server-cflags += -Wstrict-prototypes -Wwrite-strings
+
+server-cflags += $(shell pkg-config --cflags libsodium)
+server-cflags += $(shell pkg-config --cflags json-c)
+
+HOSTLDLIBS_server += $(shell pkg-config --libs libsodium)
+HOSTLDLIBS_server += $(shell pkg-config --libs json-c)
+
+HOSTLDLIBS_server += -Wl,-z,relro,-z,now -pie
+
+hostprogs += server
+
+server-objs += server.o
+server-objs += crypto.o
+server-objs += syscall-table.o
+
+always-y += $(hostprogs)
+
+$(foreach obj,$(server-objs),$(eval HOSTCFLAGS_$(obj) := $(server-cflags)))
diff --git a/drivers/net/progger/server/crypto.c b/drivers/net/progger/server/crypto.c
new file mode 100644
index 000000000000..34c4f38912b6
--- /dev/null
+++ b/drivers/net/progger/server/crypto.c
@@ -0,0 +1,52 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+#include "crypto.h"
+
+#include <errno.h>
+#include <stddef.h>
+#include <stdio.h>
+
+#include <sodium.h>
+
+#include <progger/compiler.h>
+#include <progger/crypto.h>
+#include <progger/record.h>
+#include <progger/types.h>
+
+#define NONCE_SIZE	24
+#define KEY_SIZE	32
+#define AUTHTAG_SIZE	16
+
+struct record *decrypt(void *data, size_t datalen, void *ad, size_t adlen,
+		 const unsigned char *key)
+{
+	int err;
+	uint8_t *nonce;
+	struct record *record;
+	unsigned long long record_len;
+
+	nonce = (uint8_t *)data;
+
+	/* TODO: Could be less if we subtract the nonce and auth tag. */
+	record = malloc(datalen);
+
+	if (!record) {
+		perror("malloc");
+		return NULL;
+	}
+
+	err = crypto_aead_xchacha20poly1305_ietf_decrypt(
+		(void *)record, &record_len, NULL,
+		data + NONCE_SIZE,
+		datalen - NONCE_SIZE,
+		ad, adlen,
+		nonce, key);
+
+	if (err) {
+		fprintf(stderr, "Decryption failed!\n");
+		free(record);
+		return NULL;
+	}
+
+	return record;
+}
diff --git a/drivers/net/progger/server/crypto.h b/drivers/net/progger/server/crypto.h
new file mode 100644
index 000000000000..be8752a3e392
--- /dev/null
+++ b/drivers/net/progger/server/crypto.h
@@ -0,0 +1,11 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+
+#ifndef PROGGER_SERVER_CRYPTO_H
+#define PROGGER_SERVER_CRYPTO_H
+
+#include <stddef.h>
+
+struct record *decrypt(void *data, size_t datalen, void *ad, size_t adlen,
+		 const unsigned char *key);
+
+#endif /* PROGGER_SERVER_CRYPTO_H */
diff --git a/drivers/net/progger/server/server.c b/drivers/net/progger/server/server.c
new file mode 100644
index 000000000000..28d57787c8ba
--- /dev/null
+++ b/drivers/net/progger/server/server.c
@@ -0,0 +1,492 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+#include <arpa/inet.h>
+#include <errno.h>
+#include <fcntl.h>
+#include <netdb.h>
+#include <netinet/in.h>
+#include <poll.h>
+#include <signal.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/stat.h>
+#include <sys/socket.h>
+#include <sys/types.h>
+#include <unistd.h>
+
+#include <progger/crypto.h>
+#include <progger/compiler.h>
+#include <progger/net.h>
+#include <progger/record.h>
+
+#include <json.h>
+
+#include "crypto.h"
+#include "syscalls.h"
+
+#define str(s) #s
+#define xstr_check_arg_defined(s) ({	\
+	(void)s;			\
+	str(s);				\
+})
+#define xstr(s) xstr_check_arg_defined(s)
+
+static unsigned char crypto_key[CHACHA20POLY1305_KEY_SIZE];
+
+/*
+ * TODO: Close the listenfds.
+ */
+static void exit_cleanly(__unused int n)
+{
+	putchar('\n');
+	exit(0);
+}
+
+static void init_signal_handlers(void)
+{
+	struct sigaction action_exit_cleanly = {
+		.sa_handler = exit_cleanly,
+	};
+
+	if (sigaction(SIGINT, &action_exit_cleanly, NULL) < 0) {
+		perror("sigation");
+		exit(1);
+	}
+}
+
+static const char *addrinfo_ip(const struct addrinfo *addr)
+{
+	const void *src;
+	static char buf[INET6_ADDRSTRLEN];
+
+	strcpy(buf, "???");
+
+	if (addr->ai_family == AF_INET)
+		src = &((struct sockaddr_in *)addr->ai_addr)->sin_addr;
+	else if (addr->ai_family == AF_INET6)
+		src = &((struct sockaddr_in6 *)addr->ai_addr)->sin6_addr;
+	else
+		return buf;
+
+	if (!inet_ntop(addr->ai_family, src, buf, sizeof(buf)))
+		strcpy(buf, "???");
+
+	return buf;
+}
+
+static int bind_and_listen(struct addrinfo *addr, int backlog)
+{
+	int sock;
+	static const int yes = 1;
+
+	sock = socket(addr->ai_family, addr->ai_socktype, addr->ai_protocol);
+
+	if (sock < 0)
+		return -1;
+
+	if (setsockopt(sock, SOL_SOCKET, SO_REUSEPORT, &yes, sizeof(yes)) != 0)
+		return -1;
+
+	if (bind(sock, addr->ai_addr, addr->ai_addrlen) != 0)
+		return -1;
+
+	if (listen(sock, backlog) != 0)
+		return -1;
+
+	return sock;
+}
+
+/*
+ * TODO: json_object_*_add can fail, returning != 0.
+ */
+static void print_as_json(struct record_syscall_x86_64 *data, size_t data_len)
+{
+	struct json_object *parent;
+	struct json_object *args;
+	struct json_object *strs;
+	size_t remaining_str_len = data_len - sizeof(*data);
+	size_t travelled = 0;
+	const char *tp_src_str;
+
+	parent = json_object_new_object();
+
+	json_object_object_add(parent, "id",
+		json_object_new_string(syscall_str_from_nr(data->nr)));
+
+	if (data->tp_src == TP_SRC_SYS_ENTER)
+		tp_src_str = "sys_enter";
+	else if (data->tp_src == TP_SRC_SYS_EXIT)
+		tp_src_str = "sys_exit";
+	else
+		tp_src_str = "unknown";
+
+	json_object_object_add(parent, "tp_src",
+		json_object_new_string(tp_src_str));
+
+	json_object_object_add(parent, "ts", json_object_new_int64(data->ts));
+	json_object_object_add(parent, "ret", json_object_new_int64(data->ret));
+
+	json_object_object_add(parent, "pid", json_object_new_int(data->pid));
+	json_object_object_add(parent, "uid", json_object_new_int(data->uid));
+	json_object_object_add(parent, "euid", json_object_new_int(data->euid));
+
+	args = json_object_new_array();
+
+	for (size_t i = 0; i < ARRAY_SIZE(data->args); i++)
+		json_object_array_add(args, json_object_new_int64(data->args[i]));
+
+	json_object_object_add(parent, "args", args);
+
+	strs = json_object_new_array();
+
+	if (remaining_str_len)
+		data->strings[remaining_str_len - 1] = '\0';
+
+	while (remaining_str_len != 0) {
+		struct json_object *str;
+
+		str = json_object_new_string(&data->strings[travelled]);
+		json_object_array_add(strs, str);
+
+		travelled += json_object_get_string_len(str) + 1;
+		remaining_str_len = data_len - sizeof(*data) - travelled;
+
+		if (travelled > data_len - sizeof(*data)) {
+			fprintf(stderr, "String len has been miscalculated.\n");
+			break;
+		}
+	}
+
+	json_object_object_add(parent, "strings", strs);
+
+	puts(json_object_to_json_string(parent));
+	fflush(stdout);
+
+	json_object_put(parent);
+}
+
+static ssize_t do_recv(int sock)
+{
+	ssize_t ret;
+	ssize_t recvlen;
+	size_t dataleft;
+	static struct record_ad ad;
+	struct record *decrypted;
+	struct record *r;
+	uint8_t *buf;
+
+	recvlen = recv(sock, &ad, sizeof(ad), MSG_PEEK | MSG_DONTWAIT);
+
+	if (recvlen < 0)
+		return -errno;
+
+	if (recvlen != sizeof(ad))
+		return 0;
+
+	recvlen = recv(sock, &ad, sizeof(ad), MSG_WAITALL);
+
+	if (recvlen < 0)
+		return -errno;
+
+	if (recvlen != sizeof(ad))
+		return -EBADMSG;
+
+	buf = malloc(ad.len);
+
+	if (!buf)
+		return -ENOMEM;
+
+	recvlen = recv(sock, buf, ad.len, MSG_WAITALL);
+
+	if (recvlen != ad.len)
+		return -EBADMSG;
+
+	if (recvlen < 0)
+		return -errno;
+
+	decrypted = decrypt(buf, recvlen, &ad, sizeof(ad), crypto_key);
+
+	if (!decrypted) {
+		free(buf);
+		return -EBADMSG;
+	}
+
+	dataleft = recvlen;
+	dataleft -= XCHACHA20POLY1305_NONCE_SIZE;
+	dataleft -= CHACHA20POLY1305_AUTHTAG_SIZE;
+
+	ret = recvlen;
+
+	for (r = decrypted; r && dataleft >= sizeof(*r); r = next_record(r)) {
+		if (r->len > dataleft) {
+			ret = -EBADMSG;
+			break;
+		}
+
+		dataleft -= r->len;
+
+		print_as_json((struct record_syscall_x86_64 *)
+			 r->data, r->len - sizeof(*r));
+	}
+
+	free(decrypted);
+	free(buf);
+
+	return ret;
+}
+
+struct connvector {
+	struct pollfd *fds;
+	size_t nmemb;
+	size_t ncons;
+};
+
+#define CONNVECTOR_MAX_NMEMB (1024 * 1024)
+#define CONNVECTOR_MIN_NMEMB 8
+
+static int add_conn(struct connvector *cvec, int fd)
+{
+	if (cvec->ncons == cvec->nmemb) {
+		size_t nmemb;
+
+		if (cvec->nmemb >= CONNVECTOR_MAX_NMEMB / 2)
+			return -1;
+
+		nmemb = cvec->nmemb ? cvec->nmemb * 2 : CONNVECTOR_MIN_NMEMB;
+		cvec->fds = reallocarray(cvec->fds, nmemb, sizeof(*cvec->fds));
+
+		if (!cvec->fds) {
+			cvec->ncons = 0;
+			cvec->nmemb = 0;
+			return -1;
+		}
+
+		cvec->nmemb = nmemb;
+	}
+
+	if (!cvec->fds)
+		return -1;
+
+	cvec->fds[cvec->ncons].fd = fd;
+	cvec->fds[cvec->ncons].events = POLLIN | POLLHUP;
+
+	cvec->ncons++;
+
+	return 0;
+}
+
+static int remove_conn(struct connvector *cvec, size_t offset)
+{
+	if (!cvec->fds)
+		return -1;
+
+	if (offset >= cvec->ncons || cvec->ncons == 0)
+		return -1;
+
+	if (offset == cvec->ncons)
+		cvec->fds[offset] = (struct pollfd){};
+	else
+		cvec->fds[offset] = cvec->fds[cvec->ncons - 1];
+
+	cvec->ncons--;
+
+	return 0;
+}
+
+static void freeconnvector(struct connvector *cvec)
+{
+	free(cvec->fds);
+}
+
+static int listen_on_addr(const char *node)
+{
+	int err;
+	struct addrinfo *addr;
+	struct addrinfo *addrs = NULL;
+	struct pollfd *listenfds = NULL;
+	struct connvector cvec = {};
+	const int listen_backlog = 128;
+	size_t n_addrs = 0;
+	size_t i = 0;
+	int ret = -1;
+
+	static const struct addrinfo hints = {
+		.ai_flags = AI_PASSIVE,
+		.ai_family = AF_UNSPEC,
+		.ai_socktype = SOCK_STREAM,
+		.ai_protocol = IPPROTO_TCP,
+	};
+
+	err = getaddrinfo(node, xstr(PROGGER_SERVER_PORT), &hints, &addrs);
+	if (err) {
+		fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(err));
+		goto fail;
+	}
+
+	fprintf(stderr, "Host '%s' resolved to: ", node);
+	for (addr = addrs; addr; addr = addr->ai_next) {
+		fprintf(stderr, "%s", addrinfo_ip(addr));
+		if (addr->ai_next)
+			fprintf(stderr, ", ");
+		n_addrs++;
+	}
+	fprintf(stderr, ".\n");
+
+	listenfds = calloc(n_addrs, sizeof(*listenfds));
+
+	if (!listenfds) {
+		perror("calloc");
+		goto fail;
+	}
+
+	for (addr = addrs; addr; addr = addr->ai_next, i++) {
+		int fd = bind_and_listen(addr, listen_backlog);
+
+		if (fd < 0)
+			goto fail;
+
+		if (fcntl(fd, F_SETFL, O_NONBLOCK) != 0)
+			goto fail;
+
+		listenfds[i].fd = fd;
+		listenfds[i].events = POLLIN;
+	}
+
+	while (1) {
+		int nev = poll(listenfds, n_addrs, 0);
+
+		if (nev < 0) {
+			perror("poll");
+			goto fail;
+		}
+
+		for (i = 0; nev > 0 && i < n_addrs; i++, nev--) {
+			int sock;
+
+			if (!(listenfds[i].revents & POLLIN))
+				continue;
+
+			sock = accept(listenfds[i].fd, NULL, NULL);
+
+			/* TODO: Take an action if add_conn fails. */
+			if (sock > 0)
+				add_conn(&cvec, sock);
+		}
+
+		nev = poll(cvec.fds, cvec.ncons, 0);
+
+		if (nev < 0) {
+			perror("poll");
+			goto fail;
+		}
+
+		/*
+		 * TODO: Connections currently aren't being removed.
+		 */
+		for (i = 0; nev > 0 && i < cvec.ncons; i++, nev--) {
+			/* TODO: Take an action if remove_conn fails. */
+			if (cvec.fds[i].revents & POLLHUP)
+				remove_conn(&cvec, i);
+
+			if (!(cvec.fds[i].revents & POLLIN))
+				continue;
+
+			err = do_recv(cvec.fds[i].fd);
+
+			/* TODO: Handle more errors. */
+			switch (err) {
+			case 0:
+				break;
+			case -EAGAIN:
+#if EAGAIN != EWOULDBLOCK
+			case -EWOULDBLOCK:
+#endif
+				break;
+			case -ECONNREFUSED:
+				/* TODO: Take an action if remove_conn fails. */
+				remove_conn(&cvec, i);
+				break;
+			default:
+				if (err > 0)
+					break;
+
+				fprintf(stderr, "Unhandled error: %s.\n",
+					strerror(-err));
+				break;
+			}
+		}
+
+		/* Maybe only sleep if nothing was found in this iter. */
+		usleep(1000);
+	}
+
+	ret = 0;
+
+fail:
+	for (i = 0; i < n_addrs; i++) {
+		if (listenfds[i].fd > 0)
+			close(listenfds[i].fd);
+	}
+
+	free(listenfds);
+	freeconnvector(&cvec);
+
+	/* Do we meed this NULL check? */
+	if (addrs)
+		freeaddrinfo(addrs);
+
+	return ret;
+}
+
+static int load_crypto_key_from_file(const char *filepath)
+{
+	int fd;
+	ssize_t ret;
+
+	fd = open(filepath, O_RDONLY);
+	if (fd < 0) {
+		perror("open");
+		return -1;
+	}
+
+	ret = read(fd, crypto_key, sizeof(crypto_key));
+
+	if (ret < 0) {
+		perror("read");
+		return -1;
+	}
+
+	if (ret != sizeof(crypto_key)) {
+		fprintf(stderr, "Crypto key: Tried to read %zu bytes, "
+			"but only received %zd.\n", sizeof(crypto_key), ret);
+		return -1;
+	}
+
+	close(fd);
+	return 0;
+}
+
+int main(int argc, char **argv)
+{
+	const char *addr = "localhost";
+
+	init_signal_handlers();
+
+	if (argc >= 2)
+		addr = argv[1];
+
+	memcpy(crypto_key, progger_crypto_testkey, sizeof(crypto_key));
+
+	if (argc >= 3) {
+		fprintf(stderr, "Loading crypto key from '%s'.\n", argv[2]);
+		if (load_crypto_key_from_file(argv[2]) != 0) {
+			fprintf(stderr, "Failed to load crypto key.\n");
+			return 1;
+		}
+	}
+
+	listen_on_addr(addr);
+
+	return 0;
+}
diff --git a/drivers/net/progger/server/syscall-table.c b/drivers/net/progger/server/syscall-table.c
new file mode 100644
index 000000000000..1d887c2352cb
--- /dev/null
+++ b/drivers/net/progger/server/syscall-table.c
@@ -0,0 +1,408 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+#include "syscalls.h"
+
+#include <stdint.h>
+
+#include <progger/compiler.h>
+
+/*
+ * grep -E '^[0-9]' arch/x86/entry/syscalls/syscall_64.tbl | \
+ * awk '{print "\t[" $1 "] = \"" $3 "\","}'
+ */
+static const char *const syscalls[] = {
+	[0] = "read",
+	[1] = "write",
+	[2] = "open",
+	[3] = "close",
+	[4] = "stat",
+	[5] = "fstat",
+	[6] = "lstat",
+	[7] = "poll",
+	[8] = "lseek",
+	[9] = "mmap",
+	[10] = "mprotect",
+	[11] = "munmap",
+	[12] = "brk",
+	[13] = "rt_sigaction",
+	[14] = "rt_sigprocmask",
+	[15] = "rt_sigreturn",
+	[16] = "ioctl",
+	[17] = "pread64",
+	[18] = "pwrite64",
+	[19] = "readv",
+	[20] = "writev",
+	[21] = "access",
+	[22] = "pipe",
+	[23] = "select",
+	[24] = "sched_yield",
+	[25] = "mremap",
+	[26] = "msync",
+	[27] = "mincore",
+	[28] = "madvise",
+	[29] = "shmget",
+	[30] = "shmat",
+	[31] = "shmctl",
+	[32] = "dup",
+	[33] = "dup2",
+	[34] = "pause",
+	[35] = "nanosleep",
+	[36] = "getitimer",
+	[37] = "alarm",
+	[38] = "setitimer",
+	[39] = "getpid",
+	[40] = "sendfile",
+	[41] = "socket",
+	[42] = "connect",
+	[43] = "accept",
+	[44] = "sendto",
+	[45] = "recvfrom",
+	[46] = "sendmsg",
+	[47] = "recvmsg",
+	[48] = "shutdown",
+	[49] = "bind",
+	[50] = "listen",
+	[51] = "getsockname",
+	[52] = "getpeername",
+	[53] = "socketpair",
+	[54] = "setsockopt",
+	[55] = "getsockopt",
+	[56] = "clone",
+	[57] = "fork",
+	[58] = "vfork",
+	[59] = "execve",
+	[60] = "exit",
+	[61] = "wait4",
+	[62] = "kill",
+	[63] = "uname",
+	[64] = "semget",
+	[65] = "semop",
+	[66] = "semctl",
+	[67] = "shmdt",
+	[68] = "msgget",
+	[69] = "msgsnd",
+	[70] = "msgrcv",
+	[71] = "msgctl",
+	[72] = "fcntl",
+	[73] = "flock",
+	[74] = "fsync",
+	[75] = "fdatasync",
+	[76] = "truncate",
+	[77] = "ftruncate",
+	[78] = "getdents",
+	[79] = "getcwd",
+	[80] = "chdir",
+	[81] = "fchdir",
+	[82] = "rename",
+	[83] = "mkdir",
+	[84] = "rmdir",
+	[85] = "creat",
+	[86] = "link",
+	[87] = "unlink",
+	[88] = "symlink",
+	[89] = "readlink",
+	[90] = "chmod",
+	[91] = "fchmod",
+	[92] = "chown",
+	[93] = "fchown",
+	[94] = "lchown",
+	[95] = "umask",
+	[96] = "gettimeofday",
+	[97] = "getrlimit",
+	[98] = "getrusage",
+	[99] = "sysinfo",
+	[100] = "times",
+	[101] = "ptrace",
+	[102] = "getuid",
+	[103] = "syslog",
+	[104] = "getgid",
+	[105] = "setuid",
+	[106] = "setgid",
+	[107] = "geteuid",
+	[108] = "getegid",
+	[109] = "setpgid",
+	[110] = "getppid",
+	[111] = "getpgrp",
+	[112] = "setsid",
+	[113] = "setreuid",
+	[114] = "setregid",
+	[115] = "getgroups",
+	[116] = "setgroups",
+	[117] = "setresuid",
+	[118] = "getresuid",
+	[119] = "setresgid",
+	[120] = "getresgid",
+	[121] = "getpgid",
+	[122] = "setfsuid",
+	[123] = "setfsgid",
+	[124] = "getsid",
+	[125] = "capget",
+	[126] = "capset",
+	[127] = "rt_sigpending",
+	[128] = "rt_sigtimedwait",
+	[129] = "rt_sigqueueinfo",
+	[130] = "rt_sigsuspend",
+	[131] = "sigaltstack",
+	[132] = "utime",
+	[133] = "mknod",
+	[134] = "uselib",
+	[135] = "personality",
+	[136] = "ustat",
+	[137] = "statfs",
+	[138] = "fstatfs",
+	[139] = "sysfs",
+	[140] = "getpriority",
+	[141] = "setpriority",
+	[142] = "sched_setparam",
+	[143] = "sched_getparam",
+	[144] = "sched_setscheduler",
+	[145] = "sched_getscheduler",
+	[146] = "sched_get_priority_max",
+	[147] = "sched_get_priority_min",
+	[148] = "sched_rr_get_interval",
+	[149] = "mlock",
+	[150] = "munlock",
+	[151] = "mlockall",
+	[152] = "munlockall",
+	[153] = "vhangup",
+	[154] = "modify_ldt",
+	[155] = "pivot_root",
+	[156] = "_sysctl",
+	[157] = "prctl",
+	[158] = "arch_prctl",
+	[159] = "adjtimex",
+	[160] = "setrlimit",
+	[161] = "chroot",
+	[162] = "sync",
+	[163] = "acct",
+	[164] = "settimeofday",
+	[165] = "mount",
+	[166] = "umount2",
+	[167] = "swapon",
+	[168] = "swapoff",
+	[169] = "reboot",
+	[170] = "sethostname",
+	[171] = "setdomainname",
+	[172] = "iopl",
+	[173] = "ioperm",
+	[174] = "create_module",
+	[175] = "init_module",
+	[176] = "delete_module",
+	[177] = "get_kernel_syms",
+	[178] = "query_module",
+	[179] = "quotactl",
+	[180] = "nfsservctl",
+	[181] = "getpmsg",
+	[182] = "putpmsg",
+	[183] = "afs_syscall",
+	[184] = "tuxcall",
+	[185] = "security",
+	[186] = "gettid",
+	[187] = "readahead",
+	[188] = "setxattr",
+	[189] = "lsetxattr",
+	[190] = "fsetxattr",
+	[191] = "getxattr",
+	[192] = "lgetxattr",
+	[193] = "fgetxattr",
+	[194] = "listxattr",
+	[195] = "llistxattr",
+	[196] = "flistxattr",
+	[197] = "removexattr",
+	[198] = "lremovexattr",
+	[199] = "fremovexattr",
+	[200] = "tkill",
+	[201] = "time",
+	[202] = "futex",
+	[203] = "sched_setaffinity",
+	[204] = "sched_getaffinity",
+	[205] = "set_thread_area",
+	[206] = "io_setup",
+	[207] = "io_destroy",
+	[208] = "io_getevents",
+	[209] = "io_submit",
+	[210] = "io_cancel",
+	[211] = "get_thread_area",
+	[212] = "lookup_dcookie",
+	[213] = "epoll_create",
+	[214] = "epoll_ctl_old",
+	[215] = "epoll_wait_old",
+	[216] = "remap_file_pages",
+	[217] = "getdents64",
+	[218] = "set_tid_address",
+	[219] = "restart_syscall",
+	[220] = "semtimedop",
+	[221] = "fadvise64",
+	[222] = "timer_create",
+	[223] = "timer_settime",
+	[224] = "timer_gettime",
+	[225] = "timer_getoverrun",
+	[226] = "timer_delete",
+	[227] = "clock_settime",
+	[228] = "clock_gettime",
+	[229] = "clock_getres",
+	[230] = "clock_nanosleep",
+	[231] = "exit_group",
+	[232] = "epoll_wait",
+	[233] = "epoll_ctl",
+	[234] = "tgkill",
+	[235] = "utimes",
+	[236] = "vserver",
+	[237] = "mbind",
+	[238] = "set_mempolicy",
+	[239] = "get_mempolicy",
+	[240] = "mq_open",
+	[241] = "mq_unlink",
+	[242] = "mq_timedsend",
+	[243] = "mq_timedreceive",
+	[244] = "mq_notify",
+	[245] = "mq_getsetattr",
+	[246] = "kexec_load",
+	[247] = "waitid",
+	[248] = "add_key",
+	[249] = "request_key",
+	[250] = "keyctl",
+	[251] = "ioprio_set",
+	[252] = "ioprio_get",
+	[253] = "inotify_init",
+	[254] = "inotify_add_watch",
+	[255] = "inotify_rm_watch",
+	[256] = "migrate_pages",
+	[257] = "openat",
+	[258] = "mkdirat",
+	[259] = "mknodat",
+	[260] = "fchownat",
+	[261] = "futimesat",
+	[262] = "newfstatat",
+	[263] = "unlinkat",
+	[264] = "renameat",
+	[265] = "linkat",
+	[266] = "symlinkat",
+	[267] = "readlinkat",
+	[268] = "fchmodat",
+	[269] = "faccessat",
+	[270] = "pselect6",
+	[271] = "ppoll",
+	[272] = "unshare",
+	[273] = "set_robust_list",
+	[274] = "get_robust_list",
+	[275] = "splice",
+	[276] = "tee",
+	[277] = "sync_file_range",
+	[278] = "vmsplice",
+	[279] = "move_pages",
+	[280] = "utimensat",
+	[281] = "epoll_pwait",
+	[282] = "signalfd",
+	[283] = "timerfd_create",
+	[284] = "eventfd",
+	[285] = "fallocate",
+	[286] = "timerfd_settime",
+	[287] = "timerfd_gettime",
+	[288] = "accept4",
+	[289] = "signalfd4",
+	[290] = "eventfd2",
+	[291] = "epoll_create1",
+	[292] = "dup3",
+	[293] = "pipe2",
+	[294] = "inotify_init1",
+	[295] = "preadv",
+	[296] = "pwritev",
+	[297] = "rt_tgsigqueueinfo",
+	[298] = "perf_event_open",
+	[299] = "recvmmsg",
+	[300] = "fanotify_init",
+	[301] = "fanotify_mark",
+	[302] = "prlimit64",
+	[303] = "name_to_handle_at",
+	[304] = "open_by_handle_at",
+	[305] = "clock_adjtime",
+	[306] = "syncfs",
+	[307] = "sendmmsg",
+	[308] = "setns",
+	[309] = "getcpu",
+	[310] = "process_vm_readv",
+	[311] = "process_vm_writev",
+	[312] = "kcmp",
+	[313] = "finit_module",
+	[314] = "sched_setattr",
+	[315] = "sched_getattr",
+	[316] = "renameat2",
+	[317] = "seccomp",
+	[318] = "getrandom",
+	[319] = "memfd_create",
+	[320] = "kexec_file_load",
+	[321] = "bpf",
+	[322] = "execveat",
+	[323] = "userfaultfd",
+	[324] = "membarrier",
+	[325] = "mlock2",
+	[326] = "copy_file_range",
+	[327] = "preadv2",
+	[328] = "pwritev2",
+	[329] = "pkey_mprotect",
+	[330] = "pkey_alloc",
+	[331] = "pkey_free",
+	[332] = "statx",
+	[333] = "io_pgetevents",
+	[334] = "rseq",
+	[424] = "pidfd_send_signal",
+	[425] = "io_uring_setup",
+	[426] = "io_uring_enter",
+	[427] = "io_uring_register",
+	[428] = "open_tree",
+	[429] = "move_mount",
+	[430] = "fsopen",
+	[431] = "fsconfig",
+	[432] = "fsmount",
+	[433] = "fspick",
+	[434] = "pidfd_open",
+	[435] = "clone3",
+	[437] = "openat2",
+	[438] = "pidfd_getfd",
+	[439] = "faccessat2",
+	[512] = "rt_sigaction",
+	[513] = "rt_sigreturn",
+	[514] = "ioctl",
+	[515] = "readv",
+	[516] = "writev",
+	[517] = "recvfrom",
+	[518] = "sendmsg",
+	[519] = "recvmsg",
+	[520] = "execve",
+	[521] = "ptrace",
+	[522] = "rt_sigpending",
+	[523] = "rt_sigtimedwait",
+	[524] = "rt_sigqueueinfo",
+	[525] = "sigaltstack",
+	[526] = "timer_create",
+	[527] = "mq_notify",
+	[528] = "kexec_load",
+	[529] = "waitid",
+	[530] = "set_robust_list",
+	[531] = "get_robust_list",
+	[532] = "vmsplice",
+	[533] = "move_pages",
+	[534] = "preadv",
+	[535] = "pwritev",
+	[536] = "rt_tgsigqueueinfo",
+	[537] = "recvmmsg",
+	[538] = "sendmmsg",
+	[539] = "process_vm_readv",
+	[540] = "process_vm_writev",
+	[541] = "setsockopt",
+	[542] = "getsockopt",
+	[543] = "io_setup",
+	[544] = "io_submit",
+	[545] = "execveat",
+	[546] = "preadv2",
+	[547] = "pwritev2",
+};
+
+const char *syscall_str_from_nr(uint32_t nr)
+{
+	if (nr >= ARRAY_SIZE(syscalls))
+		return "INVALID";
+
+	return syscalls[nr];
+}
diff --git a/drivers/net/progger/server/syscalls.h b/drivers/net/progger/server/syscalls.h
new file mode 100644
index 000000000000..bb3a19995ad7
--- /dev/null
+++ b/drivers/net/progger/server/syscalls.h
@@ -0,0 +1,10 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+
+#ifndef PROGGER_SERVER_SYSCALLS_H
+#define PROGGER_SERVER_SYSCALLS_H
+
+#include <stdint.h>
+
+const char *syscall_str_from_nr(uint32_t nr);
+
+#endif /* PROGGER_SERVER_SYSCALLS_H */
diff --git a/include/progger-host/progger b/include/progger-host/progger
new file mode 120000
index 000000000000..d08bdf8bf0f2
--- /dev/null
+++ b/include/progger-host/progger
@@ -0,0 +1 @@
+../progger
\ No newline at end of file
diff --git a/include/progger/compiler.h b/include/progger/compiler.h
new file mode 100644
index 000000000000..d588fb49dfe4
--- /dev/null
+++ b/include/progger/compiler.h
@@ -0,0 +1,32 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+
+#ifndef PROGGER_COMMON_COMPILER_H
+#define PROGGER_COMMON_COMPILER_H
+
+#ifdef __KERNEL__
+#include <linux/compiler_types.h>
+#else /* __KERNEL__ */
+
+#ifndef ARRAY_SIZE
+#define ARRAY_SIZE(x)	(sizeof(x) / sizeof((x)[0]))
+#endif
+
+#ifndef likely
+#define likely(x)	__builtin_expect(!!(x), 1)
+#endif
+
+#ifndef unlikely
+#define unlikely(x)	__builtin_expect(!!(x), 0)
+#endif
+
+#ifndef __packed
+#define __packed	__attribute__((packed))
+#endif
+
+#ifndef __unused
+#define __unused	__attribute__((unused))
+#endif
+
+#endif /* __KERNEL__ */
+
+#endif /* PROGGER_COMMON_COMPILER_H */
diff --git a/include/progger/crypto.h b/include/progger/crypto.h
new file mode 100644
index 000000000000..1cba782a14b5
--- /dev/null
+++ b/include/progger/crypto.h
@@ -0,0 +1,27 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+
+#ifndef PROGGER_COMMON_CRYPTO_H
+#define PROGGER_COMMON_CRYPTO_H
+
+#ifdef __KERNEL__
+#include <crypto/chacha20poly1305.h>
+#else
+#define CHACHA20POLY1305_KEY_SIZE	32
+#define XCHACHA20POLY1305_NONCE_SIZE	24
+#define CHACHA20POLY1305_AUTHTAG_SIZE	16
+#endif /* __KERNEL__ */
+
+#include <progger/types.h>
+
+static const uint8_t progger_crypto_testkey[CHACHA20POLY1305_KEY_SIZE] = {
+	0xca, 0xfe, 0x13, 0x37,
+	0xca, 0xfe, 0x13, 0x37,
+	0xca, 0xfe, 0x13, 0x37,
+	0xca, 0xfe, 0x13, 0x37,
+	0xca, 0xfe, 0x13, 0x37,
+	0xca, 0xfe, 0x13, 0x37,
+	0xca, 0xfe, 0x13, 0x37,
+	0xca, 0xfe, 0x13, 0x37,
+};
+
+#endif /* PROGGER_COMMON_CRYPTO_H */
diff --git a/include/progger/net.h b/include/progger/net.h
new file mode 100644
index 000000000000..7bfd9a387d64
--- /dev/null
+++ b/include/progger/net.h
@@ -0,0 +1,8 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+
+#ifndef PROGGER_COMMON_NET_H
+#define PROGGER_COMMON_NET_H
+
+#define PROGGER_SERVER_PORT	13753
+
+#endif /* PROGGER_COMMON_NET_H */
diff --git a/include/progger/record.h b/include/progger/record.h
new file mode 100644
index 000000000000..9237804d3996
--- /dev/null
+++ b/include/progger/record.h
@@ -0,0 +1,73 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+
+#ifndef PROGGER_COMMON_RECORD_H
+#define PROGGER_COMMON_RECORD_H
+
+#include <progger/compiler.h>
+#include <progger/types.h>
+
+#ifdef __KERNEL__
+#include <linux/build_bug.h>
+#include <linux/stddef.h>
+#define assert_field_size(type, field, size) \
+	static_assert(sizeof_field(type, field) == size)
+#else
+#define assert_field_size(type, field, size)
+#endif
+
+#define SYSCALL_MAX_ARGS_X86_64 6
+
+#define MAX_RECORD_STR_SIZE 4096
+#define MAX_RECORD_SIZE (1024 + (SYSCALL_MAX_ARGS_X86_64 * MAX_RECORD_STR_SIZE))
+
+#define TP_SRC_SYS_ENTER (1 << 1)
+#define TP_SRC_SYS_EXIT (1 << 2)
+
+#define PROGGER_RECORD_PADDING_ALIGN 32
+
+struct record_ad {
+	uint32_t len;
+	uint64_t client_id;
+} __packed;
+
+struct record {
+	uint32_t len;
+	uint16_t id;
+	uint16_t reserved;
+	uint8_t data[];
+} __packed;
+
+struct record_syscall_x86_64 {
+	uint8_t tp_src;
+	uint8_t reserved;
+	uint16_t nr;
+	uint64_t ts;
+	uint64_t ret;
+	uint32_t pid;
+	uint32_t uid;
+	uint32_t euid;
+	uint64_t args[SYSCALL_MAX_ARGS_X86_64];
+	char strings[];
+} __packed;
+
+assert_field_size(struct record_syscall_x86_64, pid, sizeof(pid_t));
+assert_field_size(struct record_syscall_x86_64, uid, sizeof(uid_t));
+assert_field_size(struct record_syscall_x86_64, euid, sizeof(uid_t));
+
+enum {
+	RECORD_ENUM_MIN = 1024,
+	RECORD_SYSCALL_X86_64 = 1025,
+	RECORD_ENUM_MAX = 65535
+};
+
+static inline struct record *next_record(struct record *record)
+{
+	struct record *next = (struct record *)(((char *)record) + record->len);
+
+	if (next->len == 0)
+		return NULL;
+
+	return next;
+}
+
+#endif /* PROGGER_COMMON_RECORD_H */
diff --git a/include/progger/types.h b/include/progger/types.h
new file mode 100644
index 000000000000..37b87b6b93af
--- /dev/null
+++ b/include/progger/types.h
@@ -0,0 +1,18 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+
+#ifndef PROGGER_COMMON_TYPES_H
+#define PROGGER_COMMON_TYPES_H
+
+#ifdef __KERNEL__
+#include <linux/compiler.h>
+#include <linux/types.h>
+#include <linux/stddef.h>
+#else
+#include <stdbool.h>
+#include <stddef.h>
+#include <stdint.h>
+#include <sys/types.h>
+#include <asm/types.h>
+#endif /* __KERNEL__ */
+
+#endif /* PROGGER_COMMON_TYPES_H */
--
2.20.1

https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

90

4 +++ b/drivers/net/Makefile

5 @@ -82,3 +82,6 @@ thunderbolt-net-y += thunderbolt.o

6 obj-$(CONFIG_USB4_NET) += thunderbolt-net.o

7 obj-$(CONFIG_NETDEVSIM) += netdevsim/

8 obj-$(CONFIG_NET_FAILOVER) += net_failover.o

9 +

10 +obj-$(CONFIG_PROGGER) += progger/

11 +subdir-$(CONFIG_PROGGER) += progger

A.3 drivers/net/progger/Kconfig

1 # SPDX-License-Identifier: GPL-2.0-only

2
3 menu "Progger configuration"

4
5 config PROGGER

6 tristate "Progger support"

7 depends on X86

8 depends on 64BIT

9 depends on NET && INET

10 select CRYPTO

11 select CRYPTO_LIB_CHACHA20POLY1305

12 select CRYPTO_CHACHA20_X86_64

13 select CRYPTO_POLY1305_X86_64

14 select TRACING

15
16 if PROGGER

17
18 source "drivers/net/progger/kernel/Kconfig"

19
20 config PROGGER_CLIENT_ID

21 hex "Client ID"

22 default 0xcafe1337

23
24 endif # Progger

25
26 endmenu # Progger configuration

A.4 drivers/net/progger/Makefile

1 # SPDX-License-Identifier: GPL-2.0-only

2
3 subdir-$(CONFIG_PROGGER) += kernel

4 subdir-$(CONFIG_PROGGER) += server

5
6 obj-$(CONFIG_PROGGER) += kernel/

7 obj-$(CONFIG_PROGGER) += server/

A.5 drivers/net/progger/kernel/Kconfig

1 # SPDX-License-Identifier: GPL-2.0-only

2

91

3 menu "Tracepoints"

4
5 #

6 # Each tracepoint config must be of the form PROGGER_TRACEPOINT_x, where x is

7 # the name of an available tracepoint. This is so the resulting config can be

8 # parsed to automatically generate code listing the tracepoints to use.

9 #

10
11 config PROGGER_TRACE_SYSCALLS

12 bool "Trace syscalls"

13 default y

14 select PROGGER_TRACEPOINT_SYS_ENTER

15 select PROGGER_TRACEPOINT_SYS_EXIT

16
17 config PROGGER_TRACEPOINT_SYS_ENTER

18 bool

19
20 config PROGGER_TRACEPOINT_SYS_EXIT

21 bool

22
23 config PROGGER_TRACED_SYSCALLS

24 string "System calls to trace"

25 depends on PROGGER_TRACE_SYSCALLS

26 help

27 A regular expression that matches the system calls to be traced.

28
29 For example:

30 - "openat|rename(at)?2?|u?mount2?"

31 - ".*"

32 - ".*xattr.*"

33
34 endmenu # Tracepoints

35
36 config PROGGER_USE_TPM

37 bool "Use the TPM"

38 default y

39 select TCG_TPM

40 select TCG_TIS

41 help

42 For development or testing, it may be preferable to use a

43 system without a TPM. Only say N if that is the case.

44
45 if PROGGER_USE_TPM

46
47 config PROGGER_TPM_PCR

48 int "PCR to allocate to Progger"

49 range 8 15

50 default 15

51
52 config PROGGER_TPM_KEY_HANDLE

53 hex "Parent key handle"

54 help

55 The handle of the key used to seal the ChaCha20-Poly1305 key.

56 It is not the handle of the ChaCha20-Poly1305 key.

57
58 config PROGGER_TPM_PUBLIC_BLOB

59 string "Public blob path"

60 help

61 The path to the public blob generated while sealing the crypto key.

62

92

63 config PROGGER_TPM_PRIVATE_BLOB

64 string "Private blob path"

65 help

66 The path to the private blob generated while sealing the crypto key.

67
68 config PROGGER_PANIC_WHEN_KEY_UNSECURED

69 bool "Panic when the sealed crypto key is left unsecured"

70 default y

71 help

72 The crypto key can only be unsealed once per boot. If an error occurs

73 when the crypto key is being unsealed, user space could potentially

74 unseal the key later. The only option left to protect the crypto key

75 from user space is to force a kernel panic.

76
77 This should only be set to N for development or testing.

78
79 config PROGGER_PANIC_WHEN_NO_TPM_FOUND

80 bool "Panic when no TPM device can be found"

81 depends on PROGGER_PANIC_WHEN_KEY_UNSECURED

82 default y

83 help

84 To be extra sure that the crypto key is not accessible to user space,

85 Progger can panic if it doesn’t find a TPM.

86
87 Suppose Progger is compiled built-in, and the TPM driver is compiled

88 only as a loadable module. In this case, Progger will not find the

89 TPM during initialisation, but the TPM will become available to

90 the system when the TPM module is loaded from user space. As

91 such, Progger is unable to unseal the crypto key and secure it

92 from user space.

93
94 If you have ensured that the relevant TPM driver is compiled

95 built-in, then this option is not needed. In such a case, it

96 could be beneficial to disable this option, as that would mean

97 that system is still bootable if the TPM hardware fails.

98
99 config PROGGER_PANIC_WHEN_TPM_IS_NOT_VERSION_2

100 bool "Panic when TPM device is not a TPM 2.0 device"

101 depends on PROGGER_PANIC_WHEN_KEY_UNSECURED

102 default y

103 help

104 Progger requires a device supporting TPM 2.0. If this is not the

105 case, Progger cannot protect the sealed crypto key from user space.

106 The only option left to protect the crypto key from user space is to

107 panic the kernel.

108
109 If this option is not set, and Progger encounters a device that

110 does not support TPM 2.0, Progger won’t try to unseal the key;

111 instead, Progger will just fail its initialisation.

112
113 endif # PROGGER_USR_TPM

114
115 config PROGGER_NET_DSTADDR

116 string "Destination IP address"

117 default "::1"

118 help

119 The IP address to send records to. Both IPv4 and IPv6 are supported.

120
121 config PROGGER_RINGBUF_SIZE

122 int "Record ringbuffer size (KiB per CPU)"

93

123 default 256

124 help

125 The number of kilobytes per CPU to use as a buffer for records.

126 Large buffers might be required to prevent data loss when a lot

127 of traced events occur in a small timeframe.

128
129 If Progger is compiled built-in instead of as a module, there will be

130 a period where Progger is collecting records but is unable to send

131 them, as the network interfaces are not yet up. The ringbuffer size

132 can be increased to compensate for that.

A.6 drivers/net/progger/kernel/Makefile

1 # SPDX-License-Identifier: GPL-2.0-only

2
3 obj-$(CONFIG_PROGGER) := progger.o

4
5 progger-y := init.o

6 progger-y += tracepoints.o

7 progger-y += crypto.o

8 progger-y += net.o

9 progger-y += ringbuf.o

10 progger-y += kthread.o

11 progger-$(CONFIG_PROGGER_USE_TPM) += tpm.o

12
13 ccflags-y += -O3

14 ccflags-y += -D’pr_fmt(fmt)=KBUILD_MODNAME ": " fmt’

15
16 syscall-tbl := $(srctree)/arch/x86/entry/syscalls/syscall_64.tbl

17
18 generated := $(obj)/generated

19
20 tpm-blobs := tpm-public-blob.h

21 tpm-blobs += tpm-private-blob.h

22
23 clean-files += generated/ip.h

24 clean-files += generated/syscalls.h

25 clean-files += $(addprefix generated/,$(tpm-blobs))

26 clean-files += $(addprefix generated/,$(tpm-blobs).tmp)

27
28 quiet_cmd_progger_gen = GEN $@

29 cmd_progger_gen = $< $(KCONFIG_CONFIG) $@ $(2)

30
31 quiet_cmd_tpm_blob_gen = GEN $@

32 cmd_tpm_blob_gen = \

33 xxd -i >$@.tmp <$(CONFIG_PROGGER_TPM_$(2)_BLOB) && \

34 if ! diff -N $@ $@.tmp >/dev/null; then mv $@.tmp $@; fi

35
36 $(obj)/net.o: $(generated)/ip.h

37 $(obj)/tracepoints.o: $(generated)/syscalls.h

38 $(obj)/tpm.o: $(addprefix $(generated)/,$(tpm-blobs))

39
40 $(generated)/ip.h: $(generated)/gen-ip.py

41 $(call cmd,progger_gen)

42
43 $(generated)/syscalls.h: $(generated)/gen-syscalls.py $(syscall-tbl)

44 $(call cmd,progger_gen,$(syscall-tbl))

94

45
46 $(generated)/tpm-public-blob.h: FORCE

47 $(call cmd,tpm_blob_gen,PUBLIC)

48
49 $(generated)/tpm-private-blob.h: FORCE

50 $(call cmd,tpm_blob_gen,PRIVATE)

51
52 $(wildcard $(generated)/*.h): $(KCONFIG_CONFIG)

53
54 $(wildcard $(generated)/gen-*.py): ;

55
56 FORCE: ;

A.7 drivers/net/progger/kernel/crypto.c

1 // SPDX-License-Identifier: GPL-2.0-only

2
3 #include "crypto.h"

4
5 #include <crypto/chacha20poly1305.h>

6 #include <linux/cache.h>

7 #include <linux/compiler.h>

8 #include <linux/errno.h>

9 #include <linux/init.h>

10 #include <linux/kconfig.h>

11 #include <linux/kernel.h>

12 #include <linux/limits.h>

13 #include <linux/mm.h>

14 #include <linux/overflow.h>

15 #include <linux/random.h>

16 #include <linux/spinlock.h>

17 #include <linux/string.h>

18
19 #include <progger/crypto.h>

20 #include <progger/types.h>

21
22 #include "tpm.h"

23
24 static u8 __read_mostly key[CHACHA20POLY1305_KEY_SIZE];

25 static u8 nonce[XCHACHA20POLY1305_NONCE_SIZE];

26 static DEFINE_SPINLOCK(nonce_lock);

27 static u64 counter;

28
29 int progger_xchacha20poly1305(void **out, size_t *outlen,

30 void *data, size_t datalen,

31 void *ad, size_t adlen)

32 {

33 size_t extralen = CHACHA20POLY1305_AUTHTAG_SIZE + sizeof(nonce);

34
35 if (unlikely(counter == U64_MAX)) {

36 pr_err_once("Nonce counter has reached its maximum!");

37 return -EOVERFLOW;

38 }

39
40 if (unlikely(check_add_overflow(datalen, extralen, outlen)))

41 return -EOVERFLOW;

42

95

43 *out = kvmalloc(*outlen, GFP_KERNEL);

44 if (unlikely(!*out))

45 return -ENOMEM;

46
47 spin_lock(&nonce_lock);

48 *((u64 *)nonce + 2) = counter++;

49 memcpy(*out, nonce, sizeof(nonce));

50 spin_unlock(&nonce_lock);

51
52 xchacha20poly1305_encrypt(*out + sizeof(nonce), data, datalen,

53 ad, adlen, *out, key);

54
55 return 0;

56 }

57
58 int __init crypto_init(void)

59 {

60 int err;

61
62 if (IS_ENABLED(CONFIG_PROGGER_USE_TPM)) {

63 err = tpm_get_chacha20poly1305_key(&key);

64 if (err)

65 return err;

66 } else {

67 pr_warn("Not using TPM, using insecure testing key.\n");

68 memcpy(key, progger_crypto_testkey, sizeof(key));

69 }

70
71 err = get_random_bytes_wait(&nonce, sizeof(nonce));

72 if (err)

73 return err;

74
75 return 0;

76 }

77
78 void crypto_exit(void)

79 {

80 memset(key, 0, sizeof(key));

81 }

A.8 drivers/net/progger/kernel/crypto.h

1 /* SPDX-License-Identifier: GPL-2.0-only */

2
3 #ifndef PROGGER_CRYPTO_H

4 #define PROGGER_CRYPTO_H

5
6 #include <progger/types.h>

7
8 int progger_xchacha20poly1305(void **out, size_t *outlen,

9 void *data, size_t datalen,

10 void *ad, size_t adlen);

11 int crypto_init(void);

12 void crypto_exit(void);

13
14 #endif /* PROGGER_CRYPTO_H */

96

A.9 drivers/net/progger/kernel/generated/gen-

ip.py

1 #!/usr/bin/env python3

2 # SPDX-License-Identifier: GPL-2.0-only

3
4 import ipaddress

5 import sys

6
7
8 def main():

9 if len(sys.argv) != 3:

10 print(f"Usage: {sys.argv[0]} <.config> <output-file>", file=sys.stderr)

11 exit(1)

12
13 dot_config = sys.argv[1]

14 output_file = sys.argv[2]

15 output_lines = []

16
17 with open(dot_config, ’r’) as f:

18 for line in f.readlines():

19 if line.startswith(’CONFIG_PROGGER_NET_DSTADDR=’):

20 addr = line.split(’=’)[-1].strip().replace(’"’, ’’)

21 addr = ipaddress.ip_address(addr)

22
23 formatted = None

24
25 if type(addr) == ipaddress.IPv4Address:

26 v4addr = f’{int(addr)} /* {addr} */’

27 v6addr = ’{ 0, } /* None */’

28 output_lines.append(’#define PROGGER_IPv6 0’)

29 else:

30 v4addr = ’0 /* None */’

31 v6addr = ’,’.join([f’0x{byte:02x}’ for byte in addr.packed])

32 v6addr = f’{{ {v6addr} }} /* {addr} */’

33 output_lines.append(’#define PROGGER_IPv6 1’)

34
35 output_lines.append((f’#define PROGGER_IPv4_DSTADDR {v4addr}’))

36 output_lines.append((f’#define PROGGER_IPv6_DSTADDR {v6addr}’))

37
38 output = ’\n’.join(output_lines) + ’\n’

39
40 with open(output_file, ’w’) as f:

41 f.write(output)

42
43
44 if __name__ == ’__main__’:

45 main()

A.10 drivers/net/progger/kernel/generated/gen-

syscalls.py

97

1 #!/usr/bin/env python3

2 # SPDX-License-Identifier: GPL-2.0-only

3
4 import re

5 import sys

6
7 TRACEPOINT_CONFIG_START = ’CONFIG_PROGGER_TRACEPOINT_’

8
9

10 def format_c_array(array_name, member_type, contents):

11 newline = ’\n’

12 tab = ’\t’

13
14 if not member_type.endswith(’*’):

15 member_type += ’ ’

16
17 return f’’’\

18 static {member_type}{array_name}[] = {{

19 {tab}{(’,’ + newline + tab).join(contents)}

20 }};\

21 ’’’

22
23
24 def main():

25 if len(sys.argv) != 4:

26 print(f"Usage: {sys.argv[0]} <.config> <output-file> <syscall-tbl>",

27 file=sys.stderr)

28 exit(1)

29
30 dot_config = sys.argv[1]

31 output_file = sys.argv[2]

32 syscall_tbl = sys.argv[3]

33 tracepoints = []

34 traced_syscalls = []

35 syscall_regex = ’’

36
37 with open(dot_config, ’r’) as f:

38 for line in f.readlines():

39 if line.startswith(TRACEPOINT_CONFIG_START):

40 line = line[len(TRACEPOINT_CONFIG_START):]

41 tracepoint = (line.split(’=’)[0].strip().lower())

42 tracepoints.append(f’{{ {tracepoint}_tp, "{tracepoint}" }}’)

43
44 if line.startswith(’CONFIG_PROGGER_TRACED_SYSCALLS’):

45 syscall_regex = line.split(’=’, 1)[1].strip()[1:-1]

46
47 syscall_regex = re.compile(syscall_regex)

48
49 with open(syscall_tbl, ’r’) as f:

50 for line in f.readlines():

51 line = line.strip()

52
53 if not line or line.startswith(’#’):

54 continue

55
56 parts = line.split()

57 name = parts[2]

58
59 if syscall_regex.fullmatch(name):

60 traced_syscalls.append(f’__NR_{name}’)

98

61
62
63 tp_type = ’’’\

64 const struct {

65 void *fn;

66 const char *name;

67 }’’’

68
69 output = ’\n’.join((

70 format_c_array(’init_tracepoints’, tp_type, tracepoints), ’’,

71 format_c_array(’init_syscalls’, ’const long’, traced_syscalls), ’’,

72))

73
74 with open(output_file, ’w’) as f:

75 f.write(output)

76
77
78 if __name__ == ’__main__’:

79 main()

A.11 drivers/net/progger/kernel/init.c

1 // SPDX-License-Identifier: GPL-2.0-only

2
3 #include <linux/init.h>

4 #include <linux/module.h>

5 #include <linux/printk.h>

6
7 #include "crypto.h"

8 #include "net.h"

9 #include "ringbuf.h"

10 #include "tpm.h"

11 #include "tracepoints.h"

12
13 static int __init progger_init(void)

14 {

15 int err;

16
17 err = tpm_init();

18 if (err) {

19 pr_err("TPM init failed!\n");

20 goto fail_tpm_init;

21 }

22
23 err = crypto_init();

24 if (err) {

25 pr_err("Crypto init failed!\n");

26 goto fail_crypto_init;

27 }

28
29 err = net_init();

30 if (err) {

31 pr_err("Net init failed!\n");

32 goto fail_net;

33 }

34
35 err = ringbuf_init();

99

36 if (err) {

37 pr_err("Ringbuf init failed!\n");

38 goto fail_ringbuf;

39 }

40
41 err = tracepoint_init();

42 if (err) {

43 pr_err("Tracepoint init failed!\n");

44 goto fail_tracepoints;

45 }

46
47 return 0;

48
49 fail_tracepoints:

50 tracepoint_exit();

51 fail_ringbuf:

52 ringbuf_exit();

53 fail_net:

54 net_exit();

55 fail_crypto_init:

56 crypto_exit();

57 fail_tpm_init:

58 tpm_exit();

59
60 return err;

61 }

62
63 static void __exit progger_exit(void)

64 {

65 tracepoint_exit();

66 ringbuf_exit();

67 net_exit();

68 crypto_exit();

69 tpm_exit();

70 }

71
72 /*

73 * We need to use ‘late_initcall‘ so that the TPM driver is initialised

74 * before ‘progger_init‘ runs. It’s fine for ‘progger_init‘ to run earlier

75 * when the TPM isn’t being used, but there’s also no need as there will be

76 * nothing for Progger to trace until user space starts.

77 */

78 late_initcall(progger_init);

79 module_exit(progger_exit);

80
81 MODULE_LICENSE("GPL v2");

A.12 drivers/net/progger/kernel/kthread.c

1 // SPDX-License-Identifier: GPL-2.0-only

2
3 #include "kthread.h"

4
5 #include <linux/err.h>

6 #include <linux/kthread.h>

7 #include <linux/sched.h>

8 #include <linux/sched/prio.h>

100

9 #include <linux/sched/task.h>

10 #include <linux/stddef.h>

11 #include <uapi/linux/sched/types.h>

12
13 int progger_create_task(struct task_struct **task, int (*threadfn)(void *data),

14 const char *name)

15 {

16 struct task_struct *new;

17 const struct sched_param sp = { .sched_priority = MAX_RT_PRIO - 1 };

18
19 new = kthread_run(threadfn, NULL, name);

20 if (IS_ERR(new))

21 return PTR_ERR(new);

22
23 sched_setscheduler(new, SCHED_FIFO, &sp);

24
25 *task = get_task_struct(new);

26
27 return 0;

28 }

29
30 void progger_destroy_task(struct task_struct **task)

31 {

32 if (!*task)

33 return;

34
35 kthread_park(*task);

36 kthread_stop(*task);

37 put_task_struct(*task);

38
39 *task = NULL;

40 }

A.13 drivers/net/progger/kernel/kthread.h

1 /* SPDX-License-Identifier: GPL-2.0-only */

2
3 #ifndef PROGGER_KERNEL_KTHREAD_H

4 #define PROGGER_KERNEL_KTHREAD_H

5
6 #include <linux/sched.h>

7
8 int progger_create_task(struct task_struct **task, int (*threadfn)(void *data),

9 const char *name);

10 void progger_destroy_task(struct task_struct **task);

11
12 #endif /* PROGGER_KERNEL_KTHREAD_H */

A.14 drivers/net/progger/kernel/net.c

1 // SPDX-License-Identifier: GPL-2.0

2
3 #include "net.h"

4

101

5 #include <crypto/chacha20poly1305.h>

6 #include <linux/byteorder/generic.h>

7 #include <linux/err.h>

8 #include <linux/errno.h>

9 #include <linux/in6.h>

10 #include <linux/in.h>

11 #include <linux/init.h>

12 #include <linux/jiffies.h>

13 #include <linux/kthread.h>

14 #include <linux/limits.h>

15 #include <linux/mm.h>

16 #include <linux/net.h>

17 #include <linux/printk.h>

18 #include <linux/sched.h>

19 #include <linux/socket.h>

20 #include <linux/uio.h>

21 #include <net/ipv6.h>

22 #include <net/net_namespace.h>

23 #include <net/sock.h>

24
25 #include <progger/net.h>

26 #include <progger/record.h>

27 #include <progger/types.h>

28
29 #include "crypto.h"

30 #include "kthread.h"

31 #include "generated/ip.h"

32
33 static struct net *net = &init_net;

34 static struct socket *sock;

35 static bool sock_ready;

36
37 static struct task_struct *tcp_worker;

38
39 static void progger_release_sock(void)

40 {

41 if (!sock)

42 return;

43
44 sock_ready = 0;

45 kernel_sock_shutdown(sock, SHUT_WR);

46 sock_release(sock);

47 sock = NULL;

48 }

49
50 static int progger_connect(void)

51 {

52 int err;

53 int dstaddrlen;

54 struct sockaddr *dstaddr;

55 const __kernel_sa_family_t family = PROGGER_IPv6 ? AF_INET6 : AF_INET;

56
57 static struct sockaddr_in6 dstaddr6 = {

58 .sin6_family = AF_INET6,

59 .sin6_addr = { .s6_addr = PROGGER_IPv6_DSTADDR },

60 .sin6_port = htons(PROGGER_SERVER_PORT),

61 };

62
63 static const struct sockaddr_in dstaddr4 = {

64 .sin_family = AF_INET,

102

65 .sin_addr = { htonl(PROGGER_IPv4_DSTADDR) },

66 .sin_port = htons(PROGGER_SERVER_PORT),

67 };

68
69 progger_release_sock();

70
71 err = sock_create_kern(net, family, SOCK_STREAM, IPPROTO_TCP, &sock);

72 if (err)

73 return err;

74
75 sock_set_reuseaddr(sock->sk);

76
77 if (family == AF_INET6) {

78 err = ip6_sock_set_v6only(sock->sk);

79 if (err)

80 return err;

81
82 dstaddr = (struct sockaddr *)&dstaddr6;

83 dstaddrlen = sizeof(dstaddr6);

84 } else {

85 dstaddr = (struct sockaddr *)&dstaddr4;

86 dstaddrlen = sizeof(dstaddr4);

87 }

88
89 err = kernel_connect(sock, dstaddr, dstaddrlen, 0);

90 if (err)

91 return err;

92
93 sock->sk->sk_sndbuf = INT_MAX;

94 sock->sk->sk_allocation = GFP_ATOMIC;

95
96 sock_ready = 1;

97
98 return 0;

99 }

100
101 static int conn_loop(void *data)

102 {

103 while (1) {

104 set_current_state(TASK_RUNNING);

105
106 if (kthread_should_stop())

107 return 0;

108
109 if (kthread_should_park()) {

110 kthread_parkme();

111 continue;

112 }

113
114 if (!sock_ready) {

115 if (progger_connect() == 0)

116 pr_info("TCP connection established.\n");

117 }

118
119 set_current_state(TASK_INTERRUPTIBLE);

120 schedule_timeout_interruptible(msecs_to_jiffies(100));

121 }

122 }

123
124 int send_encrypted(void *data, size_t len)

103

125 {

126 int err;

127 void *crypt_output;

128 size_t crypt_output_len;

129 struct msghdr msg = {};

130 struct kvec iov[2];

131 struct record_ad ad;

132 size_t total_len;

133
134 if (!sock_ready)

135 return -EAGAIN;

136
137 ad.len = len;

138 ad.len += XCHACHA20POLY1305_NONCE_SIZE + CHACHA20POLY1305_AUTHTAG_SIZE;

139 ad.client_id = CONFIG_PROGGER_CLIENT_ID;

140
141 err = progger_xchacha20poly1305(&crypt_output, &crypt_output_len,

142 data, len, &ad, sizeof(ad));

143
144 if (unlikely(err))

145 return err;

146
147 iov[0].iov_base = &ad;

148 iov[0].iov_len = sizeof(ad);

149 iov[1].iov_base = crypt_output;

150 iov[1].iov_len = crypt_output_len;

151
152 if (unlikely(check_add_overflow(crypt_output_len, sizeof(ad),

153 &total_len))) {

154 kvfree(crypt_output);

155 return -EOVERFLOW;

156 }

157
158 err = kernel_sendmsg(sock, &msg, iov, ARRAY_SIZE(iov), total_len);

159
160 kvfree(crypt_output);

161
162 if (unlikely(err < 0)) {

163 if (err == -ECONNRESET || err == -EPIPE) {

164 pr_info_ratelimited("TCP connection reset.\n");

165 sock_ready = 0;

166 return -EAGAIN;

167 }

168
169 return err;

170 }

171
172 return 0;

173 }

174
175 int __init net_init(void)

176 {

177 return progger_create_task(&tcp_worker, conn_loop, "progger-net");

178 }

179
180 void net_exit(void)

181 {

182 progger_destroy_task(&tcp_worker);

183 progger_release_sock();

184 }

104

A.15 drivers/net/progger/kernel/net.h

1 /* SPDX-License-Identifier: GPL-2.0-only */

2
3 #ifndef PROGGER_KERNEL_NET_H

4 #define PROGGER_KERNEL_NET_H

5
6 #include <progger/types.h>

7
8 int send_encrypted(void *data, size_t len);

9 int net_init(void);

10 void net_exit(void);

11
12 #endif /* PROGGER_KERNEL_NET_H */

A.16 drivers/net/progger/kernel/ringbuf.c

1 // SPDX-License-Identifier: GPL-2.0-only

2
3 #include "ringbuf.h"

4
5 #include <asm/barrier.h>

6 #include <linux/cache.h>

7 #include <linux/cpu.h>

8 #include <linux/cpumask.h>

9 #include <linux/err.h>

10 #include <linux/errno.h>

11 #include <linux/init.h>

12 #include <linux/kernel.h>

13 #include <linux/kthread.h>

14 #include <linux/mm.h>

15 #include <linux/percpu.h>

16 #include <linux/printk.h>

17 #include <linux/sched.h>

18 #include <linux/slab.h>

19 #include <linux/spinlock.h>

20 #include <linux/topology.h>

21
22 #include <progger/compiler.h>

23 #include <progger/types.h>

24
25 #include "kthread.h"

26 #include "net.h"

27
28 static struct task_struct *rb_worker;

29 struct record_ringbuf __percpu __read_mostly *ring;

30 DEFINE_SPINLOCK(rb_pde_lock);

31
32 static int ringbuf_alloc(struct record_ringbuf *rb, int cpu, size_t size)

33 {

34 if (size < MAX_RECORD_SIZE) {

35 size = MAX_RECORD_SIZE * 4;

36 pr_info("ringbuf: Alloc size increased to %zu.\n", size);

37 }

38
39 rb->buf = kvzalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));

105

40 if (!rb->buf)

41 return -ENOMEM;

42
43 rb->size = size;

44 rb->data_end = 0;

45 rb->consumer = 0;

46 rb->producer = 0;

47
48 return 0;

49 }

50
51 static int send_records(int cpu)

52 {

53 struct record_ringbuf *rb = get_ringbuf(cpu);

54 size_t consumer, producer, data_end;

55 unsigned int retries = 7;

56 void *padded;

57 size_t len;

58 size_t paddedlen;

59 int err;

60
61 consumer = rb->consumer;

62 spin_lock(&rb_pde_lock);

63 producer = smp_load_acquire(&rb->producer);

64 data_end = smp_load_acquire(&rb->data_end);

65 spin_unlock(&rb_pde_lock);

66
67 if (rb_is_empty(consumer, producer))

68 return 0;

69
70 if (producer > consumer)

71 len = producer - consumer;

72 else if (likely(data_end != 0))

73 len = data_end - consumer + 1;

74 else

75 return 0;

76
77 /*

78 * If ‘len‘ is incorrect due to underflow, it should be caught by

79 * checking ‘len > rb->size‘. However, ‘consumer + len‘ could result

80 * in ‘len‘ overflowing, returning ‘len‘ to a reasonable value.

81 * Hence, the two separate checks are done.

82 */

83 if (unlikely(len > rb->size || consumer + len > rb->size)) {

84 pr_err_once("%s: Length miscalculation!\n", __func__);

85 return -E2BIG;

86 }

87
88 paddedlen = ALIGN(len, PROGGER_RECORD_PADDING_ALIGN);

89
90 padded = kvzalloc(paddedlen, GFP_KERNEL);

91 if (!padded)

92 return -ENOMEM;

93
94 memcpy(padded, rb->buf + consumer, len);

95
96 do {

97 err = send_encrypted(padded, paddedlen);

98 } while (err == -EAGAIN && retries--);

99

106

100 kvfree(padded);

101
102 if (err)

103 return err;

104
105 rb_mark_consumed(rb, len, consumer);

106
107 return 0;

108 }

109
110 static int rb_send(void *data)

111 {

112 int cpu;

113 size_t i;

114
115 while (1) {

116 set_current_state(TASK_RUNNING);

117
118 if (kthread_should_stop())

119 return 0;

120
121 if (kthread_should_park()) {

122 kthread_parkme();

123 continue;

124 }

125
126 for_each_possible_cpu(cpu) {

127 for (i = 0; i < 2; i++) {

128 int err = send_records(cpu);

129
130 if (err < 0 && err != -EAGAIN)

131 pr_warn_once("%s: err %d.\n", __func__,

132 err);

133 }

134 }

135
136 set_current_state(TASK_INTERRUPTIBLE);

137 schedule_timeout_interruptible(1);

138 }

139
140 return 0;

141 }

142
143 int __init ringbuf_init(void)

144 {

145 int err;

146 int cpu;

147
148 ring = alloc_percpu(typeof(*ring));

149 if (!ring)

150 return -ENOMEM;

151
152 for_each_possible_cpu(cpu) {

153 err = ringbuf_alloc(per_cpu_ptr(ring, cpu), cpu,

154 1024 * CONFIG_PROGGER_RINGBUF_SIZE);

155 if (err)

156 return err;

157 }

158
159 err = progger_create_task(&rb_worker, rb_send, "progger-rb");

107

160 if (err)

161 return err;

162
163 return 0;

164 }

165
166 void ringbuf_exit(void)

167 {

168 int cpu;

169
170 progger_destroy_task(&rb_worker);

171
172 for_each_possible_cpu(cpu)

173 kvfree(per_cpu_ptr(ring, cpu)->buf);

174
175 free_percpu(ring);

176 }

A.17 drivers/net/progger/kernel/ringbuf.h

1 /* SPDX-License-Identifier: GPL-2.0-only */

2
3 #ifndef PROGGER_KERNEL_RINGBUF_H

4 #define PROGGER_KERNEL_RINGBUF_H

5
6 #include <asm/barrier.h>

7 #include <linux/percpu.h>

8 #include <linux/spinlock.h>

9
10 #include <progger/record.h>

11 #include <progger/types.h>

12
13 struct record_ringbuf {

14 void *buf;

15 size_t size;

16 size_t data_end;

17 size_t consumer;

18 size_t producer;

19 };

20
21 extern spinlock_t rb_pde_lock;

22 extern struct record_ringbuf *ring;

23
24 static inline struct record_ringbuf *get_ringbuf(int cpu)

25 {

26 return per_cpu_ptr(ring, cpu);

27 }

28
29 static inline size_t rb_nextpos(struct record_ringbuf *rb, size_t pos,

30 size_t len)

31 {

32 size_t newpos = pos + len;

33
34 if (unlikely(newpos + MAX_RECORD_SIZE > rb->size))

35 newpos = 0;

36
37 return newpos;

108

38 }

39 static_assert(__alignof__(struct record) == 1, "Record alignment != 1.");

40
41 static inline bool rb_has_space_left(struct record_ringbuf *rb,

42 size_t consumer, size_t producer)

43 {

44 if (producer > consumer) {

45 size_t nextpos = rb_nextpos(rb, producer, MAX_RECORD_SIZE);

46
47 return nextpos > producer || nextpos < consumer;

48 } else if (consumer > producer) {

49 return producer + MAX_RECORD_SIZE < consumer;

50 } else {

51 return true;

52 }

53 }

54
55 static inline bool rb_is_empty(size_t consumer, size_t producer)

56 {

57 return producer == consumer;

58 }

59
60 static inline void rb_mark_produced(struct record_ringbuf *rb, size_t len,

61 size_t consumer, size_t producer)

62 {

63 spin_lock(&rb_pde_lock);

64
65 if (producer >= consumer)

66 smp_store_release(&rb->data_end, producer + len - 1);

67
68 smp_store_release(&rb->producer, rb_nextpos(rb, producer, len));

69
70 spin_unlock(&rb_pde_lock);

71 }

72
73 static inline void rb_mark_consumed(struct record_ringbuf *rb, size_t len,

74 size_t consumer)

75 {

76 smp_store_release(&rb->consumer, rb_nextpos(rb, consumer, len));

77 }

78
79 int ringbuf_init(void);

80 void ringbuf_exit(void);

81
82 #endif /* PROGGER_KERNEL_RINGBUF_H */

A.18 drivers/net/progger/kernel/tpm.c

1 // SPDX-License-Identifier: GPL-2.0-only

2
3 #include "tpm.h"

4
5 #include <crypto/chacha20poly1305.h>

6 #include <linux/byteorder/generic.h>

7 #include <linux/err.h>

8 #include <linux/errno.h>

9 #include <linux/init.h>

109

10 #include <linux/printk.h>

11 #include <linux/random.h>

12 #include <linux/random.h>

13 #include <linux/slab.h>

14 #include <linux/string.h>

15 #include <linux/tpm.h>

16
17 #include <progger/types.h>

18
19 #define TPM_CC_Load 0x00000157

20 #define TPM_CC_Unseal 0x0000015e

21 #define TPM_CC_FlushContext 0x00000165

22 #define TPM_CC_StartAuthSession 0x00000176

23 #define TPM_CC_PolicyPCR 0x0000017f

24 #define TPM_RH_NULL 0x40000007

25 #define TPM_RS_PW 0x40000009

26 #define TPM_ALG_NULL 0x0010

27 #define TPM_ALG_SHA256 0x000b

28 #define TPM_SE_POLICY 0x01

29
30 #define TPM_SESSION_ATTR_RETAIN (1 << 0)

31
32 /* PC clients are specified to have at least 24 PCRs, and 24 / 8 = 3. */

33 #define PCR_SELECT_MIN 3

34 #define TPM_NONCE_SIZE 0x20

35
36 static struct tpm_chip *tpm_chip;

37 static u8 crypto_key[CHACHA20POLY1305_KEY_SIZE];

38
39 static u8 public_blob[] = {

40 #include "generated/tpm-public-blob.h"

41 };

42
43 static u8 private_blob[] = {

44 #include "generated/tpm-private-blob.h"

45 };

46
47 struct tpm_state {

48 u32 blob_handle;

49 u32 auth_session_handle;

50 u8 auth_session_nonce[TPM_NONCE_SIZE];

51 };

52
53 static int tpm_get_response_item(struct tpm_buf *buf, size_t item_offset,

54 void *out, size_t outlen)

55 {

56 u32 response_size = be32_to_cpu(((struct tpm_header

*)buf->data)->length);

57
58 if ((u64)item_offset + outlen > response_size)

59 return -E2BIG;

60
61 memcpy(out, buf->data + item_offset, outlen);

62
63 return 0;

64 }

65
66 static int get_nonce(u8 (*nonce)[TPM_NONCE_SIZE])

67 {

68 return get_random_bytes_wait(*nonce, sizeof(*nonce));

110

69 }

70
71 static void append_auth_cmd(struct tpm_buf *buf, u32 session_handle,

72 u8 *nonce, u16 noncelen, u8 session_attrs,

73 u8 *auth, u16 authlen)

74 {

75 tpm_buf_append_u32(buf, 9 + authlen + noncelen);

76 tpm_buf_append_u32(buf, session_handle);

77
78 if (nonce && noncelen) {

79 tpm_buf_append_u16(buf, noncelen);

80 tpm_buf_append(buf, nonce, noncelen);

81 } else {

82 tpm_buf_append_u16(buf, 0);

83 }

84
85 tpm_buf_append_u8(buf, session_attrs);

86
87 if (auth && authlen) {

88 tpm_buf_append_u16(buf, authlen);

89 tpm_buf_append(buf, auth, authlen);

90 } else {

91 tpm_buf_append_u16(buf, 0);

92 }

93 }

94
95 static int start_auth_session(struct tpm_state *tpm_state)

96 {

97 int err;

98 __be32 handle;

99 struct tpm_buf buf;

100
101 err = get_nonce(&tpm_state->auth_session_nonce);

102 if (err)

103 return err;

104
105 err = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM_CC_StartAuthSession);

106 if (err)

107 return err;

108
109 tpm_buf_append_u32(&buf, TPM_RH_NULL);

110 tpm_buf_append_u32(&buf, TPM_RH_NULL);

111
112 tpm_buf_append_u16(&buf, sizeof(tpm_state->auth_session_nonce));

113 tpm_buf_append(&buf, tpm_state->auth_session_nonce,

114 sizeof(tpm_state->auth_session_nonce));

115
116 tpm_buf_append_u16(&buf, 0);

117 tpm_buf_append_u8(&buf, TPM_SE_POLICY);

118 tpm_buf_append_u16(&buf, TPM_ALG_NULL);

119 tpm_buf_append_u16(&buf, TPM_ALG_SHA256);

120
121 err = tpm_send(tpm_chip, buf.data, tpm_buf_length(&buf));

122 if (err)

123 goto fail;

124
125 err = tpm_get_response_item(&buf, TPM_HEADER_SIZE + 0,

126 &handle, sizeof(handle));

127 if (err)

128 goto fail;

111

129
130 tpm_state->auth_session_handle = be32_to_cpu(handle);

131
132 fail:

133 tpm_buf_destroy(&buf);

134 return err;

135 }

136
137 static inline int is_blob_size_congruent(u8 *blob, size_t expected)

138 {

139 if (expected < sizeof(__be16))

140 return false;

141
142 return be16_to_cpup((__be16 *)blob) == expected - sizeof(__be16);

143 }

144
145 static inline void print_blob_size_err(const char *blob_name)

146 {

147 pr_err("TPM: Length embedded in the blob ’%s’ doesn’t match the length "

148 "of the blob given.\n", blob_name);

149 }

150
151 static int load_blob(struct tpm_state *tpm_state, u32 keyhandle,

152 u8 *private, size_t private_size,

153 u8 *public, size_t public_size)

154 {

155 int err;

156 __be32 handle;

157 struct tpm_buf buf;

158
159 if (!is_blob_size_congruent(private, private_size)) {

160 print_blob_size_err("private");

161 return -EFAULT;

162 }

163
164 if (!is_blob_size_congruent(public, public_size)) {

165 print_blob_size_err("public");

166 return -EFAULT;

167 }

168
169 err = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM_CC_Load);

170 if (err)

171 return err;

172
173 tpm_buf_append_u32(&buf, keyhandle);

174
175 append_auth_cmd(&buf, TPM_RS_PW, NULL, 0, 0, NULL, 0);

176
177 tpm_buf_append(&buf, public, public_size);

178 tpm_buf_append(&buf, private, private_size);

179
180 if (buf.flags & TPM_BUF_OVERFLOW) {

181 pr_err("TPM: Blob is too large.\n");

182 err = -E2BIG;

183 goto fail;

184 }

185
186 err = tpm_send(tpm_chip, buf.data, tpm_buf_length(&buf));

187 if (err)

188 goto fail;

112

189
190 err = tpm_get_response_item(&buf, TPM_HEADER_SIZE + 0,

191 &handle, sizeof(handle));

192 if (err)

193 goto fail;

194
195 tpm_state->blob_handle = be32_to_cpu(handle);

196
197 fail:

198 tpm_buf_destroy(&buf);

199 return err;

200 }

201
202 static int policy_pcr_extend(struct tpm_state *tpm_state)

203 {

204 int err;

205 struct tpm_buf buf;

206 u32 pcr = CONFIG_PROGGER_TPM_PCR;

207 u8 pcr_selection[PCR_SELECT_MIN] = {};

208
209 /* Kconfig should enforce this, but just to be sure... */

210 if (pcr < 8 || pcr > 15) {

211 pr_err("TPM: Invalid PCR, must be in the range [8, 15].\n");

212 return -EINVAL;

213 }

214
215 pcr_selection[1] |= 1U << (pcr % 8);

216
217 err = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM_CC_PolicyPCR);

218 if (err)

219 return err;

220
221 tpm_buf_append_u32(&buf, tpm_state->auth_session_handle);

222
223 tpm_buf_append_u16(&buf, 0);

224
225 tpm_buf_append_u32(&buf, 1);

226 tpm_buf_append_u16(&buf, TPM_ALG_SHA256);

227 tpm_buf_append_u8(&buf, sizeof(pcr_selection));

228 tpm_buf_append(&buf, pcr_selection, sizeof(pcr_selection));

229
230 err = tpm_send(tpm_chip, buf.data, tpm_buf_length(&buf));

231
232 tpm_buf_destroy(&buf);

233 return err;

234 }

235
236 static int tpm_get_unsealed_data(struct tpm_buf *buf, void *out,

237 size_t expected_size)

238 {

239 int err;

240 u16 size;

241 __be16 response_size;

242
243 err = tpm_get_response_item(buf, TPM_HEADER_SIZE + 4, &response_size,

244 sizeof(response_size));

245 if (err)

246 return err;

247
248 size = be16_to_cpu(response_size);

113

249
250 if (size != expected_size) {

251 pr_err("Unsealed data was %u bytes, expected %zu.\n",

252 size, expected_size);

253 return -EINVAL;

254 }

255
256 return tpm_get_response_item(buf, TPM_HEADER_SIZE + 6, out, size);

257 }

258
259 static int tpm_unseal(struct tpm_state *tpm_state, void *out, size_t outlen)

260 {

261 int err;

262 struct tpm_buf buf;

263
264 err = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM_CC_Unseal);

265 if (err)

266 return err;

267
268 tpm_buf_append_u32(&buf, tpm_state->blob_handle);

269 append_auth_cmd(&buf, tpm_state->auth_session_handle,

270 tpm_state->auth_session_nonce,

271 sizeof(tpm_state->auth_session_nonce),

272 TPM_SESSION_ATTR_RETAIN,

273 NULL, 0);

274
275 err = tpm_send(tpm_chip, buf.data, tpm_buf_length(&buf));

276 if (err)

277 goto fail;

278
279 err = tpm_get_unsealed_data(&buf, out, outlen);

280 if (err)

281 goto fail;

282
283 fail:

284 tpm_buf_destroy(&buf);

285 return err;

286 }

287
288 static int flush_context(u32 handle)

289 {

290 int err;

291 struct tpm_buf buf;

292
293 err = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM_CC_FlushContext);

294 if (err)

295 return err;

296
297 tpm_buf_append_u32(&buf, handle);

298 err = tpm_send(tpm_chip, buf.data, tpm_buf_length(&buf));

299
300 tpm_buf_destroy(&buf);

301 return err;

302 }

303
304 static int pcr_extend(u32 pcr)

305 {

306 int i;

307 int res = 0;

308 struct tpm_digest *digests;

114

309 u8 hash[TPM_DIGEST_SIZE] = { 0 };

310
311 digests = kcalloc(tpm_chip->nr_allocated_banks, sizeof(*digests),

312 GFP_KERNEL);

313 if (!digests)

314 return -ENOMEM;

315
316 for (i = 0; i < tpm_chip->nr_allocated_banks; i++) {

317 digests[i].alg_id = tpm_chip->allocated_banks[i].alg_id;

318 memcpy(digests[i].digest, hash, TPM_DIGEST_SIZE);

319 }

320
321 res = tpm_pcr_extend(tpm_chip, pcr, digests);

322
323 kfree(digests);

324 return res;

325 }

326
327 static int tpm_unseal_and_lock_key(void)

328 {

329 int err;

330 struct tpm_state tpm_state = {};

331
332 err = start_auth_session(&tpm_state);

333 if (err)

334 goto fail;

335
336 pr_debug("TPM: Auth session: 0x%08x.\n", tpm_state.auth_session_handle);

337
338 err = load_blob(&tpm_state, CONFIG_PROGGER_TPM_KEY_HANDLE,

339 public_blob, sizeof(public_blob),

340 private_blob, sizeof(private_blob));

341 if (err)

342 goto fail;

343
344 pr_debug("TPM: Blob: 0x%08x.\n", tpm_state.blob_handle);

345
346 err = policy_pcr_extend(&tpm_state);

347 if (err)

348 goto fail;

349
350 err = tpm_unseal(&tpm_state, crypto_key, sizeof(crypto_key));

351 if (err)

352 goto fail;

353
354 err = pcr_extend(CONFIG_PROGGER_TPM_PCR);

355 if (err)

356 goto fail;

357
358 fail:

359 if (tpm_state.auth_session_handle) {

360 pr_debug("TPM: Flushing auth session context.\n");

361 if (flush_context(tpm_state.auth_session_handle) != 0)

362 pr_warn("Failed to flush context.\n");

363 }

364
365 if (tpm_state.blob_handle) {

366 pr_debug("TPM: Flushing blob context.\n");

367 if (flush_context(tpm_state.blob_handle) != 0)

368 pr_warn("Failed to flush context.\n");

115

369 }

370
371 if (err < 0)

372 return err;

373
374 if (err > 0)

375 return -ENOTRECOVERABLE;

376
377 return 0;

378 }

379
380 int tpm_get_chacha20poly1305_key(u8 (*key)[CHACHA20POLY1305_KEY_SIZE])

381 {

382 static_assert(sizeof(*key) == sizeof(crypto_key));

383 memcpy(*key, crypto_key, sizeof(*key));

384
385 return 0;

386 }

387
388 int __init tpm_init(void)

389 {

390 int err;

391 int is_tpm2;

392
393 tpm_chip = tpm_default_chip();

394
395 if (IS_ERR_OR_NULL(tpm_chip)) {

396 if (IS_ENABLED(CONFIG_PROGGER_PANIC_WHEN_NO_TPM_FOUND))

397 panic("Unable to find TPM!\n");

398
399 return -ENODEV;

400 }

401
402 is_tpm2 = tpm_is_tpm2(tpm_chip);

403
404 if (is_tpm2 != 1) {

405 if (IS_ENABLED(CONFIG_PROGGER_PANIC_WHEN_TPM_IS_NOT_VERSION_2))

406 panic("TPM: tpm_is_tpm2 returned %d.", is_tpm2);

407
408 if (is_tpm2 < 0)

409 return is_tpm2;

410
411 pr_err("TPM 2.0 is required.\n");

412 return -ENODEV;

413 }

414
415 err = tpm_unseal_and_lock_key();

416
417 if (err) {

418 if (IS_ENABLED(CONFIG_PROGGER_PANIC_WHEN_KEY_UNSECURED))

419 panic("TPM: crypto key is unsecured!\n");

420
421 pr_alert("TPM: crypto key is unsecured!\n");

422 return err;

423 }

424
425 pr_info("TPM: Key unsealed and locked.\n");

426
427 return 0;

428 }

116

429
430 void tpm_exit(void)

431 {

432 if (tpm_chip)

433 put_device(&tpm_chip->dev);

434
435 memset(crypto_key, 0, sizeof(crypto_key));

436 }

A.19 drivers/net/progger/kernel/tpm.h

1 /* SPDX-License-Identifier: GPL-2.0-only */

2
3 #ifndef PROGGER_KERNEL_TPM_H

4 #define PROGGER_KERNEL_TPM_H

5
6 #include <crypto/chacha20poly1305.h>

7 #include <linux/errno.h>

8 #include <linux/kconfig.h>

9
10 #include <progger/types.h>

11
12 #if IS_ENABLED(CONFIG_PROGGER_USE_TPM)

13 int tpm_get_chacha20poly1305_key(u8 (*)[CHACHA20POLY1305_KEY_SIZE]);

14 int tpm_init(void);

15 void tpm_exit(void);

16 #else

17 static inline int

18 tpm_get_chacha20poly1305_key(u8 (*key)[CHACHA20POLY1305_KEY_SIZE])

19 {

20 return -EPERM;

21 }

22
23 static inline int tpm_init(void)

24 {

25 return 0;

26 }

27
28 static inline void tpm_exit(void)

29 {

30 }

31 #endif /* IS_ENABLED(CONFIG_PROGGER_USE_TPM) */

32
33 #endif /* PROGGER_KERNEL_TPM_H */

A.20 drivers/net/progger/kernel/tracepoints.c

1 // SPDX-License-Identifier: GPL-2.0-only

2
3 #include "tracepoints.h"

4
5 #include <asm/barrier.h>

6 #include <asm/current.h>

7 #include <asm/ptrace.h>

117

8 #include <asm/syscall.h>

9 #include <linux/bits.h>

10 #include <linux/cache.h>

11 #include <linux/cred.h>

12 #include <linux/errno.h>

13 #include <linux/init.h>

14 #include <linux/list.h>

15 #include <linux/pid.h>

16 #include <linux/printk.h>

17 #include <linux/slab.h>

18 #include <linux/smp.h>

19 #include <linux/string.h>

20 #include <linux/timekeeping.h>

21 #include <linux/tracepoint.h>

22 #include <linux/uaccess.h>

23 #include <linux/uidgid.h>

24
25 #include <progger/compiler.h>

26 #include <progger/record.h>

27 #include <progger/types.h>

28
29 #include "ringbuf.h"

30
31 struct progger_syscall_info {

32 /*

33 * Non-zero if the syscall is being traced by Progger.

34 */

35 u8 being_traced;

36
37 /*

38 * If bit n is set, then the nth argument to the syscall is a C string.

39 */

40 u8 cstr_args;

41
42 /*

43 * A bitmask indicating the tracepoints to generate records from.

44 */

45 u8 tp_srcs;

46 };

47
48 /*

49 * If ‘tp_srcs‘ is left unset, it will be later set to the default of

50 * ‘TP_SRC_SYS_EXIT‘.

51 *

52 * See include/linux/syscalls.h and the man page for each syscall.

53 */

54 static struct progger_syscall_info __read_mostly

55 syscalls_info[__NR_syscall_max + 1] = {

56 [__NR_setxattr] = { .cstr_args = BIT(0) | BIT(1) | BIT(2) },

57 [__NR_lsetxattr] = { .cstr_args = BIT(0) | BIT(1) | BIT(2) },

58 [__NR_fsetxattr] = { .cstr_args = BIT(1) | BIT(2) },

59 [__NR_getxattr] = { .cstr_args = BIT(0) | BIT(1) },

60 [__NR_lgetxattr] = { .cstr_args = BIT(0) | BIT(1) },

61 [__NR_fgetxattr] = { .cstr_args = BIT(1) },

62 [__NR_listxattr] = { .cstr_args = BIT(0) },

63 [__NR_llistxattr] = { .cstr_args = BIT(0) },

64 [__NR_removexattr] = { .cstr_args = BIT(0) | BIT(1) },

65 [__NR_lremovexattr] = { .cstr_args = BIT(0) | BIT(1) },

66 [__NR_fremovexattr] = { .cstr_args = BIT(1) },

67 [__NR_inotify_add_watch] = { .cstr_args = BIT(1) },

118

68 [__NR_mknodat] = { .cstr_args = BIT(1) },

69 [__NR_mkdirat] = { .cstr_args = BIT(1) },

70 [__NR_unlinkat] = { .cstr_args = BIT(1) },

71 [__NR_symlinkat] = { .cstr_args = BIT(0) | BIT(2) },

72 [__NR_linkat] = { .cstr_args = BIT(1) | BIT(3) },

73 [__NR_renameat] = { .cstr_args = BIT(1) | BIT(3) },

74 [__NR_umount2] = { .cstr_args = BIT(0) },

75 [__NR_mount] = { .cstr_args = BIT(0) | BIT(1) | BIT(2) },

76 [__NR_pivot_root] = { .cstr_args = BIT(0) | BIT(1) },

77 [__NR_statfs] = { .cstr_args = BIT(0) },

78 [__NR_truncate] = { .cstr_args = BIT(0) },

79 [__NR_faccessat] = { .cstr_args = BIT(1) },

80 [__NR_faccessat2] = { .cstr_args = BIT(1) },

81 [__NR_chdir] = { .cstr_args = BIT(0) },

82 [__NR_chroot] = { .cstr_args = BIT(0) },

83 [__NR_fchmodat] = { .cstr_args = BIT(1) },

84 [__NR_fchownat] = { .cstr_args = BIT(1) },

85 [__NR_openat] = { .cstr_args = BIT(1) },

86 [__NR_openat2] = { .cstr_args = BIT(1) },

87 [__NR_quotactl] = { .cstr_args = BIT(1) },

88 [__NR_readlinkat] = { .cstr_args = BIT(1) },

89 [__NR_newfstatat] = { .cstr_args = BIT(1) },

90 [__NR_utimensat] = { .cstr_args = BIT(1) },

91 [__NR_acct] = { .cstr_args = BIT(0) },

92 [__NR_init_module] = { .cstr_args = BIT(2) },

93 [__NR_delete_module] = { .cstr_args = BIT(0) },

94 [__NR_sethostname] = { .cstr_args = BIT(0) },

95 [__NR_setdomainname] = { .cstr_args = BIT(0) },

96 [__NR_mq_open] = { .cstr_args = BIT(0) },

97 [__NR_mq_unlink] = { .cstr_args = BIT(0) },

98 [__NR_add_key] = { .cstr_args = BIT(0) | BIT(1) },

99 [__NR_request_key] = { .cstr_args = BIT(0) | BIT(1) | BIT(2) },

100 [__NR_execve] = {

101 .cstr_args = BIT(0),

102 /*

103 * ‘execve‘ doesn’t return to the caller when it succeeds,

104 * and as a result the arguments available in the ‘sys_exit‘

105 * tracepoint are all zero. To get any useful information,

106 * the arguments must be copied during ‘sys_enter‘.

107 *

108 * ‘TP_SRC_SYS_EXIT‘ is added so that failed ‘execve‘ calls

109 * can be detected. It does add some noise for successful

110 * calls, but that noise can be easily filtered out by the

111 * program that processes the records.

112 */

113 .tp_srcs = TP_SRC_SYS_ENTER | TP_SRC_SYS_EXIT,

114 },

115 [__NR_swapon] = { .cstr_args = BIT(0) },

116 [__NR_swapoff] = { .cstr_args = BIT(0) },

117 [__NR_fanotify_mark] = { .cstr_args = BIT(4) },

118 [__NR_name_to_handle_at] = { .cstr_args = BIT(1) },

119 [__NR_finit_module] = { .cstr_args = BIT(1) },

120 [__NR_renameat2] = { .cstr_args = BIT(1) | BIT(3) },

121 [__NR_memfd_create] = { .cstr_args = BIT(0) },

122 [__NR_execveat] = {

123 .cstr_args = BIT(1),

124 /*

125 * See the entry for ‘__NR_execve‘ to see why this is done.

126 */

127 .tp_srcs = TP_SRC_SYS_ENTER | TP_SRC_SYS_EXIT,

119

128 },

129 [__NR_statx] = { .cstr_args = BIT(1) },

130 [__NR_open_tree] = { .cstr_args = BIT(1) },

131 [__NR_move_mount] = { .cstr_args = BIT(1) | BIT(3) },

132 [__NR_fsopen] = { .cstr_args = BIT(0) },

133 [__NR_fsconfig] = { .cstr_args = BIT(2) | BIT(3) },

134 [__NR_fspick] = { .cstr_args = BIT(1) },

135
136 /* Deprecated syscalls. */

137 [__NR_open] = { .cstr_args = BIT(0) },

138 [__NR_link] = { .cstr_args = BIT(0) | BIT(1) },

139 [__NR_unlink] = { .cstr_args = BIT(0) },

140 [__NR_mknod] = { .cstr_args = BIT(0) },

141 [__NR_chmod] = { .cstr_args = BIT(0) },

142 [__NR_chown] = { .cstr_args = BIT(0) },

143 [__NR_mkdir] = { .cstr_args = BIT(0) },

144 [__NR_rmdir] = { .cstr_args = BIT(0) },

145 [__NR_lchown] = { .cstr_args = BIT(0) },

146 [__NR_access] = { .cstr_args = BIT(0) },

147 [__NR_rename] = { .cstr_args = BIT(0) | BIT(1) },

148 [__NR_symlink] = { .cstr_args = BIT(0) | BIT(1) },

149 [__NR_utime] = { .cstr_args = BIT(0) },

150 [__NR_utimes] = { .cstr_args = BIT(0) },

151 [__NR_futimesat] = { .cstr_args = BIT(1) },

152 [__NR_creat] = { .cstr_args = BIT(0) },

153 [__NR_uselib] = { .cstr_args = BIT(0) },

154 [__NR_kexec_file_load] = { .cstr_args = BIT(3) },

155 [__NR_stat] = { .cstr_args = BIT(0) },

156 [__NR_lstat] = { .cstr_args = BIT(0) },

157 [__NR_readlink] = { .cstr_args = BIT(0) },

158 };

159
160 static inline bool arg_is_cstr(const struct progger_syscall_info info,

161 u8 argnum)

162 {

163 return info.cstr_args & BIT(argnum);

164 }

165
166 static inline void record_add_str_user(struct record *record,

167 const char __user *str)

168 {

169 char *dst;

170 ssize_t len;

171
172 if (!str)

173 return;

174
175 if (unlikely(record->len >= MAX_RECORD_SIZE))

176 return;

177
178 dst = (char *)record + record->len;

179
180 pagefault_disable();

181 len = strncpy_from_user(dst, str, MAX_RECORD_STR_SIZE);

182 pagefault_enable();

183
184 if (unlikely(len < 0))

185 return;

186
187 if (unlikely(len == MAX_RECORD_STR_SIZE)) {

120

188 dst[MAX_RECORD_STR_SIZE - 1] = ’\0’;

189 record->len += len;

190 } else {

191 record->len += len + 1;

192 }

193 }

194
195 static inline unsigned long get_arg_x86_64(struct pt_regs *regs,

196 unsigned int n)

197 {

198 static const unsigned int argument_offs[] = {

199 offsetof(struct pt_regs, di),

200 offsetof(struct pt_regs, si),

201 offsetof(struct pt_regs, dx),

202 offsetof(struct pt_regs, r10),

203 offsetof(struct pt_regs, r8),

204 offsetof(struct pt_regs, r9),

205 };

206
207 return regs_get_register(regs, argument_offs[n]);

208 }

209
210 static void syscall_tp(struct pt_regs *regs, u8 tp_src)

211 {

212 int cpu;

213 long id;

214 size_t i;

215 struct progger_syscall_info syscall;

216 struct record *record;

217 struct record_syscall_x86_64 *data;

218 struct record_ringbuf *rb;

219 size_t producer, consumer;

220
221 id = syscall_get_nr(current, regs);

222
223 if (id < 0 || id >= ARRAY_SIZE(syscalls_info))

224 return;

225
226 syscall = syscalls_info[id];

227
228 if (!syscall.being_traced)

229 return;

230
231 if (!(syscall.tp_srcs & tp_src))

232 return;

233
234 cpu = smp_processor_id();

235 rb = get_ringbuf(cpu);

236
237 producer = rb->producer;

238 consumer = smp_load_acquire(&rb->consumer);

239
240 if (unlikely(!rb_has_space_left(rb, consumer, producer))) {

241 pr_warn_once("%s: Ringbuf overflow.\n", __func__);

242 return;

243 }

244
245 record = (struct record *)(rb->buf + producer);

246
247 record->len = sizeof(*record) + sizeof(*data);

121

248 record->id = RECORD_SYSCALL_X86_64;

249
250 data = (struct record_syscall_x86_64 *)record->data;

251
252 data->nr = id;

253 data->tp_src = tp_src;

254 data->ts = ktime_get_mono_fast_ns();

255 data->ret = tp_src == TP_SRC_SYS_EXIT ? regs_return_value(regs) : 0;

256
257 data->pid = current->pid;

258 data->uid = __kuid_val(current_uid());

259 data->euid = __kuid_val(current_euid());

260
261 for (i = 0; i < ARRAY_SIZE(data->args); i++) {

262 unsigned long arg = get_arg_x86_64(regs, i);

263
264 data->args[i] = arg;

265
266 if (arg_is_cstr(syscall, i))

267 record_add_str_user(record, (const char __user *)arg);

268 }

269
270 rb_mark_produced(rb, record->len, consumer, producer);

271 }

272
273 static void __used sys_enter_tp(void *p, struct pt_regs *regs, long id)

274 {

275 syscall_tp(regs, TP_SRC_SYS_ENTER);

276 }

277
278 static void __used sys_exit_tp(void *p, struct pt_regs *regs, long ret)

279 {

280 syscall_tp(regs, TP_SRC_SYS_EXIT);

281 }

282
283 #include "generated/syscalls.h"

284
285 struct tp_item {

286 struct list_head list;

287 struct tracepoint *tp;

288 void *probe;

289 void *data;

290 const char *name;

291 };

292
293 static LIST_HEAD(tp_list);

294
295 static int set_traced_syscalls(void)

296 {

297 size_t i;

298
299 for (i = 0; i < ARRAY_SIZE(syscalls_info); i++)

300 syscalls_info[i].being_traced = 0;

301
302 for (i = 0; i < ARRAY_SIZE(init_syscalls); i++) {

303 long nr = init_syscalls[i];

304
305 if (nr < 0 || nr >= ARRAY_SIZE(syscalls_info))

306 return -EINVAL;

307

122

308 syscalls_info[nr].being_traced = 1;

309 }

310
311 return 0;

312 }

313
314 static inline int tp_item_register(struct tp_item *tp)

315 {

316 if (!tp->tp)

317 return -EFAULT;

318
319 return tracepoint_probe_register(tp->tp, tp->probe, tp->data);

320 }

321
322 static inline int tp_item_unregister(struct tp_item *tp)

323 {

324 if (!tp->tp)

325 return -EFAULT;

326
327 return tracepoint_probe_unregister(tp->tp, tp->probe, tp->data);

328 }

329
330 static void tp_search_fn(struct tracepoint *tp, void *priv)

331 {

332 struct tp_item *tp_item = (struct tp_item *)priv;

333
334 if (strcmp(tp->name, tp_item->name) == 0)

335 tp_item->tp = tp;

336 }

337
338 static int tp_register(void *probe, const char *name)

339 {

340 int err;

341 struct tp_item *new = kzalloc(sizeof(*new), GFP_KERNEL);

342
343 if (!new)

344 return -ENOMEM;

345
346 new->probe = probe;

347 new->data = NULL;

348 new->name = name;

349
350 for_each_kernel_tracepoint(tp_search_fn, new);

351
352 if (!new->tp) {

353 pr_err("Couldn’t locate tracepoint: %s.\n", name);

354 kfree(new);

355 return -EINVAL;

356 }

357
358 err = tp_item_register(new);

359 if (err) {

360 kfree(new);

361 return err;

362 }

363
364 list_add(&new->list, &tp_list);

365 pr_info("Registered tracepoint: %s\n", new->name);

366
367 return 0;

123

368 }

369
370 static void tp_unregister_all(void)

371 {

372 struct tp_item *tp_item;

373
374 list_for_each_entry(tp_item, &tp_list, list) {

375 if (tp_item_unregister(tp_item) != 0) {

376 pr_warn("Failed to unregister tracepoint: %s\n",

377 tp_item->name);

378 } else {

379 pr_info("Unregistered tracepoint: %s\n", tp_item->name);

380 }

381 }

382
383 tracepoint_synchronize_unregister();

384 }

385
386 static bool is_sys_enter_tp_needed(void)

387 {

388 size_t i;

389
390 for (i = 0; i < ARRAY_SIZE(init_syscalls); i++) {

391 long nr = init_syscalls[i];

392
393 if (syscalls_info[nr].tp_srcs & TP_SRC_SYS_ENTER)

394 return true;

395 }

396
397 return false;

398 }

399
400 static void set_default_syscall_tp_src(u8 default_tp_src)

401 {

402 size_t i;

403
404 for (i = 0; i < ARRAY_SIZE(syscalls_info); i++) {

405 if (!syscalls_info[i].tp_srcs)

406 syscalls_info[i].tp_srcs = default_tp_src;

407 }

408 }

409
410 int __init tracepoint_init(void)

411 {

412 int err;

413 size_t i;

414
415 /*

416 * Set the list of traced syscalls before enbling the tracepoints,

417 * so that we don’t end up momentarily generating data for only

418 * subsets of the syscalls.

419 */

420 err = set_traced_syscalls();

421 if (err)

422 return err;

423
424 set_default_syscall_tp_src(TP_SRC_SYS_EXIT);

425
426 for (i = 0; i < ARRAY_SIZE(init_tracepoints); i++) {

427 void *fn = init_tracepoints[i].fn;

124

428 const char *name = init_tracepoints[i].name;

429
430 if (fn == sys_enter_tp && !is_sys_enter_tp_needed())

431 continue;

432
433 err = tp_register(fn, name);

434 if (err) {

435 pr_err("Failed to register tracepoint: %s.\n", name);

436 return err;

437 }

438
439 pr_debug("Registered tracepoint: %s.\n", name);

440 }

441
442 return 0;

443 }

444
445 void tracepoint_exit(void)

446 {

447 tp_unregister_all();

448 }

A.21 drivers/net/progger/kernel/tracepoints.h

1 /* SPDX-License-Identifier: GPL-2.0-only */

2
3 #ifndef PROGGER_KERNEL_TRACEPOINTS_H

4 #define PROGGER_KERNEL_TRACEPOINTS_H

5
6 int tracepoint_init(void);

7 void tracepoint_exit(void);

8
9 #endif /* PROGGER_KERNEL_TRACEPOINTS_H */

A.22 drivers/net/progger/scripts/tpm/provision

1 #!/usr/bin/env bash

2 # SPDX-License-Identifier: GPL-2.0-only

3
4 script_dir="$(dirname "$(realpath "$0")")"

5
6 set -u

7
8 tmp_dir="$(mktemp -d)"

9 output_path="${1:-sealed-data}"

10 output_dir="$(dirname "${output_path}")"

11 output_basename="$(basename "${output_path}")"

12
13 cmd=(

14 "${script_dir}/provision-setup" "${tmp_dir}" "${output_dir}" ’&&’

15 chroot "${tmp_dir}" "${script_dir}/provision-inner" "${output_basename}"

16)

17
18 unshare --mount bash -c ’eval "$@"’ progger-tpm "${cmd[@]}"

125

19 rmdir "${tmp_dir}"

A.23 drivers/net/progger/scripts/tpm/provision-

inner

1 #!/usr/bin/env bash

2 # SPDX-License-Identifier: GPL-2.0-only

3
4 ##

5 ## Do not run this directly unless you’re sure of what you’re doing.

6 ## Instead, run ./provision, which wraps this script to prevent data leaks.

7 ##

8 ## Limitations:

9 ## - Only accepts password auth for lockdown/owner.

10 ## - The PCR value used in the policy is fixed to whatever it is when this

11 ## script is run.

12 ## - Assumes the hashalg is SHA256.

13 ##

14
15 set -eu

16 set -o pipefail

17
18 keyfile=’/tmp/key’

19
20 check_installed() {

21 local cmd="$1"

22 local pkg="$2"

23
24 if ! type "${cmd}" >/dev/null 2>&1; then

25 printf >&2 ’Cannot find ‘%s‘. Try running ‘apt install %s‘.\n’ \

26 "${cmd}" "${pkg}"

27 return 1

28 fi

29 }

30
31 check_tpm2_tools_version() {

32 local tmp

33 local version

34 local minver="$1"

35
36 version="$(tpm2_create --version | grep -Po ’version=".+?"’ | \

37 cut -d \" -f 2)"

38 tmp="$(printf ’%s\n’ "${version}" "${minver}" | sort -V | head -1)"

39
40 # This is actually checking if ${version} >= ${minver}.

41 [["${tmp}" == "${minver}"]]

42 }

43
44 check_swap_space() {

45 local swaptotal

46
47 swaptotal="$(grep SwapTotal /proc/meminfo | awk ’{print $2}’)"

48
49 if [["${swaptotal}" != "0"]]; then

50 printf >&2 ’Found %d KiB of swap space. ’ "${swaptotal}"

126

51 printf >&2 ’Having swap enabled can lead to memory leaks.\n’

52 printf >&2 ’To prevent memory leaks, consider disabling swap ’

53 printf >&2 ’or using encrypted swap.\n’

54
55 read -r -p ’Continue with swap enabled? [y/N] ’

56
57 if ! [["${REPLY}" =~ [Yy]([Ee][Ss])?]]; then

58 return 1

59 fi

60 fi

61 }

62
63 get_pass() {

64 local prompt="$1"

65 local outvar="$2"

66
67 read -r -s -p "${prompt}" "${outvar}"

68 echo

69
70 if [[-z "${!outvar}"]]; then

71 echo >&2 ’Value cannot be empty.’

72 return 1

73 fi

74 }

75
76 get_pass_confirm() {

77 local prompt="$1"

78 local outvar="$2"

79
80 get_pass "${prompt}" "${outvar}"

81
82 read -r -s -p ’Repeat to confirm: ’ pass_confirmation

83 echo

84
85 if [["${!outvar}" != "${pass_confirmation}"]]; then

86 echo >&2 ’Values did not match.’

87 return 1

88 fi

89 }

90
91 auth() {

92 local hierarchy="$1"

93 local authval_var="${1}_pass"

94 shift

95
96 # Ensure that the auth value isn’t visible to other processes

97 # though the command line arguments.

98 "$@" -C "${hierarchy}" -P file:- <<<"${!authval_var}"

99 }

100
101 setauth() {

102 local hierarchy="$1"

103 local authval_var="${1}_pass"

104 local authval_file=’/tmp/authval’

105 local currauthval_var="${2:-}_pass"

106 local currauthval_file=’/tmp/currauthval’

107 local _pass=’’

108
109 cat <<<"${!authval_var}" | tr -d ’\n’ >"${authval_file}"

110 cat <<<"${!currauthval_var}" | tr -d ’\n’ >"${currauthval_file}"

127

111
112 tpm2_changeauth -c "${hierarchy}" \

113 -p file:"${currauthval_file}" \

114 file:"${authval_file}"

115
116 rm "${authval_file}"

117 rm "${currauthval_file}"

118 }

119
120 is_auth_set() {

121 local hierarchy="$1"

122
123 ! tpm2_changeauth -c "${hierarchy}" >/dev/null 2>&1

124 }

125
126 get_user_input() {

127 local progger_crypto_key_b64

128 local key_required_len=’32’

129 local key_actual_len

130
131 # We only need to ensure that the lockdown auth is set. If it is,

132 # we have no need to know the passphrase.

133 if ! is_auth_set lockout; then

134 echo ’Lockout auth is unset. Please set it.’

135 get_pass_confirm ’Lockout passphrase: ’ lockout_pass

136 setauth lockout

137 fi

138
139 if ! is_auth_set ’owner’; then

140 echo ’Owner auth is unset. Please set it.’

141 get_pass_confirm ’Owner passphrase: ’ owner_pass

142 setauth owner

143 else

144 get_pass ’Owner passphrase: ’ owner_pass

145
146 # Set the passphrase to itself to test whether we have

147 # the correct passphrase.

148 if ! setauth owner owner; then

149 echo >&2 ’Owner passphrase is incorrect.’

150 return 1

151 fi

152 fi

153
154 get_pass_confirm ’Crypto key (base64): ’ progger_crypto_key_b64

155
156 read -r -p ’PCR: ’ pcr

157 echo

158
159 if ((pcr < 8)) || ((pcr > 15)); then

160 echo >&2 ’PCR value must be in the range [8, 15].’

161 return 1

162 fi

163
164 # Remember that the keyfile is being saved to a location on a tmpfs

165 # that is only visible in this process’s mount namespace.

166 base64 -d <<<"${progger_crypto_key_b64}" >"${keyfile}"

167
168 key_actual_len="$(<"${keyfile}" wc -c)"

169 if [["${key_required_len}" != "${key_actual_len}"]]; then

170 printf >&2 ’Crypto key must be %d bytes. Got %d bytes.’ \

128

171 "${key_required_len}" "${key_actual_len}"

172 return 1

173 fi

174 }

175
176 provision() {

177 local output_stem="$1"

178 local hashalg=’sha256’

179 local persistent_handle

180 local tmphash

181
182 tpm2_createpolicy -l "${hashalg}:${pcr}" --policy-pcr \

183 --policy /tmp/policy >/dev/null

184 auth owner tpm2_createprimary -c /tmp/ctx >/dev/null

185
186 # XXX: The output is YAML, but grep/awk are used.

187 persistent_handle="$(auth owner tpm2_evictcontrol -c /tmp/ctx | \

188 grep ’^persistent-handle: ’ | awk ’{print $2}’)"

189
190 tpm2_create -C "${persistent_handle}" \

191 --public "${output_stem}-public" \

192 --private "${output_stem}-private" \

193 -g sha256 -L /tmp/policy -i - \

194 <"${keyfile}" >/dev/null

195
196 printf ’Persistent handle: %s\n’ "${persistent_handle}"

197
198 tpm2_load -C "${persistent_handle}" \

199 --public "${output_stem}-public" \

200 --private "${output_stem}-private" \

201 -c /tmp/load-ctx >/dev/null

202
203 tpm2_unseal -c /tmp/load-ctx -p "pcr:${hashalg}:${pcr}" >/tmp/unseal

204
205 if ! diff "${keyfile}" /tmp/unseal >/dev/null 2>&1; then

206 echo >&2 "Unsealed data didn’t match sealed data!"

207 return 1

208 fi

209
210 echo ’Unsealed data matches sealed data.’

211
212 printf ’Extending PCR %d.\n’ "${pcr}"

213 # It doesn’t matter what it’s extended to, only that it can’t get back.

214 tmphash="$(echo -n progger | sha256sum | awk ’{print $1}’)"

215 tpm2_pcrextend "${pcr}:${hashalg}=${tmphash}"

216 }

217
218 main() {

219 local output_basename="$1"

220
221 check_installed "tpm2_create" "tpm2-tools" || exit 1

222 check_tpm2_tools_version ’4.2’ || \

223 echo >&2 ’Warning: tpm2-tools version < 4.2, commands may fail.’

224
225 check_swap_space || exit 1

226
227 get_user_input

228 provision "/output/${output_basename}"

229 }

230

129

231 main "$@"

A.24 drivers/net/progger/scripts/tpm/provision-

setup

1 #!/usr/bin/env bash

2 # SPDX-License-Identifier: GPL-2.0-only

3
4 set -eu

5 set -o pipefail

6
7 tmpdir_mount() {

8 local dst="${!#}"

9 local realdst="${tmpdir}/${dst}"

10 local end=$(($# - 1))

11
12 mkdir -p "${realdst}"

13 mount "${@:1:$end}" "${realdst}"

14 }

15
16 main() {

17 tmpdir="$1"

18 local outputdir="$2"

19
20 mount -t tmpfs none "${tmpdir}"

21
22 tmpdir_mount -o bind,rw "${outputdir}" /output

23 tmpdir_mount -t tmpfs none /tmp

24 tmpdir_mount -t proc proc /proc

25 tmpdir_mount -t sysfs sys /sys

26 tmpdir_mount --rbind /dev /dev

27
28 for dir in /bin /etc /home /lib /lib32 /lib64 /opt /root \

29 /run /sbin /usr /var; do

30 if ! [[-d "${dir}"]]; then

31 continue

32 fi

33
34 tmpdir_mount -o bind,ro "${dir}" "${dir}"

35 done

36 }

37
38 main "$@"

A.25 drivers/net/progger/server/Makefile

1 # SPDX-License-Identifier: GPL-2.0-only

2
3 server-cflags += -O2 -std=c11 -march=native -g -fPIE -D_FORTIFY_SOURCE=2

4 server-cflags += -pipe -fstack-protector-strong -fno-strict-aliasing

5 server-cflags += -D_DEFAULT_SOURCE -D_GNU_SOURCE

6 server-cflags += -I $(srctree)/include/progger-host

130

7
8 server-cflags += -Werror -Wall -Wextra -Wstack-protector -Wformat=2 -Wshadow

9 server-cflags += -Wundef -Wcast-qual -Wcast-align -Wlogical-op -Winit-self

10 server-cflags += -Wstrict-overflow=5 -Wredundant-decls -Wnull-dereference

11 server-cflags += -Wshift-overflow=2 -Wduplicated-cond -Wjump-misses-init

12 server-cflags += -Wstrict-prototypes -Wwrite-strings

13
14 server-cflags += $(shell pkg-config --cflags libsodium)

15 server-cflags += $(shell pkg-config --cflags json-c)

16
17 HOSTLDLIBS_server += $(shell pkg-config --libs libsodium)

18 HOSTLDLIBS_server += $(shell pkg-config --libs json-c)

19
20 HOSTLDLIBS_server += -Wl,-z,relro,-z,now -pie

21
22 hostprogs += server

23
24 server-objs += server.o

25 server-objs += crypto.o

26 server-objs += syscall-table.o

27
28 always-y += $(hostprogs)

29
30 $(foreach obj,$(server-objs),$(eval HOSTCFLAGS_$(obj) := $(server-cflags)))

A.26 drivers/net/progger/server/crypto.c

1 // SPDX-License-Identifier: GPL-2.0-only

2
3 #include "crypto.h"

4
5 #include <errno.h>

6 #include <stddef.h>

7 #include <stdio.h>

8
9 #include <sodium.h>

10
11 #include <progger/compiler.h>

12 #include <progger/crypto.h>

13 #include <progger/record.h>

14 #include <progger/types.h>

15
16 #define NONCE_SIZE 24

17 #define KEY_SIZE 32

18 #define AUTHTAG_SIZE 16

19
20 struct record *decrypt(void *data, size_t datalen, void *ad, size_t adlen,

21 const unsigned char *key)

22 {

23 int err;

24 uint8_t *nonce;

25 struct record *record;

26 unsigned long long record_len;

27
28 nonce = (uint8_t *)data;

29
30 /* TODO: Could be less if we subtract the nonce and auth tag. */

131

31 record = malloc(datalen);

32
33 if (!record) {

34 perror("malloc");

35 return NULL;

36 }

37
38 err = crypto_aead_xchacha20poly1305_ietf_decrypt(

39 (void *)record, &record_len, NULL,

40 data + NONCE_SIZE,

41 datalen - NONCE_SIZE,

42 ad, adlen,

43 nonce, key);

44
45 if (err) {

46 fprintf(stderr, "Decryption failed!\n");

47 free(record);

48 return NULL;

49 }

50
51 return record;

52 }

A.27 drivers/net/progger/server/crypto.h

1 /* SPDX-License-Identifier: GPL-2.0-only */

2
3 #ifndef PROGGER_SERVER_CRYPTO_H

4 #define PROGGER_SERVER_CRYPTO_H

5
6 #include <stddef.h>

7
8 struct record *decrypt(void *data, size_t datalen, void *ad, size_t adlen,

9 const unsigned char *key);

10
11 #endif /* PROGGER_SERVER_CRYPTO_H */

A.28 drivers/net/progger/server/server.c

1 // SPDX-License-Identifier: GPL-2.0-only

2
3 #include <arpa/inet.h>

4 #include <errno.h>

5 #include <fcntl.h>

6 #include <netdb.h>

7 #include <netinet/in.h>

8 #include <poll.h>

9 #include <signal.h>

10 #include <stdio.h>

11 #include <stdlib.h>

12 #include <string.h>

13 #include <sys/stat.h>

14 #include <sys/socket.h>

15 #include <sys/types.h>

132

16 #include <unistd.h>

17
18 #include <progger/crypto.h>

19 #include <progger/compiler.h>

20 #include <progger/net.h>

21 #include <progger/record.h>

22
23 #include <json.h>

24
25 #include "crypto.h"

26 #include "syscalls.h"

27
28 #define str(s) #s

29 #define xstr_check_arg_defined(s) ({ \

30 (void)s; \

31 str(s); \

32 })

33 #define xstr(s) xstr_check_arg_defined(s)

34
35 static unsigned char crypto_key[CHACHA20POLY1305_KEY_SIZE];

36
37 /*

38 * TODO: Close the listenfds.

39 */

40 static void exit_cleanly(__unused int n)

41 {

42 putchar(’\n’);

43 exit(0);

44 }

45
46 static void init_signal_handlers(void)

47 {

48 struct sigaction action_exit_cleanly = {

49 .sa_handler = exit_cleanly,

50 };

51
52 if (sigaction(SIGINT, &action_exit_cleanly, NULL) < 0) {

53 perror("sigation");

54 exit(1);

55 }

56 }

57
58 static const char *addrinfo_ip(const struct addrinfo *addr)

59 {

60 const void *src;

61 static char buf[INET6_ADDRSTRLEN];

62
63 strcpy(buf, "???");

64
65 if (addr->ai_family == AF_INET)

66 src = &((struct sockaddr_in *)addr->ai_addr)->sin_addr;

67 else if (addr->ai_family == AF_INET6)

68 src = &((struct sockaddr_in6 *)addr->ai_addr)->sin6_addr;

69 else

70 return buf;

71
72 if (!inet_ntop(addr->ai_family, src, buf, sizeof(buf)))

73 strcpy(buf, "???");

74
75 return buf;

133

76 }

77
78 static int bind_and_listen(struct addrinfo *addr, int backlog)

79 {

80 int sock;

81 static const int yes = 1;

82
83 sock = socket(addr->ai_family, addr->ai_socktype, addr->ai_protocol);

84
85 if (sock < 0)

86 return -1;

87
88 if (setsockopt(sock, SOL_SOCKET, SO_REUSEPORT, &yes, sizeof(yes)) != 0)

89 return -1;

90
91 if (bind(sock, addr->ai_addr, addr->ai_addrlen) != 0)

92 return -1;

93
94 if (listen(sock, backlog) != 0)

95 return -1;

96
97 return sock;

98 }

99
100 /*

101 * TODO: json_object_*_add can fail, returning != 0.

102 */

103 static void print_as_json(struct record_syscall_x86_64 *data, size_t data_len)

104 {

105 struct json_object *parent;

106 struct json_object *args;

107 struct json_object *strs;

108 size_t remaining_str_len = data_len - sizeof(*data);

109 size_t travelled = 0;

110 const char *tp_src_str;

111
112 parent = json_object_new_object();

113
114 json_object_object_add(parent, "id",

115 json_object_new_string(syscall_str_from_nr(data->nr)));

116
117 if (data->tp_src == TP_SRC_SYS_ENTER)

118 tp_src_str = "sys_enter";

119 else if (data->tp_src == TP_SRC_SYS_EXIT)

120 tp_src_str = "sys_exit";

121 else

122 tp_src_str = "unknown";

123
124 json_object_object_add(parent, "tp_src",

125 json_object_new_string(tp_src_str));

126
127 json_object_object_add(parent, "ts", json_object_new_int64(data->ts));

128 json_object_object_add(parent, "ret", json_object_new_int64(data->ret));

129
130 json_object_object_add(parent, "pid", json_object_new_int(data->pid));

131 json_object_object_add(parent, "uid", json_object_new_int(data->uid));

132 json_object_object_add(parent, "euid", json_object_new_int(data->euid));

133
134 args = json_object_new_array();

135

134

136 for (size_t i = 0; i < ARRAY_SIZE(data->args); i++)

137 json_object_array_add(args,

json_object_new_int64(data->args[i]));

138
139 json_object_object_add(parent, "args", args);

140
141 strs = json_object_new_array();

142
143 if (remaining_str_len)

144 data->strings[remaining_str_len - 1] = ’\0’;

145
146 while (remaining_str_len != 0) {

147 struct json_object *str;

148
149 str = json_object_new_string(&data->strings[travelled]);

150 json_object_array_add(strs, str);

151
152 travelled += json_object_get_string_len(str) + 1;

153 remaining_str_len = data_len - sizeof(*data) - travelled;

154
155 if (travelled > data_len - sizeof(*data)) {

156 fprintf(stderr, "String len has been miscalculated.\n");

157 break;

158 }

159 }

160
161 json_object_object_add(parent, "strings", strs);

162
163 puts(json_object_to_json_string(parent));

164 fflush(stdout);

165
166 json_object_put(parent);

167 }

168
169 static ssize_t do_recv(int sock)

170 {

171 ssize_t ret;

172 ssize_t recvlen;

173 size_t dataleft;

174 static struct record_ad ad;

175 struct record *decrypted;

176 struct record *r;

177 uint8_t *buf;

178
179 recvlen = recv(sock, &ad, sizeof(ad), MSG_PEEK | MSG_DONTWAIT);

180
181 if (recvlen < 0)

182 return -errno;

183
184 if (recvlen != sizeof(ad))

185 return 0;

186
187 recvlen = recv(sock, &ad, sizeof(ad), MSG_WAITALL);

188
189 if (recvlen < 0)

190 return -errno;

191
192 if (recvlen != sizeof(ad))

193 return -EBADMSG;

194

135

195 buf = malloc(ad.len);

196
197 if (!buf)

198 return -ENOMEM;

199
200 recvlen = recv(sock, buf, ad.len, MSG_WAITALL);

201
202 if (recvlen != ad.len)

203 return -EBADMSG;

204
205 if (recvlen < 0)

206 return -errno;

207
208 decrypted = decrypt(buf, recvlen, &ad, sizeof(ad), crypto_key);

209
210 if (!decrypted) {

211 free(buf);

212 return -EBADMSG;

213 }

214
215 dataleft = recvlen;

216 dataleft -= XCHACHA20POLY1305_NONCE_SIZE;

217 dataleft -= CHACHA20POLY1305_AUTHTAG_SIZE;

218
219 ret = recvlen;

220
221 for (r = decrypted; r && dataleft >= sizeof(*r); r = next_record(r)) {

222 if (r->len > dataleft) {

223 ret = -EBADMSG;

224 break;

225 }

226
227 dataleft -= r->len;

228
229 print_as_json((struct record_syscall_x86_64 *)

230 r->data, r->len - sizeof(*r));

231 }

232
233 free(decrypted);

234 free(buf);

235
236 return ret;

237 }

238
239 struct connvector {

240 struct pollfd *fds;

241 size_t nmemb;

242 size_t ncons;

243 };

244
245 #define CONNVECTOR_MAX_NMEMB (1024 * 1024)

246 #define CONNVECTOR_MIN_NMEMB 8

247
248 static int add_conn(struct connvector *cvec, int fd)

249 {

250 if (cvec->ncons == cvec->nmemb) {

251 size_t nmemb;

252
253 if (cvec->nmemb >= CONNVECTOR_MAX_NMEMB / 2)

254 return -1;

136

255
256 nmemb = cvec->nmemb ? cvec->nmemb * 2 : CONNVECTOR_MIN_NMEMB;

257 cvec->fds = reallocarray(cvec->fds, nmemb, sizeof(*cvec->fds));

258
259 if (!cvec->fds) {

260 cvec->ncons = 0;

261 cvec->nmemb = 0;

262 return -1;

263 }

264
265 cvec->nmemb = nmemb;

266 }

267
268 if (!cvec->fds)

269 return -1;

270
271 cvec->fds[cvec->ncons].fd = fd;

272 cvec->fds[cvec->ncons].events = POLLIN | POLLHUP;

273
274 cvec->ncons++;

275
276 return 0;

277 }

278
279 static int remove_conn(struct connvector *cvec, size_t offset)

280 {

281 if (!cvec->fds)

282 return -1;

283
284 if (offset >= cvec->ncons || cvec->ncons == 0)

285 return -1;

286
287 if (offset == cvec->ncons)

288 cvec->fds[offset] = (struct pollfd){};

289 else

290 cvec->fds[offset] = cvec->fds[cvec->ncons - 1];

291
292 cvec->ncons--;

293
294 return 0;

295 }

296
297 static void freeconnvector(struct connvector *cvec)

298 {

299 free(cvec->fds);

300 }

301
302 static int listen_on_addr(const char *node)

303 {

304 int err;

305 struct addrinfo *addr;

306 struct addrinfo *addrs = NULL;

307 struct pollfd *listenfds = NULL;

308 struct connvector cvec = {};

309 const int listen_backlog = 128;

310 size_t n_addrs = 0;

311 size_t i = 0;

312 int ret = -1;

313
314 static const struct addrinfo hints = {

137

315 .ai_flags = AI_PASSIVE,

316 .ai_family = AF_UNSPEC,

317 .ai_socktype = SOCK_STREAM,

318 .ai_protocol = IPPROTO_TCP,

319 };

320
321 err = getaddrinfo(node, xstr(PROGGER_SERVER_PORT), &hints, &addrs);

322 if (err) {

323 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(err));

324 goto fail;

325 }

326
327 fprintf(stderr, "Host ’%s’ resolved to: ", node);

328 for (addr = addrs; addr; addr = addr->ai_next) {

329 fprintf(stderr, "%s", addrinfo_ip(addr));

330 if (addr->ai_next)

331 fprintf(stderr, ", ");

332 n_addrs++;

333 }

334 fprintf(stderr, ".\n");

335
336 listenfds = calloc(n_addrs, sizeof(*listenfds));

337
338 if (!listenfds) {

339 perror("calloc");

340 goto fail;

341 }

342
343 for (addr = addrs; addr; addr = addr->ai_next, i++) {

344 int fd = bind_and_listen(addr, listen_backlog);

345
346 if (fd < 0)

347 goto fail;

348
349 if (fcntl(fd, F_SETFL, O_NONBLOCK) != 0)

350 goto fail;

351
352 listenfds[i].fd = fd;

353 listenfds[i].events = POLLIN;

354 }

355
356 while (1) {

357 int nev = poll(listenfds, n_addrs, 0);

358
359 if (nev < 0) {

360 perror("poll");

361 goto fail;

362 }

363
364 for (i = 0; nev > 0 && i < n_addrs; i++, nev--) {

365 int sock;

366
367 if (!(listenfds[i].revents & POLLIN))

368 continue;

369
370 sock = accept(listenfds[i].fd, NULL, NULL);

371
372 /* TODO: Take an action if add_conn fails. */

373 if (sock > 0)

374 add_conn(&cvec, sock);

138

375 }

376
377 nev = poll(cvec.fds, cvec.ncons, 0);

378
379 if (nev < 0) {

380 perror("poll");

381 goto fail;

382 }

383
384 /*

385 * TODO: Connections currently aren’t being removed.

386 */

387 for (i = 0; nev > 0 && i < cvec.ncons; i++, nev--) {

388 /* TODO: Take an action if remove_conn fails. */

389 if (cvec.fds[i].revents & POLLHUP)

390 remove_conn(&cvec, i);

391
392 if (!(cvec.fds[i].revents & POLLIN))

393 continue;

394
395 err = do_recv(cvec.fds[i].fd);

396
397 /* TODO: Handle more errors. */

398 switch (err) {

399 case 0:

400 break;

401 case -EAGAIN:

402 #if EAGAIN != EWOULDBLOCK

403 case -EWOULDBLOCK:

404 #endif

405 break;

406 case -ECONNREFUSED:

407 /* TODO: Take an action if remove_conn fails. */

408 remove_conn(&cvec, i);

409 break;

410 default:

411 if (err > 0)

412 break;

413
414 fprintf(stderr, "Unhandled error: %s.\n",

415 strerror(-err));

416 break;

417 }

418 }

419
420 /* Maybe only sleep if nothing was found in this iter. */

421 usleep(1000);

422 }

423
424 ret = 0;

425
426 fail:

427 for (i = 0; i < n_addrs; i++) {

428 if (listenfds[i].fd > 0)

429 close(listenfds[i].fd);

430 }

431
432 free(listenfds);

433 freeconnvector(&cvec);

434

139

435 /* Do we meed this NULL check? */

436 if (addrs)

437 freeaddrinfo(addrs);

438
439 return ret;

440 }

441
442 static int load_crypto_key_from_file(const char *filepath)

443 {

444 int fd;

445 ssize_t ret;

446
447 fd = open(filepath, O_RDONLY);

448 if (fd < 0) {

449 perror("open");

450 return -1;

451 }

452
453 ret = read(fd, crypto_key, sizeof(crypto_key));

454
455 if (ret < 0) {

456 perror("read");

457 return -1;

458 }

459
460 if (ret != sizeof(crypto_key)) {

461 fprintf(stderr, "Crypto key: Tried to read %zu bytes, "

462 "but only received %zd.\n", sizeof(crypto_key), ret);

463 return -1;

464 }

465
466 close(fd);

467 return 0;

468 }

469
470 int main(int argc, char **argv)

471 {

472 const char *addr = "localhost";

473
474 init_signal_handlers();

475
476 if (argc >= 2)

477 addr = argv[1];

478
479 memcpy(crypto_key, progger_crypto_testkey, sizeof(crypto_key));

480
481 if (argc >= 3) {

482 fprintf(stderr, "Loading crypto key from ’%s’.\n", argv[2]);

483 if (load_crypto_key_from_file(argv[2]) != 0) {

484 fprintf(stderr, "Failed to load crypto key.\n");

485 return 1;

486 }

487 }

488
489 listen_on_addr(addr);

490
491 return 0;

492 }

140

A.29 drivers/net/progger/server/syscall-table.c

1 // SPDX-License-Identifier: GPL-2.0-only

2
3 #include "syscalls.h"

4
5 #include <stdint.h>

6
7 #include <progger/compiler.h>

8
9 /*

10 * grep -E ’^[0-9]’ arch/x86/entry/syscalls/syscall_64.tbl | \

11 * awk ’{print "\t[" $1 "] = \"" $3 "\","}’

12 */

13 static const char *const syscalls[] = {

14 [0] = "read",

15 [1] = "write",

16 [2] = "open",

17 [3] = "close",

18 [4] = "stat",

19 [5] = "fstat",

20 [6] = "lstat",

21 [7] = "poll",

22 [8] = "lseek",

23 [9] = "mmap",

24 [10] = "mprotect",

25 [11] = "munmap",

26 [12] = "brk",

27 [13] = "rt_sigaction",

28 [14] = "rt_sigprocmask",

29 [15] = "rt_sigreturn",

30 [16] = "ioctl",

31 [17] = "pread64",

32 [18] = "pwrite64",

33 [19] = "readv",

34 [20] = "writev",

35 [21] = "access",

36 [22] = "pipe",

37 [23] = "select",

38 [24] = "sched_yield",

39 [25] = "mremap",

40 [26] = "msync",

41 [27] = "mincore",

42 [28] = "madvise",

43 [29] = "shmget",

44 [30] = "shmat",

45 [31] = "shmctl",

46 [32] = "dup",

47 [33] = "dup2",

48 [34] = "pause",

49 [35] = "nanosleep",

50 [36] = "getitimer",

51 [37] = "alarm",

52 [38] = "setitimer",

53 [39] = "getpid",

54 [40] = "sendfile",

55 [41] = "socket",

56 [42] = "connect",

141

57 [43] = "accept",

58 [44] = "sendto",

59 [45] = "recvfrom",

60 [46] = "sendmsg",

61 [47] = "recvmsg",

62 [48] = "shutdown",

63 [49] = "bind",

64 [50] = "listen",

65 [51] = "getsockname",

66 [52] = "getpeername",

67 [53] = "socketpair",

68 [54] = "setsockopt",

69 [55] = "getsockopt",

70 [56] = "clone",

71 [57] = "fork",

72 [58] = "vfork",

73 [59] = "execve",

74 [60] = "exit",

75 [61] = "wait4",

76 [62] = "kill",

77 [63] = "uname",

78 [64] = "semget",

79 [65] = "semop",

80 [66] = "semctl",

81 [67] = "shmdt",

82 [68] = "msgget",

83 [69] = "msgsnd",

84 [70] = "msgrcv",

85 [71] = "msgctl",

86 [72] = "fcntl",

87 [73] = "flock",

88 [74] = "fsync",

89 [75] = "fdatasync",

90 [76] = "truncate",

91 [77] = "ftruncate",

92 [78] = "getdents",

93 [79] = "getcwd",

94 [80] = "chdir",

95 [81] = "fchdir",

96 [82] = "rename",

97 [83] = "mkdir",

98 [84] = "rmdir",

99 [85] = "creat",

100 [86] = "link",

101 [87] = "unlink",

102 [88] = "symlink",

103 [89] = "readlink",

104 [90] = "chmod",

105 [91] = "fchmod",

106 [92] = "chown",

107 [93] = "fchown",

108 [94] = "lchown",

109 [95] = "umask",

110 [96] = "gettimeofday",

111 [97] = "getrlimit",

112 [98] = "getrusage",

113 [99] = "sysinfo",

114 [100] = "times",

115 [101] = "ptrace",

116 [102] = "getuid",

142

117 [103] = "syslog",

118 [104] = "getgid",

119 [105] = "setuid",

120 [106] = "setgid",

121 [107] = "geteuid",

122 [108] = "getegid",

123 [109] = "setpgid",

124 [110] = "getppid",

125 [111] = "getpgrp",

126 [112] = "setsid",

127 [113] = "setreuid",

128 [114] = "setregid",

129 [115] = "getgroups",

130 [116] = "setgroups",

131 [117] = "setresuid",

132 [118] = "getresuid",

133 [119] = "setresgid",

134 [120] = "getresgid",

135 [121] = "getpgid",

136 [122] = "setfsuid",

137 [123] = "setfsgid",

138 [124] = "getsid",

139 [125] = "capget",

140 [126] = "capset",

141 [127] = "rt_sigpending",

142 [128] = "rt_sigtimedwait",

143 [129] = "rt_sigqueueinfo",

144 [130] = "rt_sigsuspend",

145 [131] = "sigaltstack",

146 [132] = "utime",

147 [133] = "mknod",

148 [134] = "uselib",

149 [135] = "personality",

150 [136] = "ustat",

151 [137] = "statfs",

152 [138] = "fstatfs",

153 [139] = "sysfs",

154 [140] = "getpriority",

155 [141] = "setpriority",

156 [142] = "sched_setparam",

157 [143] = "sched_getparam",

158 [144] = "sched_setscheduler",

159 [145] = "sched_getscheduler",

160 [146] = "sched_get_priority_max",

161 [147] = "sched_get_priority_min",

162 [148] = "sched_rr_get_interval",

163 [149] = "mlock",

164 [150] = "munlock",

165 [151] = "mlockall",

166 [152] = "munlockall",

167 [153] = "vhangup",

168 [154] = "modify_ldt",

169 [155] = "pivot_root",

170 [156] = "_sysctl",

171 [157] = "prctl",

172 [158] = "arch_prctl",

173 [159] = "adjtimex",

174 [160] = "setrlimit",

175 [161] = "chroot",

176 [162] = "sync",

143

177 [163] = "acct",

178 [164] = "settimeofday",

179 [165] = "mount",

180 [166] = "umount2",

181 [167] = "swapon",

182 [168] = "swapoff",

183 [169] = "reboot",

184 [170] = "sethostname",

185 [171] = "setdomainname",

186 [172] = "iopl",

187 [173] = "ioperm",

188 [174] = "create_module",

189 [175] = "init_module",

190 [176] = "delete_module",

191 [177] = "get_kernel_syms",

192 [178] = "query_module",

193 [179] = "quotactl",

194 [180] = "nfsservctl",

195 [181] = "getpmsg",

196 [182] = "putpmsg",

197 [183] = "afs_syscall",

198 [184] = "tuxcall",

199 [185] = "security",

200 [186] = "gettid",

201 [187] = "readahead",

202 [188] = "setxattr",

203 [189] = "lsetxattr",

204 [190] = "fsetxattr",

205 [191] = "getxattr",

206 [192] = "lgetxattr",

207 [193] = "fgetxattr",

208 [194] = "listxattr",

209 [195] = "llistxattr",

210 [196] = "flistxattr",

211 [197] = "removexattr",

212 [198] = "lremovexattr",

213 [199] = "fremovexattr",

214 [200] = "tkill",

215 [201] = "time",

216 [202] = "futex",

217 [203] = "sched_setaffinity",

218 [204] = "sched_getaffinity",

219 [205] = "set_thread_area",

220 [206] = "io_setup",

221 [207] = "io_destroy",

222 [208] = "io_getevents",

223 [209] = "io_submit",

224 [210] = "io_cancel",

225 [211] = "get_thread_area",

226 [212] = "lookup_dcookie",

227 [213] = "epoll_create",

228 [214] = "epoll_ctl_old",

229 [215] = "epoll_wait_old",

230 [216] = "remap_file_pages",

231 [217] = "getdents64",

232 [218] = "set_tid_address",

233 [219] = "restart_syscall",

234 [220] = "semtimedop",

235 [221] = "fadvise64",

236 [222] = "timer_create",

144

237 [223] = "timer_settime",

238 [224] = "timer_gettime",

239 [225] = "timer_getoverrun",

240 [226] = "timer_delete",

241 [227] = "clock_settime",

242 [228] = "clock_gettime",

243 [229] = "clock_getres",

244 [230] = "clock_nanosleep",

245 [231] = "exit_group",

246 [232] = "epoll_wait",

247 [233] = "epoll_ctl",

248 [234] = "tgkill",

249 [235] = "utimes",

250 [236] = "vserver",

251 [237] = "mbind",

252 [238] = "set_mempolicy",

253 [239] = "get_mempolicy",

254 [240] = "mq_open",

255 [241] = "mq_unlink",

256 [242] = "mq_timedsend",

257 [243] = "mq_timedreceive",

258 [244] = "mq_notify",

259 [245] = "mq_getsetattr",

260 [246] = "kexec_load",

261 [247] = "waitid",

262 [248] = "add_key",

263 [249] = "request_key",

264 [250] = "keyctl",

265 [251] = "ioprio_set",

266 [252] = "ioprio_get",

267 [253] = "inotify_init",

268 [254] = "inotify_add_watch",

269 [255] = "inotify_rm_watch",

270 [256] = "migrate_pages",

271 [257] = "openat",

272 [258] = "mkdirat",

273 [259] = "mknodat",

274 [260] = "fchownat",

275 [261] = "futimesat",

276 [262] = "newfstatat",

277 [263] = "unlinkat",

278 [264] = "renameat",

279 [265] = "linkat",

280 [266] = "symlinkat",

281 [267] = "readlinkat",

282 [268] = "fchmodat",

283 [269] = "faccessat",

284 [270] = "pselect6",

285 [271] = "ppoll",

286 [272] = "unshare",

287 [273] = "set_robust_list",

288 [274] = "get_robust_list",

289 [275] = "splice",

290 [276] = "tee",

291 [277] = "sync_file_range",

292 [278] = "vmsplice",

293 [279] = "move_pages",

294 [280] = "utimensat",

295 [281] = "epoll_pwait",

296 [282] = "signalfd",

145

297 [283] = "timerfd_create",

298 [284] = "eventfd",

299 [285] = "fallocate",

300 [286] = "timerfd_settime",

301 [287] = "timerfd_gettime",

302 [288] = "accept4",

303 [289] = "signalfd4",

304 [290] = "eventfd2",

305 [291] = "epoll_create1",

306 [292] = "dup3",

307 [293] = "pipe2",

308 [294] = "inotify_init1",

309 [295] = "preadv",

310 [296] = "pwritev",

311 [297] = "rt_tgsigqueueinfo",

312 [298] = "perf_event_open",

313 [299] = "recvmmsg",

314 [300] = "fanotify_init",

315 [301] = "fanotify_mark",

316 [302] = "prlimit64",

317 [303] = "name_to_handle_at",

318 [304] = "open_by_handle_at",

319 [305] = "clock_adjtime",

320 [306] = "syncfs",

321 [307] = "sendmmsg",

322 [308] = "setns",

323 [309] = "getcpu",

324 [310] = "process_vm_readv",

325 [311] = "process_vm_writev",

326 [312] = "kcmp",

327 [313] = "finit_module",

328 [314] = "sched_setattr",

329 [315] = "sched_getattr",

330 [316] = "renameat2",

331 [317] = "seccomp",

332 [318] = "getrandom",

333 [319] = "memfd_create",

334 [320] = "kexec_file_load",

335 [321] = "bpf",

336 [322] = "execveat",

337 [323] = "userfaultfd",

338 [324] = "membarrier",

339 [325] = "mlock2",

340 [326] = "copy_file_range",

341 [327] = "preadv2",

342 [328] = "pwritev2",

343 [329] = "pkey_mprotect",

344 [330] = "pkey_alloc",

345 [331] = "pkey_free",

346 [332] = "statx",

347 [333] = "io_pgetevents",

348 [334] = "rseq",

349 [424] = "pidfd_send_signal",

350 [425] = "io_uring_setup",

351 [426] = "io_uring_enter",

352 [427] = "io_uring_register",

353 [428] = "open_tree",

354 [429] = "move_mount",

355 [430] = "fsopen",

356 [431] = "fsconfig",

146

357 [432] = "fsmount",

358 [433] = "fspick",

359 [434] = "pidfd_open",

360 [435] = "clone3",

361 [437] = "openat2",

362 [438] = "pidfd_getfd",

363 [439] = "faccessat2",

364 [512] = "rt_sigaction",

365 [513] = "rt_sigreturn",

366 [514] = "ioctl",

367 [515] = "readv",

368 [516] = "writev",

369 [517] = "recvfrom",

370 [518] = "sendmsg",

371 [519] = "recvmsg",

372 [520] = "execve",

373 [521] = "ptrace",

374 [522] = "rt_sigpending",

375 [523] = "rt_sigtimedwait",

376 [524] = "rt_sigqueueinfo",

377 [525] = "sigaltstack",

378 [526] = "timer_create",

379 [527] = "mq_notify",

380 [528] = "kexec_load",

381 [529] = "waitid",

382 [530] = "set_robust_list",

383 [531] = "get_robust_list",

384 [532] = "vmsplice",

385 [533] = "move_pages",

386 [534] = "preadv",

387 [535] = "pwritev",

388 [536] = "rt_tgsigqueueinfo",

389 [537] = "recvmmsg",

390 [538] = "sendmmsg",

391 [539] = "process_vm_readv",

392 [540] = "process_vm_writev",

393 [541] = "setsockopt",

394 [542] = "getsockopt",

395 [543] = "io_setup",

396 [544] = "io_submit",

397 [545] = "execveat",

398 [546] = "preadv2",

399 [547] = "pwritev2",

400 };

401
402 const char *syscall_str_from_nr(uint32_t nr)

403 {

404 if (nr >= ARRAY_SIZE(syscalls))

405 return "INVALID";

406
407 return syscalls[nr];

408 }

A.30 drivers/net/progger/server/syscalls.h

1 /* SPDX-License-Identifier: GPL-2.0-only */

2

147

3 #ifndef PROGGER_SERVER_SYSCALLS_H

4 #define PROGGER_SERVER_SYSCALLS_H

5
6 #include <stdint.h>

7
8 const char *syscall_str_from_nr(uint32_t nr);

9
10 #endif /* PROGGER_SERVER_SYSCALLS_H */

A.31 include/progger/compiler.h

1 /* SPDX-License-Identifier: GPL-2.0-only */

2
3 #ifndef PROGGER_COMMON_COMPILER_H

4 #define PROGGER_COMMON_COMPILER_H

5
6 #ifdef __KERNEL__

7 #include <linux/compiler_types.h>

8 #else /* __KERNEL__ */

9
10 #ifndef ARRAY_SIZE

11 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))

12 #endif

13
14 #ifndef likely

15 #define likely(x) __builtin_expect(!!(x), 1)

16 #endif

17
18 #ifndef unlikely

19 #define unlikely(x) __builtin_expect(!!(x), 0)

20 #endif

21
22 #ifndef __packed

23 #define __packed __attribute__((packed))

24 #endif

25
26 #ifndef __unused

27 #define __unused __attribute__((unused))

28 #endif

29
30 #endif /* __KERNEL__ */

31
32 #endif /* PROGGER_COMMON_COMPILER_H */

A.32 include/progger/crypto.h

1 /* SPDX-License-Identifier: GPL-2.0-only */

2
3 #ifndef PROGGER_COMMON_CRYPTO_H

4 #define PROGGER_COMMON_CRYPTO_H

5
6 #ifdef __KERNEL__

7 #include <crypto/chacha20poly1305.h>

8 #else

148

9 #define CHACHA20POLY1305_KEY_SIZE 32

10 #define XCHACHA20POLY1305_NONCE_SIZE 24

11 #define CHACHA20POLY1305_AUTHTAG_SIZE 16

12 #endif /* __KERNEL__ */

13
14 #include <progger/types.h>

15
16 static const uint8_t progger_crypto_testkey[CHACHA20POLY1305_KEY_SIZE] = {

17 0xca, 0xfe, 0x13, 0x37,

18 0xca, 0xfe, 0x13, 0x37,

19 0xca, 0xfe, 0x13, 0x37,

20 0xca, 0xfe, 0x13, 0x37,

21 0xca, 0xfe, 0x13, 0x37,

22 0xca, 0xfe, 0x13, 0x37,

23 0xca, 0xfe, 0x13, 0x37,

24 0xca, 0xfe, 0x13, 0x37,

25 };

26
27 #endif /* PROGGER_COMMON_CRYPTO_H */

A.33 include/progger/net.h

1 /* SPDX-License-Identifier: GPL-2.0-only */

2
3 #ifndef PROGGER_COMMON_NET_H

4 #define PROGGER_COMMON_NET_H

5
6 #define PROGGER_SERVER_PORT 13753

7
8 #endif /* PROGGER_COMMON_NET_H */

A.34 include/progger/record.h

1 /* SPDX-License-Identifier: GPL-2.0-only */

2
3 #ifndef PROGGER_COMMON_RECORD_H

4 #define PROGGER_COMMON_RECORD_H

5
6 #include <progger/compiler.h>

7 #include <progger/types.h>

8
9 #ifdef __KERNEL__

10 #include <linux/build_bug.h>

11 #include <linux/stddef.h>

12 #define assert_field_size(type, field, size) \

13 static_assert(sizeof_field(type, field) == size)

14 #else

15 #define assert_field_size(type, field, size)

16 #endif

17
18 #define SYSCALL_MAX_ARGS_X86_64 6

19
20 #define MAX_RECORD_STR_SIZE 4096

21 #define MAX_RECORD_SIZE (1024 + (SYSCALL_MAX_ARGS_X86_64 *

149

MAX_RECORD_STR_SIZE))

22
23 #define TP_SRC_SYS_ENTER (1 << 1)

24 #define TP_SRC_SYS_EXIT (1 << 2)

25
26 #define PROGGER_RECORD_PADDING_ALIGN 32

27
28 struct record_ad {

29 uint32_t len;

30 uint64_t client_id;

31 } __packed;

32
33 struct record {

34 uint32_t len;

35 uint16_t id;

36 uint16_t reserved;

37 uint8_t data[];

38 } __packed;

39
40 struct record_syscall_x86_64 {

41 uint8_t tp_src;

42 uint8_t reserved;

43 uint16_t nr;

44 uint64_t ts;

45 uint64_t ret;

46 uint32_t pid;

47 uint32_t uid;

48 uint32_t euid;

49 uint64_t args[SYSCALL_MAX_ARGS_X86_64];

50 char strings[];

51 } __packed;

52
53 assert_field_size(struct record_syscall_x86_64, pid, sizeof(pid_t));

54 assert_field_size(struct record_syscall_x86_64, uid, sizeof(uid_t));

55 assert_field_size(struct record_syscall_x86_64, euid, sizeof(uid_t));

56
57 enum {

58 RECORD_ENUM_MIN = 1024,

59 RECORD_SYSCALL_X86_64 = 1025,

60 RECORD_ENUM_MAX = 65535

61 };

62
63 static inline struct record *next_record(struct record *record)

64 {

65 struct record *next = (struct record *)(((char *)record) + record->len);

66
67 if (next->len == 0)

68 return NULL;

69
70 return next;

71 }

72
73 #endif /* PROGGER_COMMON_RECORD_H */

A.35 include/progger/types.h

1 /* SPDX-License-Identifier: GPL-2.0-only */

150

2
3 #ifndef PROGGER_COMMON_TYPES_H

4 #define PROGGER_COMMON_TYPES_H

5
6 #ifdef __KERNEL__

7 #include <linux/compiler.h>

8 #include <linux/types.h>

9 #include <linux/stddef.h>

10 #else

11 #include <stdbool.h>

12 #include <stddef.h>

13 #include <stdint.h>

14 #include <sys/types.h>

15 #include <asm/types.h>

16 #endif /* __KERNEL__ */

17
18 #endif /* PROGGER_COMMON_TYPES_H */

Appendix B

The new-session program

1 #define _GNU_SOURCE

2
3 #include <errno.h>

4 #include <stdio.h>

5 #include <stdlib.h>

6 #include <unistd.h>

7 #include <sys/types.h>

8
9 void setsid_and_fork(void)

10 {

11 pid_t new_sid;

12 pid_t new_pid;

13
14 new_sid = setsid();

15 if (new_sid < 0) {

16 perror("setsid");

17 exit(1);

18 }

19 printf(" New session ID: %d.\n", new_sid);

20
21 new_pid = fork();

22 if (new_pid < 0) {

23 perror("fork");

24 exit(1);

25 } else if (new_pid > 0) {

26 printf("Child process ID: %d.\n", new_pid);

27 _exit(0);

28 }

29 }

30
31 int main(int argc, char **argv)

32 {

33 if (geteuid() != 0) {

34 fprintf(stderr, "Run this as root.\n");

35 return 1;

36 }

37
38 printf("Orig. session ID: %d.\n", getsid(0));

39 printf("Orig. process ID: %d.\n", getpid());

40

152

41 setsid_and_fork();

42 setsid_and_fork();

43
44 if (argc < 2)

45 return 0;

46
47 printf("execvp(\"%s\", [", argv[1]);

48 for (int i = 1; i < argc; i++)

49 printf("\"%s\", ", argv[i]);

50 printf("\b\b])\n");

51
52 execvp(argv[1], &argv[1]);

53 perror("execvp");

54
55 return 1;

56 }

	Introduction
	Design goals of Progger 3
	Thesis outline

	Background
	System calls
	Kernel space and user space
	TPMs
	Trusted kernels
	XChaCha20-Poly1305

	Existing Provenance Systems
	Progger 1
	Kernel-only implementation in Progger 1

	Progger 1 trusted framework
	Progger 2
	Kernel-only implementation in Progger 2

	PASS
	CamFlow
	Sysdig
	SystemTap
	bpftrace
	Comparison to Progger 3

	The Architecture of Progger 3
	Chapter outline
	An overview of Progger 3
	Record format
	Header format
	Body format
	Server JSON output

	Kernel-only operation
	Trusted kernels
	Kernel-only implementation in Progger 3
	Conclusion

	Cryptography
	Confidentiality
	Integrity
	Cryptography approach in Progger 3
	Private key storage

	Trusted platform module
	TPM provisioning
	TPM unsealing
	TPM benefits

	Performance improvements
	Ability to trace any system call
	Stability
	Maintainability
	Conclusion

	TPM Usage Proof of Correctness
	Evaluation
	Impact on system throughput
	Impact on CPU throughput
	Time to compile Linux 5.8.3
	Time to compile Linux 5.8.3 with no traced system calls occurring
	Impact on a CPU-bound program making no system calls

	Impact on network throughput

	Impact on system latency
	Impact on a system call being traced
	Impact on a system call not being traced

	Correctness
	Summary

	Discussion
	Chapter outline
	Comparison with similar work
	Progger 1 and a TPM
	Detecting commands executed as a different user

	Future work
	Utilising the disk to store buffers
	User space network interface control
	Task priority
	Copying system call pointer arguments
	Reducing bandwidth usage
	Information leakage
	Namespaces
	The Progger 3 server
	Choosing which system calls to trace

	Summary

	Conclusion
	References
	Appendices
	Progger 3 source code
	Kconfig (diff)
	drivers/net/Makefile (diff)
	drivers/net/progger/Kconfig
	drivers/net/progger/Makefile
	drivers/net/progger/kernel/Kconfig
	drivers/net/progger/kernel/Makefile
	drivers/net/progger/kernel/crypto.c
	drivers/net/progger/kernel/crypto.h
	drivers/net/progger/kernel/generated/gen-ip.py
	drivers/net/progger/kernel/generated/gen-syscalls.py
	drivers/net/progger/kernel/init.c
	drivers/net/progger/kernel/kthread.c
	drivers/net/progger/kernel/kthread.h
	drivers/net/progger/kernel/net.c
	drivers/net/progger/kernel/net.h
	drivers/net/progger/kernel/ringbuf.c
	drivers/net/progger/kernel/ringbuf.h
	drivers/net/progger/kernel/tpm.c
	drivers/net/progger/kernel/tpm.h
	drivers/net/progger/kernel/tracepoints.c
	drivers/net/progger/kernel/tracepoints.h
	drivers/net/progger/scripts/tpm/provision
	drivers/net/progger/scripts/tpm/provision-inner
	drivers/net/progger/scripts/tpm/provision-setup
	drivers/net/progger/server/Makefile
	drivers/net/progger/server/crypto.c
	drivers/net/progger/server/crypto.h
	drivers/net/progger/server/server.c
	drivers/net/progger/server/syscall-table.c
	drivers/net/progger/server/syscalls.h
	include/progger/compiler.h
	include/progger/crypto.h
	include/progger/net.h
	include/progger/record.h
	include/progger/types.h

	The new-session program

