
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/20221

To cite this version :

Philippe ROUCH, Claude BLANZE - Vibrational analysis of structures with stochastic interfaces in
the medium-frequency range: Experimental validation on a touch screen - Journal of Sound and
Vibration - Vol. 333, n°6, p.1612-1628 - 2014

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/20221
mailto:archiveouverte@ensam.eu
https://artsetmetiers.fr/


Vibrational analysis of structures with stochastic interfaces in
the medium-frequency range: Experimental validation on a
touch screen

Philippe Rouch a, Claude Blanzé b

a LBM, Arts et Métiers ParisTech, 151, boulevard de l'hôpital, 75013 Paris
b Structural Mechanics and Coupled Systems Laboratory, Cnam Paris, 2 rue Conté, 75003, Paris

a r t i c l e i n f o

Article history:

Received 24 April 2013

Received in revised form

6 November 2013

Accepted 9 November 2013

Handling Editor: H. Ouyang
Available online 3 December 2013

a b s t r a c t

This paper proposes a dedicated approach and its experimental validation when dealing

with structures (including stochastic parameters, such as interface parameters) in medium-

frequency vibrations. The first ingredient is the use of a dedicated approach – the Variational

Theory of Complex Rays (VTCR) – to solve the medium-frequency problem. The VTCR, which

uses two-scale shape functions verifying the dynamic equation and the constitutive relation,

can be viewed as a means of expressing the power balance at the different interfaces

between substructures. The second ingredient is the use of the Polynomial Chaos Expansion

(PCE) to calculate the random response. Since the only uncertain parameters are those which

appear in the interface equations (which, in this application, are the complex connection

stiffness parameters), this approach leads to very low computation costs. This method is

validated on a new kind of touch screen. The simulated mobilities are compared with

experimental ones obtained with a laser vibrometer and a good agreement is founded on a

large medium-frequency bandwidth.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Today, the main numerical modeling techniques for the analysis of medium-frequency vibrations [1] are most commonly

based on the finite element method (FEM) or the boundary element method (BEM). In order to represent small-wavelength

phenomena in complex structures (such as car chassis, satellites or ships), these techniques require huge numbers of

degrees of freedom, since at least seven elements per wavelength are required to represent oscillating solutions properly [2].

In addition, the solutions obtained are highly sensitive to the material properties and boundary conditions. Moreover,

damping is often localized at the structural connections; its measurement is very difficult and very error-prone. When

we add to these difficulties, the will to take into account the variability inherent to mass production, the problem becomes

very complex. In order to obtain the stochastic response of the structure, one must carry out a large number of costly

computations. The use of high-frequency approaches, such as Statistical Energy Analysis (SEA) [3] or any of its

improvements, appears unsuitable for medium-frequency vibrations: the vibrational behavior becomes too global and, in

general, the coupling loss factor cannot be calculated in a predictive way. This paper proposes efficient techniques to obtain

effective quantities when dealing with complex structures involving stochastic parameters, such as interface parameters.

The first ingredient of these techniques is the use of a dedicated approach – the Variational Theory of Complex Rays (VTCR)

[4] – to solve the medium-frequency problem. The VTCR, which uses two-scale shape functions verifying the dynamic

equation and the constitutive relation, can be viewed as a mean of expressing the power balance at the different interfaces

between substructures. The second ingredient is the use of the Polynomial Chaos Expansion (PCE) [5–9] to calculate the
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random response. Since the only uncertain parameters are those which appear in the interface equations (which, in this

application, are the complex connection stiffness parameters), this approach leads to very low computation costs [10].

The application presented here concerns a new kind of touch screen (Fig. 1). Based on the recognition of vibrational

signatures, this system is able to detect impact position in a very accurate way (accuracy: 70.1 in, resolution 25 ppi)

without the classical drawbacks of resistive or capacitive technologies.

The detection process uses two piezoelectric sensors that are connected to the glass that is clamped to its frame. They

measure in real time the vibrational state of the rectangular plate and compare these signals to previously recorded

signatures on a fine grid of the screen. A dedicated algorithm matches the signal with a signature included in the database

and sends back to the system the impact point position.

In order to isolate the screen from parasite noise, the glass plate has its four edges sealed between two viscoelastic seals

in a screen frame. As these seals have a stiffness and a damping factor that strongly depend on the compression ratio, the

dynamic behavior of the touch screen can be greatly affected by the frame. The goal of this application is to simulate the

influence of the seals properties in the screen dynamic signature and to compare the prediction with experimental data in

the medium-frequency range (in this case 1.3 kHz–6.5 kHz).

The paper will detail step by step the approach used for the simulation of the stochastic behavior of the screen: the

model, the discretization, the polynomial chaos expansion, the parametric stochastic modeling, the numerical aspects and

finally the experimental validation.

2. Basic aspects of the VTCR

2.1. The reference problem

Here, in order to simplify the presentation and to introduce the interface relations, the problemwill be formulated for an

assembly of only two substructures, but this can be easily generalized to an assembly of n substructures. As an illustration,

Sensors

Impact

Vibrational waves

Fig. 1. New technology touch screen.

S1

S2

Γ12

wdS1∂

MdS2∂

wdS2∂

KdS1∂

Fig. 2. Reference problem.
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let us consider two thin, homogeneous, isotropic and elastic Kirchhoff–Love plates and study the steady-state vibrations of

this assembly. Classically, all quantities are defined in the complex domain and depend only on the space quantities x: any

complex quantity q(x) is associated with q(x,t) by the relation qðx; tÞ ¼ qðxÞ � expðiωtÞ where ω is the fixed angular frequency

and t is the time.

Let S1 and S2 be two plates solicited harmonically at a fixed angular frequency ω, ∂S1 and ∂S2 their respective boundaries,

and Γ12 the interface between S1 and S2. By considering that l is the number of the studied plate, the boundary conditions

are the following: prescribed deflection wd
l on part ∂wd

Sl of ∂Sl, prescribed slope wd
nl on ∂wndSl, prescribed bending moment

Md
l on ∂Md

Sl and, finally, prescribed Kirchhoff shear Kd
l on ∂Kd

Sl (Fig. 2). The quantities of interest are the deflections wl and

the moments Ml.

For each plate Sl, let us introduce the admissible space S
l
ad of the displacement–moment pairs sl ¼ ðwl;MlÞ defined on Sl

such that

slAS
l
ad3

wlAU ðset of finite�energy displacement field H1ðSlÞÞ
MlAS ðset of finite�energy moment field ½L2ðSlÞ�3Þ
∇2∇2wl�k4l wl ¼ 0 on Sl

Ml ¼
2h3l
3

1þ iηl
� �

KPSlX wlð Þ

for l¼ 1;2

8
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:

with k4l ¼
3ρlω

2ð1�ν2l Þ
ð1þ iηlÞElh

2
l

(1)

where kl is the wavenumber and ρl, νl, ηl, El and 2hl designate respectively the density, Poisson's ratio, structural damping

coefficient, Young's modulus and thickness of plate Sl. KPSl is the Hooke's tensor for plane stress and X is the curvature

operator. The fields of Sl
ad are admissible in the sense that they verify both the local equilibrium and the constitutive relation

exactly. The reference problem is

Problem 1. Find sl such that: slAS
l
ad

wl ¼wd
l on ∂wd

Sl

wl;nl
¼wd

nl
on ∂wnd

Sl

Mlnl ¼Md
l on ∂Md

Sl

K lnl ¼ Kd
l on ∂Kd

Sl

for l¼ 1;2
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w1 ¼w2 on Γ12

w1;n1 ¼w2;n2
on Γ12

M1n1 ¼M2n2 on Γ12

K1n1
¼ K2n2 on Γ12
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with Mlnl ¼ nl �Mlnl and K lnl ¼ nl � div½Ml�þðtl �MlnlÞ;tl (2)

where nl and tl are respectively the external normal and the tangent of each edge.

2.2. Variational formulation associated with the VTCR

The VTCR is primarily a global formulation of the boundary conditions and transmission conditions in terms of both

displacements and forces. With this understanding, the problem becomes

Problem 2. Find sl such that

slAS
l
ad

∑
l

A∂Sl δsl; sð Þ�L∂S δslð Þ
� �

þ∑
l;m

lom

CΓlm
δsl; sl; δsm; smð Þ ¼ 0

8δslAS
l
ad for l¼ 1;2 m¼ 1;2

8

>

>

>

>

<

>

>

>

>

:

(3)

with the boundary conditions:

A∂Sl ðδsl; slÞ�L∂Sl ðδslÞ ¼ Re � iω �
Z

∂wd
Sl

δKlnl
ðwl�wd

l Þ
n dL

 (

þ
Z

∂wnd
Sl

δnl �Mlnlðwl;nl
�wd

l;nl
Þn dL

þ
Z

∂Md
Sl

ðnl �Mlnl�Md
l Þδwn

l;nl
dL�

Z

∂Kd Sl

ðK lnl �Kd
l Þδwn

l dL

!)

(4)
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and with the transmission conditions on Γ12 (for a perfect interface, continuity of the displacement and surfaces forces):

CΓlm
ðδsl; sl; δsm; smÞ ¼ Re � iω

Z

Γlm

1

2
½�δ Klnl �Kmnm Þðwl�wmÞn

�

�

þδ nl �Mlnlþnm �MmnmÞðwl;nl
þwm;nm Þn

�

�

þðnl �Mlnl�nm �MmnmÞδðwl;nl
�wm;nm Þn�ðK lnl

þKmnm ÞδðwlþwmÞn� dL
��

(5)

Re½:� and ½:�n designate respectively the real part and the conjugate.

In practice, the VTCR procedure consists of two stages: first, one builds admissible fields; then, one introduces the

boundary conditions through the discretization of the variational formulation associated with a set of admissible fields

chosen among the elements of Sl
ad.

2.3. Construction of admissible fields

Let us define a subset S
lh
ad of S

l
ad. The VTCR uses two-scale approximations. In the vicinity of a point x of Sl, the

displacement field is described as a superposition of rays which can be written as follows:

W lðx;kÞ ¼ expðk:xÞalðkÞ ¼wel ðx;kÞalðkÞ (6)

where wel ðx;kÞ represents the “fast” part of the field (it is defined explicitly) and alðkÞ (that is the unknown)represents the

ray amplitude which is a “slow” part. k denotes a vector which characterizes the local vibration ray and is calculated such

that the ray verifies the dynamic equations. The moments are deduced from the constitutive relation:

Mlðx;kÞ ¼ ð1þ iηlÞKPSlX ðW lðx;kÞÞ (7)

As the rays belong to the admissible space S
l
ad , they must satisfy the admissibility relation

∇2∇2W l�k4l W l ¼ 0 on Sl (8)

We have then:

ðk:kÞ2 ¼ k4l (9)

There are many possible such choices, which depend on the kind of rays that one would like to use for the solution

approximation. The VTCR distinguishes the interior rays W int
l , the edge rays Wedg

l
and the corner rays Wcor

l :

W int
l ðx;kÞ ¼wint

el
ðx;kÞaintl ðkÞ

Wedg
l

ðx;kÞ ¼wedg
el

ðx;kÞaedg
l

ðkÞ

Wcor
l ðx;kÞ ¼wcor

el
ðx;kÞacorl ðkÞ (10)

For example, if we would like to use interior rays, the locus of the end of the admissible vector k is a curve C
int
l ,

depending on the material characteristics. For interior rays, this curve is a circle of radius r (Fig. 3). Following the circular

path, each direction of propagation within the plate is taken into account.

x

y

O

z

C

P

P

Fig. 3. Admissible vector for interior rays.

Fig. 4. Admissible edge rays for a plate.
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The definitions of corner and edge rays are very similar. The loci of the end of the admissible vector k are denoted as Cedgl

and C
cor
l . Examples of edge rays can be seen in Fig. 4.

One of the advantages of the VTCR is to take into account all admissible ray directions. The solution wsol
l on the plate l is

then searched as

wsol
l ðxÞ ¼

Z

C
int
l

aintl ðkÞwint
el
ðx;kÞ dsþ

Z

C
edg

l

aedg
l

ðkÞwedg
el

ðx;kÞ ds

þ
Z

C
cor
l

acorl ðkÞwcor
el

ðx;kÞ ds (11)

2.4. Discretized form of the VTCR

In order to get a finite dimension problem, one discretizes the curves Cintl , Cedg
l

and C
cor
l into a finite number of elements

which can be of different sizes. For example, in Fig. 5(b), Cintl is discretized into 16 elements of variable size in order to

describe with the smallest number of degrees of freedom the continuous solution Fig. 5(a). The amplitude aintl ðkÞ is

considered to be constant along angular sectors θintil
and is denoted aintil

as represented in Fig. 5(c).

Then the discretized solution wl
h
in the plate l is defined by

wh
l ðxÞ ¼ ∑

n

i ¼ 1

aintil

Z

θintil

wint
el
ðx;kÞ dsþ ∑

m

i ¼ 1

aedgil

Z

θ
edg

il

wedg
el

ðx;kÞ ds

þ ∑
p

i ¼ 1

acoril

Z

θcor
il

wcor
el

ðx;kÞ ds

¼ ∑
n

i ¼ 1

aintil
wint

il
ðxÞþ ∑

m

i ¼ 1

aedgil
wedg

il
ðxÞþ ∑

p

i ¼ 1

acoril
wcor

il
ðxÞ (12)

where the generalized amplitude aintil
is associated with the basis function wint

il
ðxÞ, corresponding to the integral of an

elementary interior ray over an angular sector θintil
related to C

int
l (equivalent writings are defined for the edge and the

corner rays).

Once discretized, the VTCR formulation leads to a system of linear equations of finite dimension in the complex domain:

ca¼ f (13)

where c is the coupling matrix, a is the generalized amplitudes vector and f is the generalized forces vector.

3. Modeling of the interfaces

In industrial structures, most of the damping is localized in the different joints connecting the substructures [11,12].

These joints, whether welded, riveted, bolted or glued modify the structure's response. Since these joints are usually

x

y

O

z

C

x

y

O

z

Continous solution

x

y

O

z

Discretized solution

Discretized curve C

a(P)

ai
h(P)

θih

Fig. 5. Discretization and polar representation of continuous and discretized solution.
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distributed along the edges of the sub-structures, we propose to introduce them by using distributed interface parameters.

The generic joint behavior is then modeled by interface relations depending on elastic and/or dissipative joint parameters

represented by a complex stiffness. Two main cases can occur: joint between two substructures or joint between a

substructure and the frame.

3.1. Joints between two substructures

If two plates are connected in the same plane by interface Γ12 as presented in Fig. 6, the relations governing the coupling

can be expressed using two types of equations:

� the equilibrium of the interface

�n1 �M1n1þn2 �M2n2 ¼ 0 (14)

K1n1 þK2n2 ¼ 0 (15)

� the constitutive relations governing the interface

1
2 ðn1 �M1n1þn2 �M2n2Þ ¼ kbð1þ iηbÞðw1;n1 þw2;n2

Þ (16)

1
2 ðK1n1

�K2n2
Þ ¼ ktð1þ iηtÞðw1�w2Þ (17)

where kr and ηr are the stiffness and the damping associated to the complex rotational spring while kt and ηt are the stiffness

and the damping associated to the complex translational spring.

The variational form on interface Γ12 of these conditions is given by

CΓ12
¼ Re � iω �

Z

Γ12

1

2
δ½ðK1n1 �K2n2

Þ�ktð1þ iηtÞðw1�w2Þ�ðw1�w2Þn dL
��

�
Z

Γ12

1

2
ðK1n1

þK2n2
Þδðw1þw2Þn dL

þ
Z

Γ12

1

2
δ½ðn1 �M1n1þn2 �M2n2Þ�kbð1þ iηbÞðw1;n1 þw2;n2

Þ�ðw1;n1
þw2;n2 Þ

n dL

þ
Z

Γ12

1

2
ðn1 �M1n1�n2 �M2n2Þδðw1;n1

�w2;n2 Þ
n dL

��

(18)

This term replaces the perfect interface formulation part expressed at Eq. (4).

3.2. Joints between a substructure and the frame

If a substructure is connected to the frame via a joint as presented in Fig. 7, the relations governing the coupling are given

by two local constitutive relations:

nl �Mlnl�krð1þ iηrÞwl;nl ¼ 0 (19)

K lnl �ktð1þ iηtÞwl ¼ 0 (20)

kt

kr

ηr

ηt

Symbol

Fig. 6. Joint between two plates.
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The variational form on the corresponding edge ∂3Sl of these conditions is given by

A∂3Sl �L∂3Sl ¼ Re � iω

Z

∂3Sl

ðnl �Mlnl�krð1þ iηrÞwl;nl
Þδwn

l;nl
dL

� ��

�
Z

∂3Sl

ðK lnl
�ktð1þ iηtÞwlÞδwn

l dLÞ
�

(21)

This term replaces the part of at Eq. (4) corresponding to ∂3Sl edge.

4. Discretization in random space

The efficient propagation of uncertainty from model parameters to model predictions (forward problem) is a central

challenge of uncertainty quantification. A simple approach is Monte Carlo simulation: sampling known distributions of the

model parameters to obtain statistics or density estimates of the model predictions. Again, each sample requires a solution

of the forward model, and with complex models, this sampling approach is computationally intensive.

Perturbation approach or Neumann expansion is other useful way of quantifying the structural response uncertainty. In

perturbation methods, the random fields are expanded via Taylor series around the mean values [13]. Neumann expansion

has been used by some researchers instead of Taylor series for manipulation of the stochastic system properties and

response [14]. The main inherent limitation of these methods is that the uncertainties cannot be large, i.e. the deviations of

structure response cannot be too large compared with the nominal values.

A useful alternative is to employ spectral representations of uncertain parameters and field quantities, specifically

polynomial chaos expansions (PCEs) for random variables and stochastic processes. The polynomial chaos [5] was first

defined by Wiener [15]; successive polynomial chaoses give rise to a functional basis consisting of Hermite polynomials of

Gaussian random variables [16]. Ghanem et al. [17] describe the implementation of polynomial chaos in a finite element

context. These stochastic finite element approaches have found numerous modeling applications, including solid or

structural mechanics [18,6,9]. Xiu et al. used generalized polynomial chaos for uncertainty quantification in fluid–structure

interactions and in diffusion problems [19].

4.1. Polynomial chaos expansion (PCE)

The discretization of random variables by projection on polynomial chaos is recalled next. Let ðΩ;F ; PÞ be a probability

space, where Ω is a simple space, F is a s-algebra over Ω , and P is a probability measure on F . Also, let fξiðθÞg1i ¼ 1 be a set of

orthonormal standard Gaussian random variables on Ω . Any square-integrable random variable X : Ω-R has the following

representation:

XðθÞ ¼ a0Γ0þ ∑
1

i ¼ 1

aiΓ1ðξiÞþ ∑
1

i ¼ 1

∑
i

j ¼ 1

aijΓ2ðξi; ξjÞ

þ ∑
1

i ¼ 1

∑
i

j ¼ 1

∑
j

k ¼ 1

aijkΓ3ðξi; ξj; ξkÞþ⋯ (22)

where Γp is the Wiener polynomial chaos of order p. This expansion may be re-written in a more compact form:

XðθÞ ¼ ∑
1

i ¼ 0

xiΨ iðθÞ (23)

where there is a one-to-one correspondence between the coefficients and functionals in Eqs. (22) and (23). For the standard

normal random variable ξ chosen above, orthogonality of successive Γp requires that the Γp be multivariate Hermite

polynomials; both these and the corresponding ψk may be generated from univariate Hermite polynomials by taking tensor

products.

kt

kr

ηr

η t

Symbol

Fig. 7. Joint between a plate and its frame.
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In computations, one truncates the expansion both of order p and in dimension n by choosing a finite subset

fξg ¼ fξαi g
n
αi ¼ 1

of the infinite set fξig1i ¼ 1, αiAN. The total number of terms P in the finite polynomial chaos expansion

XpðθÞ ¼ ∑
P

i ¼ 0

xiΨ iðθÞ (24)

is

Pþ1¼ ðnþpÞ!
n!p!

(25)

Polynomial chaos expansions (PCEs) have been generalized to broader classes of orthogonal polynomials in the Askey

scheme, each family resulting from a different choice of distribution for the ξi [19]. For each of these choices, orthogonality

of the polynomials ψkðξÞ with respect to the inner product on L2ðΩÞ is guaranteed:

〈ψ iψ j〉¼
Z

ψ iðξðθÞÞψ jðξðθÞÞ dPðθÞ ¼
Z

ψ iðξðθÞÞψ jðξðθÞÞwðξÞ dξ

¼ δij〈ψ
2
i 〉 (26)

where, in the second integral, wðξÞ denotes the probability density of ξ. This property can be used to calculate the truncated

PC representation of a random variable gAL2ðΩÞ by projecting onto the PC basis:

~gðθÞ ¼ ∑
P

k ¼ 0

gkψkðξÞ; gk ¼
〈gðXÞψk〉

〈ψ2
k〉

(27)

This orthogonal projection minimizes the error Jg� ~g J on the space spanned by fψkgPk ¼ 0 where J�J is the inner-product

norm on L2ðΩÞ.
The stochastic interface parameters αðθÞ lead to a discretized linear system similar to Eq. (13):

kðαðθÞÞaðθÞ ¼ f (28)

where aðθÞ is the unknown generalized variables and f is the environment load considered deterministic for simplicity's

sake1.

aðθÞ can be expressed formally as a nonlinear functional of the set fξjðθÞg used to represent the material's stochastic

property. As it has been noted previously [16], this functional dependence can be expanded in terms of polynomial chaos.

Then, the truncated PCE of the response takes the form:

aðθÞ ¼ ∑
P

i ¼ 0

aiΨ iðθÞ (29)

where fΨ iðθÞg are polynomials in the Gaussian random variables fξig. The number of polynomials P depends on the order p of

the PCE and on the number n of stochastic parameters. Let us assume that the material parameters are constant along an

interface. If this were not the case, a Karhunen–Loeve expansion could be used to represent the spatial randomness of the

interface's characteristics [17].

4.2. Parametric stochastic modeling

Stochastic modeling consists in constructing (as objectively as possible) the probability law of the input parameters αðθÞ
(for example the probability density function (pdf)). Some available information has to be taken into account such as:

� αðθÞ has to be a positive-valued random variable
� αðθÞ has to be a second-order random variable: Eðα2ðθÞÞo1
� the mean value is given: EðαðθÞÞ ¼ α40
� the solution aðθÞ has to be a second-order random variable

When no other information is given (no experimental data for example) the pdf could be constructed using the maximum

entropy principle [20]. For example, for a given bounded support ½a; b�, the maximum entropy principle yields to a uniform

random variable.

In this study, we want to represent the input parameters on the Wiener Chaos expansion. Therefore we want to express

each parameter as a function of the set fξjðθÞg. Although the well-known Box–Muller transformation express a uniform

random value U as a nonlinear function of two Gaussian random variables fξ1; ξ2g such as

U ¼ arctan
ξ1

ξ2

1 If the environment load f is random or uncertain, it has to be modeled by a random vector: this case is usual and without special difficulties
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the number of ξi needed is twice the number of parameters. So we choose to represent each stochastic input parameter αðθÞ
by a nonlinear function of a single gaussian random variable:

αðθÞ ¼ αð1þδgðξðθÞÞÞ with gðxÞ ¼
2 arcsin Erf

x
ffiffiffi

2
p
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�8þπ2
p (30)

where α is the mathematical expectation of αðθÞ, δ is the coefficient of variation (standard deviation divided by the

expectation) and ξðθÞ is a standard normal random variable: ξðθÞ �Nð0;1Þ and g is a nonlinear function so as to have a

compact support for the probability density function of αðθÞ as presented in Fig. 8. This transformation ensures to have a

positive values for the damping and the stiffness random variables.

In our application, the mean of the translational and rotational stiffnesses (kt and kr) and the translational and rotational

loss factors (ηt and ηr) will be the ones identified in the ten frequencies steps. Regarding only the translational stiffness for

sake of simplicity, its representation is a frequency dependent random variable as represented in Fig. 9.

4.3. Assembling procedure

Following the assembly procedure, this leads to the corresponding expansion of the matrix KðθÞ:

KðαðθÞÞ ¼K0þ ∑
n

i ¼ 1

gðξiðθÞÞki (31)

where K0 denotes the matrix corresponding to the mean material properties and the other terms are related to the random

fluctuations about this mean. The number of stochastic parameters is n. Expanding the generalized parameters aðθÞ with

respect to the polynomial chaos basis and substituting Eqs. (31) and (29) into Eq. (28) leads to

∑
P

j ¼ 0

Ψ jðθÞk0ajþ ∑
P

j ¼ 0

∑
n

i ¼ 1

gðξiÞΨ jðθÞkiaj ¼ f (32)

An equality (in a weak sense) can be derived by projecting Eq. (32) onto the subspace spanned by the polynomial chaos

subset used in the approximation; this process results in the following equations where 〈�〉 represent the mathematical
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expectation:

∑
P

j ¼ 0

〈Ψ jðθÞΨ kðθÞ〉k0þ ∑
n

i ¼ 1

〈gðξiÞΨ jðθÞΨ kðθÞ〉ki

 !

aj ¼ 〈Ψ kðθÞ〉f k¼ 0;1;…P; (33)

This system can be rewritten as

∑
P

j ¼ 0

∑
n

i ¼ 0

cijkkiaj ¼ δ0kf k¼ 0;1;…P; (34)

where the coefficients c0jk denote δjk〈Ψ jðθÞΨ kðθÞ〉 and coefficients cijk denote 〈gðξiÞΨ jðθÞΨ kðθÞ〉 for i40. They need to be

calculated only once. This system of linear equations must be solved for the unknown aj of the PCE. The details of this

procedure were published in [5] and its implementation issues addressed in a number of other references [17,18]. These

equations can be assembled into a matrix of size ðPþ1Þn� ðPþ1Þn (n being the number of degrees of freedom) of the form:

k
ð00Þ

: k
ð0kÞ

: k
ð0PÞ

: : : : :

k
ðj0Þ

: k
ðjkÞ

: k
ðjPÞ

: : : : :

k
ðP0Þ

: k
ðPkÞ

: k
ðPPÞ
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:
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B

B

B

B

B

@

1

C

C

C
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C

C

A

¼

f

:

0

:

0

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

(35)

where

k
ðjkÞ ¼ ∑

n

i ¼ 0

cijkki (36)

4.4. Resolution: numerical strategy

The new linear problem related to Eq. (35) can be written as

~K ~A ¼ ~F (37)

~K is a symmetric block matrix even if ~K
ðjkÞ

are nonHermitian matrices. Its structure is sparse and its dimension is usually

rather large as explained above. In our application, as the initial size of a VTCR problem is very small (n is very small), the

dimension of ~K is very acceptable by classic linear solvers. Despite everything and regarding its particular structure, we have

used the iterative solving method GEMRES [21]. With this solving method, we have used a preconditioner P:

P¼

k0

:

djk0

:

dPk0

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

�1

with dj ¼ 〈Ψ jðθÞ2〉 (38)

The method has several advantages:

� it does not invert the global system (only k0 is inverted).
� it allows a large gain in memory (it only stores k

�1
0 , ki, cijk and 〈Ψ jðθÞÞ2〉Þ.

� it only use MATVEC products.

In summary, this approach consists in expanding the random response process about a basis of the Hilbert space of random

variables and calculating the coefficients of this expansion. The result is a convergent expansion of the response in terms of

multidimensional orthogonal polynomials. Although the methodology used is becoming widespread, serious obstacles have been

encountered from a computational point of view in practical implementations. In large realistic problems, the methodology is

either cumbersome or computationally intensive. Some numerical strategies, such as iterative algorithms, have been devised to

overcome the numerical difficulties which arise in this context [22]. Our proposed approach does not present such drawbacks: it

uses very small elementary matrices, thus leading to very small problems, and since the evolution of the generalized amplitude is

relatively smooth it can be easily represented by the Hermitian polynomials of the chaos expansion.

5. Experimental validation on a the touch screen

The goal of this application is to demonstrate the ability of the VTCR to compute stochastic frequency response function

and to compare this simulation with experimental data in the medium-frequency range. According to the definition of

[23,24] using the Modal Overlap count (MO) this bandwidth is between 1.3 kHz and 6.5 kHz. As it is impossible to test
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enough different touch screens in order to generate the experimental variability, we will build a setup allowing us to have a

wide range of clamping conditions between a single screen and its frame and we will make the assumption that this

variability range is representative of the one that could be observed on a real industrial production. The approach will be

decomposed in three steps:

� we will identify the joint properties on a calibrated setup.
� we will use this values as mean values for the numerical probabilistic model.
� we will then compare the numerical variability domain with the experimental one obtained by modifying the clamping

conditions on the setup.

5.1. Problem modeling

We are modeling a 17 inch touch screen presented in Fig. 10. The characteristic dimensions of the glass are given by:

a¼320 mm, b¼245 mm, h¼2.85 mm. The glass structural parameters will be the one provided in [25]: E¼64 GPa, ν¼ 0:22,

ρ¼ 2520 kg m�3.

a

b

x

y

Rectangular glass plate

Screen frame

Airtight seal

Isolation seal
A

h

kt(1+iη t) kt(1+iη t)

kr(1+iηr)
kr(1+iηr)

kt(1+iη t)

kt(1+iη t)

kr(1+iηr)

Fig. 10. Touch screen boundary conditions modeling.
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The screen is clamped in its frame using two viscoelastic seals (airtight seal and isolation seal). They isolate the glass

plate and provide the largest part of the dissipation [26]. As the seals width is negligible compared to the glass plate

characteristic dimensions, we have classically [27] modeled the two seals ensemble by a lineic complex spring (as described

in chapter 3.2): kr and ηr are the stiffness and the damping associated to the complex rotational spring while kt and ηt are the

stiffness and the damping associated to the complex translational spring. The values of the stiffnesses and the damping

coefficients are highly dependent on the seal compression ratio and on the frequency as these seals have a nonlinear

viscoelastic behavior associated with their cellular structure (Fig. 11).

For sealing reasons, the manufacturer imposes a minimum compression ratio of 30 percent: the seals work then in a

pre-stress state where a weak variation of compression can generate a great variation of stiffness and damping. The

values of nominal stiffness and damping will then be first identified for the recommended compression ratio (in our case

36 percent).

Fig. 13. Experimental setup.

Initial VTCR velocity field at 1940 Hz

Experimental velocity field at 1940 Hz

Updated VTCR velocity field at 1940 Hz

experimental velocity field zone

Updating procedure

Fig. 14. Joints updating procedure at 1940 Hz.
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5.2. Identification of the nominal seals mechanical properties

Identification tests will be carried out on a dedicated setup allowing various compression ratio including the nominal one

(the setup will be used for the identification procedure and for the comparisons of probabilistic frequency response

functions). A glass screen will then be clamped between two steel frames. The distance between the two frames will be

precisely controlled by 24 cylindrical braces (represented in Fig. 12) held by the 24 screws. 6 lengths of braces (li for iA ½1;6�)
permit to have access to 6 discrete compression ratio: 0, 18, 36, 54, 72 and 90 percent.

A 4808 Brüel & Kjær shaker connected to the screen with a 8001 Brüel & Kjær impedance head will provide a white noise

from 0 to 6.4 kHz and an Ometron VPIþ 8330 laser vibrometer will scan the screen in order to measure the velocity field on

the glass front face (the distance between the screen and the vibrometer is 2 m). Force and acceleration signals coming from

the impedance head will be conditioned using two 2635 Brüel & Kjær charge amplifiers. The screen will be configured in a

horizontal position in order to minimize the gravity effect. The measurement mesh used by the scanning vibrometer will

contain 29�38 points (the spatial resolution is 5 mm). Reciprocity tests with different shaker locations have shown that the

screen has a linear behavior for a fixed compression ratio. Fig. 13 represents the experimental setup, a velocity field at

3500 Hz and a typical mobility function at a given point M.

Table 1

Identified seals properties.

Frequency (Hz) 106 356 560 863 1068 1940 2992 5068 7045 8333

kt (10
6 Nm�1) 0.13 0.43 0.67 1 1.2 2 2.8 4 4.7 5.1

ηt (%) 3 10 15 21 25 37 47 55 58 59

kt (10
6 Nm rad�1) 0.1 0.55 0.73 1.06 1.38 3.44 2.84 7.07 5.86 9.71

ηt (%) 5 15 29 41 28 74 81 58 95 91

Fig. 15. Some of the possible setup configurations.
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We will not detail the updating procedure of the seals as it has been already presented in the previous papers [28]. We

just will recall that we use as initial value of the parameters those provided by the manufacturer of the seals and that a sub-

structured version of the VTCR [29] is used in order to build a cost function composed of two terms: an interface residual

(which quantifies the satisfaction of the interface equations) and a measurement term (which represents a distance

between the experimental and numerical solutions). The updating procedure is an iterative process that will stop when the

absolute error between the experimental velocity and the simulated velocity will be lower than 10 percent on each point of

the experimental mesh. This updating procedure (Fig. 14) will be carried out for ten values of frequency (106, 356, 560, 863,

1068, 1940, 2992, 5068, 7045 and 8333 Hz) associated to specific shape modes in order to have the evolution of the seal

stiffness and damping as functions of frequency. The values of the seals parameters between these specific frequencies have

been linearly interpolated.

Table 1 provides the values of the seals mechanical properties obtained from the updating procedure.

Once these nominal values are identified, we will associate with each parameter a random variable representing in a

global way the fluctuations which could be related to various phenomena: (compression ratio, temperature, humidity, etc.).

In this specific case, the randomness of the response comes only from the random behavior of the connections [10]: more

precisely, the translational and rotational stiffnesses (kt and kr) and the translational and rotational loss factors (ηt and ηr)

which may be uncertain, are modeled by a random variable.

5.3. Experimental variability

The setup presented in chapter 5.2 has also been used to provide probabilistic frequency response functions. By

combining different length of the braces li from the 6 possible one, it is possible to generate 66 setup configurations

associated to various discrete compression ratio as various angulations. Some of them are presented in Fig. 15.

Even if 66 different configurations are possible, this setup is not able to generate variability on the four parameters

individually. On an experimental point of view, the four parameters could be not as independent as we would like but we

have assumed that with different size of brace, we will have a good representation of the variability domain.
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In order to build the experimental reference values, we have extracted the velocity in the vicinity of a dedicated point A.

Its location related to the coordinate system defined in Fig. 10 is given by (200 mm, 30 mm).

The measures have been done 2 times for each configuration. Fig. 16 gives the frequency response functions of these 132

measures (in gray) as the maximum and the minimum of them (in black) that will constitute our experimental variability

domain.

5.4. Numerical variability

To compute the numerical variability, we have used for the seals mechanical properties mean values the ones provided in

Table 1. The polynomial decomposition was conducted using second-order polynomial functions (p¼2) with four

independent stochastic parameters (n¼4). This simple model could be improved with experimental data and the potential

stochastic dependencies between variables taken into account. The second-order decomposition leads to the computation of

15 values aj associated with 15 Hermite's functions Ψ jðθÞðj¼ 1;15Þ.
In order to compare the parametric resolution to the VTCR method with polynomial chaos, we show in Fig. 17 the

velocity at the given point A as a function of ξ for a second order of polynomial chaos. As expected, the PCE yields a good

approximation of the exact solution. The accuracy increases with the order of the PCE but the second order is sufficient

thanks to the smoothness of the solution.

The VTCR-PCE solution has been calculated by subdividing the frequency domain [400, 6400 Hz] in 50 frequency steps.

The number of draws needed for achieving convergence for each frequency step will be 104 according to the curves

presented in Fig. 18.
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Fig. 19 shows that the comparison of the probability density function of the velocity at the point A obtained by the VTCR-

Chaos method with that obtained by a classical Monte Carlo method (104 draws). The result obtained with the chaos

representation is almost the same as those obtained by direct resolution.

Simulations will be computed for coefficients of variation going from 0.05 to 0.30 for the four parameters. With these

values, we are able to generate a fluctuation on the parameters going from 50 to 200 percent. These simulated fluctuations

are comparable to the ones observed in experiments on both stiffnesses (Fig. 11) but are smaller than the real ones for both

damping parameters (identification procedures for high compression ratio have shown that the variation of these

parameters is more a factor of ten).

Fig. 20 shows the simulated response of the structure including the stochastic interfaces. These simulations are in good

agreement with the experimental variability domain. The main differences come from frequency bandwidths where the real

variation of the damping generated by the compression ratio is much more important than the one generated by our

associated random variables.

As the efficiency of the approach has been demonstrated on the real touch screen subjected to high variation on the joint

parameters, this method can now be applied to weaker variabilities as the ones observed under the real conditions of

operation. We are now able to provide the simulated stochastic frequency response functions that give us the different

frequency bandwidths where the touch screen behavior is less sensitive to the joint parameters. These frequency

bandwidths must be used in order to provide an accurate and robust detection procedure.

6. Conclusions

The Variational Theory of Complex Rays is a general approach to medium-frequency calculations. Its main features are

the use of shape functions with a sound mechanical meaning and a dedicated variational formulation allowing the use of

independent approximations in the different substructures. For complex structures, the VTCR has a good ability to give

predictive results at a very low numerical cost. It can also take into account complex connections among substructures,

described by stochastic parameters, in order to represent the physical reality at the lowest possible numerical cost. In this

case, the benefit of two-scale shape functions is twofold: first, the global system defined by the PCE is relatively small;

second, the smooth variation of the unknowns (generalized amplitudes) when the connection parameters vary can be easily

represented by a polynomial function. This method has been tested successfully on a new kind of touch screen in order to

simulate the influence of the seals mechanical properties on the vibrational signatures.
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