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Abstract
While many molecular studies have documented arbuscular mycorrhizal fungi (AMF) communities in temperate ecosystems, 
very few studies exist in which molecular techniques have been used to study tropical AMF communities. Understanding 
the composition of AMF communities in tropical areas gains special relevance as crop productivity in typically low fertility 
tropical soils can be improved with the use of AMF. We used a hierarchical sampling approach in which we sampled soil from 
cocoa (Theobroma cacao L.) plantations nested in localities, and in which localities were nested within each of three regions 
of Côte d’Ivoire. This sampling strategy, combined with 18S rRNA gene sequencing and a dedicated de novo OTU-picking 
model, allowed us to study AMF community composition and how it is influenced at different geographical scales and across 
environmental gradients. Several factors, including pH, influenced overall AMF alpha diversity and differential abundance 
of specific taxa and families of the Glomeromycotina. Assemblages and diversity metrics at the local scale did not reliably 
predict those at regional scales. The amount of variation explained by soil, climate, and geography variables left a large 
proportion of the variance to be explained by other processes, likely happening at smaller scales than the ones considered in 
this study. Gaining a better understanding of processes involved in shaping tropical AMF community composition and AMF 
establishment are much needed and could allow for the development of sustainable, productive tropical agroecosystems.
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Introduction

Arbuscular mycorrhizal fungi (AMF) are obligate biotrophs 
that form symbioses with the roots of the majority of plant 
species. This symbiosis is of fundamental ecological and 
agricultural importance because the fungi improve plant 
nutrient acquisition, especially phosphate. Likewise, AMF 

strongly influence soil structure and ecosystem functioning 
(Rillig and Mummey 2006; Powell and Rillig 2018), crop 
productivity (Ceballos et al. 2019; Zhang et al. 2019), and 
the diversity of plant communities (van der Heijden et al. 
1998, 2015).

Recent biogeographic studies on AMF have shown that 
most AMF taxa present global distribution patterns (Davison 
et al. 2015) and that even identical genotypes of some AMF 
taxa occur in distant geographical locations, sometimes 
across continents (Savary et al. 2018). Patterns of AMF 
abundance, diversity, and composition have been found to 
be highly heterogeneous across multiple spatial and temporal 
scales (Bahram et al. 2015). For example, AMF communi-
ties were found to be phylogenetically clustered at scales of 
few meters (Horn et al. 2014) but driven by the local envi-
ronment at a landscape scale (Hazard et al. 2013). For many 
soil-borne organisms, such patterns have been attributed to 
soil nutrient distribution (Oehl et al. 2005; Liu et al. 2014) 
and other edaphic conditions (Jansa et al. 2014). However, 
because AMF are obligate symbionts, it has been suggested 
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that AMF assemblages co-vary with those of plant com-
munities (Zobel and Öpik 2014; López-García et al. 2017).

In ecosystems, plant and AMF communities tend to 
be structured in a hierarchical way in which interactions 
between plants and AMF can occur at multiple scales (e.g., 
plant community, AMF population, AMF community within 
the plant). A major challenge in ecology is to understand the 
extent to which processes at one scale (e.g., within a popula-
tion) affect patterns and processes at another (e.g., across the 
community). Explicit consideration of spatial scales in AMF 
community studies is rare (Vályi et al. 2016).

Despite their global distribution and widely recognized 
importance, the majority of the data available concerning the 
structuring of AMF communities and taxa distribution come 
from temperate areas (Öpik et al. 2010). Recent efforts have 
been made to bridge this gap. However, most of these studies 
have focused on extraction of AMF spores from the soil and sub-
sequent morphological identification (Abdelhalim et al. 2014; de 
Mello et al. 2018; Sousa et al. 2018; Marinho et al. 2019; Solís-
Rodríguez et al. 2020) rather than using DNA sequences for 
identification. Large degrees of variation in spore morphology 
have been reported even within an AMF species (Walker and 
Vestberg 1998). Also, many AMF may grow only vegetatively 
for long periods of time without producing spores (Helgason 
et al. 2002). Molecular analyses of AMF communities provide 
a way around these obstacles as they have the potential to eluci-
date AMF taxa in field samples independently of morphological 
criteria (Öpik et al. 2010). Some studies conducted in tropical 
regions using molecular techniques have reported the presence 
and abundance of AMF taxa. However, they have not addressed 
factors influencing community structuring processes (Senés-
Guerrero and Schüßler 2015; Séry et al. 2018; Peña-Venegas and 
Vasco-Palacios 2019; Sarr et al. 2019). The lack of knowledge of 
tropical AMF community distribution and biogeography hinders 
our ability to harness the ecological services of AMF towards 
sustainable agriculture.

It recently has been shown that fungal phyla follow the typi-
cal latitudinal diversity gradient in which diversity increases 
from the poles to the tropics. However, this trend did not 
appear for fungal functional diversity, which was lowest in 
temperate biomes (Bahram et al. 2018). This highlights the 
possibility that tropical areas host a great taxonomic and func-
tional diversity of AMF which remains understudied. Further-
more, there are no published hierarchical studies to understand 
factors shaping tropical AMF communities and whether they 
follow patterns observed in studies at different spatial scales 
in better-studied temperate ecosystems. The study of pro-
cesses determining the structuring of AMF communities in 
tropical areas gains special relevance as most tropical soils 
have inherently low nutrient availability for plants, with high 
phosphate fixation rates due to low pH and high aluminum 
concentrations, which often leads to low crop productivity. The 
use of AMF has been shown to be an economically viable 

alternative to increase food production of some crops in tropi-
cal systems (Sieverding 1990; Ceballos et al. 2013, 2019). 
The application of AMF in cocoa (Theobroma cacao L.) is of 
great interest because AMF have been shown to confer several 
advantages such as growth increases (Snoeck et al. 2010), pro-
tection against pathogens (Tchameni et al. 2012), and reduced 
heavy metal uptake (Gramlich et al. 2017). Côte d’Ivoire is 
the world’s largest producer of cocoa, supplying 38% of cocoa 
used for chocolate manufacture. Historically, in Côte d’Ivoire, 
when productivity of a plantation decreases due to soil nutri-
ent depletion, plantations are abandoned, inducing severe eco-
nomic effects (Tondoh et al. 2015).

In this study, we used a hierarchical sampling approach in 
which we sampled soil from two cocoa plantations nested in 
localities, and in which several localities were nested within 
each of three cocoa production regions in Côte d’Ivoire. We 
chose plantations that had the area in a radius of several 
meters around the trees kept free of weeds with a ground 
cover of cocoa leaves and no other plants. Thus, sampling 
the soil around cocoa trees mostly avoided the environmen-
tal filtering rendered by diverse plant communities over 
AMF assemblages. This allowed us to best study the influ-
ence of geographical and environmental variables on AMF 
community composition. Our aim was to study AMF com-
munity composition and how this is influenced at different 
geographical scales and across climatic and environmental 
gradients. Besides investigating the factors influencing AMF 
community composition at different scales, this study also 
intends to contribute to bridging the gap concerning knowl-
edge of tropical AMF communities associated with planta-
tion environments.

Materials and methods

Sampling sites and strategy

We used a hierarchical strategy to sample soil in three 
regions in Côte d’Ivoire with several localities within 
each region and two plantations within each locality (Fig.  
S1). These three regions represent the most important 
cocoa production areas in Côte d’Ivoire. The first, the 
Nawa region, the highest cocoa production area, is char-
acterized by an average annual rainfall of 2200 mm, with 
two rainy seasons (March–June and September–Novem-
ber) (Goula Bi Tie et al. 2007). In this region, soil sam-
ples were taken from two cocoa plantations in each of 
three localities: namely, Petit-Bondoukou (PBK), Koda-
Centre (KDA), and Kipiri Grand-Zatry (KPI). The trees 
sampled in each of the plantations were of similar ages 
but the exact age since planting for each plantation was 
not available. The second region, the San Pedro region 
climate, is characterized by an annual rainfall between 
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1600 and 2400 mm, with two rainy seasons (April–July 
and October–November) (Goula Bi Tie et  al. 2007).  
In this region, soil samples were taken in two cocoa  
plantations in each of three localities, namely, Camp 
Conakry (CKY), Gabiadji (GBI), and Touih (TH). The 
third region, the Gôh region climate, is marked by an 
annual rainfall varying from 1200 to 1600 mm, and by 
the alternation of two rainy seasons (April–July and 
October–November) (Goula Bi Tie et al. 2007). In this 
region, soil samples were taken from two cocoa planta-
tions in two localities, namely, Amanikro (AKO) and 
Dahopa-Ourépa (DHP). In each plantation, three soil 
samples were taken with an auger to a 20 cm depth. A 
total of 48 samples were taken, 3 replicates per planta-
tion, in 2 plantations of 8 localities.

Each soil sample comprised 12 sub-samples taken from 
a radius of 3 m (4 subsamples) and 6 m (8 subsamples) 
from a central point. Weeding had been regularly performed 
around the trees such that the soil samples always were taken 
from an area where there was no ground cover vegetation. 
After homogenization of the subsamples, 300 g was removed 
and packed in plastic bags. Samples were kept at 4 °C and 
then were sent to the University of Lausanne (Switzerland) 
2 weeks after collection. Upon arrival, samples were con-
served at − 20 °C until DNA was extracted.

Based on GPS coordinates, climatic data for the loca-
tions was obtained by rasterizing and stacking the layers of 
19 bioclimatic variables available from the CHELSA (cli-
matologies at high resolution for the Earth’s land surface 
areas) database (Karger et al. 2017). The values from the 
CHELSA database for each plantation in the eight localities 
are presented in Table S1.

Determination of soil chemical properties

Soil pH was measured in a 1:1 soil/water solution. Organic car-
bon and organic matter (organic matter = 1.725 × % organic C) 
were determined by titration using the Walkley‐Black wet diges-
tion method. Exchangeable cations in soil (K, Ca, and Mg) were 
measured by displacing cations with an EDTA-buffered solution 
of ammonium acetate at pH = 4.8; then, the concentration of 
each element was measured using a flame photometer. Organic 
nitrogen (N) was determined using the Kjeldahl method. Avail-
able Olsen’s extractable phosphorus (as  H2PO4) was determined 
using the molybdenum blue reaction and measuring absorbance 
at 660 nm. The values of the chemical variables measured in the 
soil are presented in Table S2.

DNA extraction, amplification, and sequencing

Genomic DNA was extracted from 250 mg of each soil sam-
ple using the PowerSoil DNA Isolation Kit (Qiagen, Hilden, 

Germany). After extraction, DNA was quantified using a 
Quantus™ Fluorometer (Promega).

A nested PCR targeting a portion of the small subunit 
(SSU) rRNA gene was performed using AML1-AML2 
primers (Lee et al. 2008) followed by NS31 and AM1 prim-
ers (Öpik et al. 2008). PCR products were approximately 
550 bp for NS31-AM1 and 800 bp for AML1–AML2. Prim-
ers AML1-AML2 were used because of their high specificity 
to AMF sequences and mismatching to non-AMF sequences 
(i.e., avoiding amplification of non-AMF DNA). Then, the 
NS31 and AM1 pair was used to obtain a shortened fragment 
that is suitable for high throughput sequencing (HTS) and 
includes a highly polymorphic region that is phylogenetically 
informative for AMF OTU determination (Öpik et al. 2013). 
Most published data on AMF community diversity have been 
obtained using the region amplified by the primers NS31 
and AM1. This allowed us to make a direct comparison of 
our data with the extensive database of published sequences 
obtained using these primers, and also offers the possibility 
of a robust phylogenetic placement of AMF sequences (Öpik 
et al. 2010).

The first PCR was set up with a Taq PCR Core Kit (Qia-
gen, Hilden, Germany) using 1× coral load PCR buffer, 0.5× 
Q-solution, 2.5 mM  MgCl2, 0.25 mM dNTP mix, 0.1 U/μL 
Taq DNA polymerase, 0.1 mM of each primer, and 25 ng of 
DNA in a volume of 25 μL. Thirty amplification cycles were 
carried out with denaturation at 94 °C for 60 s, hybridization 
at 50 °C for 60 s, and elongation at 72 °C for 60 s. Successful 
amplifications, verified by gel electrophoresis, were purified 
using AMPure® beads (Beckman Coulter Genomics) and 
diluted to a concentration of 1 ng/μL before performing the 
second reaction. The second amplification was the same as 
the first but in a reaction volume of 50 μL following the same 
steps and the same number of amplification cycles as the first 
reaction. Importantly, the NS31 primer contained a five-base 
barcode for library multiplexing.

Library preparation was performed with the TruSeq™ 
Sample Preparation Kit but omitting the DNA fragmentation 
step. Quality of the resulting libraries was assessed with a 
Fragment Analyzer™ and quantified with Qbit. The libraries 
were then sequenced using the Illumina MiSeq 2 × 300 bp 
paired-end run protocol.

Sequence processing and bioinformatic analyses

Raw data were checked with FastQC v0.11.4. After library 
quality check, the adaptor sequences were trimmed using 
TagCleaner (Schmieder et  al. 2010). Reads were then 
quality-filtered (min_qual_mean 25) and trimmed using 
Prinseq-lite version 0.20.4 (Schmieder and Edwards 2011). 
Low-quality 3′-ends were trimmed and reads containing 
uncalled bases (N) removed. Reads were then demultiplexed 
according to exact barcode sequences, and paired reads were 
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merged using PEAR (Zhang et al. 2014) by specifying a 
minimum overlapping region of 20 bp. Primer and barcode 
sequences were then removed and reads below 500 bp were 
discarded. A summary of the sequence processing is found 
in Table S3. At this stage, remaining reads were trimmed 
to a 500 bp length and sorted according to their nucleotide 
sequence (hereafter referred as rRNA allele) and relative 
abundance in the dataset. Alleles that were found only in 
one sample were discarded from the dataset.

OTU model selection

We followed the OTU model selection process proposed by 
Ordoñez et al. (2020). The pipeline for selecting the opti-
mal model for clustering sequences into OTUs is described 
in detail in Supplementary note 1 of Ordoñez et al. (2020). 
Briefly, the whole catalog of alleles, weighted by their occur-
rence in the dataset, was subjected to de novo OTU-picking 
using DBC454 v1.4.5 (Pagni et al. 2013). The selection of 
the clustering algorithm parameters was done in an iterative 
process aiming for OTU taxonomic coherence (i.e., selected 
models had no OTUs composed of a mixture of AMF and 
non-AMF alleles). We used BLAST results from each rRNA 
allele against the INSD/EMBL (http://www.insdc .org) 
and MaarJAM (https ://maarj am.botan y.ut.ee) databases 
to calibrate the dissimilarity cutoff distances in the soft-
ware. Among the selected clustering models, we chose the 
one harboring the highest number of OTUs in order to not 
underestimate the diversity in a biome where documented 
characterizations of AMF communities are scarce. Selected 
model parameters for the DBC454 algorithm were -n 50 
(minimum cluster size), -d 20 (initial cutoff distance), and 
-e 46 (final cutoff distance). Sampling intensity for each plot 
was assessed using the deviance between estimated species 
richness obtained with a replicate-based Chao1 index and the 
observed OTU richness. Consensus sequences for each OTU, 
obtained from the clustering model, were built based on 
nucleotide frequencies at each position in the SSU sequences.

Statistical analyses

All statistical analyses were performed using R v3.6.0 (R 
Core Team 2019). In order to assess the degree of overlap of 
climatic variables in the localities, a PCA was performed on 
the standardized Euclidean distances of the environmental 
data (CHELSA and soil variables). To obtain an indication 
of the individual contribution of each of these two groups 
of variables, PCAs were built using CHELSA and soil data 
separately. Analysis of similarity (ANOSIM) was used to 
test the dissimilarity between groups. An R value close to 1 
suggests dissimilarity between groups while an R value close 

to 0 suggests an even distribution of high and low ranks 
within and between groups.

Following OTU model selection, taxa abundances were 
recorded in a matrix. The non-parametric Kruskal–Wallis 
test was applied to compare regions and localities. Phyloseq 
(McMurdie and Holmes 2013) was used to estimate richness 
and alpha diversity indices. As alpha diversity indices differ-
entially weigh the importance of dominant and rare species, 
multiple indices were considered to avoid index-dependent 
interpretations. The non-parametric Dunn’s multiple com-
parison test and Kruskal–Wallis test were applied to identify 
differences between regions and localities.

To explore the relationship between community turnover 
and geographic location, distances between sampling points 
were calculated from GPS coordinates using a geodesic 
approximation (WGS84) as implemented in the R package 
geosphere (Hijmans 2019). The link between community 
dissimilarity (beta diversity) and environmental data was 
analyzed with a canonical ordination (redundancy analysis) 
built with the Bray–Curtis dissimilarity index (on Hellinger 
transformed abundance data) using the R package ‘vegan’ 
(Oksanen et al. 2019) with the climatic data from CHELSA 
and the measured soil variables as explanatory factors. RDA 
is a method combining regression and PCA in which mul-
tiple linear regressions are performed followed by a PCA 
on the fitted values. This method looks for a series of linear 
combinations of the explanatory variables (climate and soil 
in this study) that best explain the variation of the response 
matrix (beta diversity in this study). Variance partitioning 
was calculated from the RDA using vegan’s function var-
part. Variance partitioning intends to quantify the variation 
explained by different subsets of the variables (e.g., soil and 
climate) when controlling for the effect of the other subsets.

Consensus sequences from the OTU selection model  
were aligned using MAFFT 7.058 (Katoh and Standley 
2013) and a phylogenetic tree was constructed with RAxML 
(Stamatakis 2014) using a GTR + G nucleotide substitution 
model with the SSU rRNA sequence of Schizosaccharo- 
myces pombe SSU as the tree root. The tree was selected 
based on maximum likelihood (ML) score and node prob-
ability was assessed using bootstrap resampling from the  
ML tree. This tree was used to calculate phylogenetic alpha 
diversity via mean pairwise distances (MPD) using the R 
package ‘picante’ (Kembel et al. 2010). The importance of 
this metric reflects that if two communities have the same 
number of equally abundant species, they will have the same 
alpha diversity. However, if these species all belong to a  
same clade, their phylogenetic (and potentially functional) 
diversity is low. MPD measures branch lengths to obtain  
an indication on how phylogenetically diverse a community  
is within an assemblage (Tucker et al. 2017). Thus, a com-
munity with high phylogenetic diversity will comprise less 
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related AMF taxa (which in turn may be more functionally 
diverse) than a community with a low phylogenetic diversity.

Results

The PCA performed on the climatic and soil variables 
(Fig. 1a), along with permutational tests, showed an over-
lap of the environmental conditions in the Gôh and Nawa 
regions (ANOVA p = 0.068; ANOSIM R: 0.27, significance: 
0.002) while the San Pedro region showed distinct environ-
mental conditions (San Pedro–Gôh ANOVA p = 0.001; 
ANOSIM R: 0.66, significance: 0.001. San Pedro–Nawa 
ANOVA p = 0.001; ANOSIM R: 0.78, significance: 0.001). 
When PCAs were calculated using the CHELSA and soil 
data independently, the CHELSA space revealed a similar 
difference between regions (ANOVA p = 0.001; ANOSIM 
R: 0.66, significance: 1e-04) while the soil variables did not 
reveal significant differences (ANOVA p = 0.277; ANOSIM 
R: 0.16, significance: 6e-04) (Fig. S2). There was a signifi-
cant correlation between environmental and geographic 
distances showing that distant geographic locations were 
different in their climate and soil chemistry (Fig. 1b).

Deviance between observed OTU richness and replicate- 
based Chao1 index was not significant, and rarefaction  
curves of individual samples reached the plateau phase 

(data not shown), both indicating that sufficient sampling 
was achieved. Comparisons of OTU alpha diversity between 
regions (Fig. 2a) showed that AMF communities in Gôh 
tended to be richer and more diverse than those in the two 
other regions. The dominant families across all the localities 
were the Glomeraceae and Acaulosporaceae (Fig. S4a). The 
Kruskal–Wallis test, comparing family abundance between 
regions, revealed Archaeosporaceae, Ambisporaceae, 
Acaulosporaceae, Geosiphonaceae, and Pacisporaceae to 
be differentially abundant between regions (FDR corrected 
p < 0.05). Likewise, pairwise comparisons, using a Wilcoxon 
test, showed that abundance of all of the above-mentioned 
families was lower in Gôh than in the other two regions 
(Fig. S4b).

Variation in OTU alpha diversity tended to be independ-
ent of geographical distance. For example, Shannon alpha 
diversity did not differ neither between localities 61 km apart 
(KPI and PBK) nor for those localities separated by 29 km 
(KDA and PBK) (Fig. 2b). Likewise, phylogenetic alpha 
diversity differed between localities KDA and PBK sepa-
rated by 29 km, but did not differ between other localities 
that were as much as 61 km apart (Fig. S5).

Alpha diversity indices (Shannon Fig. 2, Fisher, Simp- 
son Fig. S3) were correlated with some of the climatic and 
soil gradients observed across the study area. Alpha diver- 
sity was strongly positively correlated with soil pH and 
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relation of the Euclidean distance of the scaled environmental vari-
ables (CHELSA and soil) and the geographical distances between 
samples. All points are shown as gray dots; darker dots reflect dot 
overlaps. Gray shading around the blue line corresponds to the 95% 
confidence interval for predictions from the linear model
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negatively correlated with annual precipitation (Fig. S6a,  
b). pH largely separated the alpha diversity of localities  
CKY, GBI, TH, and KDA, which have a mean pH lower  
than 5.7, from the localities AKO, DHP, KPI, and PBK, 
having a mean pH higher than 6.9. The annual precipitation 
grouped localities into those with a mean value lower than 
1330 mm/year (AKO, PBK, and DHP) and a mean value 
higher than 1430 mm/year (GBI, KDA, KPI, CKY, and  
TH). Alpha diversity was negatively correlated with mean 
annual air temperature (Fig. S6c) and also negatively corre-
lated with soil Mg concentration (Fig. S6d). The pH, annual 
precipitation, mean annual air temperature, and Mg concen-
tration gradients, however, did not follow the geographic 
locations of the sampling points. For example, pH grouped 
KDA in the Nawa region (Fig. S1) with samples from the 
San Pedro region to the south (Fig. S6a), and in the case of 
mean annual air temperature, TH in the San Pedro region (a 
southern sampling location) grouped with DHP in the Gôh 
region (the northernmost sampling location).

The abundance of some taxa differed significantly among 
communities and correlated with some climatic and edaphic 
variables. Among the variables found to be most related to 
the abundance of these OTUs were pH, Mg, mean annual 
air temperature, annual precipitation, mean daily air tem-
perature of the wettest quarter, precipitation of the wettest 

month, and mean monthly precipitation of the wettest quar-
ter (Table S4).

The redundancy analysis (integrating soil and climate 
variables) showed beta diversity (i.e., community com-
position differences) among samples (Fig. 3a; Permanova 
F = 1.3878, p = 0.001), with the first two axes explaining 
14.1% of the total variation. However, differences in AMF 
community composition in localities were not separated 
by region, so the distribution of the samples did not match 
the environmental overlap (Fig. 3a versus Fig. 1). The vari-
ance partitioning analysis using three explanatory matrices 
(CHELSA climatic data, soil variables, and a matrix of the 
geographic distances) showed that separately the climatic 
data explained 19% of the observed variance in AMF beta 
diversity, the geographic distance 10%, and the soil chemi-
cal variables 5% (Fig. 3b). Sixty-six percent of the variance 
remained unexplained. There was a significant correlation 
(although relatively weak) between environmental distance 
(Euclidean distances of standardized soil and climate data) 
and the pairwise Bray–Curtis dissimilarity index with 
increasing environmental differences between samples cor-
related with increasing differences in AMF community com-
position (Fig. 3c).

The Bray–Curtis dissimilarity index plotted against 
the geographical distance matrix showed an overall trend 
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Fig. 2  Richness (Chao1) and alpha diversity (Shannon) compari-
sons by region a  and locality b  at the OTU level. Non-parametric 
Wilcoxon a  and Dunn’s b  tests were used to compare means with 
the probabilities of differences between pairs of means indicated 
above brackets. b (Chao1) The geographic distances between locali-

ties within each region in blue above brackets. Points are displaced 
horizontally to improve visibility. Region designations and colors are 
as in Fig. 1; locality codes are presented in Methods: Sampling sites. 
Upper and lower whiskers of the boxplots extend from the hinge to 
the largest or smallest value at the most 1.5*IQR
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Fig. 3  Beta diversity analyses by locality and environment. Sam-
pling points are colored by region, Gôh (blue), Nawa (green), and 
San Pedro (yellow). a Redundancy analysis of beta diversity at 
the different localities. The OTU abundance was Hellinger trans-
formed prior to the RDA. The standardized explanatory matrix 
included the 19 bio variables from the CHELSA database, and 
the soil variables measured at each sampling point for which a 
forward selection procedure was applied. Retained variables are 
shown. Loadings were omitted for clarity. b Variance partitioning 
of the Bray–Curtis dissimilarity (db-RDA) at the sampling points 
(beta diversity). The standardized explanatory matrices included: 
(a) the 19 bio variables from the CHELSA database (climate), 

(b) the soil variables measured for the sampling points (soil), and 
(c) a matrix of geographical distances calculated from the GPS 
coordinates (distance). The figures correspond to the proportion 
of variation in community beta diversity accounted for by each 
one of the explanatory matrices and their combined effects. Val-
ues lower than 0.01 are not shown. Negative values can occur 
because of adjustments in the model. They are interpreted as 
zeros because they correspond to cases where the explanatory 
variables explain less variation than random normal variables. c 
Correlation of the Euclidean distance of the scaled environmental 
variables (CHELSA and soil) and the Bray–Curtis dissimilarities 
between samples
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in which beta diversity (AMF community compositional 
differences) increased with the distance between samples 
(Fig. 4a). However, when separating the data into com-
parisons between samples situated within the same region 
(sampling points with a ≤ 62 km distance between them), 
there was a change in the trend of dissimilarity of the AMF 

community compositions from positive to slightly nega-
tive (Fig. 4b). Within the same region, at comparable dis-
tances, some between-locality comparisons showed statis-
tically significant and relatively large differences in AMF 
community composition while others did not (Fig. 4c).
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Fig. 4  Bray–Curtis dissimilarity index (beta diversity) plotted against 
a matrix of geographical distances between sampling points cal-
culated from the GPS coordinates a and divided into two groups at 
62 km distance in b which was the largest distance separating locali-
ties within the same region. c Beta diversity per locality (as Bray–

Curtis). Dunn’s test was used to make the between-locality compari-
sons and the corresponding probabilities are shown. Geographical 
distances between localities within regions are shown in blue. Points 
are displaced horizontally to improve legibility
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Discussion

By studying the AMF distribution across different geograph-
ical scales, we found that AMF composition and diversity in 
Côte d’Ivoire cocoa plantations were not strictly linked to 
the distance between sampling points but were most related 
to the climatic differences among the localities. This con-
clusion derives from OTU alpha diversity in closely situ-
ated localities sometimes differing while OTU alpha diver-
sity from localities that were distant was similar (Fig. 2). 
Likewise, increasing AMF community dissimilarity (beta 
diversity) with geographic distance (expected in most cases) 
was only observed among samples within a 62 km range. 
AMF community dissimilarity tended to slightly decrease 
with distance beyond 62 km, implying that communities 
increase in resemblance with increasing distance between 
them (Fig. 4b). It is difficult to interpret the ecological sig-
nificance of the magnitude of change in dissimilarity of the 
AMF communities with distance. This is because there are 
few studies in similar regions with which to compare. Sec-
ond, even a small change in community composition can 
potentially have a large effect ecologically, if a key taxon 
is affected. Because we do not know the ecological roles 
of all different taxa, this is not possible to interpret. Given 
the strong environmental gradient in the study area (Fig. 1), 
the trend in dissimilarity decrease with distance suggests 
the possible existence of a homogenization process (envi-
ronmental filtering), which is likely independent of climatic 
variables and distance, as the variance partitioning revealed.

The low AMF endemism reported by Davison et al. 
(2015) suggests that AMF biogeography is largely deter-
mined by local environmental conditions, and this agrees 
with the data presented here. However, under similar 
environmental conditions, and through interactions with 
the same species pool (Davison et al. 2016; Vályi et al. 
2016), local communities are expected to converge upon 
a common composition and beta diversity should be low. 
Here, we found that samples within the same locality, 
thus with similar environmental conditions, showed large 
variation in terms of community composition measured 
as beta diversity (Fig. 4c). It previously has been reported 
that AMF assemblages within similar environments were 
largely unpredictable and presented a higher degree of 
stochasticity than models (environmental filtering, niche-
based assembly, neutrality) would predict (Powell and 
Bennett 2016). The data presented here support this. How-
ever, most other studies originate from temperate areas 
and few data exist from tropical soils with which we can 
compare our data. Furthermore, there is a scarcity of stud-
ies of AMF community diversity at different spatial scales.

By sampling soil beneath cocoa trees where there was 
no other ground cover, we partially controlled for one 

factor (namely, plant diversity) that could influence AMF 
community composition. However, as in any other agro-
ecosystem, there was a plant community that existed in the 
near vicinity of the cocoa trees that could potentially indi-
rectly act as an additional environmental filter. However, 
it has been suggested that AMF diversity will not increase 
with an increase in plant species diversity once certain 
threshold of plant diversity is reached (Oehl et al. 2010). 
A study in Brazil, based on spore morphology, reported 
values of Shannon alpha diversity between 3.3 and 4.6 
in natural and anthropic environments. As spore extrac-
tion captures only a fraction of the total community, this 
highlights the potential for additional diversity of AMF 
in tropical areas yet to be found. A work carried out in 
Cameroon, comparing natural and anthropic ecosystems, 
reported AMF spore diversity values (Shannon index) as 
low as 0.39 for agricultural sites, with forests being richer 
(0.49) (Snoeck et al. 2010). These figures are especially 
low considering reports of AMF spore diversity (Shan-
non) of 1.4 and 2.27 in alfalfa and sorghum crops in Sudan 
(Abdelhalim et al. 2014), 1.96 in maize in Brazil (de Mello 
et al. 2018), 2.65 in cassava (Sarr et al. 2019), and between 
1.65 and 2.75 in this study using amplicon sequencing.

Clearly, spatio-temporal relationships need to be thor-
oughly studied (Bittebiere et al. 2020). However, neither 
the study by Kiers et al. (2011) or that of Zobel and Öpik 
(2014) have looked at tropical soils where plants are severely 
limited by low soil nutrient availability.

In this study, measurements of AMF alpha and beta diver-
sity showed that results at one scale (e.g., the local level) 
do not reliably predict what alpha and beta diversity will 
be observed at another scale (e.g., region). The amount of 
variation explained by soil, climatic, and geographic vari-
ables still leaves most of the variance to be explained. Neu-
tral or stochastic processes might contribute at small scales 
(Maherali and Klironomos 2012; Davison et al. 2016). The 
possible stochasticity may be the result of several extrin-
sic factors (e.g., anthropogenic intervention) and intrinsic 
factors (e.g., coexistence of different AMF taxa within the 
same plant) determining AMF community structure (Vályi 
et al. 2016). Importantly, observed variation could also be 
deterministic but attributed to variables not measured in this 
study.

Multiple studies have highlighted the importance of soil 
characteristics in regulating AMF species composition. pH 
and soil type often arise as stronger factors in determining 
the occurrence of AMF species than plant species diver-
sity (Oehl et al. 2010; Boeraeve et al. 2019). Relationships 
between soil Mg concentrations and AMF community com-
position have rarely been reported. Here, pH indeed arose as 
a significant factor, not only influencing overall AMF alpha 
diversity and differential abundance of specific taxa and 
families of the Glomeromycotina, but also exhibiting large 
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differences between regions. Potentially, a pH-mediated dif-
ferential availability of nutrients to host plants may have 
caused a decrease in the amount of photosynthates allocated 
to mycorrhizal partners, which in turn, ultimately may have 
reduced AMF diversity. However, we lack the data to for-
mally test this claim. This possible differential availability 
of nutrients also may have been influenced by climatic vari-
ables such as higher precipitation as seen in Fig. S6b (which 
may lead to higher runoff and leaching) and higher tempera-
ture (Fig. S6c) perhaps exacerbating weathering.

It has been reported that AMF community composition 
differs between annual and perennial plants (López-García 
et al. 2017). The higher relative abundance of Glomeraceae 
versus lower relative abundance of Paraglomeraceae, Acau- 
losporaceae, and Diversisporaceae (e.g., Séry et al. 2018)  
also may be related to certain phylogenetically conserved 
traits of AM fungal taxa (Maherali and Klironomos 2007). 
Boeraeve et al. (2019) reported that competition does not 
appear to play an important role in AMF community struc-
ture in herbs. If extrapolation of these results to longer-lived 
roots of cacao trees is considered, additional explanations  
of the prevalence of Glomeraceae may be the high number 
of hyphal fusions and anastomosis in this family which has 
been suggested as a trait conferring adaptation to soil dis- 
turbance (Oehl et al. 2010) typical of agroecosystems. Addi-
tionally, it is not unusual for AMF assemblages to exhibit 
highly prevalent “core” species found in most communities, 
and less prevalent “satellite” species found in few communi-
ties (Öpik et al. 2013). Here, Fig. S4 shows a dominance of 
Glomeraceae across the different regions, and the dominant 
OTUs all belonged to the Glomeraceae.

In summary, we conclude that AMF communities in 
cocoa plantations in Côte d’Ivoire are shaped by abiotic 
conditions, mainly climatic variables. However, assem-
blages and diversity metrics at the local scale did not reli-
ably predict those at regional scales. The amount of vari-
ation explained by soil, climate and geography variables 
still leaves most of the variance to likely be explained by 
random processes, anthropogenic intervention, or possibly 
plant community composition. Additionally, seasonal vari-
ation in AMF abundance may have contributed to the unex-
plained variance in AMF community composition (Boeraeve 
et al. 2019).

The specific abiotic conditions of an agroecosystem can 
be changed considerably through management practices, 
which will in turn likely affect AMF community composi-
tion (Bainard et al. 2014; Moora et al. 2014). It is important 
to understand how these practices influence AMF and how 
AMF use can be implemented in cocoa plantations in Côte 
d’Ivoire. Likewise, it will be important to establish adequate 
management practices, for example revision of fertilizer 
applications (N’Guessan et al. 2017) to promote a function-
ally beneficial AMF community. Gaining understanding of 

processes involved in shaping tropical AMF communities 
and AMF establishment (Köhl et al. 2016) is much needed 
and could allow for the development of more sustainable and 
productive cocoa agroecosystems than at present.
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