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Abstract 

The nature of the work dealt with in this thesis is mathematical modelling of multiphase 

flows. The main objective of this doctoral work was to study multiphase lattice 

Boltzmann models (LBM) and to develop an advanced pseudopotential model. 

Specifically, advanced thermal lattice Boltzmann models were applied to study bubble 

nucleation in nucleate pool boiling at subatmospheric pressures. The numerical 

investigations carried out as part of this work follow the format well-established in the 

literature and allow further studies in more complex geometries.  

The work carried out contributes to current discussions in the literature and fulfils the 

recommendations of a number of authors. Fluid-fluid interactions in the Yuan-Schaefer, 

multipseudopotential interaction and piecewise linear equation of state methods were 

investigated. Multipseudopotential interaction was established as a practicable method of 

multiphase simulations by combination with the multiple relaxation time collision 

operator, surface tension modification methods and with modified temperature double 

distribution function and hybrid (4th order Runge-Kutta) thermal LBM models.  

Thermal LBM simulations were found to agree well with experimental findings on the 

influence of subatmospheric pressure on bubble nucleation. It was found that as pressure 

is lowered in LBM simulations the size of bubbles nucleated increases, according to 

bubble diameter ~ pressure-1, with results falling in between experimental data for brass 

and stainless steel tubes.  
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Nomenclature 

ρ = density 

u = velocity 

L = characteristic length 

μ = dynamic viscosity 

v = kinematic viscosity 

cs = speed of sound 

λ = mean free path length, thermal conductivity, multipseudopotential interaction 

equation of state parameter 

𝜂 = shear viscosity, thermal model constant 

𝜂𝐵= bulk viscosity 

T = temperature 

R = universal gas constant 

α = von Karman relation constant, thermal diffusivity, acentric factor 

t = time 

p, P = pressure 

Pc = threshold pressure 

F = forces including body forces and intermolecular forces 

σ = surface tension, differential cross section, surface tension adjustment term 

P = stress tensor 

n = unit normal to the interface 

H = mean curvature 

r = radius 

d = diameter 

g = acceleration due to gravity, relative speed 

θ = angle 



 

e = internal energy 

E = total energy 

cV = heat capacity at constant volume 

cP = heat capacity at constant pressure 

𝜫 = viscous stress tensor 

𝜫:∇𝒖 = viscous heat dissipation 

q = heat flux 

wi = lattice weight  

ci = lattice particle direction 

ei = lattice microscopic particle velocity 

f = distribution function, also called probability density 

feq = equilibrium distribution 

x = position coordinate 

𝜉 = microscopic particle velocity 

𝜖 = expansion/ smallness parameter 

𝜑 = solution of a generic partial differential equation 

b = boundary condition constant 

k = permeability, temperature equation constant 

𝜏 = relaxation time 

𝐶𝑖(𝑓1, … , 𝑓𝑏) = multibody collision operator  

𝐴𝑖𝑗 = scattering matrix 

𝜔 = relaxation rate 

v = velocity 

ℋ= H-function 

𝛺(𝑓) = collision operator 



 

𝛱𝑒𝑞= equilibrium moment 

∆𝑥 = spatial change, lattice spacing 

∆𝑡, 𝛿𝑡 = temporal change, timestep  

𝑯(𝑛)(𝒙) = Hermite polynomial of n-th order 

𝜔(𝒙) = weight/generating function 

d = dimension 

𝒂(𝑛) = expansion coefficient 

𝑃(𝑁) = polynomial of order n 

ζ = parametrisation of a trajectory in space 

𝛺 = solid angle 

m = moment 

meq = equilibrium moment 

M = transformation matrix 

S = relaxation matrix, source term in the thermal models 

𝛬 = magic parameter 

G = strength of interaction 

𝜓 = pseudopotential  

K = Runge-Kutta function 

h = Runge-Kutta increment  

g = temperature distribution function 

𝜦 = temperature relaxation matrix 

𝜙 = term introducing the temperature equation into the modified temperature double 

distribution function LBM model  

𝑃𝑎𝑏 = momentum flux tensor 

W = interface thickness 



 

a, b= cubic equation of state constant 

𝜃𝑉 = pressure slope in the vapour branch 

𝜃𝑀 = pressure slope in the unstable branch 

𝜃𝐿 = pressure slope in the liquid branch 

ρ1 = vapour phase spinodal point 

ρ2 = liquid phase spinodal point 

ε = multipseudopotential interaction equation of state parameter, mechanical stability 

condition constant 

C = multipseudopotential interaction equation of state parameter 

𝑰 = identity matrix 

𝑪 = Li-Luo surface tension modification term 

𝑸𝒎 = Huang-Wu surface tension and thermodynamic consistency adjustment term 

κ = surface tension modification parameter 

m = molecular mass 

k = Boltzmann’s constant 

a = molecular diameter 

𝜔𝛼 = lattice weights  

χ = thermal diffusivity, parameter modifying G weightings in thermal MPI models 

 

Non-dimensional numbers 

Re = Reynolds number 

Ma = Mach number 

Kn = Knudsen number 

We = Weber number 

M = mobility 

Ca = capillary number 



 

Bo = Bond number 

Pr = Prandtl number 

 

Indices 

i = phase, direction, particle, matrix coordinate 

x, y = directions 

α, β, γ = vector, matrix and tensor components 

w = wetting phase 

g = gas phase 

B = boundary 

j = direction, multipseudopotential index 

p = linear momentum 

1, 2, 3, 4 = molecule number or Runge-Kutta increment number 

v = viscosity, vapour 

l = liquid 

𝜖 = kinetic energy square 

e = bulk viscosity 

q = energy-flux 

k = matrix coordinate 

b = barycentric (applies to velocity in multicomponent models) 

α = particle 

r = reduced (e.g. temperature, pressure) 

w = wall 

  



 

1 
 

Chapter 1 - Introduction 
 

This doctoral work is motivated by the need for further research in the field of the lattice 

Boltzmann method (LBM) [1], in order to put this simulation method on an equal footing 

with the more mature computational fluid dynamics (CFD) technology and to reap the 

benefits this promising mesoscopic method offers. LBM is a relatively novel method for 

simulating fluid dynamics. It shows considerable potential in cases where traditional CFD 

is difficult or not practicable to use and it has the potential to be useful to the engineering 

community for the simulation of physical and chemical processes [2].  

The objective of this study was to advance our understanding of the pseudopotential group 

of multiphase lattice Boltzmann models and to apply a thermal pseudopotential model to 

study nucleate pool boiling at subatmospheric pressures. The multitude of different 

pseudopotential models and schemes suggests that their understanding needs to be 

furthered. Thermal multiphase simulations were carried out in order to investigate the 

effects of lowering pressure on bubble nucleation during nucleate pool boiling. The 

effects of subatmospheric pressure on bubble nucleation have been identified to be of 

industrial importance as part of a doctoral study at Heriot-Watt University [3]. Salem 

recommended development of CFD models capable of simulation of nucleate boiling at 

subatmospheric pressures.  

The approaches undertaken in this work in order to generate findings follow the accepted 

methods in the literature. Surface tension values were calculated using the typical test of 

Laplace’s law. Thermodynamic consistency simulations were carried out to examine 

conformity to the Maxwell equal area construction [4] using flat interfaces to separate 

liquid and vapour. Using curved interfaces would result in the thermodynamic 

consistency being affected by the Laplace’s law, instead of being exclusively determined 

by the mechanical stability condition [5, 6]. Spurious velocity was investigated by 

simulating a liquid droplet in a gravity free domain with periodic boundaries in all four 

directions. Stability effects in dynamic cases were examined using a droplet splashing on 

a thin liquid layer. Thermal models were validated by examining conformity to the D2-

law [7] for droplet evaporation following the approach by Li et al. [8]. Dimensionless 

numbers including the Reynolds number, Weber number and Bond number were used in 

order to examine the physical meaning of the results. 
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The main contributions contained in this work include: furthered understanding of 

pseudopotential models including understanding of simulated interparticle interactions; 

development of a hybrid pseudopotential model which consists of the Yuan-Schaefer 

method up to the upper spinodal point and of the piecewise linear method beyond the 

upper spinodal point; reformulation of fluid-solid interactions in the modified 

pseudopotential method; development of a method of combining multipseduopotential 

interaction with the multiple relaxation time collision operator and adjustment of 

thermodynamic consistency; development of a thermal MPI model; application of LBM 

to study nucleate pool boiling at subatmospheric pressures.  
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Chapter 2 - Literature Review 

2.1. Multiphase Flow 

One of the first questions that needs to be answered in fluid dynamics problems is about 

the nature of the fluid and about the nature of the flow. It is important to determine 

whether the fluid is compressible or incompressible in the case under investigation. It is 

also instructive to determine whether the flow is viscous or inviscid. Dimensionless 

numbers are valuable tools in answering this question. Fluid dynamics can be 

characterised using dimensionless numbers due to the law of similarity. Dimensionless 

numbers are ratios of forces. Hence, they provide an insight into physical phenomena 

directing the observable parameters. The main two dimensionless numbers used to 

characterise fluid flow are the Reynolds number (Re) and the Mach number (Ma) [9]: 

𝑅𝑒𝑖 =
𝜌𝑖𝑢𝑖𝐿

𝜇𝑖
;  𝑀𝑎 =

𝑢

𝑐𝑠
                                         (1) 

Reynolds number helps to answer the question whether the flow is viscous or inviscid 

and Mach number assists in determining whether the fluid is compressible or 

incompressible. At very high values of the Reynolds number, viscous forces can be 

considered to be negligible. Flow can be considered to be incompressible at low values 

of the Mach number.  

A third useful dimensionless number, which provides an insight into the collisional 

dynamics of particles which comprise fluids, is the Knudsen number (Kn) [10]: 

𝐾𝑛 =
𝑚𝑒𝑎𝑛 𝑓𝑟𝑒𝑒 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ

𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑙𝑒𝑛𝑔𝑡ℎ
                             (2) 

Mean free path length is obtained from the following equation [11]: 

𝑀𝑒𝑎𝑛 𝑓𝑟𝑒𝑒 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ (𝜆) =
𝜇√𝜋

𝜌√2𝑅𝑇
                (3) 

The practical value of the Knudsen number consists of the ability to determine whether 

the continuum flow assumption is valid or whether statistical methods are needed to 

investigate the fluid flow which  is being examined [10]. The second application of 

Knudsen number is in investigating boundary conditions [10]. The von Karman relation 

illustrates the relationship between the Knudsen number and the other two important non-

dimensionless numbers [12]:  
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𝐾𝑛 = 𝛼
𝑀𝑎

𝑅𝑒
                                                                                                                         (4) 

Continuum fluid flow is commonly studied using the Navier-Stokes equations. Their 

practical usefulness consists of the ability to compute the flow velocity field. However, 

solving these equations presents challenges which are so considerable as to shape the field 

of fluid dynamics research. The continuity and the Navier-Stokes equations take the 

following forms, respectively [12]:  

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝒖) = 0                                                                                                              (5)  

𝜕(𝜌𝑢𝛼)

𝜕𝑡
+
𝜕(𝜌𝑢𝛼𝑢𝛽)

𝜕𝑥𝛽

= −
𝜕𝑝

𝜕𝑥𝛼
+

𝜕

𝜕𝑥𝛽
[𝜂 (

𝜕𝑢𝛼
𝜕𝑥𝛽

+
𝜕𝑢𝛽

𝜕𝑥𝛼
) + (𝜂𝐵 −

2𝜂

3
)
𝜕𝑢𝛾

𝜕𝑥𝛾
𝛿𝛼𝛽] + 𝑭𝛼    (6) 

Traditionally, equations governing continuum multiphase flow were obtained by 

extending single-phase equations and were semi-empirical in nature [13]. This approach 

is deficient in terms of including physical phenomena underpinning the evolution of 

macroscale variables in complex flow cases.  

Conservation of mass and momentum requires that the velocity of both components in a 

multiphase flow situation be the same at the fluid interface as can be seen in Figure 1.  

 

Figure 1- The velocity profile for two-phase Poiseuille flow [14, 15]. 

This requirement results in the following two equations at the interface [13]: 

𝒖1 = 𝒖2                                                                                                                                 (7) 

𝒏 × 𝑷1 − 𝒏 × 𝑷2 + 2𝜎𝐻𝒏 = 0                                                                                        (8) 



 

5 
 

Relative adherence of the two fluids and lack of mass transfer are expressed in equations 

7 and 8 [13]. Commonly, no-slip is assumed at the fluid-solid interface. A no-slip 

condition means that fluid does not move relative to the solid at the fluid-solid interface. 

As can be seen in Figure 2, no-slip flow occurs at low values of the Knudsen number, i.e. 

when Knudsen number is less than approximately 10-3.  

 

 

Figure 2- Flow regimes based on the Knudsen number [16]. 

Further difficulties arise when multiphase flow occurs in complex geometries, e.g. in 

porous media. The resultant difficulties have implications for both experimental 

measurements and mathematical modelling. At the microscale, the forces driving flow 

include: applied pressure difference, electric fields, capillary forces and gradients in 

interfacial tension [17]. Additional dimensionless numbers used to characterise 

multiphase flow in porous media include the mobility (M), capillary number (Ca) and 

bond number (Bo) [14]: 

𝑀 =
𝜇𝑤
𝜇𝑔

;   𝐶𝑎𝑖 =
𝜇𝑖𝑢𝑖
𝜎

;   𝐵𝑜 =
(𝜌𝑤 − 𝜌𝑔)𝑔𝐿

2

𝜎
                 (9) 

Weber number is also an important dimensionless number where droplet or bubble 

deformation is of interest [18]:  

𝑊𝑒 =
𝜌𝑢2𝑑

𝜎
                                                                                 (10) 

It relates the inertial forces to the surface tension generated forces [10, 18]. Weber number 

is commonly used in the study of droplet and bubble break-up. For example, 

Unnikrishnan et al. [19] studied droplet splashing on chemically modified metallic 

surfaces at high Weber numbers (greater than 200). Montessori et al. [20] used the 

Entropic LBM model to simulate droplet collisions at high Weber numbers. Different 

Weber number expressions also exist for use in various correlations, which are used in, 



 

6 
 

for example, entrainment studies [21]. At very high values of the Weber number surface 

tension considerations can be neglected [10]. We = 1 means that inertial and surface 

tension forces are equally important. Weber number can also be used to predict the degree 

of surface turbulence, with Weber number less than 2.0 indicting lack of surface 

turbulence [22]. At very high values of Weber number, the concept of surface turbulence 

becomes obsolete as the flow becomes jetting, spraying or atomising in nature [22]. 

According to Campbell, Weber number has not been used to its full potential in some 

fields of research including casting research [22].  

As an example of a multiphase case encountered in porous media, immiscible 

displacement in porous media can be classified into three categories: stable displacement, 

viscous fingering and capillary fingering (illustrated in Figure 3) [23]. Inertial and 

buoyancy (gravity) forces were neglected in Lenormand’s et al. [23] models, inclusion of 

which could be examined by, for example, the addition of Bond number (as shown in the 

inset) [24]. Evidently, considerable complexity is encountered in this type of problems. 

 

Figure 3- Types of immiscible displacement in porous media [23-25]. 

In order to penetrate the porous medium, the invading liquid needs to overcome capillary 

forces which manifest themselves in the form of threshold pressure (Pc), given by the 

Young-Laplace equation [23]:  

𝑃𝑐 =
2𝜎 cos 𝜃

𝑟
                                                                              (11) 

Unstable displacement can lead to trapping of the non-wetting phase.  
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At low values of the Reynolds number, inertial forces can usually be ignored, leading to 

simplification. For inertial forces to be negligible, Reynolds number should be smaller 

than one.  Reynolds number could be smaller than one due to low velocity and small 

diameter of pores/flow channels [13]. Low velocities mean that compressibility effects 

can be ignored [17]. 

2.1.1. Thermal Effects 

The equations for studying thermal effects accompanying the Navier-Stokes equations 

can track either the internal energy or total energy.  

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑒) =  𝑐𝑉𝑇                                                           (12) 

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 (𝐸) = 𝑒 + 0.5|𝒖|2                                                   (13) 

These energy equations take the following respective forms [26]:  

𝜕(𝜌𝑒)

𝜕𝑡
+ ∇ ∙ (𝜌𝑒𝒖) = ∇ ∙ (𝜆∇𝑇) − 𝑝∇ ∙ 𝒖 + 𝜫: ∇𝒖                        (14) 

𝜕(𝜌𝐸)

𝜕𝑡
+ ∇ ∙ (𝜌𝐸𝒖) = ∇ ∙ (𝜆∇𝑇) − ∇ ∙ (𝑝𝒖) + ∇ ∙ (𝜫 ∙ 𝒖)          (15) 

Where 𝜫 is the viscous stress tensor and 𝜫:∇𝒖 is the viscous heat dissipation. Assuming 

that the compression work and viscous heat dissipation can be neglected, leads to the 

following equation after substituting in temperature for the internal energy [26]:  

𝜕(𝜌𝑐𝑉𝑇)

𝜕𝑡
+ ∇ ∙ (𝜌𝑐𝑉𝑇𝒖) = ∇ ∙ (𝜆∇𝑇)                                               (16) 

In the case of constant heat capacity, the above temperature equation simplifies further to 

[26]:  

𝜕𝑇

𝜕𝑡
= −𝒖 ∙ ∇𝑇 +

1

𝜌𝑐𝑉
∇ ∙ (𝜆∇𝑇)                                                         (17) 

Thermal conductivity (λ) is expressed in Fourier’s law [27]: 

𝒒 = −𝝀∇T                                                                                              (18) 

Thermal conductivity is an important value in heat transfer and it is a thermophysical 

property [27]. Thermal conductivity is the most important property in the field of heat 

transfer [28]. It is closely related to a number of other heat transfer parameters. One of 

these related parameters is the thermal diffusivity (α), and it is given by [29]:  
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𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 (𝛼) =
𝜆

𝜌𝑐𝑃
                                                (19) 

The use of heat capacity at constant pressure (cP) or heat capacity at constant volume (cV) 

depends on system conditions. Heat capacity at constant pressure is higher than heat 

capacity at constant volume for gases, due to the need to perform work during gas 

expansion. Heat capacity ratio is the value of heat capacity at constant pressure divided 

by heat capacity at constant volume and it is an important thermodynamic property. It is 

a constant for an ideal gas, but its value varies with temperature and pressure for non-

ideal gases [30]. In multiphase studies of bubbles, the heat capacity ratio is usually 

assumed to be a constant [30]. However, small changes in the heat capacity ratio were 

found to have considerable effects on gas velocity, bubble diameter and distribution of 

velocity of characteristic bubbles [30].  

Prandtl number (Pr) is a useful dimensionless number which is used in thermal analysis. 

It is specific to the fluid and fluid state and it compares the extent of momentum 

diffusivity to thermal diffusivity [31]: 

𝑃𝑟 =
𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦

𝛼
=
𝑐𝑃𝜇

𝜆
                                              (20) 

If the amount of heat transfer is significant, thermal effects will have a substantial effect 

on the state of a system and will characterise it. After a certain value of heat flux, boiling 

will occur leading to phase change. In this process, bubbles are nucleated and grow until 

departure from the heating element. At high values of wall superheat, a vapour film forms 

which separates the liquid from the heating element. The transition region between the 

two modes of boiling is unstable [26, 32]. Boiling behaviour is often characterised in the 

form of boiling curves as illustrated in Figure 4. 
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Figure 4- A pool boiling curve illustrating boiling phenomena (CHF stands for critical heat flux) [33]. 

Formation of a liquid film can hamper the boiling process due to reduced contact of liquid 

with the heating surface. Clearly, heat flux rapidly decreases after the critical heat flux 

value is exceeded and significant additional wall superheat is required to reach an equally 

high value of heat flux. Therefore, change from fully developed nucleate boiling to 

transition boiling is generally unwanted due to loss of efficiency. The boiling process is 

quite complex with different factors capable of enhancing or reducing heat transfer. 

Studies have found that dissolved gas in the liquid phase can boost the heat transfer 

coefficient [34]. Higher heat transfer coefficient allows to reach the same heat flux with 

lower wall superheats. The ability to use lower wall superheat is advantageous in terms 

of efficiency and the ability to use cheaper materials in construction of heat transfer 

equipment. It can also slow down corrosion and prevent degradation of heat sensitive 

substances, e.g. certain foods. Heat transfer in boiling processes can also be enhanced by 

artificial modification of surface properties and conditions [35]. For example, bubble 

nucleation is promoted by hydrophobic surfaces [35]. Artificial nucleation sites could be 

machined on heating surfaces. The role of surface roughness in droplet spreading on a 

surface is illustrated in Figure 5 [36]: 
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Figure 5- Visualisation of phenomena present in the edge of a spreading droplet at scales from nanometres to 

macroscale. Figure obtained from Reference [36]. 

2.2.Multi-Scale Modelling of Multiphase Flows 

Methods for simulating fluid dynamics can be conveniently classified according to the 

scale (microscale, mesoscale and macroscale) on which they analyse the underlying 

physics. Physical complexities of fluid behaviour mean that physical phenomena exist 

which are difficult to capture accurately, even if the simulation method is well-matched 

to the scale of interest. This partly arises from the fact that multiphase flows include 

physical phenomena which span multiple scales. In other words, microscale physical 

behaviour can have a considerable impact on the macroscale observables.  

2.2.1. Microscale 

The smallest scale for computer simulations of fluid flows is the microscale. Models at 

this scale work with individual particles and aim to solve the Newton’s equations of 

motion to obtain full information on the state of the system [9]. These models are not 

amenable to simulating domain sizes of practical interest in reasonable timescales. They 

are limited to microns and microseconds [37]. Their lack of practical use is a consequence 

of two factors. Firstly, computational expense due to the extremely large number of 

particles per mole of a substance given by the Avogadro’s constant. And secondly, 

inability to deterministically predict the state of the system for times greater than the 

inverse of the Lyapunov exponent [9]. Molecular dynamics (MD) [38] and direct 

simulation Monte Carlo method (DSMC) [39] fall into this category [37]. Microscale 

methods are more successful at providing a qualitative understanding of phenomena 

rather than providing quantitative data [35].  
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2.2.2. Mesoscale 

Mesoscale is smaller than the continuum scale but larger than the molecular scale. 

Mesoscopic models employ statistical mechanics to predict physical phenomena by 

working with statistical groups of molecules. The main advantages which these models 

aim to exploit are significantly reduced computational costs compared to microscale 

models and more accurate physical description of fluids than that offered by continuum 

models. These models are designed to recover macroscopic properties such as density, 

pressure and velocity. LBM is an example of a mesoscale fluid flow simulator. It is well-

suited to multiphase and/or multicomponent flows which include interfacial dynamics 

connected to fluid interparticle interactions [40, 41]. A method of efficiently simulating 

macroscopic porous media using LBM was reported [42].  

2.2.3. Macroscale 

The majority of commercial codes fall into this category. Traditional computational fluid 

dynamics (CFD) is an example of a macroscopic method. CFD models are based on 

obeying the conservation laws for mass, momentum and energy and on solving Navier-

Stokes and Poisson’s equations [17].  

Multiphase methods include the volume of fluid (VOF) [43], the level set method (LSM) 

[44], the phase-field (PF) method and the constrained interpolated propagation (CIP) 

method [45]. Hirt and Nichols’ VOF method [46] has been extensively applied and it has 

been extended to thermal cases including nucleate pool boiling at a low density ratio [35].  

The discretisation methods include finite volume, finite difference and finite element 

methods [47]. 

2.2.4. Thermodynamic Aspects of Multiphase Flows 

Simulation of multiphase flows requires thermodynamic modelling. A wide-variety of 

equations of state exists in the literature for describing thermodynamic behaviour. They 

can be divided into different families of equations of state, including [48]: 

- Cubic equations of state (Van der Waals, Carnahan-Starling [49], Peng-Robinson 

[50], Soave-Redlich-Kwong [51]) 

- Corresponding state methods (Lee-Kesler [52]) 

- Extended corresponding state methods (SPUNG [53]) 

- Statistical associating fluid theory (SAFT [54]) 

- Multiparameter equations of state (GERG-2008 [55]) 
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The basics of the equations of state listed above derive from the ideal gas law, statistical 

mechanics or experimental data combined with an optimisation procedure [56]. Their 

complexity varies significantly and, naturally, some equations of state are better suited to 

computer simulations than others. Cubic equations of state are widely employed in 

computer simulations. Their main benefit is computational efficiency whilst the main 

drawback experienced by cubic equations of state is lack of accuracy [48].   

The main properties required of equations of state for use in computer simulations are 

[48]:  

- Accuracy/ consistency 

- Computational speed/ robustness 

- Predictive capability 

Spinodal points are currently viewed as a good starting position for developing equations 

of state [56]. They denote the point at which homogeneous liquid becomes intrinsically 

unstable and spontaneously separates into two distinct stable phases [56]. In a phase 

diagram, spinodal points are located inside the two-phase region denoted by the 

coexistence curve [57]. Whilst the spinodal and coexistence curves are distinct, they do 

meet at the critical point. Both higher and lower spinodal points can be conveniently 

visualised in Figure 6, as the local maximum and local minimum, or alternatively as the 

beginning and end of the unstable region.  

The usefulness of spinodal points comes from the fact that multiple thermodynamic 

values and identities are known to be equal to zero at these points including [56]: 

- the bulk modulus, 

- the inverse isobaric heat capacity, 

- the second derivative of Gibbs free energy. 

In order for an equation of state to be fit for use in computer simulations, the unstable 

region located within the spinodal points must not have local minima or maxima, i.e. it 

must resemble the shape of the unstable region curve in Figure 6 [56]. This particular 

property of the unstable branch is termed to be the thermodynamically consistent 

behaviour and the equation of state is said to have a single Maxwell loop if the condition 

is fulfilled [56]. A significant challenge facing thermodynamic researchers today is the 

fact that the most accurate group of equations of state, i.e. the multiparameter equations 

of state group, has a second artificial Maxwell loop [56].  
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Figure 6- Illustration of stable, metastable and unstable regions in multiphase fluids using pure methane isotherms 

at 175K obtained using the Peng-Robinson equation of state [56]. 

 

2.3.Lattice Boltzmann Methods for Multiphase Flows 

Lattice Boltzmann method (LBM) simulates ersatz or synthetic matter rather than real 

matter and an explicit assumption is made that links between simulation and reality can 

be made by setting dimensionless numbers to the same values [9]. LBM works by 

colliding and propagating fictitious particles on lattices which are usually square (2D) or 

cubic (3D), but other lattice geometries are also possible. Algorithmic calculations are 

carried out with distribution functions which are probabilities of finding a particle with a 

particular speed in an area at a particular time. In other words, the distribution function 

quantifies the density of mass in physical space and in velocity space. 

Particle speeds must be chosen to ensure sufficient symmetry which is needed to recover 

the rotational invariance of the momentum flux tensor at the macroscopic level [41]. The 

most popular models include the D2Q9 model (9 particle velocities including a stationary 

particle at the centre) in two dimensions and the D3Q19 model in three dimensions. 

Lattices need to obey isotropy requirements dependent on the physics of the problem to 

be solved. For fluid dynamics problems, moments (weighted by wi with particle speeds 

termed ci) up to fifth order are usually necessary and this leads to the following 

requirements [12]: 
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∑𝑤𝑖
𝑖

= 1                                                                                                         (21) 

∑𝑤𝑖𝑐𝑖𝛼
𝑖

= 0                                                                                                    (22) 

∑𝑤𝑖𝑐𝑖𝛼𝑐𝑖𝛽
𝑖

= 𝑐𝑠
2𝛿𝛼𝛽                                                                                      (23) 

∑𝑤𝑖𝑐𝑖𝛼𝑐𝑖𝛽𝑐𝑖𝛾
𝑖

= 0                                                                                         (24) 

∑𝑤𝑖𝑐𝑖𝛼𝑐𝑖𝛽𝑐𝑖𝛾𝑐𝑖𝜇
𝑖

= 𝑐𝑠
4(𝛿𝛼𝛽𝛿𝛾𝜇 + 𝛿𝛼𝛾𝛿𝛾𝜇 + 𝛿𝛼𝜇𝛿𝛽𝛾)                         (25) 

∑𝑤𝑖𝑐𝑖𝛼𝑐𝑖𝛽𝑐𝑖𝛾𝑐𝑖𝜇𝑐𝑖𝑣
𝑖

= 0                                                                            (26) 

For many practical cases the Mach number should be smaller than 0.1 [58]; hence LBM 

simulates nearly incompressible fluids. Since LBM is unstable at high velocities, 

decreasing viscosity is the main way of increasing the Reynolds number. However, 

decreasing viscosity comes with its own challenges.  

By surveying the lattice Boltzmann equations, it is not immediately clear what are the 

continuum equations being simulated. Navier-Stokes equations can be obtained using the 

Chapman-Enskog [59] perturbative treatment of LBM models. Perturbation methods 

provide approximate solutions to models which are difficult to solve analytically [60]. 

Perturbation expansion is used because there is no convenient method of calculation of 

the non-equilibrium part of the distribution function. It is performed by expanding the 

distribution function around the equilibrium distribution using the Knudsen number as 

the expansion/smallness parameter in the following fashion [12]: 

𝑓𝑖 = 𝑓𝑖
𝑒𝑞 + 𝜖𝑓𝑖

(1)
(+𝜖2𝑓𝑖

(2)
+⋯)                                                           (27) 

The terms in the brackets in the above equation are usually neglected for the purposes of 

finding the Navier-Stokes equations. Setting fi to fi
eq results in the Euler momentum 

equation; therefore irreversible losses are embedded in the non-equilibrium part of the 

distribution function. 



 

15 
 

2.3.1. Development - Route from Lattice Gas Cellular Automata 

LBM was first proposed by McNamara and Zanetti for modelling hydrodynamics as an 

alternative to the lattice gas cellular automata (LGCA) [1, 9, 61]. LGCA particles are of 

a Boolean type, a feature which generates statistical noise. On the other hand, LBM uses 

real numbers which eliminates noise. The first LBM was non-linear and had the following 

form [9]: 

∆𝑖𝑓𝑖 = 𝐶𝑖(𝑓1, … , 𝑓𝑏)                                                                                                           (28) 

The multibody collision operator of the nonlinear LBM was too computationally 

intensive, but this problem was solved by the quasilinear LBM where the collision matrix 

in the form of a scattering matrix was calculated only once [9, 62]: 

∆𝑖𝑓𝑖 = 𝐴𝑖𝑗(𝑓𝑗 − 𝑓𝑗
𝑒)                                                                                                         (29) 

The nonlinearity which describes the nonlinear Navier-Stokes equation is embedded in 

the fi
e term [9]. Transition to MRT [63] (multiple relaxation time) and LBGK [64] (lattice 

Bhatnagar-Gross-Krook) schemes is made by treating the eigenvalues as freely-tuneable 

parameters, i.e. relaxation times [9]. The LBGK consists of a diagonal matrix with density 

and momentum conservation embedded in the equilibrium distribution function [9, 65, 

66]: 

𝐴𝑖𝑗 → −𝜔𝛿𝑖𝑗                                                                                                                      (30) 

All non-zero values in the diagonal matrix are set to the same value for the LBGK 

collision operator; hence, the high degree of simplification:  

∆𝑖𝑓𝑖 = −
1

𝜏
(𝑓𝑗 − 𝑓𝑗

𝑒)                                                                                                        (31) 

2.3.2. Development - Route from the Boltzmann Equation 

Researchers conveniently proved that LBM can be derived from the continuous 

Boltzmann equation; therefore it is independent on the theoretical grounds from the 

LGCA [61, 67, 68]. LBM is a discretisation of the continuous Boltzmann equation [68]. 

The continuous Boltzmann equation has the following form [9]: 

[𝜕𝑡 + 𝑣⃗ ∙ 𝜕𝑥⃗ + 𝐹⃗
𝑒𝑥𝑡 ∙ 𝜕𝑝⃗]𝑓 = ∫(𝑓1′𝑓2′ − 𝑓1𝑓2) 𝑔𝜎 (𝑔, 𝛺) 𝑑𝛺 𝑑𝑝⃗2                          (32) 

The main source of complexity in the lattice Boltzmann equation is the collision operator. 

Boltzmann formulated his equation for dilute, monoatomic gases to simplify the collision 
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operator. Under these conditions two particles collide instantaneously, head-on in an 

elastic manner (rotational and vibrational energy is not taken into account, because 

monoatomic molecules do not rotate or vibrate).  

Macroscopic variables are obtained from moments of the distribution function [12]:  

𝜌(𝒙, 𝑡) = ∫𝑓(𝒙, 𝝃, 𝑡)𝑑3𝜉                                                            (33) 

𝜌(𝒙, 𝑡)𝒖(𝒙, 𝑡) = ∫𝝃𝑓(𝒙, 𝝃, 𝑡)𝑑3𝜉                                             (34) 

𝜌(𝒙, 𝑡)𝐸(𝒙, 𝑡) =
1

2
∫|𝝃|2𝑓(𝒙, 𝝃, 𝑡)𝑑3𝜉                                     (35) 

𝜌(𝒙, 𝑡)𝑒(𝒙, 𝑡) =
1

2
∫|𝒗|2𝑓(𝒙, 𝝃, 𝑡)𝑑3𝜉                                      (36) 

The equilibrium distribution is given by the Maxwell-Boltzmann equilibrium distribution 

[9, 12]:  

𝑓𝑒𝑞(𝒙, |𝒗|, 𝑡) = 𝜌 (
1

2𝜋𝑅𝑇
)
3/2

𝑒−|𝒗|
2/(2𝑅𝑇)                               (37) 

The statistical nature of the above equation is clearly evident. It is derived using 

Lagrangian multipliers and elementary quadrature of Gaussian integrals [9]. Lagrangian 

multipliers are chosen to conserve density, momentum and energy and maximise the H-

function which monotonically increases with time [9] (or decreases depending on the sign 

convention used). The important point is that collisions always move the distribution 

function towards equilibrium [12]. The equilibrium in question, when particle collisions 

are involved, is the local equilibrium rather than the global equilibrium. If the system was 

at global equilibrium, then there would be no dynamics present in the system which to 

study. The H-function takes the following form [9, 12]:  

ℋ = ∫𝑓 𝑙𝑛𝑓 𝑑3𝜉  𝑜𝑟 − ∫𝑓 𝑙𝑛𝑓 𝑑3𝜉                                      (38) 

The collisional conservation rules can be represented by moments of the collision 

operator [12]: 

∫𝛺(𝑓)𝑑3𝜉 = 0                                                                            (39) 

∫𝝃𝛺(𝑓)𝑑3𝜉 = 𝟎                                                                         (40) 
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∫|𝝃|2𝛺(𝑓)𝑑3𝜉 = 0                                                                    (41) 

∫|𝒗|2𝛺(𝑓)𝑑3𝜉 = 0                                                                    (42) 

Lattice Boltzmann equation is obtained by discretising the continuous Boltzmann 

equation in velocity space, physical space and in time. The discretised lattice Boltzmann 

equation takes the following form [12]: 

𝑓𝑖(𝒙 + 𝒄𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖(𝒙, 𝑡) + 𝛺𝑖(𝒙, 𝑡)                                                                      (43) 

The discrete equilibrium takes the following form [12]: 

𝑓𝑖
𝑒𝑞(𝒙, 𝑡) = 𝑤𝑖𝜌 (1 +

𝒖 ∙ 𝒄𝒊
𝑐𝑠2

+
(𝒖 ∙ 𝒄𝒊)

2

2𝑐𝑠4
−
𝒖 ∙ 𝒖

2𝑐𝑠2
)                                                        (44) 

The equilibrium distribution has the same moments as the distribution function [12]: 

∑𝑓𝑖
𝑒𝑞

𝑖

=∑𝑓𝑖
𝑖

= 𝜌                                                                                                            (45) 

∑𝒄𝑖𝑓𝑖
𝑒𝑞

𝑖

=∑𝒄𝑖𝑓𝑖
𝑖

= 𝜌𝒖                                                                                                  (46) 

The equilibrium moments are given by the following equations [12]:  

𝛱𝑒𝑞 =∑𝑓𝑖
𝑒𝑞

𝑖

= 𝜌                                                                                                              (47) 

𝛱𝛼
𝑒𝑞 =∑𝑓𝑖

𝑒𝑞𝑐𝑖𝛼
𝑖

= 𝜌𝑢𝛼                                                                                                   (48) 

𝛱𝛼𝛽
𝑒𝑞 =∑𝑓𝑖

𝑒𝑞𝑐𝑖𝛼𝑐𝑖𝛽
𝑖

= 𝜌𝑐𝑠
2𝛿𝛼𝛽 + 𝜌𝑢𝛼𝑢𝛽                                                                     (49) 

𝛱𝛼𝛽𝛾
𝑒𝑞 =∑𝑓𝑖

𝑒𝑞𝑐𝑖𝛼𝑐𝑖𝛽𝑐𝑖𝛾
𝑖

= 𝜌𝑐𝑠
2(𝑢𝛼𝛿𝛽𝛾 + 𝑢𝛽𝛿𝛼𝛾 + 𝑢𝛾𝛿𝛼𝛽)                                     (50) 

The third order moment contains an error for standard lattices which leads to an error in 

the macroscopic momentum equation [12]. In standard lattices, it can be seen that higher-

order moments depend on the lower-order moments [12]:  

𝑐𝑖𝛼
3 = 𝑐𝑖𝛼 (

∆𝑥

∆𝑡
)
2

                                                                                                                  (51) 
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So 

𝛱𝑥𝑥𝑥
𝑒𝑞 =∑𝑐𝑖𝑥

3

𝑖

𝑓𝑖
𝑒𝑞 = (

∆𝑥

∆𝑡
)
2

∑𝑐𝑖𝑥𝑓𝑖
𝑒𝑞

𝑖

= (
∆𝑥

∆𝑡
)
2

𝛱𝑥
𝑒𝑞                                              (52) 

For example, the D2Q9 velocity set has only nine independent moments [12]. 

Discretisation in Velocity Space 

Velocity space can be discretised using the Mach number expansion or the Hermite series 

expansion with the Hermite series being more rigorous due to its orthogonality [12].  

Hermite polynomial of n-th order in d spatial dimensions takes the following form [12]:  

𝑯(𝑛)(𝒙) = (−1)𝑛
1

𝜔(𝒙)
∇(𝑛)𝜔(𝒙)                                                                                     (53) 

With the weight/generating function 𝜔(𝒙) [12]:  

𝜔(𝒙) =
1

(2𝜋)𝑑/2
𝑒−𝒙

2/2                                                                                                      (54) 

Hermite polynomials are orthogonal with respect to 𝜔(𝑥) [12]: 

∫𝜔(𝒙)𝐻𝜶
(𝑛)(𝒙)𝐻𝜷

(𝑚)(𝒙)𝑑𝑑𝑥 =∏𝑛𝑖! 𝛿𝑛𝑚
(2)

𝑑

𝑖=1

𝛿𝜶𝜷
(𝑛+𝑚)

                                                  (55) 

Suitable, continuous functions can be represented as a series of Hermite polynomials [12]: 

𝑓(𝒙) = 𝜔(𝒙)∑
1

𝑛!

∞

𝑛=0

𝒂(𝑛) ∙ 𝑯(𝑛)(𝒙),     𝒂(𝑛) = ∫𝑓(𝒙)𝑯(𝑛)(𝒙)𝑑𝑑𝑥                          (56) 

Coefficients of the Hermite series expansion are directly connected to the conserved 

moments which makes them highly suitable [12]. The equilibrium distribution and 

distribution function can be obtained up to n-th order (only terms up to the third moment 

are required) from the following equations [12]: 

𝑓𝑒𝑞(𝝃) ≈ 𝜔(𝒙)∑
1

𝑛!

𝑁

𝑛=0

𝒂(𝑛),𝑒𝑞 ∙ 𝑯(𝑛)(𝝃)                                                                          (57) 

𝑓(𝝃) ≈ 𝜔(𝒙)∑
1

𝑛!

𝑁

𝑛=0

𝒂(𝑛) ∙ 𝑯(𝑛)(𝝃)                                                                                  (58) 
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The Gauss-Hermite quadrature rule provides the exact sums of integrals using a small 

number of discrete points [12]: 

∫𝜔(𝒙)𝑃(𝑁)(𝒙) 𝑑𝑑𝑥 =∑𝑤𝑖𝑃
(𝑁)(𝒙𝒊)

𝑛

𝑖=1

                                                                         (59) 

Discretisation in Space and Time 

Method of characteristics is used to transform the non-dimensional discrete-velocity 

Boltzmann equation  

𝜕𝑡𝑓𝑖 + 𝑐𝑖𝛼𝜕𝛼𝑓𝑖 = 𝛺𝑖                                                                                                             (60) 

from a first-order hyperbolic partial differential equation into a useful ordinary 

differential equation form [12]: 

𝑑𝑓𝑖
𝑑𝜁

= (
𝜕𝑓𝑖
𝜕𝑡
)
𝑑𝑡

𝑑𝜁
+ (

𝜕𝑓𝑖
𝜕𝑥𝛼

)
𝑑𝑥𝛼
𝑑𝜁

= 𝛺𝑖(𝒙(𝜁), 𝑡(𝜁))                                                          (61) 

Where “ζ” parametrises a trajectory in space and  

𝑑𝑡

𝑑𝜁
= 1   𝑎𝑛𝑑    

𝑑𝑥𝛼
𝑑𝜁

= 𝑐𝑖𝛼                                                                                                (62) 

Integrating both sides of the ODE gives: 

𝑓𝑖(𝒙 + 𝒄𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝑖(𝒙, 𝑡) = ∫ 𝛺𝑖(𝒙 + 𝒄𝑖𝜁, 𝑡 + 𝜁)𝑑𝜁
∆𝑡

0

                                      (63) 

The right-hand side of the above equation needs to be discretised. It is found that the 

first-order discretisation leads to an equation that is second-order accurate in time [12]. 

The explicit forward Euler scheme is most commonly employed, leading to the familiar 

LBE: 

𝑓𝑖(𝒙 + 𝒄𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖(𝒙, 𝑡) + ∆𝑡𝛺𝑖(𝒙, 𝑡)                                                               (64) 

Runge-Kutta methods and other implicit methods can also be employed to improve 

stability and accuracy, but they are memory-intensive [12].  

2.3.3. Lattice Bhatnagar-Gross-Krook (Single Relaxation Time) 

Lattice BGK [64]  (Bhatnagar-Gross-Krook) is the simplest and most commonly used 

form of the collision operator. The model has only one relaxation rate, which means that 

physical parameters (e.g. kinetic and bulk viscosities) are set to the same value. Using 

this collision operator leads to boundary conditions which are dependent on viscosity. 
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LBGK is restricted to unity Prandtl and Schmidt numbers [17, 69, 70].  

2.3.4. Multiple Relaxation Time 

Multiple relaxation time (MRT) [63] collision operator is significantly better than the 

LBGK collision operator in terms of stability, insensitivity to spurious acoustic waves 

and isotropy [45, 63, 71, 72]. This makes MRT highly suitable for use in challenging 

cases. MRT is often employed for multiphase flows [17].  

Collision is carried out in momentum space and propagation is carried out using 

distribution functions. Moments are relaxed using individual rates. Conversion between 

moments and distribution functions is linear. It is carried out using a conversion matrix 

and its inverse. The conversion matrix is constructed either using Gram-Schmidt 

orthogonalisation (more popular option due to diagonal relaxation matrix) or using 

Hermite polynomials [12]. Mohamad explained the practical basics of MRT codes [73]. 

The main equations of the MRT collision operator are as follows [12, 63, 73-75]:  

𝑚𝑘 =∑𝑀𝑘𝑖𝑓𝑖         𝑓𝑜𝑟 𝑘 = 0,… . , 𝑞 − 1.

𝑞−1

𝑖=0

                                                                   (65) 

𝑓𝑖 =∑𝑀𝑖𝑘
−1𝑚𝑘

𝑘

                                                                                                                  (66) 

𝒇(𝒙 + 𝒄𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝒇(𝒙, 𝑡) = −𝑴−1𝑺[𝒎(𝒙, 𝑡) −𝒎𝑒𝑞(𝒙, 𝑡)]∆𝑡                        (67) 

𝑺 = 𝑑𝑖𝑎𝑔(1, 𝜔𝑒 , 𝜔𝜖 , 1, 𝜔𝑞 , 1, 𝜔𝑞 , 𝜔𝑣, 𝜔𝑣)                                                                      (68) 

Individual relaxation rates can be adjusted to increase stability. Tuning these rates is not 

easy and different authors suggest different values. Published work exists on tuning the 

MRT relaxation parameters and it can aid the task of setting the relaxation rates [75]. A 

convenient strategy is to initially set the MRT relaxation rates to the two relaxation time 

(TRT) model and then to vary them to achieve the required objective. The first, fourth 

and sixth relaxation rates correspond to mass and momentum conservation. Mass and 

momentum are conserved in collisions. Some authors advocate setting the rates 

corresponding to the conserved moments to an arbitrary value, e.g. zero; however to 

preserve the benefits of trapezoidal integration they should be set to a nonzero value [76].  

𝜔𝑒 is responsible for bulk viscosity relaxation, 𝜔𝜖 corresponds to kinetic energy square, 

𝜔𝑞 is called the energy-flux and 𝜔𝑣 is the kinematic viscosity mode [75]. Only the bulk 

viscosity and kinematic viscosity relaxation rates are hydrodynamically-relevant. The 

remaining modes are tuned to achieve accurate simulations. 
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In the relaxation matrix, 𝜔𝑒 , 𝜔𝜖  and 𝜔𝑣 are symmetric modes and 𝜔𝑞 is an antisymmetric 

mode [75]. Magic parameter is a convenient tool for tuning MRT models [77]. The magic 

parameter used in this study was calculated in the following manner: 

𝛬 = (
1

𝜔𝑞
−
1

2
) (

1

𝜔𝑣
−
1

2
)                                                                                                 (69) 

Gram-Schmidt equilibrium moments can be calculated from known values of density and 

velocity [73, 74]: 

𝜌𝑒𝑞 = 𝜌                                                                                                                               (70) 

𝑒𝑒𝑞 = −2𝜌 + 3𝜌(𝑢𝑥
2 + 𝑢𝑦

2)                                                                                            (71) 

𝜖𝑒𝑞 = 𝜌 − 3𝜌(𝑢𝑥
2 + 𝑢𝑦

2)                                                                                                  (72) 

𝑗𝑥
𝑒𝑞 = 𝜌𝑢𝑥                                                                                                                           (73) 

𝑞𝑥
𝑒𝑞 = −𝜌𝑢𝑥                                                                                                                        (74) 

𝑗𝑦
𝑒𝑞 = 𝜌𝑢𝑦                                                                                                                            (75) 

𝑞𝑥
𝑒𝑞 = −𝜌𝑢𝑦                                                                                                                        (76) 

𝑝𝑥𝑥
𝑒𝑞 = 𝜌(𝑢𝑥

2 − 𝑢𝑦
2)                                                                                                             (77) 

𝑝𝑥𝑦
𝑒𝑞 = 𝜌𝑢𝑥𝑢𝑦                                                                                                                     (78) 

In the Gram-Schmidt approach, the conversion matrix is constructed using a set of 

orthogonal vectors starting with conserved moments (i.e. density and momentum) [12]. 

MRT is computationally more intensive than the LBGK, but it allows to recoup and even 

save computational resources by setting viscosity to a lower value than practicable using 

LBGK and by using coarser grids while maintaining the same level of accuracy [78]. This 

stems from the fact that lower viscosities lead to faster convergence of simulations.  

MRT, when properly tuned, leads to viscosity-independent permeability [79, 80]. 

Therefore, using MRT is recommended for simulating multiphase systems with an 

appreciable viscosity ratio [78]. 

Adjusting the relaxation parameters to obtain high bulk viscosity (ten times greater than 

shear viscosity) can increase stability and reduce spurious waves [81, 82].   
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A cascaded LBM model, which is similar to the MRT, was reported to give improved 

performance at high Reynolds numbers and result in lower spurious currents [83].  

2.3.5. Two Relaxation Time 

The two relaxation time (TRT) method is simpler than the MRT and takes comparable 

computational time as the single relaxation time (SRT or BGK)  collision operator whilst 

still producing viscosity-independent permeability for any porous medium [77]. It is 

much simpler to tune using the so-called “magic parameters” [77]. As previously 

mentioned, magic parameters are products of the relaxation rates corresponding to the 

symmetric and anti-symmetric collision moments [77].  

2.3.6. Multiphase Models 

Shan-Chen model [84, 85] proposed pseudopotential interactions with origins in the 

kinetic theory at the level of the Boltzmann equation [12]. The model has been extensively 

adopted by varied research communities which use the LBM [86, 87]. The fact that LBM 

and the pseudopotential model have their basis in the kinetic theory lends itself to 

conceptual and practical simplicity which is difficult to match. Yang and Guo found that 

it has connections to the second virial coefficient and the radial distribution function 

(RDF) in the Enskog kinetic theory bestowing it with further physical basis [88]. The free 

energy model  [89, 90] is an example of a macroscopically-derived model in which the 

free energy functional is responsible for representing thermodynamics from which the 

chemical potential and pressure tensor can be derived [12]. Consequently, 

thermodynamic consistency is prescribed as a requirement a priori.  

LBM models tend to employ diffuse interfaces. A characteristic of diffuse multiphase 

models is that an increased resolution is necessary to represent interfaces between phases. 

In diffuse interface models, density and pressure tensor are pivotal parameters which vary 

smoothly across the interface [12]. Pressure tensor is not isotropic in the presence of an 

interface unlike in single-phase fluids. Multiphase physics can be incorporated into 

governing equations in different ways, thanks to the fact that the divergence of the 

pressure tensor is equivalent to a body force density [12].  The pressure tensor must 

incorporate an appropriate equation of state and surface tension effects for valid 

multiphase simulations [12].  

The surface tension is usually introduced in diffuse interface models using the following 

force expression [12]: 

𝑭 = 𝜅𝜌∇∆𝜌                                                                                                                             (79) 
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The pressure tensor can be shown to have the form enclosed in the square brackets [12]: 

𝜕𝛼𝑝𝑏 − 𝐹𝛼 = 𝜕𝛽 [(𝑝𝑏 −
𝜅

2
(𝜕𝛾𝜌)

2
− 𝜅𝜌𝜕𝛾𝜕𝛾𝜌) 𝛿𝛼𝛽 + 𝜅(𝜕𝛼𝜌)(𝜕𝛽𝜌)] = 𝜕𝛽𝑃𝛼𝛽     (80) 

Multicomponent multiphase (MCMP) models are more complex and less stable than 

single component multiphase (SCMP) models. Nevertheless, a number of multiphase 

models was adapted to multicomponent cases, including the pseudopotential model [91] 

and the commercial PowerFLOW software [92]. Yang and Boek found that for flow in 

porous media applications, the multicomponent pseudopotential model is capable of 

simulating high density ratios but with a low viscosity ratio [93]. They also found that 

multicomponent free energy models and multicomponent colour gradient models can 

simulate high viscosity ratios with a low density ratio (roughly equal to 1) [93]. The 

difficulties in carrying out MCMP studies are apparent. Published work on bubble 

distortion uses an unrealistic density ratio of 1 and only focuses on the viscosity ratio 

[14]. One group published results of a rising bubble study which uses a density ratio of 

1.35 and a kinematic viscosity ratio of 2.8 and a Taylor bubble study was published which 

uses a density ratio of 8.7 and a kinematic viscosity ratio of 1 [94]. A high density ratio 

study of an MPMC system focused only on reaction with no flow and used a kinematic 

viscosity ratio of only 1 [95]. Another MPMC study of a reactive system uses a density 

ratio of 25.7 and does not state the kinematic viscosity ratio used [96]. The most 

challenging cases involve dynamic cases with significant departure from local 

equilibrium and steep macroscopic gradients. Each component has its own distribution 

function that propagates, collides and interacts with other components. The physical 

velocity of a multicomponent fluid becomes the barycentric velocity [12, 97]: 

𝒖𝑏 =
1

𝜌
∑(∑𝑓𝑖

(𝜎)
𝒄𝑖

𝑖

+
𝑭(𝜎)∆𝑡

2
)

𝜎

,    𝜌 = ∑𝜌(𝜎)

𝜎

                                                      (81) 

The colour gradient model [98] was the first multiphase LBM model to be proposed in 

the literature. It consists of the BGK collision operator, a two-phase collision operator 

which generates interfacial tension and a recolouring step which generates sharp interface 

and prevents phases from mixing [40]. Introduction of correction terms proved necessary 

to rectify errors in the simulated macroscopic equations due to violation of Galilean 

invariance [26]. The need for inclusion of correction terms suggests that the colour 

gradient model is not particularly suited to the study of dynamic problems. Noteworthy 

research involving the colour gradient model includes simulation of miscible flows [99] 
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and treatment of Galilean invariance for cases dealing with multiphase flows in porous 

media [100]. Liu et al. classified the computational costs of the colour gradient model as 

average [40].  

The Shan-Chen [84, 85] model is constructed by taking into account interactive forces 

between nearest-neighbouring particles and introducing them in the equilibrium velocity 

[40]. The interparticle force is computed as a simple sum [84]: 

𝑭𝑆𝐶(𝒙) = −𝜓(𝒙)𝐺∑𝑤𝑖𝜓(𝒙 + 𝒄𝑖∆𝑡)

𝑖

𝒄𝑖∆𝑡                                                                 (82) 

Taylor series can be used to obtain the continuum form of the force [12, 101]:  

𝑭𝑆𝐶(𝒙) = −𝜓(𝒙)𝐺 (𝑐𝑠
2∆𝑡2∇𝜓(𝒙) +

𝑐𝑠
4∆𝑡4

2
∇∆𝜓(𝒙))                                               (83) 

The equation of state for this model of the force is [12]: 

𝑝𝑏(𝜌) = 𝑐𝑠
2𝜌 +

𝑐𝑠
2∆𝑡2𝐺

2
𝜓2(𝜌)                                                                                         (84) 

Incorporation of complex physicochemical processes is possible [87]. It is particularly 

suited to processes involving interface changes (deformation, coalescence, breakup) [87]. 

This model suffers from a number of shortcomings; however a number of strategies are 

available to alleviate them. Multirange improvements make the model suitable for 

studying complex fluid-wall interactions [102]. The application of the improved models 

to complex porous media constitutes a worthwhile research topic [40]. Shan-Chen models 

can be combined with the MRT [103, 104]. The pressure tensor in the pseudopotential 

model takes the following form (with Δt set to 1) [12, 101]: 

𝑃𝛼𝛽
𝑆𝐶 = (𝑐𝑠

2𝜌 +
𝑐𝑠
2𝐺

2
𝜓2 +

𝑐𝑠
4𝐺

4
(∇𝜓)2 +

𝑐𝑠
4𝐺

2
𝜓𝛥𝜓) 𝛿𝛼𝛽 −

𝑐𝑠
4𝐺

2
(𝜕𝛼𝜓)(𝜕𝛽𝜓)        (85) 

Where, ψ is an effective density function (pseudopotential) and G plays the role of a 

temperature-like parameter. The model is thermodynamically consistent when ψ(ρ) = ρ; 

however, this form of pseudopotential is usually unwanted because it does not allow 

simulation of high density ratios [87].  

Improvements which allow adjustment of surface tension independently of density are 

important at very small scales at which surface tension may dominate over inertial and 

gravitational forces [87]. 
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Spurious velocities are one of the main shortcomings of the pseudopotential model [87]. 

Higher order of isotropy pseudopotential model [105] was suggested in order to lower the 

spurious velocities, tune surface tension and adjust thermodynamic consistency. 

However, higher order of isotropy models are not investigated in this work, since 

increasing the interfacial thickness was found to be more efficient than increasing 

isotropy [26, 105]. Expanding the pseudopotential interactions beyond the nearest-

neighbours also requires modification of the boundary conditions making application 

more difficult. One of the main strengths of multirange pseudopotential models is the 

ability to model emulsions, sprays and other multi droplet fluid mixtures [87, 106]. This 

need for multirange interactions in modelling multiple small droplets or bubbles arises 

from the fact that pseudopotential models constructed from a single belt of interactions 

favour the separation of phases into a single droplet/bubble surrounded by the continuous 

phase. 

Multipseudopotential interaction (MPI) [107, 108] is a recent model based on the 

pseudopotential idea which takes into account interaction forces at different ranges. The 

increased number of parameters gives the modeller greater control over thermodynamics 

and allows to reduce the thermodynamic inconsistency [107].  

The free energy model [89, 90] is based on the phase-field theory [40]. This model is 

conceptually completely opposite to the pseudopotential model. In the free energy model, 

the free-energy functional is used to construct the phase interface in a thermodynamically 

consistent manner [40]. A non-ideal pressure tensor is introduced by modifying the 

equilibrium distribution function [26]. The SCMP version of this model violates Galilean 

invariance; however lack of Galilean invariance produces insignificant errors in the 

MCMP version [40]. Similarly as in the colour gradient model, the necessity to introduce 

correction terms does not make this model a natural candidate for dynamic cases. This 

model is suitable for investigating multiphase flow in porous media at low Reynolds 

numbers [40, 78, 109] and it can be used with the MRT [110]. It is relatively stable, but 

it is significantly more computationally intensive than some of the other more efficient 

choices available [102]. 

The mean-field theory model [111] is based on modelling interfacial dynamics using 

molecular interactions which are introduced by using a second (pressure) distribution 

function [40]. The interfacial dynamics are governed using the Cahn-Hilliard equation 

[26]. This treatment means that dynamic cases can be simulated using the model [26]. It 

is relatively stable, but its applications are limited to a density ratio of approximately 15 
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[40]. This model was used to improve the understanding of the Rayleigh-Taylor 

instability [112]. Significant computational overheads are a shortcoming of the mean-

field theory models [40].  

The stabilised diffuse-interface model is related to the mean-field theory model in the 

sense that two distribution functions are used [40]. It can also be seen as an LBE analogue 

of phase field methods [40]. It is particularly useful for solving multiphase problems 

involving high density ratios (up to 1000) [40]. However, this model is complex and this 

could have an adverse impact on its popularity and adoption [40]. 

The entropic model [113] is a recent addition to the list of multiphase methods for the 

LBM. Entropic models mainly find application in the simulation of higher Mach number 

single-phase flows including supersonic flow [114]. The principle of the method is based 

on increasing the kinematic viscosity of the unstable regions according to the H-theorem 

[20]. The kinematic viscosity adjustment is highly localised around the critical regions to 

dampen instabilities in the form of pressure waves [20]. It has been recently reported that 

the entropic model can be combined with the pseudopotential model for multiphase 

simulations [20, 115]. Combination of the pseudopotential model with the newest LBM 

methods highlights continued interest of the LBM community in the pseudopotential 

model.  

2.3.7. Thermal Models 

A number of groups of thermal models for the lattice Boltzmann method exists in the 

literature. Thermal models for the lattice Boltzmann method can be divided into the 

following categories [26]:  

- Multispeed [116] 

- Double-distribution-function (DDF) [117] 

- Hybrid [118] 

The DDF and Hybrid thermal models are often used with pseudopotential and phase-field 

multiphase LBM methods [26]. In DDF models, two distribution functions need to be 

solved. One set of calculations is performed to solve the hydrodynamic distribution 

function and another set of calculations is performed to solve the thermal distribution 

function. The thermal distribution functions are solved within the framework of the LBM. 

The DDF models can be further subdivided into internal-energy-based [119], total-

energy-based [120] and temperature-based [117] models [26].  
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The hybrid  [118, 121] models work similarly to the DDF models in the sense that the 

solution of the hydrodynamic equations is performed separately from the solution of the 

thermal equations [26]. Unlike in the case of DDF models, hybrid methods solve the 

temperature equations using conventional numerical methods, i.e. the finite-volume or 

finite-difference methods [26]. In his book, Patankar outlined numerical discretisation 

methods used in traditional CFD codes [47]. As an example, the fourth-order Runge-

Kutta method can be used to calculate temperature evolution [122]: 

𝑇𝑡+𝛿𝑡 = 𝑇𝑡 +
𝛿𝑡
6
(ℎ1 + 2ℎ2 + 2ℎ3 + ℎ4)                                                 (86) 

ℎ1 = 𝐾(𝑇𝑡)                                                                                                      (87) 

ℎ2 = 𝐾 (𝑇𝑡 +
𝛿𝑡
2
ℎ1)                                                                                     (88) 

ℎ3 = 𝐾 (𝑇𝑡 +
𝛿𝑡
2
ℎ2)                                                                                    (89) 

ℎ4 = 𝐾(𝑇𝑡 + 𝛿𝑡ℎ3)                                                                                      (90) 

The Runge-Kutta method is an iterative method for temporal discretisation. The form of 

the function K with temperature as the argument or independent variable depends on the 

temperature equation to be solved.  

Li et al. [123] used the Gong-Cheng [124] model to illustrate numerical errors in thermal 

simulations, including failure to obey the D2-law for droplet evaporation. The D2-law 

states that the square of the droplet diameter should change linearly over time [7, 123]. It 

is the simplest possible description of droplet vaporisation and combustion and contains 

the following assumptions: spherical symmetry, no spray effects, diffusion being rate-

controlling, isobaric process, flame-sheet combustion, constant gas-phase transport 

properties, gas-phase quasi-steadiness [7].  The other failure of the Gong-Cheng model 

concerned failure of nucleated bubble to break free from the nucleation source during 

departure [123]. Later, Li et al. [125] pointed out mistakes in Gong et al.’s [126] 

derivation of the temperature equation.  

Recently, a number of popular thermal models for the LBM were analysed by Hu et al. 

[127] and ranked according to their qualities. One of the main observations was that the 

temperature-based models are superior to the internal-energy-based models in terms of 

accuracy and thermodynamic consistency [127]. The tested models were ranked from 

best to worst in the following order [127]:   
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1) Hybrid finite-difference scheme by Li et al. [122] 

2) Modified internal-energy-based model by Li et al. [123] 

3) Temperature-based model by Hazi and Markus [128] 

4) Simplified temperature-based model by Peng et al. [129] 

5) Internal-energy-based model by Zhang and Chen [130] 

Hu et al. [127] also carried out simulations to investigate heat transition through a static 

phase interface by combining thermal models with the piecewise-linear EOS [131]. 

Combining piecewise-linear EOS with thermal models allowed the authors to uncouple 

the effect of temperature on density and prevent phase change. Simultaneously, Hu and 

Liu [132] developed the idea of using the piecewise-linear EOS for thermal modelling 

with phase change. Effects of temperature were replaced by degree of superheat, due to 

the assumption that the degree of superheat has little influence on the liquid properties 

[132]. Phase change effects were introduced into the pressure calculations [132]:  

𝑝𝑡𝑜𝑡𝑎𝑙 = 𝑝𝐸𝑂𝑆(𝜌) + 𝑝𝑣(𝜌, 𝑇𝑠𝑢𝑝𝑒𝑟ℎ𝑒𝑎𝑡) + 𝑝𝑖(𝜌, 𝑇𝑠𝑢𝑝𝑒𝑟ℎ𝑒𝑎𝑡)                                        (91) 

𝑝𝑣(𝜌, 𝑇𝑠𝑢𝑝𝑒𝑟ℎ𝑒𝑎𝑡) =
𝑎𝑇𝑠𝑢𝑝𝑒𝑟ℎ𝑒𝑎𝑡(𝜌 − 𝜌𝑙)

(𝜌𝑣 − 𝜌𝑙)
                                                                     (92) 

𝑝𝑖(𝜌, 𝑇𝑠𝑢𝑝𝑒𝑟ℎ𝑒𝑎𝑡) = 𝑎 ∙ 𝑏|∇𝜌|𝑇𝑠𝑢𝑝𝑒𝑟ℎ𝑒𝑎𝑡                                                                        (93) 

In terms of applications, Hazi and Markus [128] studied the effects of gravity, contact 

angle and lateral force on bubble nucleation and departure. They also showed the 

capability of their model to simulate nucleate pool boiling with a cavity in the heating 

plate [133]. Markus and Hazi extended their simulations to study the effect of heated plate 

configuration, surface temperature and heat flux from nucleate to film boiling [134]. 

Kamali et al. [135] showed the capability of their model to simulate evaporation of a flat 

liquid surface in contact with vapour. Zhang and Chen [130] successfully simulated 

boiling with the presence of bubble nucleation, bubble rising and bubble coalescence. 

Gong and Cheng [136] used their model to study the effect of variable surface wettability 

on the pool boiling process and found that spatial variability promotes the boiling process. 

Li et al.[122]  used their hybrid pseudopotential model to construct the boiling curve and 

study the effects of wettability. The authors were able for the first time in the LBM 

community to model all the three stages of the boiling process, i.e. nucleate boiling, 

transition boiling and film boiling [122]. The experimentally-observed effects of surface 

wettability which include the promoted onset of boiling, reduction in critical heat flux 

and reduction in wall superheat for film boiling with increase in contact angle were also 
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replicated in the simulations of Li et al. [122]. Safari et al. [137] used a phase-field thermal 

model to study droplet evaporation and their model was successfully validated against the 

D2 law [7] for a number of values of the Stefan number. Droplet shape during the 

evaporation process was found to be circular and surface tension was found to satisfy 

Laplace’s law.  

Thermal lattice Boltzmann models were used to study phase change materials in energy 

storage applications [26]. Chatterjee [138] used his model to simulate solidification of tin 

and melting of gallium and found that it offers significant reductions in CPU time versus 

a continuum model. The savings in CPU time were achieved thanks to the ability of the 

LBM model to use a coarser grid with the same accuracy as a continuum model with a 

more refined grid [138]. Interesting developments in this field also include models 

studying phase change in porous media [26]. Parmigiani et al. [139] demonstrated the 

differences in non-wetting phase distribution during melting in a 3D porous medium at 

different values of the Stefan number. Increasing the Stefan number resulted in the non-

wetting phase moving from connected to a disconnected configuration within the porous 

medium [139]. Luo et al. [140] studied convection melting in the geometry of a shell and 

tube unit that could be used for energy storage [26]. The authors of the study found that, 

unsurprisingly, increasing the number of heating tubes in the shell and tube unit increases 

the total liquid fraction due to higher heat transfer rate as the surface area of the heating 

elements increases [140]. The centrosymmetric arrangement of the heating tubes was also 

found to be superior to the inline and staggered arrangements in terms of heat transfer 

performance [140].  
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Chapter 3 - Investigation of Pseudopotential Models 

Pseudopotential models are investigated in-depth in this Chapter in order to gain as much 

knowledge as possible about them. This knowledge will help with more complex topics 

in further Chapters. 

Only models for the D2Q9 velocity set are discussed in this work. Extensions of models 

to high velocity sets and three dimensions exist in the literature [141, 142].  

3.1. Methods of Equation of State Inclusion 

A number of methods is available for including non-ideal equations of state (EOS) in the 

pseudopotential models. Yuan and Schaefer (YS) [143] discovered that high density 

ratios can be simulated by replacing the original pseudopotential with a form of the 

pseudopotential that is obtained from rearranging the pressure equation and inserting an 

equation of state into the pressure term in the following manner: 

𝑝(𝜌) = 𝑐𝑠
2𝜌 +

𝐺

2
𝜓2(𝜌)                                                                                   (94) 

𝜓(𝜌) = √
2(𝑝𝐸𝑂𝑆 − 𝜌𝑐𝑠2)

𝐺
                                                                              (95) 

In this form of the pseudopotential, the parameter G loses its physical meaning. It is 

simply set to -1, in order to keep the term inside the square root positive, and its role is 

taken over by the terms within the EOS. The two widely-used cubic equations of state in 

pseudopotential models, i.e. Carnahan-Starling [49] and Peng-Robinson [50] equations 

of state, take the following forms, respectively: 

𝑝𝐶𝑆 = 𝜌𝑅𝑇
1 +

𝑏𝜌
4 + (

𝑏𝜌
4 )

2

− (
𝑏𝜌
4 )

3

(1 −
𝑏𝜌
4 )

3 − 𝑎𝜌2                                            (96) 

𝑝𝑃𝑅 =
𝜌𝑅𝑇

1 − 𝑏𝜌
−

𝑎𝜔(𝑇)𝜌2

1 + 2𝑏𝜌 − 𝑏2𝜌2
                                                                (97) 

Where  

𝜔(𝑇) = (1 + (0.37464 + 1.54226𝛼 − 0.26992𝛼2)(1 − √𝑇𝑅))
2

      (98) 

𝑇𝑟 =
𝑇

𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
                                                                                                       (99) 
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For example, the a parameter in the cubic equations of state represents attractive forces 

and b represents repulsive forces [143]. Yuan and Schaefer suggested setting a to 1.0, b 

to 4.0 and R to 1.0 in the CS EOS [49, 143]. They also suggested setting a to 2/49, b to 

2/21 and R to 1.0 in the PR EOS [50, 143]. Yuan and Schaefer (YS) tested the Shan-Chen, 

Van der Waals (VdW), Redlich-Kwong, Redlich-Kwong Soave, Peng-Robinson (PR) and 

Carnahan-Starling (CS) equations of state and obtained the best results using the Peng-

Robinson EOS [143]. In this Chapter, the Carnahan-Starling equation of state is used 

predominantly.  Using the CS EOS has the benefit of reducing the number of parameters, 

since the PR EOS has an additional parameter in the form of the acentric factor. The a 

parameter in the Carnahan-Starling EOS offers control of interfacial thickness [74]. It is 

responsible for attractive forces in the EOS and reducing its value from the 1.0 proposed 

by Yuan and Schaefer expands the interface [74]. Discussion of interfacial thickness is 

subjective. Unless, the same cut-off percentages of bulk densities are used to calculate 

the interfacial thickness when comparing different methods.  

An alternative method for including equations of state in the pseudopotential model is the 

piecewise linear EOS [131]. In a piecewise linear EOS, the following equations are used 

to simulate non-ideal equations of state [131]: 

𝑝𝐸𝑂𝑆 = {

                          𝜌𝜃𝑉                                     𝑖𝑓 𝜌 ≤  𝜌1
            𝜌1𝜃𝑉 + (𝜌 − 𝜌1)𝜃𝑀          𝑖𝑓 𝜌1 < 𝜌 ≤  𝜌2
𝜌1𝜃𝑉 + (𝜌2 − 𝜌1)𝜃𝑀 + (𝜌 − 𝜌2)𝜃𝐿   𝑖𝑓 𝜌 > 𝜌2

                                        (100) 

The piecewise linear equations are inserted into the pEOS term in the square root of the 

pseudopotential in the same manner as equations of state in the YS approach. From the 

above equation, it can be seen that the piecewise linear method offers five free, adjustable 

parameters, i.e. θV, θM, θL, ρ1 and ρ2 [131]. The first step is to set the pressure slopes in 

the vapour branch (θV), unstable branch (θM) and in the liquid branch (θL). Then the 

spinodal points (i.e. ρ1 and ρ2) can be obtained from two equations, one for the mechanical 

equilibrium and the other for the chemical equilibrium, given by the following respective 

equations [131]: 

∫ 𝑑𝑝
𝜌𝐿

𝜌𝑉

= (𝜌1 − 𝜌𝑉)𝜃𝑉 + (𝜌2 − 𝜌1)𝜃𝑀 + (𝜌𝐿 − 𝜌2)𝜃𝐿 = 0                                       (101) 

∫
1

𝜌

𝜌𝐿

𝜌𝑉

𝑑𝑝 = log(𝜌1/𝜌𝑉) 𝜃𝑉 + log(𝜌2/𝜌1) 𝜃𝑀 + log(𝜌𝐿/𝜌2) 𝜃𝐿 = 0                        (102) 
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Multipseudopotential interaction (MPI) [107, 108] represents another class of the 

pseudopotential method. Multiple thermodynamically-consistent pseudopotentials are 

introduced in order to allow simulation of high density ratios with the SRT collision 

operator. The Guo forcing scheme [144] for the BGK operator is modified to allow 

flexible selection of ε for each multiple pseudopotential [108]. Multiple pseudopotentials 

can be described by the following equations [108]:  

𝑭𝑀𝑃𝐼 = 𝑭(1) + 𝑭(2) +⋯+ 𝑭(𝑛)                                                                     (103) 

𝑭𝑀𝑃𝐼 =∑−𝐺𝑗𝜓𝑗(𝒙)∑𝑤𝑖𝜓𝑗(𝒙 + 𝒄𝑖)𝒄𝑖

𝑁

𝑖=1

𝑛

𝑗=1

                                                 (104) 

𝜓𝑗(𝜌) = (
𝜌

𝜆𝑗𝜀𝑗 + 𝐶𝑗𝜌
)

1
𝜀𝑗⁄

                                                                              (105) 

3.2.Forcing Schemes 

Forcing schemes, i.e. the methods in which the forces are introduced into LBM models, 

have a significant impact on the simulations. The intermolecular force in the original 

Shan-Chen model is introduced into the streaming-collision algorithm by shifting the 

equilibrium velocity. This is done in the equilibrium distribution in the collision operator 

in the following manner [84]:  

𝒖𝑒𝑞 = 𝒖 +
𝑭𝑆𝐶𝜏

𝜌
                                                                                              (106) 

The original Shan-Chen model was developed for the SRT collision operator. The 

pseudopotential force can be introduced into LBM models using different forcing 

schemes. For example, it can be introduced into MRT models using forcing schemes 

developed specifically for the MRT collision operator. Zheng et al. [145] analysed the 

Ladd [146], Guo [144], Shan-Chen and the exact difference method (EDM) [147] forcing 

schemes for the SRT pseudopotential model and came to the conclusion that the SC and 

EDM forcing methods give the best stability results. Therefore, this Chapter investigates 

only the SC and EDM forcing methods for the SRT collision operator. The EDM takes 

the following form [147]: 

𝑓𝑖(𝒙 + 𝒄𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝑖(𝒙, 𝑡) = 𝛺𝑖 + 𝐹𝑖,𝐸𝐷𝑀                                           (107) 

𝐹𝑖,𝐸𝐷𝑀 = 𝑓𝑖
𝑒𝑞 (𝜌, 𝒖 +

𝑭∆𝑡

𝜌
) − 𝑓𝑖

𝑒𝑞(𝜌, 𝒖)                                                     (108) 
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McCracken and Abraham [76] proposed a forcing scheme developed specifically for the 

MRT collision operator. The MRT forcing schemes discussed in this work are based on 

this scheme and all of them can be described by a general equation. The individual terms 

in the general equation are given in Table I in Appendix A and the general equation can 

be described as follows:  

𝒎∗ = 𝒎− 𝑺(𝒎−𝒎𝑒𝑞) + ∆𝑡 (𝑰 −
𝑺

2
) 𝑺̅ + ∆𝑡𝑪 + 𝑺𝑸𝒎                       (109) 

The forcing scheme proposed by McCracken and Abraham does not introduce unphysical 

viscosity-dependence [103]. This is a significant advantage and it makes carrying out 

simulations more predictable.  

Two improvements to the MRT forcing model are analysed and discussed in the following 

Sections. They are referred to in this work as Li-Luo [74] and Huang-Wu [148] methods. 

In the Li-Luo method, the value of ε in the mechanical stability condition is tuned using 

σ. The equation for setting ε takes the following form for the D2Q9 velocity set [74]:  

𝜀 =
−2

3
24𝐺𝜎                                                                                                    (110) 

Li and Luo also proposed a separate method for surface tension adjustment, which can be 

combined with the method for adjusting thermodynamic consistency [149]. Surface 

tension is adjusted according to 1 – κ. Hence, setting κ to 0 results in unmodified surface 

tension and results of simulations with and without the C source term are the same. 

Increasing the value of κ reduces surface tension. Li and Luo investigated the values of κ 

ranging from 0 to 0.99 [149].  

The Huang-Wu method, unlike the Li-Luo methods, combines thermodynamic 

consistency adjustment and surface tension adjustment into a single term [148]. 

Thermodynamic consistency is tuned using the sum of k1 and k2 and surface tension is 

tuned using k1 only [148] in the following manner:  

𝜀 = −8(𝑘1 + 𝑘2)                                                                                              (111) 

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 1 − 6𝑘1                                                (112) 

Huang and Wu investigated setting the surface tension coefficient (1 – 6k1) from 0.1 to 

2.0 [148]. The Huang-Wu method introduces modifications at the third-order in the 

Chapman-Enskog analysis, whereas the Li-Luo method is at the second-order. Recent 
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studies illustrate the importance of third-order analysis to the pseudopotential models 

[145, 148, 150]. 

In conventional pseudopotential models, ε is simply a lattice and forcing dependent 

numerical parameter. Its value does not have physical meaning and it needs to be adjusted 

on a case-by-case basis. In the MPI model, on the other hand, ε is an EOS parameter.  

3.3.Thermodynamic Consistency 

Thermodynamic inconsistency impedes simulation of high density ratios using 

pseudopotential models. The problem and improvements designed to overcome it are 

investigated in this Section. Numerical simulations were carried out in a 200 unit x 30 

unit lattice surrounded by periodic boundaries in all four directions using flat interfaces 

at x = 50 and x = 150. Interface thickness was initially set to 3.5 units. Equations of state 

were included in the models using the square root form of the pseudopotential. Figure 7 

illustrates the thermodynamic consistency test: 

 

Figure 7- Flat interface simulation to test thermodynamic consistency (Colour illustrates density). 

The problem manifests itself in gas densities deviating from the values given by the 

Maxwell equal-area construction [4]. The Maxwell equal-area construction can be written 

in the following form [25]: 

∫ (𝑝0 − 𝑝𝐸𝑂𝑆)
𝜌𝑙

𝜌𝑔

1

𝜌2
𝑑𝜌 = 0                                                (113) 

Thermodynamic inconsistency stems from the fact that the mechanical stability condition 

has a different form than the Maxwell construction. The mechanical stability condition 

has the following form [151]: 

∫ (𝑝0 − 𝜌𝑐𝑠
2 −

𝐺

2
𝜓2)

𝜌𝑙

𝜌𝑔

𝜓′

𝜓1+𝜀
𝑑𝜌 = 0                             (114) 

The unmodified MRT forcing scheme deviates from the Maxwell construction to an even 

greater degree than the Shan-Chen and EDM forcing schemes with the SRT collision 

operator, as illustrated in Figure 8. 
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Figure 8-Thermodynamic consistency of forcing schemes without improvements (τv = 1). 

Thermodynamic consistency can be approached by modifying the value of ε using an 

appropriate forcing scheme improvement. Revised versions of the SRT forcing schemes 

were proposed, to approach thermodynamic consistency [145]. Kupershtokh also 

suggested a trial-and-error method to approach thermodynamic consistency by combining 

the local and mean-value approximations in the calculation of the interparticle force 

[147]. These methods are not examined in this work, instead attention is focused on 

improvements to the MRT models.  

Figure 9 illustrates the effect of changing the value of ε using the Huang-Wu and Li-Luo 

forcing improvements. Both forcing improvements give results that are significantly 

better than the unmodified forcing scheme. For a given value of ε, both methods result in 

almost identical coexistence densities except for lower reduced temperatures with 

differences becoming noticeable around Tr = 0.6. The differences at lower reduced 

temperatures are due to terms associated with surface tension modification by the Huang-

Wu scheme. 
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Figure 9- Thermodynamic consistency adjustment using improved forcing schemes for the MRT collision operator (k1 

= k2 for the Huang-Wu method and κ = 0 for the Li-Luo method). Tests were carried out with τv = 1.0 and CS EOS a = 
1.0. 

Expanding the interface alleviates thermodynamic inconsistency and reduces spurious 

velocities. Interface expansion becomes a useful strategy when the reduced temperature 

is approximately 0.6 or less.  

The limits of static high density ratio simulations are explored in Figure 10. It can be seen 

that the Huang-Wu forcing scheme with expanded interface allows simulations of very 

high density ratios. It is important to realise that the whole density range may not be 

suitable for practicable dynamic simulations. MPI with the SRT collision operator is also 

capable of achieving very high density ratios in static simulations.  
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Figure 10- Thermodynamic consistency of a 50 l.u. diameter droplet simulated in a 201 x 201 lattice using the 
Huang-Wu forcing scheme with k1 = k2 and CS EOS a = 0.25. Tests were carried out with τv = 1.0. The results for MPI 

with interface thickness equal to 20 are included for comparison. 

Viscosity independence is an important asset of MRT models for multiphase simulations. 

It is desirable to have a model which can simulate high viscosity ratios. Besides stability 

at low values of kinematic viscosity, equilibrium densities of the phases should not be 

affected by the kinematic viscosity and, by extension, by τv [152]. Shear viscosity is 

independent of the fluid density for a given temperature and for dilute gases it is 

approximately equal to [153]: 

𝜇 ≈
√𝑚𝑘𝑇

𝑎2
                              (115) 

where m is the molecular mass, k is the Boltzmann’s constant, T is the temperature and a 

is the molecular diameter. Hence, changing the kinematic viscosity should not affect the 

equilibrium densities. Huang-Wu and Li-Luo forcing models give equilibrium densities 

practically unaffected by the value of the kinematic viscosity. Li and Luo also reported 

that the stability of multiphase simulations can be increased by setting the kinematic 

viscosities of the gas and liquid phases to different values (i.e. setting the gas kinematic 

viscosity to a value multiple times higher than the liquid kinematic viscosity) [74]. This 

can be implemented in single-component simulations by making the value of τv dependent 

on the local value of density, with critical density acting as the dividing point between the 

gas viscosity and the liquid viscosity. This is permissible because τ can be a function of 

space and time [12]. Due to the fact that it is not assumed in the Chapman-Enskog analysis 

that 𝜕𝑡𝜏 = 0  or 𝜕𝛼𝜏 = 0 [12].  
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3.4.Laplace Tests of Stationary Droplets 

LBM is a diffuse interface method and in order to avoid stability issues, the phases are 

initialized with a prescribed interface thickness using the following formula for circular 

shapes [154]: 

𝜌(𝑖, 𝑗) =
𝜌𝑙𝑖𝑞𝑢𝑖𝑑 + 𝜌𝑣𝑎𝑝𝑜𝑢𝑟

2
−
𝜌𝑙𝑖𝑞𝑢𝑖𝑑 − 𝜌𝑣𝑎𝑝𝑜𝑢𝑟

2

× tanh [
2(√(𝑖 − 𝑖𝑐𝑒𝑛𝑡𝑒𝑟)2 + (𝑗 − 𝑗𝑐𝑒𝑛𝑡𝑒𝑟)2 − 𝑟0)

𝑊
]       (116) 

where, W is the interface thickness, r0 is the spherical shape radius. 

Flat, vertical interfaces can also be initialized in a diffuse manner using the following 

equation:  

𝜌(𝑖, 𝑗) =
𝜌𝑙𝑖𝑞𝑢𝑖𝑑 + 𝜌𝑣𝑎𝑝𝑜𝑢𝑟

2
−
𝜌𝑙𝑖𝑞𝑢𝑖𝑑 − 𝜌𝑣𝑎𝑝𝑜𝑢𝑟

2

× tanh [
2(𝑖 − 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)

𝑊
]                               (117) 

Simulations to investigate spurious velocities were carried out by initializing a liquid 

droplet with a diameter of 50 lattice units surrounded by vapour in a 201 units by 201 

units lattice. All four boundaries were periodic. The first set of simulations was carried 

out using a sharp interface, which was obtained by setting the a parameter in the 

Carnahan-Starling equation of state to 1.0. According to Li et al. [74], this choice of 

parameters results in interfacial thickness equal to roughly 3.5 units at a reduced 

temperature equal to 0.65, as illustrated in Figure 11: 
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Figure 11- Effect of changing the a parameter in the Carnahan-Starling equation of state on the interfacial thickness 
according to Li et al. [74] 

 Figure 12 illustrates the simulation setup for Laplace tests.  

 

Figure 12- Droplet simulation to measure spurious velocities (Colour illustrates density). 

3.4.1. Spurious Velocities 

Spurious velocities were recorded as the magnitude of physical velocity at a given point: 

𝑆𝑝𝑢𝑟𝑖𝑜𝑢𝑠 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑖, 𝑗) = √𝑢𝑥(𝑖, 𝑗)2 + 𝑢𝑦(𝑖, 𝑗)2                        (118) 

Figure 13 illustrates spurious velocities for a wide range of density ratios obtained using 

different models. It should be kept in mind that the recorded density ratios were obtained, 
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to a lesser or greater extent, after density collapse of the vapour phase. All the three 

models investigated used the Yuan-Schaefer method of EOS inclusion. Carnahan-Starling 

EOS was used even though Peng-Robinson EOS offers higher achievable density ratio 

[143]. The EDM and SC forcing schemes perform the same in terms of spurious velocities 

when τv = 1.0. Upon investigation of the magnitudes of spurious velocities, it becomes 

clear that the SRT collision operator is unsuitable for simulations of high density ratios. 

Around the density ratio of 1,000, the spurious velocities are comparable to the maximum 

allowable lattice velocities. This magnitude of spurious velocities would render 

simulation results unusable. The MRT model with the Huang-Wu forcing modification 

gives significantly lower spurious velocities than the SRT models for a given density 

ratio.  

 

Figure 13- Spurious velocities for different models at different density ratios. The a parameter in the CS EOS was set 
to 1.0 for all the models in order to allow comparison. 

MRT offers an improvement, but spurious velocities are still too high to simulate high 

density ratios. Therefore, the interface should be extended to improve thermodynamic 

consistency and to reduce spurious velocities. Figure 13 represents spurious velocities 

when τv = 1.0 which is ideal for stability.  

Figure 14 represents the effects of changing viscosity and density ratios on spurious 

velocities for the Huang-Wu and Li-Luo forcing schemes. The interface was expanded 

by setting the value of a in the CS EOS to 0.25, in order to achieve stability and reduce 

spurious velocities. It can be seen that decreasing the kinematic viscosity has an even 

greater effect on spurious velocities than increasing the density ratio. Spurious velocities 

increase by an order of magnitude for an order of magnitude decrease in viscosity. 
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Viscosity varies by an order of magnitude between τv = 1.5 (v = 0.3333) and τv = 0.6 (v = 

0.0333). It varies, again, by an order of magnitude between τv = 1.0 (v = 0.1667) and τv = 

0.55 (v = 0.0167). In other words, halving viscosity doubles spurious velocities. Whereas, 

increasing density ratio by an order of magnitude from 100 to 1000 increases spurious 

velocities approximately 2.5 times. Both forcing modifications result in practically the 

same spurious velocities, for all the conditions tested, when the surface tension is 

unmodified by either scheme, i.e. when k1 = 0 and κ = 0.  

 

Figure 14- The effect of decreasing the kinematic viscosity on spurious velocities at different density ratios for the 
MRT model with the Huang-Wu and Li-Luo forcing scheme modifications (CS EOS “a” = 0.25 and ε = 1.81). Both 

models do not modify the surface tension when k1 = 0 and κ = 0. 

Figure 15 illustrates the effects of changing surface tension, by changing the k1 

coefficient, in the Huang-Wu method whilst keeping ε constant. Evidently, surface 

tension needs to be taken into account when investigating spurious velocities, especially 

when comparing different methods. Increasing surface tension to 0.0118 (by setting k1 to 

-0.1163) reduces spurious velocities and reducing surface tension to 0.0043 (by setting k1 

to 0.0667) increases spurious velocities in comparison to the unmodified surface tension 

value of 0.007 (obtained by setting k1 to 0). 
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Figure 15- The effects of changing surface tension using the Huang-Wu method (Tr = 0.5, CS EOS a = 0.25, τv = 0.55 
and ε = 1.81). 

Figure 16 illustrates the effects of modifying surface tension using the Li-Luo method. 

The value of ε is kept constant and κ is varied to modify surface tension. Reducing surface 

tension by setting κ to a positive value, reduces spurious velocities. Li and Luo [149] did 

not mention the possibility of setting κ to a negative value to increase surface tension. 

Surface tension is modified by the result of 1 – κ; therefore setting κ to a negative value 

should increase surface tension. Setting κ to -0.4 was found to increase surface tension to 

0.0098, as predicted. However, increasing surface tension was found to increase spurious 

velocities, in contrast to the Huang-Wu method. The changing density ratios at different 

values of surface tension can also be observed in Figure 15 and Figure 16.  
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Figure 16- The effects of changing surface tension using the Li-Luo method (Tr = 0.5, CS EOS a = 0.25, τv = 0.55 and ε 
= 1.81). 

Up to this point, all the results were obtained using the YS method of EOS inclusion. A 

piecewise linear EOS is also investigated in this paper and it is combined with the Huang-

Wu forcing method to allow modification of ε and adjustment of surface tension. Li and 

Luo investigated the effects of changing the slopes of pressure in the vapour, unstable and 

liquid branches [5]. They suggested setting θV to 0.64cs
2, θL to cs

2 and θM to -0.04cs
2 [5]. 

Setting θV  to a value that is similar to θL reduces the variation of vapour density with 

droplet size [5]. Interfacial thickness is expanded when the value of θM  approaches zero 

[5].  

 

 

ρL 

 

 

0.314 0.38 0.4 0.44 0.447 
ρV 

 

 

0.0245 0.006 0.003 0.0006 0.000254 

ρ1 

 

 

0.026495 0.006576 0.003362 0.000709 0.000309 

ρ2 

 

 

0.31089 0.37406 0.39291 0.43154 0.43826 

mechanical equilibrium 

 

 

-0.00043 -0.00035 -0.00016 -2.9E-05 5.39E-06 

chemical equilibrium 

 

 

0.001564 -0.00093 -0.00064 -0.00029 6.69E-06 
Table 1- Parameters used in the piecewise linear EOS for the purposes of carrying out simulations. For all the data 

points Θv was set to 0.21333, θL to 0.33333 and θM to -0.00667. 

In order to compare the YS and the piecewise linear methods of EOS inclusion, it is 

necessary to set the interfacial thickness to the same value using both methods. The value 

of θM is varied to change the interfacial thickness. The slope of the interface is different 
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in the two methods. The YS method has a steeper interfacial slope near to the liquid phase 

and the piecewise linear EOS method has a steeper interface adjacent to the vapour phase. 

The interfacial region in the YS method has a convex shape, whereas the piecewise linear 

method has a concave shape. Figure 17 compares the interfacial region when 76% of 

equilibrium densities is used as the interface cut-off. In this work, it was decided to 

compare both methods by setting the value of a in the CS EOS in the YS method to 0.25 

and θM in the piecewise linear method to -0.02cs
2.  

 

Figure 17- Interface thickness when 0.76 cut-off is applied to the equilibrium densities. 

The piecewise linear EOS using the parameters listed in Table 1 has a lower surface 

tension than the YS method with the CS EOS. In order to reach the surface tension value 

of 0.007, θM has to be set to -0.058cs
2. However, this value of θM results in a thinner 

interface which would make comparison of the two methods unfair. Therefore, the value 

of 1-6k1 was increased from 1.0 to 1.73 to obtain the same surface tension as when the 

YS method was used. The value of surface tension was successfully set to 0.007, as 

illustrated in Figure 18.  
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Figure 18- Laplace’s law test for the piecewise linear EOS with the Huang-Wu forcing method with k1 set to -0.1217 
and ε set to 1.81. Equilibrium densities were set to the values predicted by the CS EOS at Tr = 0.5. 

Figure 19 shows that spurious velocities are lower when using the piecewise linear EOS 

compared to when the YS method is used. However, the piecewise linear method has 

problems reaching equilibrium at low viscosities. Problems reaching equilibrium become 

apparent around τv = 0.53. No equilibrium was reached using the piecewise linear EOS at 

τv = 0.53 for Tr = 0.5. Also, no equilibrium was reached for a larger droplet (100 l.u. 

diameter) at τv = 0.55 for Tr = 0.5. 
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Figure 19- Comparison of spurious velocities obtained using the YS and piecewise linear EOS methods with the 
Huang-Wu forcing scheme. Surface tension values were the same for both models 

Wu et al. [155] analysed the causes of instability of pseudopotential LBMs and proposed 

several strategies for extending the envelope of stable parameters. Two causes of 

instability are directly linked to the EOS when the YS method is used. As illustrated by 

Wu et al. [155], the pseudopotential becomes a complex number at high density values 

due to ϕ (the term inside the square root) becoming negative. A sign function is required 

to change the value of G from -1 to 1, in order to avoid loss of stability when high density 

values are encountered. Singularities of the EOS are another cause of instability that 

requires a limiter function restricting density to a prescribed value [155]. Figure 20 

investigates the pseudopotential at different values of specific volume when the piecewise 

linear EOS is used. Clearly, the pseudopotential behaves differently when the EOS is 

introduced using the piecewise linear EOS than when it is done using the YS method. The 

pseudopotential is asymptotic in the vapour region, i.e. below the spinodal point ρ1. It 

reaches a constant value in the liquid region above the second spinodal point, i.e. ρ2. The 

pseudopotential increases monotonically in the transition region. This behaviour of the 

pseudopotential makes the piecewise linear EOS method more suitable for use in 

simulations.  

 

Figure 20- Behaviour of the pseudopotential when the piecewise EOS is used in response to changing specific 
volume. 
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The distribution of spurious velocity is also of interest. It is well-known that spurious 

velocity is the highest in the vapour phase and tends to be much lower in the liquid region. 

Figure 21 illustrates the distributions of spurious velocity and density and compares how 

they are affected for the YS and piecewise linear methods by changing the surface tension 

using the Huang-Wu forcing scheme. Spurious velocity is found to be the highest in the 

vapour region for all the cases investigated. Spurious velocities are significantly lower in 

the liquid region when the piecewise linear EOS is used in comparison to when the YS 

method is used. Density ratio generated by the piecewise linear EOS is found to be almost 

unaffected by changing the k1 parameter to vary the surface tension. Whereas, density is 

sensitive to the k1 parameter when the YS method is employed in the pseudopotential. 

This phenomenon is caused by high-order error terms introduced by the modifications to 

the forcing scheme. The same observation is made when the relaxation rates are varied. 

This strand of research is further explained in Section 3.4.3. 

 

Figure 21- Density and spurious velocity distributions when surface tension is varied using the k1 parameter in the 
Huang-Wu forcing scheme. ε was fixed to 1.81 and Λ was fixed to 0.0013. 

 

3.4.2. The Effects of Viscosity Ratio on the Spurious Velocities 

Li and Luo found that stability at low values of liquid kinematic viscosity can be improved 

by introducing a viscosity ratio between the vapour and liquid phases [74]. This strategy 

is further investigated in this work. It appears to resemble the strategy for improving 

stability in the entropic models. However, viscosity increase in the entropic models is 
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highly localised around the critical regions [20]. Whereas, increasing the kinematic 

viscosity of the vapour phase as suggested by Li and Luo affects the whole vapour region 

[74]. Figure 22 shows that spurious velocities are significantly reduced by increasing the 

kinematic viscosity ratio between the vapour and liquid phases from 1 to 20. The 

sensitivity of spurious velocities to density ratio increase is also almost eliminated within 

the examined density ratio range.  

 

Figure 22- Reduction of spurious velocities due to an introduction of a kinematic viscosity ratio between the vapour 
and liquid phases. Simulations were carried out using a piecewise linear EOS and the Huang-Wu forcing scheme with 

ε set to 1.81. 

Since a piecewise linear equation of state was found to encounter problems reaching 

equilibrium at low viscosities, it was decided to investigate whether introducing a 

kinematic viscosity ratio between the phases would alleviate the problem. As depicted in 

Figure 23, the lowest stable kinematic viscosity for the density ratio range can be 

improved ten times from 0.01667 at τv = 0.55 to 0.00167 at τv = 0.505 by introducing a 

viscosity ratio equal to 120. 
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Figure 23- Simulations to explore the lowest achievable viscosities using a piecewise linear EOS combined with the 
Huang-Wu forcing scheme. 

3.4.3. Adjustment of Multiple Relaxation Time Relaxation Rates 

Simulations were carried out in order to investigate the effects of changing the relaxation 

rates of the MRT collision operator.  

Figure 31 and Figure 32 illustrate the fact that changing the relaxation rates has a 

significant impact on spurious velocities (and subsequently the stability) and 

thermodynamic consistency. The simulations were initialized at the same reduced 

temperatures (Tr = 0.8, 0.65, 0.6, 0.5, 0.46), but changing the relaxation rates resulted in 

different density ratios. This means that the ε must be adjusted for each set of relaxation 

rates when the YS method is used. Wu et al. examined this and stated that it is caused by 

fourth-order terms [156]. Wu et al. suggested setting the anti-symmetric mode relaxation 

to 1.99 to reduce the effect of changing the relaxation rates on the density ratio [156]. 

This strategy equates to setting the magic parameter to a very low value, i.e. 0.0013 when 

τv = 1.0. Piecewise linear EOS is not significantly affected by changing the relaxation 

rates as illustrated in Figure 24. Density ratio obtained using the YS method diverges 

from that obtained using the piecewise linear EOS as the value of the magic parameter is 

increased. The magic parameter can be expressed as follows [77]: 

𝛬 = (
1

𝜔𝑞
−
1

2
) (

1

𝜔𝑣
−
1

2
)                                                  (119) 
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Figure 24- Comparison of the extent to which changing the magic parameter affects the density ratio for the YS 

method with CS EOS and for the piecewise linear EOS. Kinematic viscosity relaxation rate was fixed to 1.0, ε was 

fixed to 1.81 and k1 was fixed to 0. 

The parameters in the fourth-order equations responsible for the undesired effects are Q1 

and Q8. Attention is focused on Q1, because Q8 is non-zero only when surface tension is 

modified, i.e. when k1 ≠0. Even when Q8 is not equal to zero, its maximum value tends to 

be lower (between 10 and 50 times lower at the k1 values tested) than the maximum value 

of Q1 and it affects a smaller proportion of the domain than Q1. Figure 25 shows two 

interesting observations. Firstly, the YS method generates significantly greater values of 

Q1 than the piecewise linear EOS. In this work, it is proposed that this is the principal 

reason why the undesired effects are greater when the YS method is employed. Secondly, 

changing the magic parameter does not affect the value of Q1 to a significant extent. 

Therefore, the change in the density ratio as the magic parameter is varied stems from the 

terms by which Q1 is multiplied in the fourth-order equations derived by Wu et al. [156], 

i.e.:  

4 (
1

𝜔𝑒
−

1

2
) (

1

𝜔𝑞
−

1

2
) − 4 (

1

𝜔𝑣
−

1

2
) (

1

𝜔𝑞
−

1

2
),         (120) 

2 (
1

𝜔𝑒
−
1

2
) + 6 (

1

𝜔𝑣
−
1

2
) − 4 (

1

𝜔𝑒
−
1

2
)(

1

𝜔𝑞
−
1

2
) − 4 (

1

𝜔𝑣
−
1

2
) (

1

𝜔𝑞
−
1

2
)

+ 2.                                                                        (121) 
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Figure 25- Comparison of the Q1 terms generated by the Piecewise linear EOS and the YS method. The magic 

parameter was set to 0.0013 and 0.25 and k1 was set to 0. 

Similar observations are made regarding the magnitude of the thermodynamic 

consistency term in the Li-Luo method. The magnitude of the correction term generated 

by the YS method is significantly greater and varying the magic parameter does not have 

a significant influence on the magnitude of the correction term.  

On the other hand, changing the surface tension by adjusting k1 has an effect on the 

magnitude of Q1 as illustrated in Figure 26 and Figure 27. Hence, the influence of surface 

tension on the density ratio and spurious velocities. The value of Q1 increases as k1 is set 

to greater values and this is the reason why the Huang-Wu forcing scheme has negative 

stability effects for low values of surface tension, i.e. when the result of 1 – 6k1 is lesser 

than 1.0.  
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Figure 26- The effect of changing k1 on Q1 when the piecewise linear EOS is used. ε was fixed to 1.81 and Λ was fixed 
to 0.25. 

Figure 27- The effect of changing k1 on Q1 when the YS method is used. ε was fixed to 1.81 and Λ was fixed to 0.25.  

Figure 28 illustrates the effect of the maximum value of Q1 on the density ratio. Density 

ratio does not vary significantly when k1 is adjusted and the magic parameter is changed 

when the piecewise linear EOS is employed due to low values of Q1.   
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Figure 28- The effect of Q1max on the density ratio at two values of the magic parameter. ε was fixed at 1.81 and k1 

was used to modify Q1. 

Both methods generate different maximum values of Q1 due to different maximum values 

of the intermolecular force. The slopes of density and the pseudopotential are different in 

the interfacial region as illustrated in Figure 29. This means that the values of the 

intermolecular force (Fx and Fy in a 2D case), have different distributions with different 

maxima and this can be seen in Figure 30. The total value of the intermolecular force is 

almost identical for both methods with approximately 0.3% difference between them as 

shown in Table 2.  

Model Energy Flux (𝝎𝒒) F
x,TOTAL

 

Piecewise Linear 1.99 0.157698 

Piecewise Linear 1.00 0.157699 

YS 1.99 0.158198 

YS 1.00 0.158052 

Table 2- Total intermolecular force for YS and Piecewise linear methods. 
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Figure 29 Pseudopotential in the interfacial region for the YS method and piecewise linear EOS. 

Figure 30- Distribution of the intermolecular force for the YS method and the piecewise linear EOS. 

Figure 31 illustrates the fact that setting the magic parameter to 1/12 gives the best results 

for multiphase simulations, especially for high density ratios. Setting the magic parameter 

to an even lower value can result in lower spurious velocities at low density ratios. The 

break-even density ratio for magic parameters equal to 1/12 and 0.031 is approximately 

50. Third-order spatial errors are cancelled when magic parameter is set to 1/12 [12, 148].  
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Figure 31- Tuning of the MRT relaxation times using the magic parameter. Simulations were carried out using the YS 
method of EOS inclusion (CS “a” = 0.25) with ε set to 1.81 using the Huang-Wu forcing method (k1 = 0 and k2 = -

0.2264). 

Figure 32 illustrates the fact that increasing the bulk viscosity to multiple times the 

kinematic viscosity increases the stability of simulations. Stability at the lowest reduced 

temperature tested, i.e. 0.46, was achieved when bulk viscosity was higher than the 

kinematic viscosity. Increasing bulk viscosity was found to slightly increase the 

maximum spurious velocities, in the case of a static droplet suspended in a gravity-free 

domain. However, in dynamic cases increasing the value of bulk viscosity can 

significantly reduce spurious waves generated in the vapour phase as illustrated in Section 

3.5. 
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Figure 32- The effects of increasing the bulk viscosity to multiple times the value of the kinematic viscosity. 

Simulations were carried out using the YS method of EOS inclusion (CS “a” = 0.25) with epsilon set to 1.81 using the 

Huang-Wu forcing method (k1 = 0 and k2 = -0.2264). 

3.4.4. Laplace Test with Hybrid Scheme (Piecewise Linear-YS) 

A hybrid scheme proposed as a part of this doctoral project is presented in this Section. 

The reason for this hybrid scheme lies in the need to further understand the intermolecular 

force distribution and its effect on spurious velocities.  

The hybrid scheme takes the following form:  

𝑝𝐸𝑂𝑆 =

{
 
 

 
 
𝜌𝑅𝑇

1 +
𝑏𝜌
4 + (

𝑏𝜌
4 )

2

− (
𝑏𝜌
4 )

3

(1 −
𝑏𝜌
4 )

3 − 𝑎𝜌2                                       𝑖𝑓 𝜌 ≤ 𝜌2

𝜌1𝜃𝑉 + (𝜌2 − 𝜌1)𝜃𝑀 + (𝜌 − 𝜌2)𝜃𝐿                                            𝑖𝑓 𝜌 > 𝜌2

    (122) 

This form of the equation of state means that up to the liquid region the interactions are 

dictated by the YS method and in the liquid region they are dictated by the piecewise 

linear method. Figure 33 illustrates the observation that the intermolecular force 

distribution of the hybrid scheme is the same as that of the YS method.  
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Figure 33- Intermolecular force distribution of the three schemes. 

Figure 34 illustrates that the hybrid method performs the same as the YS method in terms 

of the density and velocity fields. This clearly indicates that spurious velocities are 

affected by the intermolecular force distribution. The differences between the two 

schemes are caused by the intermolecular force distribution rather than by the form of the 

pseudopotential in the liquid region. 
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Figure 34- Velocity and density fields generated by the three schemes. 

3.5.Simulations of Droplet Splashing on a Thin Liquid Film 

The well-studied problem of a droplet splashing on a thin liquid film is used as an example 

of the dynamic capabilities of the schemes. The investigated parameters include the 

kinematic viscosity, bulk viscosity, reduced temperature and the viscosity ratio between 

the phases.  

The setup consisted of a 600 units by 250 units lattice with periodic boundaries on the 

left and right-hand sides and a simple bounce-back boundary on the bottom wall. 25 units 

deep liquid film was resting on the bottom wall and a droplet with a diameter of 100 units 

was initialised with a prescribed impact velocity. Figure 35 illustrates formation of 

satellite droplets during the impact of a droplet on a thin liquid film at Reynolds number 

(Re) equal to 1000 and Weber number (We) equal to 110.  
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Figure 35- Formation of a liquid crown during simulation of a droplet impact on a thin liquid film (Re = 1000 and We 
= 110). 

Figure 36 investigates the effect of the chosen schemes and parameters on the achievable 

Reynolds number.  

 

Figure 36- Stability graph showing the effects of bulk viscosity, method of EOS inclusion and reduced temperature on 
the achievable Reynolds number. 

Clearly, increasing the value of bulk viscosity to five or ten times the value of kinematic 

viscosity significantly improves the stability of dynamic simulations. Bulk viscosity has 

a greater influence on the stability than the reduced temperature. Reynolds number of 300 

was achieved even at high density ratios when bulk viscosity was ten times the value of 

kinematic viscosity. Instability in the problem of a splashing droplet is triggered by high 

velocity regions in the vapour phase as illustrated in Figure 37.  
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Figure 37- Formation of high velocity waves when bulk viscosity was equal to kinematic viscosity. Colour illustrates 
velocity magnitude. 

The formation of these high velocity regions can be inhibited by increasing the value of 

bulk viscosity as illustrated in Figure 38. Hence, the significant improvement of stability 

when bulk viscosity is increased.  

 

Figure 38- Velocity waves attenuation due to bulk viscosity increase. 

The piecewise linear EOS offers improved performance allowing to increase the 

Reynolds number by approximately 50% when the bulk viscosity is the same as or five 

times the value of kinematic viscosity.  

Introducing a viscosity ratio between the phases was found to be the most effective 

strategy for achieving high Reynolds numbers. Evidently, this strategy has a significant 

effect on the stability and allows to achieve a Reynolds number in the region of 1,000 

even when the bulk viscosity is equal to kinematic viscosity.  
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3.6.Fluid-Solid Interactions 

The ability to conveniently model fluid-solid interactions is one of the greatest strengths 

of LBM. The discrete particle speeds lead to a large number of possible ways of modelling 

fluid-solid interactions.  

3.6.1. Present Models and Suggested Model for Improved Fluid-Solid 

Interactions 

A number of ways to introduce fluid-solids interactions in pseudopotential models were 

proposed in the literature. Good fluid-solid interactions should allow the user to simulate 

a wide-range of contact angles and reduce spurious currents for fluids with high density 

ratios that are in contact with solids. Spurious currents are exacerbated when high density 

ratios are combined with low viscosities. Ideally, the interactions also should not modify 

the liquid and vapour densities. Li et al. [157] categorised fluid-solid interactions into 

density-based [158, 159] and pseudopotential-based [25, 160, 161]. Li et al. also proposed 

a modified pseudopotential-based interaction [157].   

The density-based interactions by Martys and Chen [158] and Kang et al. [159] take the 

following forms, respectively: 

𝑭𝑎𝑑𝑠 = −𝐺𝑤𝜌(𝒙)∑ 𝜔𝑖𝑠(𝒙 + 𝒄𝑖)
𝑖

𝒄𝑖                     (123) 

𝑭𝑎𝑑𝑠 = −𝐺𝑤𝑛(𝒙)∑ 𝑛𝑤(𝒙 + 𝒄𝑖)
𝑖

𝒄𝑖                      (124) 

The pseudopotential-based interactions by Raiskinmaki et al. [160] and Sukop and 

Thorne [25] take the following form: 

𝑭𝑎𝑑𝑠 = −𝐺𝑤𝜓(𝒙)∑ 𝜔𝑖𝑠(𝒙 + 𝒄𝑖)
𝑖

𝒄𝑖                     (125) 

The pseudopotential-based interaction by Benzi et al. [161] takes the following form: 

𝑭𝑎𝑑𝑠 = −𝐺𝜓(𝒙)∑ 𝜔𝑖𝜓(𝜌𝑤)𝑠(𝒙 + 𝒄𝑖)
𝑖

𝒄𝑖            (126) 

The modified pseudopotential-based interaction by Li et al. [157] takes the following 

form: 

𝑭𝑎𝑑𝑠 = −𝐺𝑤𝜓(𝒙)∑ 𝜔𝑖𝑆(𝒙 + 𝒄𝑖)
𝑖

𝒄𝑖                    (127) 

𝑆(𝒙 + 𝒄𝑖) = 𝜙(𝒙)𝑠(𝒙 + 𝒄𝑖)                                    (128) 
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Where the simplest choice of interaction contains 𝜙(𝒙) = 𝜓(𝒙). It appears that fluid-

solid interactions should mimic the fluid-fluid interactions [157]. In this doctoral work, 

the modified pseudopotential-based interaction was adopted, because the 

pseudopotential-based interactions were not able to simulate high density ratios.  

The modified pseudopotential-based interaction is explored further in this project than in 

the original work of Li et al. [157]. In this work, the 𝜙(𝒙) parameter was set to the 

Carnahan-Starling EOS, like the fluid-fluid pseudopotential 𝜓(𝒙), but the a parameter 

was modified independently from its value in the 𝜓(𝒙). Therefore, the 𝜙(𝒙) parameter 

assumed the independent form 𝜓𝑎𝑑𝑠(𝒙):  

𝜓𝑎𝑑𝑠(𝜌) = √
  
  
  
  
  

2 [(𝜌𝑅𝑇
1 +

𝑏𝜌
4 + (

𝑏𝜌
4 )

2

− (
𝑏𝜌
4 )

3

(1 −
𝑏𝜌
4 )

3 − 𝑎𝑎𝑑𝑠𝜌2)− 𝜌𝑐𝑠2]

𝐺
        (129)   

Thus, the fluid-solid interactions, in this Section, were calculated using the following 

equation:  

𝑭𝑎𝑑𝑠 = −𝐺𝑤𝜓𝑎𝑑𝑠(𝒙)∑ 𝜔𝑖𝜓𝑎𝑑𝑠(𝒙)𝑠(𝒙 + 𝒄𝑖)
𝑖

𝒄𝑖                                           (130) 

And the results were compared to the simplest choice of the modified pseudopotential-

based interaction proposed by Li et al. [157]:  

𝑭𝑎𝑑𝑠 = −𝐺𝑤𝜓(𝒙)∑ 𝜔𝑖𝜓(𝒙)𝑠(𝒙 + 𝒄𝑖)
𝑖

𝒄𝑖                                                      (131) 

The idea behind modifying the a parameter in the Carnahan-Starling EOS for fluid-solid 

interactions independently from the a parameter in the Carnahan-Starling EOS for fluid-

fluid interactions, is to reduce the attractive forces between the fluid and the solid without 

widening the fluid-fluid interface. Reducing the strength of attractive forces tends to 

lower spurious velocities. Gw can then be used to adjust the contact angle.  

For a piecewise linear EOS, the same strategy can be attained by setting 𝜃𝑀,𝑎𝑑𝑠 separately 

from 𝜃𝑀.  

3.6.2. Simulations of Stationary Droplet on a Wall 

Simulations were carried out in a 201 lattice units (lu) by 201 lattice units lattice. The 50 

lu diameter droplet was initialised in the same state for all the tests as illustrated in Figure 

39. The initial bubble position can have an effect on the spurious velocities when the final 
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contact angle is different than the initial contact angle. First, the Huang-Wu and Li-Luo 

models are compared to investigate their performance in simulating different contact 

angles. Secondly, the effect of adjusting the surface tension using the Huang-Wu forcing 

scheme is investigated. Finally, varying the aads parameter in the modified-

pseudopotential interaction is investigated.  

 

Figure 39- Initial state of a droplet in contact with a solid surface to investigate fluid-solid interactions (Colour 
illustrates density). 

Figure 40 shows that the Huang-Wu and Li-Luo modifications perform in a similar 

manner when simulating fluid-solid interactions. Spurious currents increase from wetting 

to non-wetting contact angles using both forcing modifications.  

 

Figure 40- Spurious velocities for different contact angles using the modified-pseudopotential interaction and the 
Huang-Wu and Li-Luo forcing modifications. Simulations are for a high density ratio, i.e. Tr = 0.5 (density ratio 

approximately 730). 
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Both forcing schemes in Figure 40 are set to not modify the surface tension. This is an 

important qualification in order to ensure that the comparison is fair. Figure 41 clearly 

illustrates that modifying the surface tension has a significant effect on the magnitude of 

spurious velocities generated by fluid-solid interactions. This fact can be exploited when 

it is desired to optimise the fluid-solid interactions and to reduce spurious velocities in 

the vicinity of fluid-solid interfaces.  

 

 

Figure 41- Effect of modifying surface tension on spurious velocities when the Huang-Wu forcing scheme is used. 

 

The rationale for setting aads in ψads separately from a in ψ is presented in Figure 42. It is 

clear that reducing the value of aads below 0.25 can reduce the spurious velocities even 

further. Lowering the value of aads weakens the attractive interactions which helps to 

reduce spurious velocities. The Gw parameter can be adjusted to achieve the desired 

contact angle. Figure 43 illustrates the relationship between aads and spurious velocities 

generated at a contact angle of approximately 155°. Another interesting aspect of the 

proposed method is that the influence of contact angle on spurious velocities is 

significantly lessened. This is a significant advantage for modelling non-wetting contact 

angles.  
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Figure 42- The effect of reducing the aads parameter in the CS EOS in the modified-pseudopotential interaction for 
different contact angles (τv = 1.0 and Tr = 0.5). 

 

 

Figure 43- Relationship between aads and spurious velocities at a contact angle of approximately 155°. 

 

Figure 44 illustrates the findings that the proposed method of modifying fluid-solid 

interactions is not effective for reducing spurious velocities generated when the piecewise 

linear EOS is used. 
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Figure 44- The effect of the proposed fluid-solid interaction modification on spurious velocities generated when the 
piecewise linear EOS is used. 
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Chapter 4 – Application of Multipseudopotential Interaction Model 

with Multiple Relaxation Time Collision Operator 
This Chapter deals with an MPI model combined with the MRT collision operator. This 

coupling has been performed for the first time in this project.  

4.1.Interparticle Interactions 

MPI consists of multiple interactions which are additive and together make up the total 

interaction force. Conventional pseudopotential models have a single interparticle force. 

In order to compare the magnitude of the different interparticle forces, the 

pseudopotentials should be multiplied by their respective G values. The following graphs 

illustrate the interaction strength at the binodal curve.  

 

Figure 45- Breakdown of the MPI into separate multipseudopotential and comparison of the total MPI interaction 
force with the corresponding YS force. 

The total pseudopotential forces generated by the MPI and Yuan-Schaefer models depend 

on the interfacial thickness. The comparative performance of the two schemes varies 

depending on the chosen EOS parameters. The following subsections illustrate examples 

of different behaviours by the schemes.  

4.1.1. Sharp Interface (CS EOS a = 1, b = 4; interface thickness parameter = 

4) 

The Yuan-Schaefer model is unsuitable for simulation of high density ratios with a sharp 

interface. The pseudopotential force becomes undefined at high values of density which 

are required for simulation of low reduced temperatures, i.e. high density ratios. On the 
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other hand, MPI generates correct intermolecular forces in this case as illustrated in 

Figure 46.  

 

 

Figure 46- Pseudopotential forces generated by MPI and YS forces when the interface is sharp. 

4.1.2. Practical interface thickness (CS EOS a = 0.01, b = 0.2; interface 

thickness parameter = 20) 

In order to simulate high density ratios, the interfacial thickness should be set to 

approximately 20 lattice units when using both the Yuan-Schaefer and MPI models. At 

this thickness, the pseudopotential does not become undefined for either model. However, 

the YS method still exhibits undesired effects at very low values of specific volume, i.e. 

at very low reduced temperatures, as illustrated in Figure 47. 

 

Figure 47- Pseudopotential forces generated by MPI and YS methods when the interfacial thickness is set to a 
practicable thickness. 
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4.1.3. Thick Interface 

- (CS EOS a = 0.0025, b = 0.1; interface thickness parameter = 40) 

When this set of EOS parameters is used, MPI crashes when density reaches 20 due to 

negative denominator in the fourth multipseudopotential. On the other hand, the Yuan-

Schaefer model generates desired intermolecular force as illustrated in Figure 48.  

 

Figure 48- Pseudopotential forces generated by the two models for diffuse interfacial thickness when CS EOS a 
parameter is set to 0.0025. 

- (CS EOS a = 0.005, b = 0.2; interface thickness parameter = 40) 

MPI does not crash when the EOS parameters are changed as illustrated in Figure 49. 

 

Figure 49 - Pseudopotential forces generated by the two models for diffuse interfacial thickness when CS EOS a 
parameter is set to 0.005. 
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4.1.4. Interactions at a Constant Temperature across the Phase Envelope 

The purpose of this Subsection is to compare the interactions across the phase envelope 

at a constant temperature. In Figure 50, it can be seen that the only method to avoid 

generation of undefined pseudopotential forces across the phase envelope is the piecewise 

linear EOS. The other two methods generate undefined pseudopotential forces within the 

liquid region due to an inherent inability of cubic equations of state to calculate pressure 

within that region. 

 

Figure 50- Pseudopotential forces generated by the YS, MPI and piecewise linear methods across the phase 

envelope. 
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4.2.1. Modification for Achievement of Thermodynamic Consistency 

The MPI obtained coexistence densities deviate from the thermodynamically consistent 
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Figure 51- Deviation of MPI from the thermodynamic coexistence densities when the SRT and MRT collision 

operators are used. 

The solution is to split epsilon into two separate values, i.e. one for use in the EOS and a 

second one for use in the forcing scheme: 

𝜓𝑗 = (
𝜌

𝜆𝑗𝜀𝑗 + 𝐶𝑗𝜌
)

1
𝜀𝑗⁄

                                                        (132) 

εj should be split into εEOS,j and εForcing,j: 

𝜓𝑗 = (
𝜌

𝜆𝑗𝜀𝑗 + 𝐶𝑗𝜌
)

1
𝜀𝐸𝑂𝑆,𝑗⁄

                                                (133) 

This modification allows the user to set the ε to a different value in the forcing scheme 

than in the pseudopotential calculation, in order to adjust the density ratio without 

affecting the equation of state recovered by the MPI model. Introduction of unnecessary 

modifications to the equation of state is not desired. For example, the value of εForcing,j 

can be set to 0.89 times the value of εEOS,j: 

𝜀𝐹𝑜𝑟𝑐𝑖𝑛𝑔,𝑗 = 0.89𝜀𝐸𝑂𝑆,𝑗                                                       (134) 

The Li-Luo method [74] of achievement of thermodynamic consistency for the MRT 

collision operator can then be modified to the following:  

6(𝑢𝑥𝐹𝑥 + 𝑢𝑦𝐹𝑦) +∑

12
𝜀𝐹𝑜𝑟𝑐𝑖𝑛𝑔,𝑗
−16𝐺𝑗

|𝑭𝒋|
2

𝜓𝑗
2∆𝑡(𝜏𝑒 − 0.5)

𝑗

                     (135) 
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Figure 52 shows that the modification splitting ε into two separate values allows to 

approach thermodynamic consistency across the entire range of reduced temperature. 

 

Figure 52- The modification allows to recover thermodynamically consistent densities for the entire temperature 

range without the need for further manipulation and fitting. 

4.2.2. Factors Affecting Thermodynamic Consistency 

Clearly, thermodynamic consistency is affected by changing droplet diameter for both 

MPI and Yuan-Schaefer models. This is evident in the density ratio values depicted in 

Figure 53. The behaviour of MPI and YS models is very similar.  

 

Figure 53- Effect of changing droplet diameter on the obtained density ration using the MPI, YS and piecewise linear 
methods of EOS inclusion. 
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Adjusting the relaxation parameters also affects the thermodynamic consistency of MPI 

and Yuan-Schaefer models as illustrated in Figure 54.  

 

Figure 54- Effect of changing the magic parameter on the obtained density ratio in droplet simulations using the 
MPI, YS and piecewise linear methods. 

 

4.3.Laplace Test of Stationary Droplets 

Figure 56 shows the resultant spurious velocity magnitude for the MPI and YS 

simulations. The comparison of the intermolecular force generated by both methods at 

the same conditions is presented in Figure 55. Both Yuan-Schaefer and MPI models give 

practically the same spurious velocities when the same EOS parameters are used. This is 

caused by the fact that both models generate almost identical intermolecular interaction 

force.  

500

700

900

1100

1300

1500

1700

0 0.05 0.1 0.15 0.2 0.25

D
en

si
ty

 R
at

io

Magic Parameter

Piecewise linear EOS YS method MPI



 

74 
 

 

Figure 55- Interparticle force generated by MPI and YS methods at the same density ratio. 

 

Figure 56- Spurious velocity magnitude generated by the MPI and YS methods at Tr = 0 .42 (τv = 1 and Λ = 1/12). 
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Chapter 5 - Hydrodynamic Multiple Relaxation Time 

Multipseudopotential Interaction Model Combined with Thermal 

LBM Models 

5.1.Numerical Background 

In this Chapter the MRT-MPI model described in Chapter 4 is combined with two thermal 

models in order to extend its capability to the study of thermal effects. Based on the 

recommendations of Hu et al. [127] and Li et al. [123], the models used in this thesis 

belong to the modified temperature-based DDF and hybrid thermal LBM categories. The 

equations that need to be solved in the 4th order Runge-Kutta scheme used in the hybrid 

thermal LBM model [122] are the following:  

𝑇𝑡+𝛿𝑡 = 𝑇𝑡 +
𝛿𝑡
6
(ℎ1 + 2ℎ2 + 2ℎ3 + ℎ4)                                                                      (136) 

ℎ1 = 𝐾(𝑇𝑡)                                                                                                                          (137) 

ℎ2 = 𝐾 (𝑇𝑡 +
𝛿𝑡
2
ℎ1)                                                                                                          (138) 

ℎ3 = 𝐾 (𝑇𝑡 +
𝛿𝑡
2
ℎ2)                                                                                                          (139) 

ℎ4 = 𝐾(𝑇𝑡 + 𝛿𝑡ℎ3)                                                                                                             (140) 

𝐾(𝑇𝑡) = −𝒖 ∙ ∇𝑇 +
𝜆

𝜌𝑐𝑉
∇ ∙ (𝜆∇𝑇) −

𝑇

𝜌𝑐𝑉
(
𝜕𝑝𝐸𝑂𝑆
𝜕𝑇

)
𝜌
∇ ∙ 𝒖                                         (141) 

The equations constituting the modified temperature-based DDF model by Li et al. [123] 

take the following forms: 

𝑔𝛼(𝒙 + 𝒆𝛼𝛿𝑡, 𝑡 + 𝛿𝑡) = 𝑔𝛼
∗ (𝒙, 𝑡)                                                                                      (142) 

𝒈∗ = 𝑴−1𝒎∗                                                                                                                        (143) 

𝒎∗ = 𝒎− 𝜦(𝒎−𝒎𝑒𝑞) + 𝛿𝑡𝑺                                                                                       (144) 

The thermal model is implemented using the MRT collision operator with [123]:  

𝜦 = 𝑑𝑖𝑎𝑔(𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8)                                                                          (145) 

𝒎𝑒𝑞 = 𝑇(1,−2,2, 𝑢𝑥, −𝑢𝑥, 𝑢𝑦, −𝑢𝑦, 0,0)
𝑇
                                                                     (146) 

𝑺 = (𝑆0, 0,0,0,0,0,0,0,0)
𝑇                                                                                                    (147) 
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𝑆0 = 𝜙 + 0.5𝛿𝑡𝜕𝑡𝜙                                                                                                              (148) 

Where: 

𝜙 =
1

𝜌𝑐𝑉
∇ ∙ (𝜆∇𝑇) − ∇ ∙ (𝑘∇𝑇) + 𝑇 [1 −

1

𝜌𝑐𝑉
(
𝜕𝑝𝐸𝑂𝑆
𝜕𝑇

)
𝜌
] ∇ ∙ 𝒖                                (149) 

𝑘 = 𝜂𝑐𝑠
2𝛿𝑡                                                                                                                              (150) 

𝜂 = (
1

𝑠3
−
1

2
) = (

1

𝑠5
−
1

2
)                                                                                                 (151) 

In addition, the third and fourth temperature distribution functions in the moment space 

are modified in order to remove the 𝜕𝑡0(𝑇𝒖) error according to [123]: 

𝑚3,𝑁𝑒𝑤
∗ = 𝑚3

∗ + 𝛿𝑡 (1 −
𝑠3
2
) 𝑠4(𝑚4 −𝑚4

𝑒𝑞)                                                                  (152) 

𝑚5,𝑁𝑒𝑤
∗ = 𝑚5

∗ + 𝛿𝑡 (1 −
𝑠5
2
) 𝑠6(𝑚6 −𝑚6

𝑒𝑞)                                                                 (153) 

The partial derivative responsible for phase-change was taken to be the following for the 

Peng-Robinson and Carnahan-Starling equations of state, respectively: 

(
𝜕𝑝𝑃𝑅
𝜕𝑇

)
𝜌
=

𝜌𝑅

1 − 𝑏𝜌
                                                                                                            (154) 

(
𝜕𝑝𝐶𝑆
𝜕𝑇

)
𝜌
= 𝜌𝑅

1 +
𝑏𝜌
4 + (

𝑏𝜌
4 )

2

− (
𝑏𝜌
4 )

3

(1 −
𝑏𝜌
4 )

3                                                                     (155) 

Gradient terms were calculated using the second-order isotropic difference scheme:  

𝜕𝑖𝑇(𝒙) ≈
1

𝑐𝑠2𝛿𝑡
∑𝜔𝛼𝑇(𝒙 + 𝒆𝛼𝛿𝑡)𝑒𝛼𝑖
𝛼

                                                                        (156) 

Laplacian terms can be calculated using the second-order isotropic difference scheme [26, 

162] or using the isotropic discrete Laplacian operators [163]. The second-order isotropic 

difference scheme takes the following form [26]: 

∇2𝑇(𝑥) ≈
2

𝑐𝑠2𝛿𝑡
2∑𝜔𝛼[𝑇(𝒙 + 𝒆𝛼𝛿𝑡) − 𝑇(𝒙)]

𝛼

                                                         (157) 

The isotropic discrete Laplacian operator takes the following form [163]:  



 

77 
 

L(𝒙)𝐷2𝑄9 ≡ ∇2𝑇(𝑥) =
1

6
[4∑𝑇𝑖

(1)
+∑𝑇𝑖

(2)
− 20𝑇(0)

4

𝑖=1

4

𝑖=1

]                              (158) 

The second-order isotropic difference scheme was used exclusively to obtain the data 

discussed in this thesis.  

5.2.Thermal Multipseduopotential Interaction Model 

The simplest way of including thermal effects in the multipseudopotential model is to 

combine the hydrodynamic model with one of the thermal models and to make the 

temperature terms in MPI location-dependent with temperature updated by the thermal 

model. In isothermal models, the temperature term is constant throughout the 

computational domain and it is prescribed for the entire simulation duration during 

initialisation. For the Peng-Robinson equation of state, thermal MPI becomes the 

following:  

𝐺1(𝒙) = −
2

3
                                                                                                                        (159) 

𝐺2(𝒙) =
2

𝑐2
𝑇(𝒙)                                                                                                                 (160) 

𝐺3(𝒙) =
2

𝑐2
𝜔(𝑇(𝒙))𝑎

2𝑏√2
                                                                                                       (161) 

𝐺4(𝒙) = −
2

𝑐2
𝜔(𝑇(𝒙))𝑎

2𝑏√2
                                                                                                   (162) 

𝜔(𝑇(𝒙)) = (1 + (0.37464 + 1.54226𝛼 − 0.26992𝛼2) (1 − √𝑇𝑅(𝒙)))
2

         (163) 

With the intermolecular multipseudopotential force calculated according to:  

𝑭 =∑−𝐺𝑗(𝒙)𝜓𝑗(𝒙)𝑐𝑠
2

𝑛

𝑗=1

∑𝑤(|𝒆𝛼|
2)𝜓𝑗(𝒙 + 𝒆𝛼)𝒆𝛼

𝑁

𝛼=1

                                               (164) 

It is clear that the 𝜓𝑗 term does not contain temperature-related parameters:  

𝜓𝑗 = (
𝜌

𝜆𝑗𝜀𝑗 + 𝐶𝑗𝜌
)

1
𝜀𝑗⁄

                                                                                                       (165) 
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Peng-Robinson 𝝍𝒋 Parameters 

j-th term 𝜺𝒋 𝝀𝒋 𝑪𝒋 

1 2 
1

2
 0 

2 2 
1

2
 -b 

3 2 
1

2
 𝑏(1 + √2) 

4 2 
1

2
 𝑏(1 − √2) 

Table 3- MPI equation of state parameters that do not contain temperature. 

Hence, thermal MPI implemented in this way incorporates thermal effects only at the 

local site x in the calculation of the intermolecular force F. This formulation of the 

intermolecular force is suitable for isothermal cases, where the temperature is constant 

throughout the computational domain. In order to visualise the fact that thermal effects 

are only incorporated at the local site and not in the neighbouring sites, in the following 

equation the only term that contains temperature is 𝐺𝑗(𝒙): 

𝑭 =∑−𝐺𝑗(𝒙)𝜓𝑗(𝒙)𝑐𝑠
2

𝑛

𝑗=1

∑𝑤(|𝒆𝛼|
2)𝜓𝑗(𝒙 + 𝒆𝛼)𝒆𝛼

𝑁

𝛼=1

                    (166) 

In reality, intermolecular forces reflect the effect of temperatures of the interacting 

particles. This effect is naturally present in thermal models using the square root form of 

the pseudopotential including the thermal YS models. In these models, temperature 

effects are equally-weighted at 𝒙 and 𝒙 + 𝒆𝛼. Temperature containing terms in 

pseudopotential models employing the square root form of 𝜓 are 𝜓(𝒙) and 𝜓(𝒙 + 𝒆𝛼) in 

following equation: 

𝑭 = −𝐺(𝒙)𝜓(𝒙)𝑐𝑠
2∑𝑤(|𝒆𝛼|

2)𝜓(𝒙 + 𝒆𝛼)𝒆𝛼

𝑁

𝛼=1

                               (167) 

Unmodified thermal MPI without temperature being included at 𝒙 + 𝒆𝛼 sites can simulate 

droplet evaporation, but it cannot simulate bubble nucleation during boiling. Instead of 

vapour being generated, a high pressure zone is created adjacent to the heating element 

without phase change occurring as illustrated in Figure 57, see section 5.2.2. for the flow 

configuration. Eventually, the accumulation of energy in the liquid without phase change 

leads to generation of fluctuation at the liquid-vapour interface.  
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Figure 57- Density field on the left hand side and pressure field on the right hand side to illustrate the results of 

unmodified thermal MPI in bubble nucleation simulations. The black tube in the liquid phase is used as the heating 

element. 

In order to accurately incorporate thermal effects, the thermal MPI model needs to be 

modified. The intermolecular force can be rewritten in the following manner in order to 

allow inclusion of thermal effects at 𝒙 and 𝒙 + 𝒆𝛼: 

𝑭

=∑−√𝐺𝑡ℎ𝑒𝑟𝑚𝑎𝑙,𝑗(𝒙)𝐺𝑠𝑖𝑔𝑛,𝑡ℎ𝑒𝑟𝑚𝑎𝑙,𝑗𝜓𝑗(𝒙)𝑐𝑠
2

𝑛

𝑗=1

∑𝑤(|𝒆𝛼|
2)√𝐺𝑡ℎ𝑒𝑟𝑚𝑎𝑙,𝑗(𝒙 + 𝒆𝛼)𝜓𝑗(𝒙

𝑁

𝛼=1

+ 𝒆𝛼)𝒆𝛼                                                                                                       (168) 

A second G term is introduced to allow incorporation of thermal effects at 𝒙 + 𝒆𝛼 sites. 

In order to take account of the fact that a second G term has been introduced, it is 

necessary to take the square root of the G terms. This treatment of the G terms means that 

both terms are equally-weighted in the calculation of the intermolecular forces. A sign 

function is also necessary in order to take the negative signs outside of the square root 

terms to prevent generation of complex numbers. For the Peng-Robinson equation of 

state, the following expressions are used in the corrected thermal MPI: 

𝐺𝑡ℎ𝑒𝑟𝑚𝑎𝑙,1(𝒙) =
2

3
                                                         (169) 
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𝐺𝑡ℎ𝑒𝑟𝑚𝑎𝑙,2(𝒙) =
2

𝑐2
𝑇(𝒙)                                             (170) 

𝐺𝑡ℎ𝑒𝑟𝑚𝑎𝑙,3(𝒙) =
2

𝑐2
𝜔(𝑇(𝒙))𝑎

2𝑏√2
                                  (171) 

𝐺𝑡ℎ𝑒𝑟𝑚𝑎𝑙,4(𝒙) =
2

𝑐2
𝜔(𝑇(𝒙))𝑎

2𝑏√2
                                  (172) 

𝐺𝑠𝑖𝑔𝑛,𝑡ℎ𝑒𝑟𝑚𝑎𝑙,1 = −1                                                   (173) 

𝐺𝑠𝑖𝑔𝑛,𝑡ℎ𝑒𝑟𝑚𝑎𝑙,2 = 1                                                      (174) 

𝐺𝑠𝑖𝑔𝑛,𝑡ℎ𝑒𝑟𝑚𝑎𝑙,3 = 1                                                      (175) 

𝐺𝑠𝑖𝑔𝑛,𝑡ℎ𝑒𝑟𝑚𝑎𝑙,4 = −1                                                  (176) 

5.2.1. Simulations of Stationary Droplet Evaporation 

Thermal MPI model implemented in this way can correctly simulate droplet evaporation 

and bubble nucleation during boiling. In order to validate conformity to the D2 law, 

simulations were carried out in a 200 x 200 gravity-free domain with periodic boundary 

conditions at all four sides. The vapour surrounding the liquid droplet was initialised at a 

superheated temperature that was higher than the saturation temperature of the liquid by 

0.14 times the critical temperature (0.14Tc). The superheat was enforced at the periodic 

boundaries during the simulation. Heat capacity at constant volume was equal to 5. The 

value of thermal conductivity (λ) was constant in the computational domain at 2/3, 

leading to the following simplification in the temperature equations:  

∇ ∙ (𝜆∇𝑇) = 𝜆∇2𝑇                                                        (177) 

Bulk viscosity was set to be equal to kinematic viscosity. The magic parameter was set to 

1/12 in the hydrodynamic MRT collision operator. All of the relaxation rates in the 

thermal diagonal matrix (Λ) were set to 1.0. Resulting in the k parameter in the 

temperature equation being equal to 1/6. In the modified temperature double distribution 

function (DDF) model of Li et al., k is simply a constant without physical meaning [123]. 

The simulations were carried out at a reduced temperature of 0.86 with the acentric factor 

equal to 0.344 and Peng-Robinson a = 3/49, b = 2/21 and R = 1. 

From this point onwards, the corrected MPI thermal models will be used and the term 

“corrected” will be dropped. Figure 58 shows the shrinking of the droplet size in time.  
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Figure 58- Verification of D2 law during droplet evaporation for unmodified and corrected thermal MPI. Reduced 

temperature was set to 0.86 and the superheat with respect to the saturation temperature was set to 0.14 times the 

critical temperature. Thermal conductivity was set to 2/3 and heat capacity at constant volume was set to 5. 

Acentric factor was set to 0.344, PR a to 3/49 and PR b to 2/21. Comparison to data in Reference [8]. 

Figure 59 compares droplet evaporation rates obtained using the YS and MPI thermal 

models. The rate of evaporation obtained using the MPI hybrid model is the same as the 

rate of evaporation for a 4th order Runge-Kutta hybrid model detailed in Reference [8]. 

The simulation parameters were chosen to be the same as those in the Reference [8]. MPI 

thermal models provide straight lines in simulations of droplet evaporation that fulfil the 

D2 law. Therefore, MPI is well suited to thermal simulations. In comparison, YS thermal 

models provide slightly less straight lines with a steeper drop in droplet diameter in the 

first 13 thousand timesteps. The rates of evaporation obtained using the MPI models are 

lower than those obtained using the YS models.  
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Figure 59- Comparison of droplet evaporation rates of YS and MPI thermal models. Reference [8] data plotted for 

validation purposes. Tr = 0.86, initial droplet diameter = 60, superheat = 0.14Tc, cv = 5, thermal conductivity = 2/3, 

acentric factor =0.344, PR a = 3/49 and PR b = 2/21. 

5.2.2. Simulations of Bubble Nucleation 

The black circle submerged in the liquid phase is meant to represent a heating element, 

which could be a tube in a heat exchanger supplying heat to the liquid phase. Thus, 

simulation of complex heat exchanger geometries is possible using the models. The 

domain size was 150 nodes in the x direction by 400 nodes in the y direction. Top and 

bottom boundaries were set to bounce-back and the left and right hand side boundaries 

were periodic. Liquid was located in the bottom of the computational domain up to a 

thickness of 150 lattice units with the space above it filled with vapour. The diameter of 

the heating element was set to 30 lattice units and its centre was located 40 lattice units 

above the bottom boundary in the middle of the x-axis. Heat was supplied to the liquid 

phase along the entire length of the circumference of the heating element. The 

temperature of the heating element was set to 1.25 times the critical temperature (1.25Tc). 

Heat capacity at constant volume (cv) was set to 5.0 and kinematic viscosity was set to 

0.1 (τv=0.8). The value of gravity was set to −2.5 × 10−5 in the y direction and the gravity 

force was implemented using the difference between the local density and the average 

density within the fluid domain: 

𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦,𝑦 = −2.5 × 10−5(𝜌 − 𝜌𝑎𝑣𝑒𝑟𝑎𝑔𝑒)                    (178) 
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This method of introducing gravity prevents injection of net momentum into the 

simulation domain [87]. In the hydrodynamic relaxation matrix, the value of bulk 

viscosity was set to the same value as the kinematic viscosity. The hydrodynamic MRT 

magic parameter was set to 1/12. All of the relaxation rates in the thermal diagonal matrix 

(Λ) were set to 1.0. Hence, k in the temperature equation was equal to 1/6. Thermal 

diffusivity (χ) was set to 0.06. This value of thermal diffusivity was used in the calculation 

of thermal conductivity. Thermal conductivity (λ) was set to be variable and it was 

obtained from the following equation:  

𝜆 = 𝜌𝑐𝑉𝜒                                                                              (179) 

Opting for a location-dependent value of thermal conductivity necessitates the following 

treatment of ∇ ∙ (𝜆∇𝑇) in the temperature equation:  

∇ ∙ (𝜆∇𝑇) = 𝜆𝛻2𝑇 + ∇𝜆 ∙ ∇𝑇                                          (180) 

A cubic equation of state was employed in the simulations. The chosen equation of state 

was the Peng-Robinson equation of state, because it offers good stability and is widely 

used in the literature allowing comparison to published results. The models are compared 

at a reduced temperature of 0.86 with parameters in the Peng-Robinson equation of state 

set to a = 3/49, b = 2/21, R = 1 and the acentric parameter equal to 0.344 (the value for 

water). Both models generate a bubble that departs the heating element at the 9,700 

timestep. As mentioned above, MPI results in a lower rate of evaporation than the YS 

model. Hence, the bubble generated by the MPI model is slightly smaller than the bubble 

generated by the YS model. Figure 60 shows the snapshots of the bubble nucleation and 

departure from a heating element with YS DDF and MPI DDF models. Both models can 

predict bubble and departure from a heating element, but bubble sizes are different. 
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Figure 60- Comparison of bubble nucleation and departure from a heating element. The image on the left hand side 

was obtained using the YS DDF model and the image on the right had side was obtained using the MPI DDF model. 

The time step at which the bubble broke free from the heating element was 9,700 for both models. 

5.3.Introduction of the G Thermal Weightings into Multipseudopotential 

Interaction Model 

The intermolecular force expression in the thermal MPI model can be modified to allow 

different weightings of 𝐺𝑡ℎ𝑒𝑟𝑚𝑎𝑙,𝑗(𝒙) and 𝐺𝑡ℎ𝑒𝑟𝑚𝑎𝑙,𝑗(𝒙 + 𝒆𝛼). The weightings can be 

modified by setting powers of the G terms to the following:  

𝑭 =∑−𝐺𝑡ℎ𝑒𝑟𝑚𝑎𝑙,𝑗(𝒙)
𝜒
2𝐺𝑠𝑖𝑔𝑛,𝑡ℎ𝑒𝑟𝑚𝑎𝑙,𝑗𝜓𝑗(𝒙)𝑐𝑠

2

𝑛

𝑗=1

∑𝑤(|𝒆𝛼|
2)𝐺𝑡ℎ𝑒𝑟𝑚𝑎𝑙,𝑗(𝒙

𝑁

𝛼=1

+ 𝒆𝛼)
2−𝜒
2 𝜓𝑗(𝒙 + 𝒆𝛼)𝒆𝛼                                                (181) 

Lower-case Greek letter Chi (χ) was introduced into the above expression to allow 

modification of the G weightings. Table 4 lists the effects of changing the G weightings 

on bubble nucleation. Based on the findings, equal weighting of the G terms in thermal 
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MPI is the appropriate choice. This weighting coincides with the treatment of thermal 

effects in thermal YS models.  

χ Power of 𝑮𝒕𝒉𝒆𝒓𝒎𝒂𝒍,𝒋(𝒙) 
Power of 𝑮𝒕𝒉𝒆𝒓𝒎𝒂𝒍,𝒋(𝒙 +

𝒆𝜶) 

Relative weighting 

and observations 

2 1 
0

2
 

(100% and 0%) 

original thermal 

MPI – no 

nucleation and 

generation of 

fluctuation at 

liquid-vapour 

interface 

1.5 
3

4
 

1

4
 

(75% and 25%) no 

nucleation – 

generation of two-

phase mixture 

1.1 
11

20
 

9

20
 

(55% and 45%) 

bubble nucleation 

no departure 

1 
1

2
 

1

2
 

Equal weighting – 

correct bubble 

nucleation 

0.9 
9

20
 

11

20
 

(45% and 55%)   

Bubble nucleation 

0.75 
3

8
 

5

8
 

(37.5% and 62.5%) 

Unstable after 100 

timesteps 

0.5 
1

4
 

3

4
 

(25% and 75%) 

unstable 

0 
0

2
 1 

(0% and 100%) 

Immediately 

unstable 
Table 4- Investigation of the effects of changing the G weightings on bubble nucleation. 
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5.4.Surface Tension Adjustment in Thermal Multipseudopotential Interaction 

Model 

Thermal MPI can be combined with either the Li-Luo method [149] or Huang-Wu method   

[148] of surface tension modification. In this Section, the effects of decreasing and 

increasing surface tension are examined in bubble nucleation simulations using the 

thermal MPI DDF model. The Li-Luo [149] method has to be adapted for use with the 

MPI model into the following expression: 

𝑸 =∑𝜅
𝐺𝑗

2
𝜓𝑗(𝒙)

𝑛

𝑗=1

∑𝑤(|𝒆𝛼|
2)[𝜓𝑗(𝒙 + 𝒆𝛼) − 𝜓𝑗(𝒙)]

8

𝛼=1

𝒆𝛼𝒆𝛼                (182) 

And the Huang-Wu [148] method should take the following form in order to allow surface 

tension modification in MPI models: 

𝑸𝒎 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

3∑(𝑘1 + 2(
𝜀𝑗

−8
− 𝑘1))

|𝑭𝒋|
2

𝐺𝑗𝜓𝑗
2

𝑛

𝑗=1

−3∑(𝑘1 + 2(
𝜀𝑗

−8
− 𝑘1))

|𝑭𝒋|
2

𝐺𝑗𝜓𝑗
2

𝑛

𝑗=1

0
0
0
0

𝑘1∑
𝐹𝑥,𝑗
2 − 𝐹𝑦,𝑗

2

𝐺𝑗𝜓𝑗
2

𝑛

𝑗=1

𝑘1∑
𝐹𝑥,𝑗𝐹𝑦,𝑗

𝐺𝑗𝜓𝑗
2

𝑛

𝑗=1 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 (183) 

As mentioned in Section Error! Reference source not found., the Li-Luo method is 

etter for reducing surface tension and the Huang-Wu method is more suitable for 

increasing surface tension. Consequently, the Li-Luo method was employed to reduce 

surface tension and the Huang-Wu method was used to increase surface tension. 

Simulations were carried out using the same parameters as those described in Subsection 

5.2.2. Figure 61 illustrates bubble departure from the heating element as surface tension 

is reduced from the unmodified value of surface tension, i.e. from surface tension 

coefficient = 1.0.  
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Figure 61- Effect of reducing surface tension on the departure of a nucleated bubble from the heating element. 

Surface tension was reduced using the κ (kappa) parameter in the MPI-adapted Li-Luo 

method [149]. For example, in order to set the surface tension coefficient to 0.1, κ was 

set to 0.9. Surface tension coefficient equal to 0.1 results in surface tension that is 10 

times lower than the unmodified surface tension. Clearly, as surface tension is reduced 

the shape of the bubble changes from teardrop to a dome-like shape. According to Figure 

62, higher values of surface tension require generation of larger bubbles in order for 

departure from the heating element to take place. This is caused by the fact that in order 

for a bubble to depart the heating element, where the contact line is static, the buoyancy 

force needs to overcome the surface tension generated forces [164]. Therefore, higher 

values of surface tension require greater buoyancy forces for successful bubble departure. 

Bubbles of greater volumes are subject to greater buoyancy forces. 



 

88 
 

 

Figure 62- Effect of increasing surface tension on the departure of a nucleated bubble. 

Surface tension was increased using the MPI-adapted Huang-Wu method. k1 was adjusted 

to increase surface tension according to surface tension coefficient = 1 – 6k1, whilst ε was 

kept constant by adjusting k2 as required.  An observation can be made that the higher the 

value of surface tension, the longer it takes for the bubble to depart the heating element. 

The amount of timesteps taken to departure versus the surface tension coefficient is 

plotted in Figure 63. The trend exhibits an observable departure from linearity. Detailed 

parameters at bubble departure are listed in Table 5. 

 

Figure 63- Amount of timesteps taken for the nucleated bubble to break free from the heating element at different 

values of surface tension. 
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Surface 

Tension 

Coefficient 

Surface 

Tension 

Departure 

Time 

Departure 

Diameter 
Velocity Density We 

0.1 0.00701 4700 60.54 0.0207 0.4817 1.7833 

0.2 0.01402 5900 60.93 0.0079 0.5017 0.136 

0.6 0.04206 6800 48.73 0.017 0.5369 0.179 

1 0.0701 9800 42.81 0.0144 0.5708 0.0724 

1.4 0.09814 16500 49.61 0.0107 0.5162 0.0299 

1.8 0.12618 22000 59.6 0.0089 0.5142 0.0192 

1.9 0.13319 23100 61.65 0.0087 0.5135 0.0178 
Table 5- Data at bubble departure used to calculate the Weber number. 

The values of bubble diameter, velocity and density were calculated across the widest 

point of the departing bubble. They were used to calculate the Weber number (We) for 

the departing bubbles.  

 

Figure 64- Surface tension tests in order to calculate Weber number. 

The trend of Weber number versus the surface tension coefficient is plotted in Figure 65. 

Higher values of surface tension result in lower values of the Weber number of the 

departing bubble. Around We ≈ 2, bubble deformation from a teardrop shape is obvious 

and resembles a dome rather than a teardrop. At this stage, bubble shape becomes 

significantly more deformable during its buoyancy-driven ascent to the surface than at 

lower Weber numbers.  
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Figure 65- Semi-log Trend of the Weber number of the departing bubbles at different values of the surface tension 

coefficient. 

Figure 66 illustrates the effect of reducing surface tension on the bubbles as they reach 

the liquid surface. Lower values of surface tension provide insufficient force to keep the 

spherical shape of bubbles resulting in their evident deformation. In addition, lower 

surface tension bubbles disturb the liquid surface to a lesser degree as they break through 

the surface. The lower surface tension bubbles are smaller as they departed the heating 

element sooner than their higher surface tension counterparts. Also, less energy is 

released as the bubbles break-up. In Figure 67 it can be observed that as surface tension 

is increased, larger bubbles reach the liquid surface and they cause greater disturbance of 

the liquid surface. At higher values of surface tension, the process of break-up of bubbles 

at liquid surface is sufficiently violent to generate secondary droplets. Figure 68 illustrates 

generation of a secondary droplet during the break-up process of a bubble with the surface 

tension coefficient equal to 1.9. On the other hand, the process of a bubble with the surface 

tension coefficient equal to 0.1 reaching the liquid surface is comparatively uneventful.  
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Figure 66- Effect of reducing surface tension on the bubble approach to the liquid surface. 

 

 

Figure 67- Bubble approach to the liquid surface at increased values of surface tension. 
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Figure 68- Generation of secondary droplets as a high surface tension bubble breaks through the liquid surface 

compared to relatively quiescent liquid surface during emergence of a low surface tension bubble. 

5.5.Achievement of Lower Reduced Temperatures  

In this Section, the methods of achieving lower reduced temperatures are investigated 

using the pseudopotential thermal models. First, a new method of carrying out thermal 

simulations using the piecewise-linear EOS is described. Secondly, the stable envelopes 

of reduced temperatures are presented.  

5.5.1. Thermal Piecewise-Linear EOS Model 

A new method of carrying out thermal simulations using the piecewise-linear EOS is 

presented here. It is clear that there are no temperature terms in the original piecewise-

linear EOS [131]: 

𝑝𝐸𝑂𝑆 = {

                          𝜌𝜃𝑉                                     𝑖𝑓 𝜌 ≤  𝜌1
            𝜌1𝜃𝑉 + (𝜌 − 𝜌1)𝜃𝑀          𝑖𝑓 𝜌1 < 𝜌 ≤  𝜌2
𝜌1𝜃𝑉 + (𝜌2 − 𝜌1)𝜃𝑀 + (𝜌 − 𝜌2)𝜃𝐿   𝑖𝑓 𝜌 > 𝜌2

                                      (184) 

Temperature was introduced into the model by making the spinodal points temperature-

dependent:  

𝑝𝐸𝑂𝑆 = {

                          𝜌𝜃𝑉                                     𝑖𝑓 𝜌 ≤  𝜌1(𝑇)

            𝜌1(𝑇)𝜃𝑉 + (𝜌 − 𝜌1(𝑇))𝜃𝑀          𝑖𝑓 𝜌1(𝑇) < 𝜌 ≤  𝜌2(𝑇)

𝜌1(𝑇)𝜃𝑉 + (𝜌2(𝑇) − 𝜌1(𝑇))𝜃𝑀 + (𝜌 − 𝜌2(𝑇))𝜃𝐿   𝑖𝑓 𝜌 > 𝜌2(𝑇)

       (185) 
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The spinodal points were calculated at a number of reduced temperatures for the Peng-

Robinson EOS with the piecewise-linear EOS prescribing pressure slopes in each phase. 

The parameters were chosen in order to allow comparison with the YS and MPI thermal 

models which use the Peng-Robinson EOS directly. The spinodal points obtained are 

listed in Table 6.  

Tr T ρ1 ρ2 

1 0.109378 2.657309 2.657309 

0.95 0.103909 1.03 4.9009 

0.9 0.09844 0.59 5.861942 

0.85 0.092972 0.35 6.572979 

0.8 0.087503 0.204 7.136564 

0.75 0.082034 0.114 7.60679 

0.7 0.076565 0.059 8.002541 

0.65 0.071096 0.0275 8.343035 

0.6 0.065627 0.0111 8.640901 

Table 6- Spinodal points calculated at a number of reduced temperatures for the Peng-Robinson EOS with a = 3/49, b 

= 2/21, R = 1 and acentric factor equal to 0.344. In the piecewise-linear EOS Θv was set to 0.21333, θL to 0.33333 and 

θM to -0.00333. 

The spinodal points were plotted and polynomial equations were used to estimate the 

trends in a number of sections of the reduced temperature range as illustrated in Figure 

69. The polynomial equations were then used in the thermal model to calculate the 

spinodal points at temperatures within the temperature range under investigation: 

𝜌1(𝑇𝑟 = 1.0 − 0.9) = 19849𝑇2 − 3935.9𝑇 + 195.7                                                (186) 

𝜌1(𝑇𝑟 = 0.9 − 0.8) = 1571.4𝑇2 − 256.91𝑇 + 10.652                                            (187) 

𝜌1(𝑇𝑟 = 0.8 − 0.6) = 10138𝑇3 − 1921.1𝑇2 + 123.48𝑇 − 2.6842                     (188) 

𝜌2(𝑇𝑟 = 1.0 − 0.9) = −21441𝑇2 + 4162.8𝑇 − 196.16                                         (189) 

𝜌2(𝑇𝑟 = 0.9 − 0.8) = −2465𝑇2 + 341.82𝑇 − 3.8995                                           (190) 

𝜌2(𝑇𝑟 = 0.8 − 0.6) = −16225𝑇3 + 2771.6𝑇2 − 205.9𝑇 + 14.802                  (191) 

Table 7 compares the values of spinodal points obtained using the polynomial equations 

with the values calculated using the mechanical and chemical equilibrium equations.  
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Figure 69- Spinodal fitting at different temperatures using polynomial equations. 

Tr ρ1 ρ2 
ρ1 

polynomial 

ρ1 

polynomial/ 

ρ1 

ρ2 

polynomial 

ρ2 

polynomial/ 

ρ2 

1 2.6573 2.6573 2.6637 1.0024 2.6482 0.9966 

0.95 1.03 4.9009 1.0359 1.0057 4.8921 0.9982 

0.9 0.59 5.8619 0.5894 0.9989 5.8623 1.0001 

0.85 0.35 6.573 0.3494 0.9983 6.5733 1.0000 

0.8 0.204 7.1366 0.2036 0.9980 7.1369 1.0000 

0.75 0.114 7.6068 0.1139 0.9990 7.6058 0.9999 

0.7 0.059 8.0025 0.0585 0.9916 8.0025 1.0000 

0.65 0.0275 8.343 0.0275 1.0001 8.3421 0.9999 

0.6 0.0111 8.6409 0.0109 0.9844 8.6404 0.9999 

Table 7- Comparison of the spinodal points obtained from the polynomial equations with the spinodal points 

calculated using the mechanical and chemical equilibrium equations. 
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Droplet evaporation simulations were carried out in order to compare the performance of 

the new piecewise-linear thermal model with the YS and MPI thermal models. Figure 70 

shows the evaporation rates for the different hybrid models at a reduced temperature equal 

to 0.86 and Figure 71 illustrates the evaporation rates of the different DDF models at a 

reduced temperature set to 0.8. It is clear that the piecewise-linear models with 

temperature-dependent spinodal points produce the highest rates of evaporation. The 

evaporation lines obtained using the piecewise-linear models are also the least straight 

which is a negative factor for the model.  

 

Figure 70- Comparison of the evaporation rates of different models at a reduced temperature of 0.86. Reference [8] 

data included for comparison. 
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Figure 71- Comparison of the evaporation rates of different models. The reduced temperature was equal to 0.8. 

5.5.2. Envelope of Stable Reduced Temperatures 

Now that a novel piecewise-linear thermal model has been presented, it is possible to 

investigate reduced temperature simulation capabilities of the three pseudopotential-

based thermal models. First of all, in order to facilitate discussion of the temperature 

lowering capabilities of the pseudopotential-based models, any differences between the 

hybrid and modified temperature DDF models should be highlighted. According to Table 

8, DDF models are more stable than hybrid models. The simulations were carried out as 

droplet evaporation cases with the superheat applied being greater than the liquid 

saturation temperature by 0.14 times the critical temperature (i.e. superheat = Tsat + 

0.14Tc). Hence, DDF models are more suitable for the investigation of the lowest 

achievable reduced temperatures.  

Reduced 

Temperature 

YS Thermal 

DDF 

YS Thermal 

Hybrid 

MPI 

Thermal 

DDF 

MPI Thermal 

Hybrid 

0.86 Stable Stable Stable Stable 

0.8 Stable Unstable Stable Unstable 

Table 8- Temperature reduction stability results obtained using hybrid and DDF models. Simulations were carried out 

using the Peng-Robinson EOS with a = 3/49, b = 2/21, R = 1 and acentric factor = 0.344. 
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Table 9 compares the reduced temperature lowering capabilities of the YS thermal DDF 

model, MPI thermal DDF model and piecewise-linear thermal DDF model. Again, the 

simulations were carried out for droplet evaporation with the superheat greater than the 

saturation temperature by 0.14Tc. YS and piecewise-linear models achieved the same 

reduced temperature of 0.8, whilst MPI thermal model was able to achieve a lower than 

the other two models reduced temperature of 0.78. This suggests that MPI thermal models 

are more suitable for carrying out simulations whose purpose is to investigate thermal 

effects at low reduced temperatures.  

Reduced 

Temperature 
YS Thermal MPI Thermal 

Piecewise 

Thermal 

0.86 Stable Stable Stable 

0.8 Stable Stable Stable 

0.78 Unstable Stable Unstable 

0.76 Unstable Unstable Unstable 

Table 9- Temperature reduction stability results for the three different pseudopotential-based thermal models 

combined with DDF. Simulations were carried out using the Peng-Robinson EOS with a = 3/49, b = 2/21, R = 1 and 

acentric factor = 0.344. 

Clearly, thermal models have problems in carrying out simulations at low reduced 

temperatures. The simulations discussed above were carried out using the Peng-Robinson 

equation of state with a set to 3/49, b to 2/21, R to 1 and the acentric factor set to the value 

for water (i.e. 0.344). The usual strategy for improving the stability of simulations is to 

increase interfacial thickness. In Figure 72, it can be observed that the simulation at a 

reduced temperature of 0.78 with a = 3/49 and b = 2/21 is on the verge of the stable 

simulation envelope. The sign that the simulation is close to instability manifests itself in 

the fluctuations of droplet diameter around 13 thousand and 50 thousand timesteps. 

Therefore, in order to improve stability and achieve lower reduced temperatures, an 

attempt can be made to increase the interfacial thickness. This can be achieved by 

lowering the value of the a parameter in the cubic EOS, as originally demonstrated by Li 

et al. [74]. However, this strategy offers only limited success in achieving lower reduced 

temperatures in thermal simulations. In Figure 72 it can be seen that increasing interfacial 

thickness allows to lower the achievable reduced temperature down to 0.76. In order to 

achieve even lower reduced temperatures, the b parameter in the cubic EOS also has to 

be decreased. Coexistence densities are not dependent on the a parameter in the Peng-
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Robinson and Carnahan-Starling equations of state. However, they are dependent on the 

b parameter, which means that the coexistence densities have to be recalculated when the 

b parameter is adjusted. Adjusting the values of both parameters in the Peng-Robinson 

EOS allows to achieve stable droplet evaporation simulations at Tr = 0.6. As depicted in 

Figure 72, the rate of evaporation decreases at a constant superheat applied to the droplet 

as the reduced temperature is lowered. Even as the superheat is increased, the rate of 

evaporation is not a straight line at high density ratios. In the early stages of evaporation 

simulations at Tr = 0.6, the droplet diameter even exceeds the initial diameter. This 

indicates that it is difficult to achieve good accuracy at lower reduced temperatures, even 

if the simulations are stable.  

 

Figure 72- Results of droplet evaporation simulations at a range of reduced temperatures. Simulations at lower 

reduced temperatures were made possible but to lowering of the a and b parameters in the Peng-Robinson EOS. 

Figure 73 examines the effect of changing the a and b parameters in the Peng-Robinson 

equation of state on the rate of evaporation of a droplet when the thermal MPI DDF model 

is applied at Tr = 0.6. The main problem encountered involves the rate of evaporation not 

conforming to the D2 law. Increasing interfacial thickness can have beneficial effects on 

the rate of evaporation. For example, at a constant value of b equal to 1/168 the rate of 

evaporation improved as a was decreased from 1/1568 to 1/3136 and then again as it was 
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decreased further to 1/6272. The best results were achieved when a was equal to 1/6272 

and b was equal to 1/168. Lowering the value of b to 1/336 whilst keeping a at 1/6272 

did not improve the results obtained. Lowering both a and b parameters even further from 

those identified as optimal (i.e. from a = 1/6272, b = 1/168), again did not improve the 

rate of evaporation.  

 

Figure 73- Details of the effect of adjusting the Peng-Robinson EOS parameters on droplet evaporation at Tr=0.6. 

5.6.Effect of Multiple Relaxation Time and Forcing Scheme Parameters on 

Droplet Evaporation 

In discussions of thermal models in the literature some material parameters are not 

mentioned. For example, Li et al. [123] and Li et al. [8] employed the MRT collision 

operator with methods of adjusting thermodynamic consistency, but did not mention the 

settings of the MRT relaxation rates or of the ε parameter for adjusting thermodynamic 

consistency in the forcing scheme. These parameters have an effect on the rate of 

evaporation and could affect the slope and any deviation from linearity of the D2 plots. 

They are briefly explored in Figure 74 and in Figure 75. It can be seen in Figure 74 that 

increasing the value of bulk viscosity decreases the rate of evaporation. Decreasing ε has 
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diameter, as depicted in Figure 75. The effects of these parameters should be kept in mind 

when comparing different models.  

 

Figure 74- The effect of increasing bulk viscosity as a multiple of kinematic viscosity on the rate of droplet 

evaporation. Comparison to data in Reference [8]. 

 

Figure 75- The influence of modifying ε in the Huang-Wu scheme [148] for the adjustment of thermodynamic 

consistency. k1 was set to 0 in order to avoid modifying surface tension and k2 was varied in order to change the 

value of ε. Evaporation rates are compared to data in Reference [8]. 
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Chapter 6 - Application of the Thermal Model to Phase Change 

Simulations 

6.1.Experimental Data 

Salem’s doctoral work [3] highlighted the practical interest of the effect of 

subatmospheric pressures on boiling. The interest is of industrial significance and there 

is a shortage of research published in the literature on this topic [3]. Simulation methods 

capable of investigation  of subatmospheric pressures were also highlighted as being 

sought after [3]. The purpose of this Chapter is to attempt to tackle this topic and make 

progress towards addressing the unfulfilled needs. After discussing experimental data, 

LBM simulations will be carried out and simulation results will be compared to the 

experimental data.  

Figure 76 illustrates Salem’s  [3] experiments of boiling at subatmospheric pressures 

using a brass tube submerged in water. The experiments were carried out at the following 

pressures from top to bottom 50 mbar, 120 mbar, 500 mbar and 850 mbar, respectively. 

A number of heat fluxes ranging from 15 kW/m2 to 80 kW/m2 were investigated by Salem 

[3]. The experimental images of bubble nucleation at subatmospheric pressures clearly 

indicate that pressure has an effect on the size of bubbles nucleated adjacent to the heating 

tube. The lower the pressure the larger the size of nucleated bubbles. The heat flux has an 

effect on the rate of bubble nucleation.  

Figure 77 illustrates the results of the same experiment, but with the brass tube replaced 

by a stainless steel tube. The experiments with the stainless steel tube were carried out at 

pressures of 120 mbar, 500 mbar and 850 mbar from top to bottom, respectively. The 

same range of heat flux from 15 kW/m2 to 80 kW/m2 was employed to obtain the results 

by Salem [3]. The same trends can be observed with regards to the effect of pressure on 

the size of nucleated bubbles and the influence of heat flux on the rate of boiling.  

Salem reported that pressure affected the shape of nucleated bubbles [3]. At lower 

pressures, bubbles leaned towards “mushroom” shapes, whereas at higher pressures their 

shapes were closer to being circular. Lower pressures were found to require higher heat 

flux to achieve boiling [3]. In practice, this translated into the need for higher wall 

superheat. Salem found that lowering pressure resulted in generation of bubbles with 

diameter in the region of centimetres [3].  
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Figure 76- Boiling experiments at different pressures and heat fluxes. Heat supplied from a brass tube. The pressures 

for the rows are 50 mbar, 120 mbar, 500 mbar and 850 mbar from top to bottom, respectively. Experimental data 

from Reference [3]. 

Surface properties of the heating element were also found to have an influence on the 

boiling characteristics at subatmospheric pressures [3]. Surface properties such as surface 

roughness, wettability and thermal conductivity are likely to have an influence on the 

boiling process and generation of bubbles. Surface roughness is an example of a 

geometric structure that can affect the performance of heat transfer surfaces [35]. Surface 

roughness is not normally investigated using the lattice Boltzmann method, because it is 
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a parameter in the range of tens of micrometres. Simple bounce-back boundary condition 

commonly used to introduce solid surfaces in LBM simulations, on the other hand, results 

in staircase approximation of solid shapes. Commercial steel pipes have surface 

roughness of around 0.046 mm in absolute terms [165]. Stachowicz illustrated material 

defects in brass sheets with the scale used of 50 micrometres [166]. Material defects can 

play a role in bubble nucleation by providing nucleation sites. Siedel et al. [167] 

investigated pool boiling characteristics using two artificially created nucleation sites 

with a diameter of 200 μm and depth of 500 μm. Baltis and Geld [168] found two 

nucleation sites to interact with each other in flow boiling experiments when they are 

separated by 10 mm.  

 

Figure 77- Boiling experiments at different heat fluxes and pressures. The tube in the photos was made of stainless 

steel and supplied heat to the liquid. The pressures in the experiments were 120 mbar, 500 mbar and 850 mbar from 

top to bottom, respectively. Experimental data from Reference [3]. 
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The influence of subatmospheric pressure on nucleated bubble diameter is plotted in 

Figure 78 for Salem’s [3] experiments illustrated above.  The trends are plotted for the 

two tube materials used, i.e. brass and stainless steel, and for the separate heat flux values. 

It is evident that lowering the pressure has the same effect of increasing bubble diameter 

for all the data series. The extent of bubble diameter increase with decreasing pressure is 

significant.  

 

Figure 78- The effect of lowering pressure on bubble nucleation during boiling. Results for brass and stainless steel 

heating tubes at different values of heat flux. 

6.2 Simulation Results 

This Section provides data of lattice Boltzmann method simulations carried out to 

investigate Salem’s [3] findings. The experimental set-up is illustrated in Figure 79. The 

simulations were carried out using the YS DDF and MPI DDF thermal models. The 

pressure boundary condition was located at the top of the domain. It was used to modify 

pressure within the simulation domain. The Zou-He pressure boundary for the north side 

takes the following form [25, 169]:  

𝑢𝑦,0 = −1 +
(𝑓0 + 𝑓1 + 𝑓3 + 2(𝑓2 + 𝑓5 + 𝑓6))

𝜌0
                     (192) 

𝑓4 = 𝑓2 −
2

3
𝜌0𝑢𝑦,0                                                                        (193) 
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𝑓7 = 𝑓5 −
1

6
𝜌0𝑢𝑦,0 +

1

2
(𝑓1 − 𝑓3)                                              (194) 

𝑓8 = 𝑓6 −
1

6
𝜌0𝑢𝑦,0 +

1

2
(𝑓3 − 𝑓1)                                               (195) 

Where 𝜌0 is adjusted to set the pressure at the boundary.  

Bottom boundary was set to bounce-back and the left and right hand side boundaries were 

periodic. The bottom part of the computational domain was filled with liquid up to a depth 

of 150 lattice units. Vapour was located above the liquid with a depth of 250 lattice units. 

Hence, the pressure boundary condition was located at the top of the vapour band. The 

centre of the heating tube was set 40 lattice units above the bottom boundary in the middle 

of the x-axis, i.e. 125 lattice units from the left and right hand side periodic boundaries. 

The heating tube was a circle of 15 lattice unit radius. Energy in the form of superheat to 

nucleate bubbles was supplied to the liquid phase along the entire length of the 

circumference of the heating element. The temperature of the heating element was set to 

1.25 times the critical temperature (1.25Tc). The temperature field of the fluid was 

initialised at the saturation temperature. The density field was initialised in a diffuse 

manner with a linear interface.  

Heat capacity at constant volume (cv) was set to 5.0 and kinematic viscosity was set to 

0.1 (τv = 0.8). The value of gravity was set to −2.5 × 10−5 in the y direction and the 

gravity force was implemented using the difference between the local density and the 

average density within the fluid domain: 

𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦,𝑦 = −2.5 × 10−5(𝜌 − 𝜌𝑎𝑣𝑒𝑟𝑎𝑔𝑒)                               (196) 

In the hydrodynamic relaxation matrix, the value of bulk viscosity was set to the same 

value as the kinematic viscosity. The hydrodynamic MRT magic parameter was set to 

1/12. All of the relaxation rates in the thermal diagonal matrix (Λ) were set to 1.0. Hence, 

k in the temperature equation was equal to 1/6. Thermal diffusivity (χ) was set to 0.06, 

resulting in a variable thermal conductivity (λ) obtained from the following equation:  

𝜆 = 𝜌𝑐𝑉𝜒                                                                                         (197) 

The parameters in the Peng-Robinson equation of state were set to a = 3/49, b = 2/21 and 

R = 1. The acentric parameter in the Peng-Robinson equation of state was set to the value 

for water, i.e. 0.344.  
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Figure 79- Simulation set-up for thermal bubble nucleation experiments at lowered pressures. 

Table 10 and Table 11 list the results of bubble nucleation simulations at lowered 

pressures. The average pressure at departure was calculated as an average of the pressures 

in all of the fluid nodes within the computational domain. The bubble diameter was taken 

to be the greatest width of the departing bubble. The velocity and density values were 

obtained by averaging them across the widest point of the departing bubble. 
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Pressure 
Departure 

Timestep 

Bubble 

Diameter 

Departure 

Average 

Pressure 

Velocity Density We 

Pressure 1 8100 63.89 0.041546 0.0246 0.6147 0.5186 

Pressure 2 7900 94.99 0.034884 0.0181 0.5217 0.3551 

Pressure 3 6700 183.32 0.024798 0.021 0.3294 0.5806 

Table 10- Details of properties of departing bubbles during MPI DDF simulations at Tr = 0.9 for the three pressure 

simulation runs. 

Pressure 
Departure 

Timestep 

Bubble 

Diameter 

Departure 

Average 

Pressure 

Velocity Density We 

Pressure 1 9200 55.95 0.028994 0.0159 0.487 0.0983 

Pressure 2 8100 132.41 0.018609 0.0257 0.3293 0.4121 

Pressure 3 7500 186.04 0.013878 0.029 0.2773 0.6202 

Table 11- Details of properties of departing bubbles during YS DDF simulations at Tr = 0.86 for the three pressure 

simulation runs. 

Figure 80 illustrates bubble departure at the three pressures tested at Tr = 0.9 using the 

MPI DDF thermal model and Figure 81 depicts the equivalent at Tr = 0.86 using the YS 

DDF thermal model. The effects of decreasing the pressure on bubble nucleation observed 

experimentally can be clearly demonstrated in the results of the LBM simulations. The 

lower the pressure in the simulation domain the larger the size of bubbles nucleated during 

simulations of nucleate pool boiling. Salem [3] also mentioned that larger bubbles tend 

to be “mushroom” shaped rather than spherical. Deformation of departing bubbles into 

“mushroom”- or dome-shaped bubbles can be observed in Figure 80 and to a lesser degree 

in Figure 81.  
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Figure 80- Bubbles at departure from the heating tube for the three pressures. The simulations were carried out with 

MPI DDF thermal model at a reduced temperature of 0.9. Decreasing pressure from left to right hand side. 

 

Figure 81- Illustration of bubbles breaking away from the heating tube at the three different pressures tested. The 

simulations were carried out using the YS DDF thermal model at Tr = 0.86. Decreasing pressure from left to right 

hand side. 

Bubble deformation can be explained using the Weber number. If bubble deformation 

occurs, then lower pressures must results in an increase in the inertia force in relation to 

the surface tension force.  At low bubble diameters the surface tension force is sufficient 

to keep spherical bubble shape, whereas at larger bubble diameters the inertia force is 

greater and the surface tension force is no longer sufficient to prevent bubble deformation. 

The Weber numbers calculated in Table 10 and Table 11 are plotted in Figure 82.  
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Figure 82- Weber number for the departing bubbles at different pressures for the two reduced temperatures tested. 

The plot shows that the largest bubbles have the highest values of the Weber number. In 

the calculations it was assumed that pressure does not affect surface tension. A decrease 

in pressure in the LBM simulations resulted in an increase in the surface tension and this 

can be observed in Figure 83. At all of the pressures tested, Laplace’s law was 

satisfactorily obeyed. In a one-component system where liquid is in equilibrium with its 

vapour it is not possible for the pressure to vary as stated in the Lewis-Randall equation 

describing the change of surface tension with pressure [170]. In two-component systems 

a decrease in pressure results in an increase of surface tension [170]. This was overserved 

for water in contact with low molecular weight gases [171].  

 

Figure 83- Effect of pressure on surface tension in LBM simulations with MPI DDF thermal model at Tr = 0.9. 
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The effect of pressure on the diameter of bubbles departing the heating element is 

illustrated in Figure 84. Lowering the pressure results in an increase in the diameter of 

the departing bubbles. The same trend can be observed at both reduced temperatures.  

 

Figure 84- Effect of pressure on diameter of departing bubbles for the two reduced temperatures tested. 

 

6.3 Normalisation of Data and Comparison 

In order to investigate the data further and to compare experimental and simulation data 

on the same plot, the data has to be normalised. First, the simulation pressure is 

normalised in order to examine the effect of reduced temperature. The simulations were 

carried out at significantly higher reduced temperatures than the experiments. The critical 

temperature of water is 374 °C (647 K) [172]. Salem [3] reported fluid temperatures in 

the range from 30 °C to 100 °C. This means that the experiments were carried out at 

reduced temperatures ranging from approximately 0.47 to 0.58. Therefore, it is important 

to gauge the extent to which reduced temperature affects the pressure-related phenomena 

present in nucleate pool boiling. In Figure 85 the same trend can be observed at both 

reduced temperatures. Therefore, it can be assumed that reduced temperature does not 

affect the observed trends in bubble nucleation at pressures decreased from the saturation 

point.  
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Figure 85- The effect of pressure on bubble nucleation at the two reduced temperatures for which simulations were 

carried out. 

In order to normalise the experimental results, pressure is normalised at 1 bar and bubble 

size is normalised to bubble size at 1 bar. This is done to display bubble size relative to 

bubble size at 1 bar rather than in absolute terms, i.e. centimetres. Trends of experimental 

results are extrapolated to 1 bar in order to obtain the extent of bubble size at 1 bar. This 

process is illustrated in Figure 86 for one of the experimental data series. 

 

Figure 86- Extrapolating bubble size to 1 bar to obtain normalised bubble diameters. 
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After the normalisation process is complete, both experimental and simulation data can 

be plotted on the same graph for comparison. The results are illustrated in Figure 87. The 

agreement between simulation and experimental results is good with simulation results 

down to a pressure of 0.5. The simulation results are located in between experimental 

results for brass and stainless steel. This is despite the fact that the simulation results were 

carried out at significantly higher reduced temperatures. Lower reduced temperatures 

would require simulation of high density ratios. High density ratios tend to be 

accompanied by higher numerical errors which could have a significant influence on the 

quality of simulation results. Stable simulations were achieved at a reduced temperature 

of 0.6. However, there was no success in terms of achieving nucleated bubble departure 

from the heating tube. Nucleated bubbles did not depart the heating element because 

simulations with high gravity forces caused excessive velocities in the vapour phase. Very 

low density of the vapour phase was the cause of the high velocity. Lower gravity forces 

were insufficient to lift bubbles up through the liquid phase to the surface. Nevertheless, 

the results agree well with Salem’s [3] findings. Consequently, LBM can be used to study 

subatmospheric pressure nucleate pool boiling.  

 

Figure 87- Effect of pressure on bubble nucleation. Experimental [3] and simulation results. 
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For water, bubble diameter is inversely proportional to pressure, i.e. 𝐷𝑏~𝑃
−1 [164, 173]. 

This relationship has been well-captured in the LBM simulations carried out as part of 

this doctoral work and in Salem’s [3] experimental results.  

 

Figure 88- Examination of the inverse relationship between bubble diameter at departure from the heating element 
and pressure for LBM simulations. 

 

Figure 89- Examination of the inverse relationship between bubble diameter at departure from the heating element 
and pressure for Salem's [3] experimental data. 

Bubble detachment from the heating element is a complex phenomenon and its mechanics 
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One important consideration that needs to be taken into account when considering the 

physics of bubble detachment is the contact-line motion [164].  

Fritz [176] constructed a semi-empirical equation for the bubble diameter at departure 

from the heating element [164]: 

𝐷𝑏 = 0.0208𝜃𝑒 [
𝜎

𝑔(𝜌𝑙 − 𝜌𝑣)
]

1
2⁄

                      (198) 

The most prominent shortcoming of Fritz’s [176] correlation concerns the inability of the 

equation to reflect the strong dependence of bubble diameter at departure from the heating 

element on pressure [164].  

In the case of a static contact line it can be assumed that there is no formation of a 

microlayer, leading to the buoyancy force balancing a considerable surface tension force 

[164]. This model is termed the pinned-contact-line (PCL) model [164]. When the contact 

line is mobile, the surface tension force becomes unimportant leading to the buoyancy 

force competing with the downward hydrodynamic (drag) force [164]. The term given to 

the mobile contact line model is the depinned-contact-line (DCL) model [164].  

Bond numbers were calculated for the experimental and simulation data in order to 

investigate whether the comparison between simulation and experimental data is valid. 

𝐵𝑜 =
(𝜌𝑤 − 𝜌𝑔)𝑔𝐿

2

𝜎
                                           (199) 

Where the characteristic length was taken to be droplet radius.  

 In order to calculate Bond number values for the experimental data, the following 

properties of saturated liquid and vapour were obtained from steam tables: 

P (mbar) ρL (kg/m3) ρG (kg/m3) σ (N/m) 

850 961.8001776 0.507067566 0.059845898 

500 970.9544371 0.308627765 0.062431124 

120 988.2697349 0.080915185 0.06804125 

50 994.7069626 0.035478222 0.07074036 

Table 12- Properties of saturated water and steam at subatmospheric pressures according to the IAPWS IF-97 steam 
tables [177]. 
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The following Bond number values were obtained for simulation results using the MPI 

DDF thermal model at Tr = 0.9:  

Pressure 
Bubble 

Diameter 
ρL ρG 

Bond 

Number 

Pressure 1 63.89 5.87023 0.6147 2.921121 

Pressure 2 94.99 6.030266 0.5217 5.134746 

Pressure 3 183.32 6.059849 0.3294 15.47066 

Table 13- Bond number values for simulation results obtained using the MPI DDF thermal model with g = 2.5x10-5 

and surface tension values from Figure 83. 

 

 

Figure 90- Comparison of Bond number values for the experimental [3] and simulation data. 

The agreement between the experimental and simulation Bond number values is good 

confirming that the matching observations of bubble size and shape at lowered pressures 

in experiments and in simulations have their basis in physics.  
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Chapter 7 - Conclusions 

The main findings of this study are listed in this Chapter and a number of 

recommendations is proposed for further study at the end of this Chapter. 

 It is well-known that using sharp interfaces in the pseudopotential models can lead to 

generation of undefined interaction forces which render simulations unstable. In this work 

it is shown that even when the interface is thick, generation of undefined pseudopotential 

values is still possible for certain choices of parameters. Therefore, it is suggested that it 

is important to have an understanding of the way in which different methods generate 

intermolecular forces.  

A hybrid pseudopotential model was developed in order to investigate the influence of 

intermolecular force distribution on simulations. It was found that spurious velocities are 

affected by the intermolecular force distribution besides being affected by the total value 

of the intermolecular force.  

It has been observed that the introduction of a viscosity ratio between the phases almost 

eliminates the influence of density ratio on the generated values of spurious velocity. In 

dynamic simulations of a droplet splashing on a thin liquid film, the techniques for 

improving stability of simulations were ranked in the following order of decreasing 

efficacy: 

- Introduction of a kinematic viscosity ratio between the phases 

- Increase in the value of bulk viscosity 

- Replacing the YS [143] method of EOS inclusion with the piecewise linear [131] 

method 

- Increasing the reduced temperature/ reducing the density ratio. 

 

The modified pseudopotential-based model of Li et al. [157] for fluid-solid interactions 

was reformulated in order to allow adjustment of fluid-solid forces, which mimic fluid-

fluid forces, separately from fluid-fluid interactions.  

A method was developed of coupling the multipseudopotential interaction model with the 

MRT collision operator and of adjusting thermodynamic consistency. It was found that 

splitting the ε parameter into two separate values works well for adjusting the 

thermodynamic consistency for the entire temperature range. 
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A thermal MPI model was developed by reformulating the interparticle force expression 

to include temperature effects at local and neighbouring sites. Thermal MPI models were 

found to be an attractive method for simulating droplet evaporation and bubble nucleation 

in nucleate pool boiling. Hybrid thermal MPI model was found to obey the D2 law [7] 

closely and the DDF thermal MPI model was found to be more stable than the other 

models tested at lower reduced temperatures. Stable thermal simulations were carried out 

at realistically low reduced temperatures (i.e. Tr = 0.6). Stability was achieved by 

simultaneously lowering the a and b parameters in the Peng-Robinson equation of state. 

However, main problems encountered at low reduced temperatures involved departure 

from the D2 law [7] and inability of nucleated bubbles to depart the heating element due 

to buoyancy.  

LBM was applied to study nucleate pool boiling at subatmospheric pressures. In the LBM 

simulations, the effect of increasing bubble diameter with decreasing pressure was 

captured and obeyed the 𝐷𝑏~𝑃
−1 [164, 173] relationship. Bubble shape was found to 

correctly transform from spherical to mushroom shaped. Bond number comparison 

showed that the physics observed in the simulations can be compared to the real life 

experimental results. The results of LBM simulations on bubble diameter increase with 

decreasing pressure fall in between the experimental results for the brass and stainless 

steel tubes. Lower pressures appeared to promote slightly higher Weber numbers. Surface 

tension in LBM simulations was found to increase as the pressure within the simulation 

domain was decreased, a trend which can be observed in the physical world. 

7.1. Future work 

For further studies, the listed aspects of the proposed model should be studied: 

- Carry out multiphase thermal simulations in heat exchanger geometries. Such 

studies would have practical interest and could investigate the efficiency of heat 

transfer of different arrangements. For example, tubes in shell and tube heat 

exchangers are usually arranged in an equilateral triangular, square, or rotated 

square pattern [31].  

- A worthwhile research topic would consist of development of thermal models 

capable of accurate simulations at low reduced temperatures. Currently, this target 

appears to be out of reach of the presently available thermal LBM models.  

- Investigate the effects variation of physical properties, e.g. viscosity, with 

temperature. Viscosity can be location, time and condition dependent in LBM 
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simulations. In this work, viscosity was made dependent on density in order to 

improve stability of simulations.  

- The effects of bulk viscosity in LBM simulations should be further compared to 

its effects in real life. For example, Wu et al. briefly touched the subject [155] and 

mentioned Cramer’s [178] measurements of bulk viscosity values of different 

fluids. 

- Where the physics of secondary droplets is of interest, simulations should be 

carried out in larger domains in order to better resolve secondary droplets. 
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Appendix A 

Term Model 

MRT 
Forcing 
Scheme 

Li-Luo 
Thermodynamic 

Adjustment 

Li-Luo 
Surface 
Tension 

Adjustment 

Li-Luo 
Thermodynamic 

and Surface 
Tension 

Adjustments 

Huang-Wu 
Thermodynamic 

and Surface 
Tension 

Adjustments 

𝑺̅      
0 0 0 0 0 0 

1 6(𝑢𝑥𝐹𝑥
+ 𝑢𝑦𝐹𝑦) 

6(𝑢𝑥𝐹𝑥 + 𝑢𝑦𝐹𝑦)

+
12𝜎|𝑭|2

𝜓2∆𝑡(𝜏𝑒 − 0.5)
 

6(𝑢𝑥𝐹𝑥
+ 𝑢𝑦𝐹𝑦) 

6(𝑢𝑥𝐹𝑥 + 𝑢𝑦𝐹𝑦)

+
12𝜎|𝑭|2

𝜓2∆𝑡(𝜏𝑒 − 0.5)
 

6(𝑢𝑥𝐹𝑥 + 𝑢𝑦𝐹𝑦) 

2 −6(𝑢𝑥𝐹𝑥
+ 𝑢𝑦𝐹𝑦) 

−6(𝑢𝑥𝐹𝑥 + 𝑢𝑦𝐹𝑦)

−
12𝜎|𝑭|2

𝜓2∆𝑡(𝜏𝜀 − 0.5)
 

−6(𝑢𝑥𝐹𝑥
+ 𝑢𝑦𝐹𝑦) 

−6(𝑢𝑥𝐹𝑥 + 𝑢𝑦𝐹𝑦)

−
12𝜎|𝑭|2

𝜓2∆𝑡(𝜏𝜀 − 0.5)
 

−6(𝑢𝑥𝐹𝑥
+ 𝑢𝑦𝐹𝑦) 

3 𝐹𝑥 𝐹𝑥 𝐹𝑥 𝐹𝑥 𝐹𝑥 

4 −𝐹𝑥 −𝐹𝑥 −𝐹𝑥 −𝐹𝑥 −𝐹𝑥 

5 𝐹𝑦 𝐹𝑦 𝐹𝑦 𝐹𝑦 𝐹𝑦 

6 −𝐹𝑦 −𝐹𝑦 −𝐹𝑦 −𝐹𝑦 −𝐹𝑦 

7 2(𝑢𝑥𝐹𝑥
− 𝑢𝑦𝐹𝑦) 

2(𝑢𝑥𝐹𝑥 − 𝑢𝑦𝐹𝑦) 2(𝑢𝑥𝐹𝑥
− 𝑢𝑦𝐹𝑦) 

2(𝑢𝑥𝐹𝑥 − 𝑢𝑦𝐹𝑦) 2(𝑢𝑥𝐹𝑥 − 𝑢𝑦𝐹𝑦) 

8 (𝑢𝑥𝐹𝑦
+ 𝑢𝑦𝐹𝑥) 

(𝑢𝑥𝐹𝑦 + 𝑢𝑦𝐹𝑥) (𝑢𝑥𝐹𝑦
+ 𝑢𝑦𝐹𝑥) 

(𝑢𝑥𝐹𝑦 + 𝑢𝑦𝐹𝑥) (𝑢𝑥𝐹𝑦 + 𝑢𝑦𝐹𝑥) 

C      

0   0 0  

1   1.5𝜔𝑒(𝑄𝑥𝑥
+ 𝑄𝑦𝑦) 

1.5𝜔𝑒(𝑄𝑥𝑥 + 𝑄𝑦𝑦)  

2   −1.5𝜔𝜖(𝑄𝑥𝑥
+ 𝑄𝑦𝑦) 

−1.5𝜔𝜖(𝑄𝑥𝑥
+ 𝑄𝑦𝑦) 

 

3   0 0  

4   0 0  

5   0 0  

6   0 0  

7   −𝜔𝑣(𝑄𝑥𝑥
− 𝑄𝑦𝑦) 

−𝜔𝑣(𝑄𝑥𝑥 − 𝑄𝑦𝑦)  

8   −𝜔𝑣𝑄𝑥𝑦 −𝜔𝑣𝑄𝑥𝑦   

Qm      

0     0 

1     
3(𝑘1 + 2𝑘2)

|𝑭|2

𝐺𝜓2
 

2     -3(𝑘1 + 2𝑘2)
|𝑭|2

𝐺𝜓2
 

3     0 

4     0 

5     0 

6     0 

7     
𝑘1
𝐹𝑥
2 − 𝐹𝑦

2

𝐺𝜓2
 

8     
𝑘1
𝐹𝑥𝐹𝑦

𝐺𝜓2
 

Table I - Where Fα are the total forces which can include, depending on the case being simulated, fluid-fluid 

interactions, fluid-solid interactions and external forces (e.g. gravity) and |𝑭|2 = (𝐹𝑥
𝑖𝑛𝑡 2 + 𝐹𝑦

𝑖𝑛𝑡 2) (Fα
int stands for 

intermolecular, i.e. fluid-fluid interactions).  
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