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Abstract: As ageing is a major risk factor for the development of non-communicable diseases, extend-
ing healthspan has become a medical and societal necessity. Precise lipid phenotyping that captures
metabolic individuality could support healthspan extension strategies. This study applied ‘omic-scale
lipid profiling to characterise sex-specific age-related differences in the serum lipidome composition of
healthy humans. A subset of the COmPLETE-Health study, composed of 73 young (25.2 ± 2.6 years,
43% female) and 77 aged (73.5 ± 2.3 years, 48% female) clinically healthy individuals, was inves-
tigated, using an untargeted liquid chromatography high-resolution mass spectrometry approach.
Compared to their younger counterparts, aged females and males exhibited significant higher levels
in 138 and 107 lipid species representing 15 and 13 distinct subclasses, respectively. Percentage of
difference ranged from 5.8% to 61.7% (females) and from 5.3% to 46.0% (males), with sphingolipid
and glycerophophospholipid species displaying the greatest amplitudes. Remarkably, specific sphin-
golipid and glycerophospholipid species, previously described as cardiometabolically favourable,
were found elevated in aged individuals. Furthermore, specific ether-glycerophospholipid and
lyso-glycerophosphocholine species displayed higher levels in aged females only, revealing a more
favourable lipidome evolution in females. Altogether, age determined the circulating lipidome
composition, while lipid species analysis revealed additional findings that were not observed at the
subclass level.

Keywords: healthspan; healthy population study; metabolic phenotyping; lipidomics;
serum lipid signature

1. Introduction

The ageing of the world’s population contributes largely to the growing prevalence of
non-communicable diseases [1]. Simultaneously, disease-specific healthcare approaches
tend to foster survival with chronic diseases and disabilities rather than contributing
to a longer healthy life, referred to as healthspan [1–6]. As a result, ageing and related
morbidities impose an increasing socio-economic burden on nations [7]. Thus, the World
Health Organization (WHO) launched the concept of healthy ageing, which focuses on the
preservation of physiological functions across the course of life to increase healthspan [1,2].
To implement this concept into clinical practice, new phenotyping tools that could capture
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metabolic individuality and stratify patients with respect to potential health decline and
disease onset, are needed [8,9].

Total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipopro-
tein cholesterol (HDL-C) and triglycerides are still the main lipid markers used to assess
cardiometabolic risk in clinical medicine [10,11]. However, the human plasma lipidome
is estimated to consist of hundreds of thousands of lipid species, which are extremely
diverse in both chemical structures and biological functions [12]. Following the techno-
logical advances in mass spectrometry and bioinformatics, lipidomics has evolved into a
high-throughput approach to allow for an in-depth investigation of lipid metabolism—at
the species level [13,14]. In light of their involvement in numerous biological processes,
lipids are believed to act as key modulators of health, ageing and pathogenesis of car-
diometabolic diseases [12,15,16]. Indeed, lipids are essential to energy storage, cell structure
and molecular signalling [12,17]. They are the main constituents of plasma membranes,
where they modulate receptor activity and vesicular trafficking [18,19]. The term bioactive
lipid is used to designate lipid species in which a change in abundance leads to functional
repercussions [20]. Sphingolipids in general, and ceramides in particular, form an impor-
tant category of bioactive lipids, as they modulate numerous critical biological processes
and have been implicated in many cardiometabolic, oncological and neurodegenerative
disorders [20–22]. For instance, ceramides located at the surface of low-density lipoproteins
(LDL) drive their aggregation and transcytosis through the endothelium as well as uptake
into macrophages, which leads to foam cell formation and vascular inflammation [23–25].
Remarkably, plasma ceramides are strong predictors of cardiovascular death in patients
with and without coronary artery disease [26–29]. Therefore, ceramides could become the
“new cholesterol” in daily clinical practice [30].

In view of these findings, ‘omic-scale lipid analysis shows potential for improving clin-
ical patients’ stratification [13,14,31]. However, prior to profiling patients, clinical studies
investigating healthy populations are necessary to decipher the relations between circula-
tory lipid species and key biological determinants, such as age and sex. This is essential
to further elucidate the role of the many lipid species in health maintenance. Investigat-
ing healthy aged individuals enables the disentanglement of age- from disease-related
metabolic changes, which is rarely done as most human ageing studies enrolled patients
already suffering from chronic diseases or centenarians of unspecified or poorly charac-
terised health status [32–46]. Moreover, the few studies which claimed to have examined
the metabolic profile of healthy individuals did not report on or adjust for physical activity
levels [47–50]. Considering that physical inactivity has been recognised as the fourth
leading cause of death worldwide, it is coherent to consider physical activity as a key
determinant of human health [51,52].

This cross-sectional population-based study had two aims. Firstly, to acquire the
serum lipid profile of clinically healthy humans in their twenties and seventies using an
untargeted liquid chromatography high-resolution mass spectrometry approach. Secondly,
to identify lipid species associated with age and sex [53]. To this end, sera of a subset of the
COmPLETE-Health study, composed of young (20–29 years) and aged (70–79 years) well
characterised, clinically healthy females and males, were investigated [54].

2. Results
2.1. Characteristics of the Clinically Healthy Participants

The examined subset consisted of 73 young (25.2 ± 2.6 years, 44% female) and 77 aged
(73.5 ± 2.3 years, 48% female) participants of the COmPLETE-Health study. Participants
underwent objective physical activity tracking, blood sampling and lipid phenotyping
(Figure 1A). Categorised by age and sex, each group displayed, on average, normal to
high-normal blood pressure, and normal body mass index, triglycerides and glycated
haemoglobin (HbA1c) levels (Table 1) [10,55,56]. The aged participants exhibited slightly
elevated mean LDL-C levels compared to the maximal recommended value of 3 mmol/L
for low-risk patients [10]. In each group, the mean fasting time prior to blood sampling was
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5.6 h at least. All participants fulfilled the WHO recommendations in terms of daily physical
activity time (moderate-to-vigorous physical activity ranging from 39.1 to 321.4 min/day,
with a mean of 158.9 ± 57.1 min/day) [52]. Clinical data distribution is presented in
Figure S1.
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physical activity tracking and lipid phenotyping. (B) Principal component analysis highlighting the difference in lipid profile
between young and aged participants. (C) Differential analysis highlighting lipid species displaying significantly higher
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Table 1. Participants’ characteristics.

Young Aged

Female Male Female Male

Participants, n (%) 32 (21.3) 41 (27.3) 37 (24.7) 40 (26.7)

Anthropometry, mean ± SD
Age (years) 25.1 ± 2.3 25.1 ± 2.8 74.0 ± 2.4 73.9 ± 2.5

Body mass (kg) 60.5 ± 9.0 76.7 ± 9.5 61.8 ± 7.5 74.9 ± 8.3
Body fat mass (%) 23.1 ± 6.9 14.7 ± 5.3 30.4 ± 7.5 24.3 ± 6.1

Body mass index (kg/m2) 21.5 ± 2.9 23.7 ± 2.3 23.5 ± 3.0 24.9 ± 2.6
Systolic blood pressure (mmHg) 111 ± 8 126 ± 10 137 ± 12 133 ± 13
Diastolic blood pressure (mmHg) 71 ± 8 71 ± 7 80 ± 8 82 ± 8

Smoking status, n (%)
Never smoked 31 (97) 40 (98) 26 (70) 21 (52)

Ex-smokers (quit > 10 years ago) 1 (3) 1 (2) 11 (30) 19 (48)

Physical activity (PA) levels, mean ± SD
Daily total PA (min) 282.3 ± 56.1 274.7 ± 69.3 257.2 ± 87.3 237.7 ± 75.2

Daily moderate-to-vigorous PA (min) 190.7 ± 45.1 186.7 ± 53.1 142.4 ± 63.0 140.8 ± 55.3

Biochemical parameters, mean ± SD
Fasting time prior to blood sampling (h) 6.0 ± 1.6 5.6 ± 2.0 6.6 ± 3.7 7.4 ± 4.5

Total cholesterol (mmol/L) 4.96 ± 0.78 4.68 ± 0.95 6.49 ± 0.80 5.96 ± 1.11
LDL-C (mmol/L) 2.62 ± 0.48 2.52 ± 0.56 3.56 ± 0.59 3.40 ± 0.73
HDL-C (mmol/L) 1.81 ± 0.42 1.43 ± 0.24 1.91 ± 0.35 1.58 ± 0.33

Triglycerides (mmol/L) 1.08 ± 0.53 1.33 ± 0.80 1.41 ± 1.06 1.35 ± 0.45
HbA1c (%) 5.0 ± 0.2 5.0 ± 0.2 5.4 ± 0.3 5.3 ± 0.3

Cardiovascular medications, n (%)
Antihypertensives 0 (0) 0(0) 9 (16) 19 (35)
Low-dose aspirin 0 (0) 0 (0) 2 (5) 4 (10)

Statins 0 (0) 0 (0) 3 (8) 6 (15)

Hormonal medications, n (%)
Oestrogen/HRT 4 (13) 0 (0) 5 (14) 0 (0)

5α-reductase inhibitors 0 (0) 0 (0) 0 (0) 4 (10)
Thyroid hormones 0 (0) 0 (0) 3 (8) 3 (8)

Psychiatric medications, n (%)
Antidepressants 1 (3) 1 (2) 1 (3) 0 (0)

Z-drugs 0 (0) 0 (0) 3 (8) 0 (0)

Other medications, n (%) 3 (9) 6 (12) 31 (49) 24 (42)

Abbreviations: LDL-C = low-density lipoprotein cholesterol, HDL-C = low-density lipoprotein cholesterol, HbA1c = glycated hemoglobin,
HRT = hormone replacement therapy, Z-drugs = nonbenzodiazepine benzodiazepine receptor agonists. Other drugs include: vitamins (19),
nonsteroidal anti-inflammatory drugs (8), proton-pump inhibitors (7), topical ophthalmic drugs (7), antihistamines (4), tamsulosin (3), mela-
tonin (2), anthocyanosides of vaccinium myrtillus (1), clindamycin (1), fluticasone/salmeterol (1), fluticasone/vilanterol (1), ibandronate (1),
mesalazine (1), mometasone (1), paracetamol (1), prednisolone (1), pregabalin (1), tiotropium (1), zoledronate (1).

2.2. Lipid Signature of Clinically Healthy Young and Aged Phenotypes

As shown in Table 2, 218 lipid species belonging to 16 distinct lipid subclasses were
identified with a high level of confidence (using accurate m/z ratio and MS/MS fragmen-
tation pattern). Principal Component Analysis (PCA) revealed that young and aged
participants displayed two distinct serum lipid signatures (PC1 42.48%, PC2 12.85%,
Figure 1B and Table S1), while differential analysis showed that 179 lipid species ex-
hibited higher levels in aged compared to young participants (Figure 1C and Table S2).
After adjustment for body fat (%), statins intake, HbA1c (%), daily total physical activ-
ity (min), blood sampling time and fasting time prior to blood sampling, 12 of 16 lipid
subclasses were significantly and positively associated with age (Figure 2 and Table S3).
The strongest associations were observed for lyso-alkyl-glycerophosphoethanolamines
(LPE-O, β coefficient = 1.49, Benjamini–Hochberg (BH) p-value ≤ 0.0001), glycerophospho-
inositols (PI, β coefficient = 1.43, BH p-value ≤ 0.0001), ceramides (Cer, β coefficient = 1.41,
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BH p-value ≤ 0.0001) and sphingomyelins (SM, β coefficient = 1.40, BH p-value ≤ 0.0001).
On the molecular level, 121 species (including 28 glycerophosphocholines, PC, and 23 SMs)
were significantly and positively associated with age (Table S4). The strongest associations
were observed for PC(16:0_18:0) (β coefficient = 1.67, BH p-value ≤ 0.0001) and SM(37:2;3)
(β coefficient = 1.67, BH p-value ≤ 0.0001). Strikingly, no lipid subclass or species was
significantly and negatively associated with age. Daily total physical activity did not
display any significant association with any lipid species or subclass (Tables S3 and S4).

Table 2. Identified lipid species and their respective lipid subclass.

Lipid Subclass,
Full Name

Lipid Subclass,
Abbreviation Identified Lipid Species, n

Diglycerides DG 2
Triglycerides TG 58

Cholesterol esters CE 5
Glycerophosphocholines PC 42

Alkyl-glycerophosphocholines PC-O 16
Lyso-glycerophosphocholines LPC 15

Glycerophosphoinositols PI 7
Lyso-glycerophosphoinositols LPI 2
Glycerophospoethanolamines PE 11

Alkyl-glycerophosphoethanolamines PE-O 15
Alkenyl-glycerophosphoethanolamines PE-P 1

Lyso-glycerophosphoethanolamines LPE 7
Lyso-alkyl-glycerophosphoethanolamines LPE-O 2

Ceramides Cer 6
Sphingomyelins SM 24

Glycosphingolipids GSL 5

Post-hoc tests were calculated to determine and compare the estimated marginal
means of each lipid in aged and young participants within both sexes, using the emmeans
R-package (version 1.4.8) [57]. They revealed that the subclasses SM, Cer, PI, glycosph-
ingolipids (GSL), PC and lyso-glycerophosphoinositols (LPI) displayed, in both sexes,
significantly higher levels in aged compared to young participants (Figures S2 and S3,
Table S5). In females, 138 lipid species (including 32 PCs and 23 SMs) showed significantly
higher levels in aged compared to young participants, with the percentage of difference
ranging from 5.8% to 61.7% (Figure 3A and Table S6). In males, 107 lipid species (including
28 PCs and 23 SMs) exhibited significantly higher levels in aged compared to young sub-
jects, with the percentage of difference ranging from 5.3% to 46.0% (Figure 3B and Table S6).
In both females and males, SM(37:2;3) displayed the greatest percentage of difference (fe-
males: 61.7%, BH p-value ≤ 0.0001; males: 46.0%, BH p-value ≤ 0.0001). No lipid subclass
or species was significantly decreased with age in both females and males.
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Figure 2. Associations between lipid subclasses, age, sex and clinical variables. Abbreviations: BH
= Benjamini-Hochberg, DG = diglycerides, TG = triglycerides, CE = cholesterol esters, LPC = lyso-
glycerophosphocholines, PC = glycerophosphocholines, PC-O = alkyl-glycerophosphocholines,
LPE = lyso-glycerophosphoethanolamines, LPE-O = lyso-alkyl-glycerophosphoethanolamines,
PE = glycerophospoethanolamines, PE-O = alkyl-glycerophosphoethanolamines, PE-P = alkenyl-
glycerophosphoethanolamines, LPI = lyso-glycerophosphoinositols, PI = glycerophosphoinositols,
Cer = ceramides, GSL = glycosphingolipids, SM = sphingomyelins, MUFA = monounsaturated fatty
acid, PUFA = polyunsaturated fatty acids, HbA1c = glycated haemoglobin.
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Regarding the saturation level, age was negatively associated with the monounsatu-
rated fatty acid (MUFA) to polyunsaturated fatty acids (PUFA) ratio for PI (Figure S4
and Table S7). Post-hoc tests revealed that the MUFA/PUFA ratios for PI and lyso-
glycerophosphoethanolamines (LPE) were significantly lower in aged compared to young
females, while the MUFA/PUFA ratio for Cer was significantly higher in aged compared
to young males (Figure S5 and Table S8). Concerning glycerophosphocholines (PC) to
glycerophosphoethanolamines (PE) ratios, age was negatively associated with the ra-
tio alkyl-glycerophosphocholines (PC-O) to alkyl-glycerophosphoethanolamines (PE-O,
Figure S6 and Table S9). Post-hoc tests revealed that the PC-O/PE-O ratio was significantly
lower in aged compared to young females (Figure S7 and Table S10).

Lipid ontology (LION) enrichment analysis was conducted using LION/web (version
2020.07.14), which is an online tool performing network analysis within the lipidomic
dataset [58]. Containing a library of >50,000 lipid species, LION/web goes beyond clas-
sical analysis solely based on lipid nomenclature by providing insights whether specific
physicochemical properties, biological functions or cellular localisation are enriched in a
given group or condition of interest. Thus, LION/web aims to facilitate the interpretation
of complex lipidomic datasets within a biological context. All 218 lipid species could
be matched with a LION ID within the LION library. Twenty-three LION terms were
significantly enriched in aged compared to young females (Figure 4A and Table S11),
with “1-alkyl,2-acylglycerophosphoethanolamines” (PE-O) being the most enriched LION
term (15 matches, q-value ≤ 0.0001). In males, nine LION terms were significantly enriched
in the aged compared to the young (Figure 4B and Table S12), with “sphingolipids” being
the most enriched LION term (35 matches, q-value ≤ 0.0001).
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2.3. Age-Related Sex Differences in the Circulatory Lipidome Composition

The subclasses diglycerides (DG), TG, alkenyl-glycerophosphoethanolamines (PE-
P) and LPE-O as well as 23 species (including 17 TGs) were significantly and positively
associated with the male sex (Figure 2, Tables S3 and S4). Conversely, SM(32:2;2), SM(38:2;2),
PC(16:0_16:1), PE(16:0_22:6), PI(34:1) and PC(O-34:2) were significantly and negatively
associated with the male sex (Table S4).

Within the young participants, 15 lipid species (including six SMs and three PCs)
exhibited higher levels in females compared to males (Figure S8 and Table S6). Conversely,
the subclasses DG, TG, PE-P, LPE-O and lyso-glycerophosphocholines (LPC), as well as
34 species (including 22 TGs) displayed significantly lower levels in females compared to
males (Figures S8 and S9, Tables S5 and S6). Within the aged participants, the subclasses
PC-O and SM, as well as 26 lipid species (including nine SMs and seven PC-Os), displayed
higher levels in females compared to males, while the subclasses TG and DG, as well
as 11 species (including ten TGs), showed lower levels in females compared to males
(Figures S8 and S9, Tables S5 and S6).

As to the saturation level, a significant and negative association was observed between
the MUFA/PUFA ratio for PE-O and the male sex (Figure S4 and Table S7). Post-hoc tests
revealed, that this ratio was significantly lower in females compared to males, in young
participants only (Figure S10 and Table S8). The PC-O/PE-O ratio was significantly and
negatively associated with the male sex (Figure S6 and Table S9). Again, post-hoc tests
showed, that this ratio was significantly lower in females compared to males in young
participants only (Figure S11 and Table S10).

Concerning the lipid ontology enrichment analysis, 30 LION terms were significantly
enriched in young females compared to young males (Figure S12A and Table S13), with “mem-
brane component” being the most enriched LION term (149 matches, q-value ≤ 0.0001). In the
aged participants, 30 LION terms were significantly enriched in females compared to males
(Figure S12B and Table S14) with “membrane component” also being the most enriched
LION term (149 matches, q-value ≤ 0.0001).

3. Discussion
3.1. Unravelling Age- and Sex-Associated Lipid Signature

As all participants of the present study were free of exercise-limiting chronic dis-
eases and fulfilled the WHO recommendations for daily physical activity, the investigated
lipidome reflects clinically healthy phenotype [52]. In this way, this work could identify
age- and sex-associated differences in the serum lipid profile, avoiding the confound-
ing effects of symptomatic cardiometabolic diseases on lipid metabolism. Thereby, this
study confirmed that age strongly determines the composition of the serum lipidome
(Figure 2) [35,50]. Strikingly, aged females exhibited higher levels in 138 out of 218 lipid
species, representing 15 distinct lipid subclasses, while aged males displayed higher levels
in 107 out of 218 species, representing 13 subclasses, compared to their respective younger
counterparts (Figure 3). The investigated sex-balanced sample allowed for the identifica-
tion of these nuances, circumventing the selection bias towards females traditionally found
in ageing studies [32,40,43].

3.2. Cardiometabolic Significance of the Identified Lipid Signature

As illustrated in the summarising Figure 5, aged participants were characterised by
both cardiometabolically favourable and deleterious lipid features. The favourable fea-
tures might indicate that aged participants benefited from a protective genetic background
and/or a lifestyle to reach an advanced age without any excluding medical conditions.
Indeed, as age is a major risk factor for most exclusion criteria of the present study, the se-
lection pressure was likely greater on aged compared to young participants. As to the
deleterious lipid features, they might be a sign of a beginning age-related metabolic imbal-
ance in otherwise clinically healthy aged humans.
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Figure 5. Summary of the main findings. Abbreviations: SM = sphingomyelins, Cer = ceramide, PC = glycerophos-
phocholines, LPC = lyso-glycerophosphocholines, PI = glycerophosphoinositols, CE = cholesterol ester, PE-O = alkyl-
glycerophospoethanolamines, PC-O = alkyl-glycerophosphocholines, LPE-O = lyso-alkyl-glycerophosphoethanolamines,
TG = triglycerides. Figure 5 was created in the Mind the Graph platform (www.mindthegraph.com (accessed on
15 February 2021)).

3.2.1. Sphingolipids

Sphingolipids were highly and positively associated with age, as previously re-
ported [33,59]. SM, which interact with cholesterol to regulate membrane trafficking and
intracellular signalling, account for most sphingolipids identified in the present work [60].
As SM become biologically active once transformed into Cer by the enzyme sphingomyelin
synthase, it is reasonable to think in terms of Cer when reflecting on SM biological func-
tions [20,21,61,62]. In the present study, SM(18:1;2/24:0), its biologically active analogue
Cer(18:1;2/24:0) as well as Cer(18:2;2/24:0), which have been previously reported to be
cardiometabolically favourable, were found at higher levels in both aged females and
males [26,29,63]. Cer(18:2;2/24:0), a sphingolipid species containing a 18:2;2 sphingadiene
backbone, has been reported to be negatively associated with insulin resistance, while
Cer(18:1;2/24:0) is part of the ceramide-phospholipid score for the prediction of cardio-
vascular risk [64,65]. Concurrently, the cardiometabolically harmful Cer(18:1;2/16:0) and
Cer(18:1;2/24:1) also exhibited higher levels in aged individuals of both sexes [26,29,66,67].
The fact that structurally closely related ceramide species are associated to distinct metabolic
consequences highlights the need for detailed lipid analysis at the molecular species
level [26–28].

www.mindthegraph.com
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3.2.2. Glycerophospholipids

PC species accounted for the majority of glycerophospholipids displaying significantly
higher levels in aged participants of both sexes. PCs, located mainly in the outer leaflet
of plasma membranes, are intrinsically linked to sphingolipids, as they are required in
the de novo synthesis of SM from Cer [68,69]. Clinically, the favourable PC(16:0/22:5) and
deleterious PC(16:0/16:0) are part of the ceramide-phospholipid score for the prediction
of cardiovascular risk, while PC(36:6) has also been reported to be cardiometabolically
favourable [29,63,64]. In the present work, these three species displayed higher levels
within both aged females and males.

LPC, which can be generated through the breakdown of PC by phospholipases A2 and
glycoprotein lecithin cholesterol acyltransferases, are considered to be the bioactive forms of
PC [70]. LPC are believed to be metabolically favourable as they were shown to slowdown
cholesterol synthesis and atherogenesis in macrophages [71]. In the present study, 14 LPC
species exhibited higher levels with age in females, while only six LPC species showed
higher levels with age in males. Specifically, LPC(16:0), which was found to be inversely
associated with the incidence of cardiovascular diseases and intima-media thickness,
displayed higher levels in both aged females and males [72]. Conversely, LPC(18:2), which
has been negatively associated with type 2 diabetes and impaired glucose tolerance, showed
higher levels with age in females only [73]. The sex-specific age-related accumulation of
LPC species could be a sign of a more favourable lipid signature in aged females.

Conversely to PC, PE are mainly located in the outer leaflet of plasma membrane and
in the mitochondrial inner membrane [74]. The ratio PC/PE in plasma and mitochondrial
membrane composition has been shown to modulate membrane functions and mitochon-
drial energy production [74]. Clinically, lower PE abundance in mitochondrial membranes
was observed in both Alzheimer’s and Parkinson’s diseases, while both increased and
decreased hepatic PC/PE ratios were associated with non-alcoholic fatty liver disease [75].
In light of these findings, the absence of a significant difference in terms of PC/PE ratio
observed between aged and young participants could be a sign of metabolic health. The bi-
ological significance of the specific PC-O/PE-O ratio, which was lower in aged compared
to young females in the present work, has not yet been explained to the best of the authors’
knowledge [74].

PI have long been known as key regulators of cell physiology, yet the importance of
their aliphatic chain composition has been only recently recognised [76–78]. PI(18:0/20:4)
is the predominant species in healthy mammalian cells, while cancer cells are enriched
in PI, totalling 34 and 36 carbon atoms in their aliphatic chains [79,80]. In the present
work, aged participants of both sexes displayed higher levels of the presumed healthy
PI(18:0/20:4) and unhealthy PI(34:1), PI(36:2) and PI(36:4). In addition, aged males showed
higher levels of the presumed unhealthy PI(34:2). Again, this might be a sign for a more
favourable age-related evolution of the circulating lipidome composition in females.

PC-O, PE-O and LPE-O belong to ether-glycerophospholipids [81]. In the present
work, 15 PE-O, 15 PC-O and two LPE-O displayed higher levels in aged females, while
only seven PE-O and six PC-O were more abundant with age in males. These results
are concordant with the ones of the lipid ontology analysis, showing that the LION term
“1-alkyl,2-acylglycerophosphoethanolamines” (PE-O) was enriched with age in females
only (Figure 4). These sex-specific age-related differences in ether-glycerophospholipid
species could once more indicate a favourable age-related evolution of the lipidome com-
position in females. Indeed, ethers-glycerophospholipids act, amongst others, as cellu-
lar antioxidants [81,82]. This function is closely related to peroxisomes, where they are
synthesised [81]. Two lethal diseases in childhood caused by inherited deficiencies in
ether-glycerophospholipid, rhizomelic chondrodysplasia punctate and Zellweger spectrum
disorders, highlight the importance of ether-glycerophospholipids to human health [81].
Lower circulating levels of ether-glycerophospholipids have also been observed in patients
with non-alcoholic steatohepatitis and children with type 1 diabetes [83,84]. The fact that
PE-O, LPE-O and LPE are synthesised in the inner membrane of mitochondria may explain
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why the LION term “mitochondrion” was enriched within aged females only in the lipid
ontology analysis [85]. Lastly, the terms “plasma membrane” and “membrane composi-
tion” were enriched with age in both females and males, which implies that membrane
composition changes with age.

3.2.3. Cholesterol Esters, Glycerolipids and Saturation Levels

The cardiometabolically favourable CE(22:6) and CE(20:5) showed higher levels in
both aged females and males. Circulating CE levels have been shown to be negatively asso-
ciated with cardiovascular diseases [86,87]. The acyl chains 22:6 and 20:5 likely correspond
to docosahexaenoate and eicosapentaenoate, circulating levels of which are negatively
associated with fatal coronary heart diseases [88,89]. Additionally, serum level of CE(22:6)
has been reported to be significantly lower in patients with Alzheimer’s disease compared
to cognitively healthy subjects, with lower levels of CE(22:6) corresponding to more severe
dementia [90].

Ten and seven TG species displayed higher levels in aged females and males, respec-
tively. In addition, most TG species exhibited lower levels in females compared to males
(Figure S8), yet the number decreased after menopause as previously described [59,91].
While both the European Society of Cardiology and the American Heart Association con-
sider TG as important biomarkers of cardiovascular diseases due to their association with
circulating apolipoproteins B, it is not clear yet if TG are directly atherogenic [10,92]. Nev-
ertheless, the elevated TGs levels likely indicate a beginning age-related impairment in
lipid metabolism in otherwise healthy aged humans.

Finally, the absence of significant differences in MUFA/PUFA ratios between young
and aged individuals in all subclasses but PI, LPE and Cer could be interpreted as a
persistence of the protection against oxidative stress. Indeed, a low degree of fatty acid
unsaturation in membranes and plasma has been linked with longevity [39,93–95]. The rea-
son for this is that fewer unsaturated fatty acids are less susceptible to lipid peroxidation,
which leads to less oxidation-mediated damage to macromolecules [39,96]. The metabolic
significance of the MUFA/PUFA differences observed for the specific subclasses PI, LPE and
Cer are not known to the best of the authors’ knowledge.

3.3. Moving Away from Subclass towards Species Analysis in Clinical Medicine

In clinical practice, lipid measurements are still often limited to HDL-C, LDL-C,
total cholesterol and triglycerides. Although these parameters have been proven effective
in evaluating cardiovascular risk, recent data demonstrated that specific ceramide species
predict cardiovascular risk beyond them, calling for detailed lipid analysis at the molecular
species level [10,26,29,92]. The results of the present study support this call considering that,
in several cases, associations could be observed once zooming into species diversity within
the same lipid subclass. For instance, no significant difference was observed for CE as a
subclass between aged and young participants, while both CE(22:6) and CE(20:5) displayed
significantly higher levels in aged compared to young participants. Different species
within the same subclass have distinct biological roles, as illustrated by the cardiometabolic
favourable and deleterious ceramide species [26–28,65]. Undoubtedly, lipidomic studies
will provide new biomarkers to improve patients’ stratification and follow-up of patients
suffering from cardiometabolic diseases [12].

3.4. Limitations

This study should be assessed in light of its limitations. First, investigating serum
lipids does not provide information about their cellular origin, destination or subcellular
localisation. Thus, the findings should be interpreted with caution, when it comes to
mechanistic explanations. As this is an inherent limitation of cross-sectional population-
based studies, the present results should be seen as a starting point for both prospective
intervention and fundamental studies. Second, the cross-sectional nature of this study
allows only for the establishment of associations, and not causality, between clinical and
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lipid phenotypes [97]. However, in light of the practical hurdles to conducting longitudinal
studies over the lifespan, cross-sectional studies represent acceptable alternatives. Next,
the biological significance of many lipid species is far from being understood, which pre-
vents a comprehensive interpretation of the serum lipidome. Specifically, little or no data
are available on the biological roles of GSL, LPE and LPI species [98–102]. In addition,
the differences in lipid annotation levels also complicate data interpretation. For instance,
many SM species were identified on the hydroxyl group level only, making a reflection in
terms of Cer species difficult [103]. Another limitation is the fact that the biological insights
provided by LION/web, the very first lipid ontology enrichment tool, are currently limited
to associations between lipid species, physicochemical properties, general biological func-
tions and organelles. Lastly, all participants lived in a small geographic area in Switzerland;
therefore, results might not be generalisable to populations living in different regions of
the world.

4. Materials and Methods
4.1. Participants

The investigated subset consisted of 73 young (25.2 ± 2.6 years, 43% female) and
77 aged (73.5 ± 2.3 years, 48% female) individuals. As reported in the study protocol,
only healthy participants from the Basel area (Switzerland), who did not have exercise-
limiting chronic disease, were non-smokers, or quit at least ten years ago, were included in
the COmPLETE-Health study [54]. This excluded participants with a history of coronary
artery disease, stroke, heart failure, lower-extremity artery disease, any kind of malignant
tumour, diabetes, obesity, clinically apparent kidney failure, severe liver disease, chronic
obstructive pulmonary disease GOLD stages two to four, arterial hypertension grades two
and three, drug or alcohol abuse, exercise-limiting osteoporosis or orthopaedic conditions
and clinically manifest Alzheimer’s disease or dementia. The study was conducted in
accordance with the Declaration of Helsinki, approved by the Ethics Committee of North-
Western and Central Switzerland (EKNZ 2017–01451) and registered on ClinicalTrials.gov
(NCT03986892). All participants provided written informed consent.

4.2. Data Collection

Data were collected between January 2018 and June 2019. Prior to the clinical exam-
ination, participants were instructed not to diverge from habitual eating behaviour (for
the previous 72 h), and to avoid exercising, drinking alcohol (for the previous 24 h) and
drinking caffeinated beverages (for the previous 4 h). Participants were randomised in
five time slots (08:00, 10:00, 12:00, 14:00 and 16:00) and measurements took approximately
four hours each. After an hour of measurements at rest, trained medical staff collected
blood samples in fasted state (at least three hours) by venepuncture of the cubital fossa
(2 × 7.5 mL serum-gel, Monovette®, Sarstedt, Nümbrecht, Germany). Serum samples were
gently shaken for 30 min, centrifuged (3000 rpm; 10 min; 20–23 ◦C), aliquoted and frozen
at −80 ◦C.

Smoking status was assessed by telephone interview prior to the examination, while physi-
cians reviewed medical history and medications by questionnaires on site. Body fat content
was quantified using a four-segment bioelectrical impedance analysis (Inbody 720, In-
body Co. Ltd., Seoul, Korea). Physical activity was objectively monitored over the 14
consecutive days following the clinical examination using a wrist-worn triaxial accelerome-
ter (GeneActive Activinsights Ltd., Kimbolton, UK). Data were analysed using the validated
open-source Excel macro file “General physical activity” (version 2), quantifying total and
moderate-to-vigorous physical activity in minutes per day (moderate defined as 4.00–6.99
Metabolic Equivalent of Task (METS) and vigorous ≥ 7 METS) [104]. The recruitment and
data collection processes have been previously described in detail in the study protocol [54].
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4.3. Biochemical Analysis

Total cholesterol, LDL-C, HDL-C and triglyceride concentrations were analysed from
serum using an Olympus AU680 automatic analyser (Beckman Coulter, Brea, CA, USA),
enzymatic reagents (DiaSys, Holzheim, Germany) and secondary standards (Roche Diag-
nostics, Mannheim, Germany). HbA1c was quantified from whole blood by high-pressure
liquid chromatography using D-10 (Bio-Rad, Hercules, CA, USA).

4.4. Lipid Extraction

Lipids were extracted by the addition of 200 µL of Butanol/Methanol (1:1) solution to
40 µL of serum. Following the centrifugation for 15 min at 4000× g at 4 ◦C, the resulting
supernatants were collected and transferred to liquid chromatography—mass spectrometry
(LC-MS) vials for injection [105,106].

4.5. Untargeted Lipidomics

Serum lipid extracts were analysed by reversed-phase liquid chromatography coupled
to a high-resolution mass spectrometry (RPLC-HRMS) instrument (Agilent 6550 iFunnel
Q-TOF LC/MS, Agilent Technologies, Santa Clara, CA, USA) [107,108]. In both positive
and negative ionisation mode, the chromatographic separation was carried out on a Zorbax
Eclipse Plus C18 (1.8 µm, 100 mm × 2.1 mm I.D. column) (Agilent Technologies, Santa Clara,
CA, USA). Mobile phase was composed of A = 60:40 (v/v) Acetonitrile:water with 10 mM
ammonium acetate and 0.1% acetic acid and B = 88:10:2 Isopropanol:acetonitrile:water with
10 mM ammonium acetate and 0.1% acetic acid. The flow rate was 600 µL/min, column
temperature 60 ◦C and sample injection volume 2 µL. Electrospray ionisation source condi-
tions were set as follows: dry gas temperature 200 ◦C, nebuliser 35 psi and flow 14 L/min,
sheath gas temperature 300 ◦C and flow 11 L/min, nozzle voltage 1000 V, and capillary
voltage +/− 3500 V. Full scan acquisition mode in the range of 100–1700 mass-to-charge
ratio (m/z) was applied for data acquisition while iterative tandem mass spectrometry
(MS/MS) data-dependent acquisition at 25 eV was used to acquire the MS/MS data on
pooled quality control (QC) samples. Iterative MS/MS was performed in five consecutive
injections using computer-driven exclusion. The scan rate was set to three spectra/s with a
duration of 333.3 ms/spectrum and a narrow isolation width of 1.3 m/z. The mass error
tolerance was +/− 20 ppm with a retention time exclusion tolerance of +/− 0.1 min.
Precursor ions were excluded after two spectra, with a maximum of three precursors per
cycle. The precursor threshold was set to an absolute threshold of 5000 counts in positive
mode and 2500 counts in negative mode.

4.6. Quality Control

Pooled QC samples (representative of the entire sample set) were analysed every
ten samples throughout the overall analytical run in order to assess the quality of the
data, correct the signal intensity drift and remove the peaks with poor reproducibility
(CV > 20%) [109,110]. In addition, a series of diluted quality controls (dQC) were pre-
pared by dilution with buthanol:methanol (1:1): 100%QC, 50%QC, 25%QC, 12.5%QC and
6.25%QC and analysed at the beginning and at the end of the sample batch. This dQC
series served as a filter to remove the features, for which MS signal response was not linear
(correlation with dilution factor < 0.8) [111].

4.7. Data Processing and Lipid Annotation

Raw RPLC-HRMS(/MS) data were deconvoluted using MS-DIAL version 4.00 and
lipids were annotated by matching accurate mass, isotope ratio and MS/MS spectra with
the LipidBlast library on 29 November 2019 [107,112]. Relative quantification of lipids was
based on extracted ion chromatogram areas for the monitored precursor ions at the MS level.
The obtained tables (containing peak areas of detected and annotated lipids by MS and
MS/MS and MS only) were exported to an R-based in-house developed application, where
the signal intensity drift over time was corrected using the locally estimated smoothing
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function (LOESS) and the cubic spline algorithm, followed by analytical variability filter
(CV (QC features) > 20%) and visual inspection of linear response [109,110]. Redundancies
were then removed. Finally, lipids identified on MS level only were targeted to obtain an
MS/MS match.

4.8. Lipid Shorthand Notation

Using the LipidLynxX Converter tool, lipid shorthand notation issued from MS-
DIAL was converted to the community-accepted shorthand notation system introduced
by Liebisch et al. [103,113]. Two authors (J.C. and H.G.-A.) manually double-checked the
shorthand notation of each lipid species.

4.9. Statistical Analysis

Each lipid species was assigned its corresponding lipid subclass, according to the
LIPID MAPS® Lipid Classification System, and saturation level of their aliphatic chains
(saturated fatty acid, MUFA or PUFA) [114]. Lipid species abundances were summed to
obtain abundances for each lipid subclass and saturation level. Abundances were log2-
transformed prior to statistical analysis. MUFA to PUFA and PC to PE ratios were calculated
on subclass levels, if applicable. Unless otherwise specified, all statistical analyses were
conducted on the species and subclass levels as well as on MUFA to PUFA and PC to
PE ratios.

To investigate global age-related differences in lipid species, unsupervised and su-
pervised analyses were carried out using BIOMEX version 1.0–3, a novel web-based
bioinformatic tool designed to facilitate the Biological Interpretation Of Multi-omics Exper-
iments [115]. Specifically, dimensionality reduction was conducted using PCA, while dif-
ferential analysis was computed using the linear limma model adjusted for blood sampling
time [116].

Multiple linear regressions were run to assess associations between lipids, age, sex and
the interaction between age and sex, while adjusting for the following previously described
clinical confounders: body fat (%), statins intake, HbA1c (%), daily total physical activity
(min), blood sampling time and fasting time prior to blood sampling [117–125]. Lipids were
used as dependent variables, while the other parameters served as independent variables.
Continuous dependent and independent variables were z-standardised prior to calcula-
tion [126]. Post-hoc tests, using the emmeans R-package (version 1.4.8), were calculated to
determine and compare the estimated marginal means of each lipid in aged and young
participants within both sexes [57]. The same was done for females and males in both age
groups. Resulting β coefficients were converted to percentage of difference for ease of
interpretation [57,127].

Percentage of difference = (2β − 1) × 100 (1)

Finally, lipid species were ordered by decreasing percentage of differences for all four
age and sex groups. Resulting lists were entered into a lipid ontology enrichment tool
(LION/web, version 2020.07.14), a web application developed to perform network analysis
within complex lipidomic datasets in order to bridge the gap between data generated by
lipidomic assays and their implication in cellular metabolism [58].

Normality of the residuals was checked graphically prior to running the above-
mentioned statistical tests. For each statistical test, all p-values were adjusted together
using the Benjamini-Hochberg method [128]. BIOMEX also uses the Benjamini–Hochberg
method, while LION/web uses the q-value method to adjust p-values [58,115]. Ad-
justed p-values ≤ 0.05 were considered significant. Unless otherwise specified, statistical
analyses were carried out using R (version 4.0.2) [129]. Rain plots were computed using a
previously published R-code [130].
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5. Conclusions

This study provides a comprehensive serum lipid profiling of clinically healthy hu-
mans in their twenties and seventies, allowing for the identification of age- and sex-
associated lipid species. Age was identified as the major determinant of the circulat-
ing lipidome composition. Compared to the younger individuals, aged females and
males exhibited significantly higher levels of sphingolipid, glycerophospholipid, choles-
terol ester and triglyceride species. In particular, they showed higher levels in specific SM,
Cer, PC, LPC, PI and CE species previously described as cardiometabolically favourable.
These favourable features might indicate that aged participants benefited from protective
genetic, environmental or lifestyle factors to reach their age in good health. Simulta-
neously, elevated levels of deleterious Cer, PC, PI and TGs species were also observed
within the aged participants. This could sign a beginning age-related impairment in lipid
metabolism. Remarkably, aged females were characterised by higher levels in several
ether-glycerophospholipid and LPC species, which might support a potentially healthier
age-related evolution of the lipidome composition within females. Finally, lipid species
analysis revealed findings not captured by subclass analysis. This highlights the necessity
to implement detailed lipid investigation at the molecular species level in clinical research
studies in order to improve patients’ stratification and healthspan extension strategies.
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