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We demonstrate that the static elastic properties of a carbonate sample, comprised of
dolomite and calcite, could be accurately predicted by Digital Rock Physics (DRP), a non-
invasive testing method for simulating laboratory measurements. We present a state-of-
the-art algorithm that uses X-ray Computed Tomography (CT) imagery to compute the
elastic properties of a lacustrine rudstone sample. The high-resolution CT-images provide
a digital sample that is used for analyzing microstructures and performing quasi-static
compression numerical simulations. Here, we present the modified Segmentation-Less
method withOut Targets method: a combination of segmentation-based and
segmentation-less DRP. This new method assigns the spatial distribution of elastic
properties of the sample based on homogenization theory and overcomes the
monomineralic limitation of the previous work, allowing the algorithm to be used on
polymineralic rocks. The method starts by partitioning CT-images of the sample into
smaller sub-images, each of which contains only two phases: amineral (calcite or dolomite)
and air. Then, each sub-image is converted into elastic property arrays. Finally, the elastic
property arrays from the sub-images are combined and fed into a finite element algorithm
to compute the effective elastic properties of the sample. We compared the numerical
results to the laboratory measurements of low-frequency elastic properties. We find that
the Young’s moduli of both the dry and the fully saturated sample fall within 10% of the
laboratory measurements. Our analysis also shows that segmentation-based DRP should
be used cautiously to compute elastic properties of carbonate rocks similar to our sample.

Keywords: Digital Rock Physics (DRP), carbonate, X-ray computed tomograghy, low-frequency measurement,
numerical simulation, finite element analysis

INTRODUCTION

Digital Rock Physics (DRP) applied to carbonates is an important and quickly evolving research
topic (e.g., Amabeoku et al., 2013; Saenger et al., 2016; AlJallad et al., 2020; Han et al., 2020),
especially regarding the prediction of elastic moduli of polymineralic carbonate rocks. In general, the
most common methods in DRP are based on segmentation, which tend to strongly overpredict the

Edited by:
Pier Paolo Bruno,

University of Naples Federico II, Italy

Reviewed by:
Guo Tao,

Khalifa University, United Arab
Emirates

Mohamed JOUINI,
Khalifa University, United Arab

Emirates

*Correspondence:
Ken Ikeda

ikeda.ken@utexas.edu

Specialty section:
This article was submitted to

Solid Earth Geophysics,
a section of the journal

Frontiers in Earth Science

Received: 12 November 2020
Accepted: 18 January 2021

Published: 18 February 2021

Citation:
Ikeda K, Subramaniyan S, Quintal B,
Goldfarb EJ, Saenger EH and Tisato N

(2021) Low-Frequency Elastic
Properties of a Polymineralic

Carbonate: Laboratory Measurement
and Digital Rock Physics.

Front. Earth Sci. 9:628544.
doi: 10.3389/feart.2021.628544

Frontiers in Earth Science | www.frontiersin.org February 2021 | Volume 9 | Article 6285441

ORIGINAL RESEARCH
published: 18 February 2021

doi: 10.3389/feart.2021.628544

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2021.628544&domain=pdf&date_stamp=2021-02-18
https://www.frontiersin.org/articles/10.3389/feart.2021.628544/full
https://www.frontiersin.org/articles/10.3389/feart.2021.628544/full
https://www.frontiersin.org/articles/10.3389/feart.2021.628544/full
https://www.frontiersin.org/articles/10.3389/feart.2021.628544/full
http://creativecommons.org/licenses/by/4.0/
mailto:ikeda.ken@utexas.edu
https://doi.org/10.3389/feart.2021.628544
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2021.628544


elastic moduli of such rocks. It has been suggested that such
inaccuracy is due to the inability of segmentation in resolving
micro-features, such as pores, grain contacts, and cracks (e.g.,
Madonna et al., 2012; Andrä et al., 2013a). Carbonate rocks can
contain a significant amount of micropores that cannot be
resolved by CT imaging (Saenger et al., 2016). In carbonates,
pores can lie between mineral grains or particles (interparticle
and intercrystal pores), within particles (intraparticle pores), or
within mineral grains due to, for instance, dissolution processes
(moldic pores). Pores can be smaller than 1 μm (Scholle and
Ulmer-Scholle, 2003), which is below the spatial resolution of a
typical CT-scanner (Iassonov et al., 2009). One could scan
samples at nanometric resolutions, capturing only millimetric
volumes that, however, might not be a Representative Elementary
Volume (REV) for the studied lithology (Saenger et al., 2016).

Several methods have been proposed to extract sub-resolution
features - especially microporosity - from CT-images with a
resolution around 10 microns. Sok et al. (2010) introduced the
multiscale analysis technique where images of a sample at
different resolutions were combined. They scanned a
carbonate rock sample at ∼1 micron resolution and recognized
three phases in the CT-images: solid grains, resolvable pore
spaces, and micropores. The porosity calculated from
resolvable pore spaces yielded 11% porosity, whereas the
porosity of the sample, measured with the Mercury Injection
Capillary Pressure (MICP) technique, was 36%. Therefore, they
assumed that approximately 25% of the total pore volume was in
micropores. A multiscale analysis estimated the microporosity by
stochastically mapping micropores with Scanning Electron
Microscopy (SEM). Micro-CT and SEM images were taken at
the same locations and registered: the average porosities of the
SEM image were paired with the average X-ray attenuation of
CT-images. Pairs of average porosities and average X-ray
attenuation were used to create an X-ray attenuation-to-
porosity calibration curve. Such a multiscale analysis technique
estimated a sample porosity of 35%, which agreed with the MICP
result. Lin et al. (2016) tackled the sub-resolution porosity
problem in the acquisition process. They performed a
differential measurement of X-ray attenuation by comparing
CT-images of dry and brine saturated samples. Lin et al.
(2016) concluded that the sub-resolution porosity contributed
to up to 10% of the total porosity of the sample. Other authors
have proposed methods to incorporate sub-resolution
information from CT data. Such approaches rely on the local
variation of X-ray attenuation to estimate effective rock
properties such as density and porosity (e.g., Taud et al., 2005;
Dunsmuir et al., 2006; Gupta et al., 2018).

To estimate the effect of sub-resolution features on elastic
properties, several methods have been proposed. Tisato and
Spikes (2016) introduced a DRP technique that does not
require segmentation. Their method relies on homogenization
theory, where the spatial distribution of elastic properties is the
interpolation between the elastic properties of the materials
composing the rock. The interpolation function depends on
the chosen effective medium theory (EMT). As a result, each
voxel is assigned a specific elastic modulus that depends on the
X-ray attenuation. The method was tested on a Berea Sandstone,

yielding results that agreed with laboratory measurements. Ikeda
et al. (2020) furthered the study of Tisato and Spikes (2016) by
introducing the Segmentation-Less method withOut Targets
(SLOT) that do not require calibration targets - often referred
to as phantoms in the CT community.

Saenger et al. (2016) proposed a method called “two-phase
wave propagation simulations” to obtain porosity dependent P
and S-wave velocities of sedimentary rocks. They created
several CT derived digital rock models by varying the
segmentation threshold of the CT number used to separate
the solid phase (calcite) from the pore phase (vacuum). As a
consequence, each model had a different porosity. Each model
underwent numerical simulations where the results were used
to obtain effective P-wave and S-wave velocities. The variation
of P and S-wave velocities with porosity were used to create
velocity bounds for the lithology. Sun et al. (2017) performed
a multiscale analysis on carbonate CT-images to predict
elastic properties. Some estimated physical properties
agreed with the laboratory measurements except for the
P-wave and the S-wave velocities. Nonetheless, both
methods approaches have not been used on carbonate
samples containing both dolomite and calcite.

Here, we propose a modified segmentation-less method
(modified-SLOT), which is based on the SLOT algorithm
whose main limitation is that it can be applied only on
monomineralic rocks. The present work relaxes such a
limitation, allowing the estimation of elastic properties of
polymineralic rocks from CT-images. Numerical simulation
results are compared to low-frequency sub-resonance
laboratory measurements and segmentation-based DRP. The
proposed methodology, modified-SLOT, estimates static
Young’s modulus of a polymineralic carbonate sample within
10% of laboratory measurements.

MATERIALS AND METHODS

Description of the Physical Sample
Our sample was collected from the pre-salt Barra Velha
formation of the Santos Basin in Brazil (Gomes et al., 2020).
The formation contains massive to cross stratified units. The
sample is a lacustrine carbonate formed in the early stages of the
Atlantic ocean rifting and was cored from a facies of reworked
carbonate shrubs and spherulites. Spherulites are spherical to
sub-spherical allochems, that in the Barra Velha formation are
commonly dolomitized with secondary porosity. Shrubs are
aggregated fibrous to coarse bladed calcite crystals (Wright &
Barnett, 2015; Chafetz et al., 2018).

The original sample was a cylinder of size 25.4 cm in diameter
and ∼100 mm in length. A cylindrical plug of size 25.4 mm in
diameter and 62.4 mm in length was obtained from the original
sample. Such a sample is called sample A, and it was used for the
measurement of Young’s modulus and attenuation at frequencies
in the range 1–100 Hz (Figure 1A). The porosity of the sample A
is ϕlab � 15.5%. The remaining sample was cored to obtain a small
cylinder of size 8 mm in diameter and few mm in length - sample
B (Figure 1B). We used X-ray micro-computed tomography
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(micro-CT) to obtain a 3D digital model of one of the 8 mm core
plugs (Figures 1C,D). The remainder of the original sample
comprised three samples with no regular shape that were used
for mercury injection capillary pressure tests (MICP), namely
sample C, sample D, and sample E (Figure 1E).

MICP analyses were performed at the claylab of the Swiss
Federal Institute of Technology Zurich (ETH Zürich,
Switzerland) by means of a Pascal 140 + 440 instrument from
POROTEC (Hofheim am Taunus, Germany). The MICP
porosities for samples C, D, and E are 14.99%, 17.65%, and
14.39%, respectively; and the average of such measurements is
15.7%, which is 0.2% higher than ϕlab. Figure 1 provides a
synoptic panel reporting the samples and the tests performed.
The MICP test (Figure 2) also indicates that some pores have a
radius below 50 µm (∼6%). Most of the pore throats lie in the
range 103–104 μm (Figure 2). Note that MICP only measures the
connected porosity of the sample.

Description of the CT-Dataset
We collected 3D images of sample B by means of X-ray micro-
computed tomography (ETH dataset) and synchrotron X-ray
tomography (TOMCAT dataset). The ETH dataset was obtained
at the Swiss Federal Institute of Technology Zurich (ETH Zürich,
Switzerland) using a phoenix v|tome|x 240 X-ray scanner (GE
Sensing & Inspection Technologies GmbH, Germany). The X-ray
tube voltage and current were 150 kV and 65 μA, respectively. We
used a 0.5 mm copper filter to minimize beam hardening. Images
were taken every 0.2° for an entire revolution. The final
reconstructed 3D volume had a voxel size of 9.88 microns and
a cross-section of 916 × 869 pixels. The spatial distribution of
X-ray attenuation was scaled and stored as an array of 16-bit
integers, known as CT-numbers (Ketcham and Carlson, 2001).
CT-number is a proxy for the density of the material irradiated by
the X-rays (Mull, 1984). Figures 1C,D show an arbitrary cross-
section from the micro-CT data. The resolution of our scan was

FIGURE 1 | Sample descriptions and workflow of the process. The original sample was cut into sample (A) for the low-frequency measurement. The remaining part
of the sample was used for CT-scan (sampleB) andMICPmeasurement (sampleC–E). Sample (B)was scanned at two facilities: TOMCAT and ETH. The TOMCAT scan
provided high-resolution images in which we use for estimating aspect ratio of pore spaces. The ETH scan, whose resolution was lower, coveredmore area of the sample
and was used for numerical simulations. The ruler in the sample (A) figure is in centimeters and WD represents the width of the image.
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not high enough to resolve all the features within the sample, such
as small pores and microcracks. Only the bigger pores were
resolved, appearing as a dark color in the micro-CT images.
The ETH dataset was then used to compute the elastic properties
of the sample. In particular, we extracted a sub-volume of size
536 × 536 × 342 voxels from such a dataset (sample F). This
volume was the largest artifact-free rectangular volume that could

be extracted from the dataset. The CT-images of the sub-volume
were processed and visualized with Fiji (Schindelin et al., 2012).
We applied a local mean filter with the smoothing factor of 3 and
the automatic standard deviation to denoize the CT-images.
Then, we applied the statistical region merging to group
similar voxels (Buades et al., 2005, p.; Nock and Nielsen,
2004). Due to the limitation of computational resources, we
performed the numerical simulations of five cascaded sub-
volumes extracted from sample F (Figures 1, 3). The location
of each sub-volume is listed inTable 1. The first four sub-volumes
are 300 × 300 × 300 voxels in size. The fifth sub-volume, on the
other hand, is 350 × 350 × 300 voxels in size. The fifth sub-volume
was intentionally chosen, such that its porosity was 15.44%
i.e., only 0.06% from ∅lab.

On the other hand, the synchrotron TOMCAT dataset was
obtained at the X-ray Tomographic Microscopy and Coherent
rAdiology experimenTs beamline of the Swiss Light Source (SLS;
Paul Scherrer Institute, Villigen, Switzerland). The beam energy
was 26 keV with 500 ms exposure time. The final reconstructed
3D volume yielded a volume with a section of 2560 × 2560 pixels
with a voxel size of 0.65 microns/voxel. Such a scan covers 0.1% of
sample B, and its elastic properties might not represent the elastic
properties of the lithology under study. However, we assume that
the microporosity of the TOMCAT dataset properly represents

FIGURE 3 | ACT-volume of the sample with the interpreted mineral compositions. The CT-volume has been segmented into four phases: air, dolomite, calcite, and
heavy mineral. The section of the CT-volume shows the location where sub-volumes have been extracted for the numerical simulations.

FIGURE 2 |MICP data for the carbonate sample investigated. Here, we
show the result obtained from one of the core plugs.
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the microporosity of sample B. Thus, we use such a dataset to
estimate the aspect ratio of the micropores.

According to the CT-images, four distinct shades of gray
(i.e., CT-numbers clusters) are observed in the CT-images: 1)
black, 2) light-gray, 3) dark-gray, and 4) white (Figure 3). Such
shades are interpreted to represent 1) air, 2) dolomite, 3) calcite,
and 4) a heavy mineral, based on the X-ray attenuation
characterization of each material and the petrophysical
analyses on the core sample. At our scanning conditions,
dolomite attenuates X-rays less than calcite and therefore
bears a darker shade (i.e., lower CT-numbers) than calcite (see
Supplementary Information) (Chantler et al., 2005; Wang et al.,
2013). A first-order analysis of the CT-images shows that the
volumetric fractions of voxels classified as air (f segair ), calcite (f segcal ),
dolomite (f segdol ), and heavy minerals (f segheavy) are 8.65%, 69.17%,
22.13%, and 0.05%, respectively.

As f segair is 8.65% and ϕlab is 15.5%, we concluded that our
sample comprises 6.85% of sub-resolution porosity. Such a
mismatch suggests that 6.85% of the porosity cannot be
resolved with the ETH dataset. Thus, f segcal , f

seg
dol , and f segheavy,

indeed, represent the volume fractions of the minerals plus the
sub-resolution porosity, while the actual volume fractions of
the minerals are denoted as Vcal, Vdol, and Vheavy for calcite,
dolomite, and heavy mineral, respectively. We neglected the
sub-resolution pore spaces in the heavy mineral fraction
(i.e., f segheavy � Vheavy), because such a phase represents a very
tiny portion of the total volume, and minerals such as sulfides
and oxides are likely to have limited porosity (<1%)
(Baumgartner et al., 2019).

Methods
Laboratory Measurements of Low-Frequency Young’s
Modulus
To measure Young’s modulus and attenuation of seismic waves
for sample A, we used the Seismic Wave Attenuation Module
(SWAM,Madonna and Tisato, 2013). The SWAMuses the forced
oscillation method to measure such properties. The
measurements were performed at seismic frequencies
(1–100 Hz). Table 2 lists the physical properties of the

carbonate sample and the aluminum standard that were used
as a reference in the laboratory measurements. The SWAM has a
piezo actuator to produce a sinusoidal vertical stress, while a
couple of Linear Variable Differential Transformers (LVDTs)
measures the bulk shortenings of the rock sample and the
aluminum standard. Shortenings are recorded by an
oscilloscope after amplification (Figure 4). As aluminum is
nearly elastic, its shortening can be considered to be in phase
with the applied stress. The amplitude ratio and the phase shift
between the shortening across the rock sample and across the
aluminum standard allowed calculating the sample Young’s
modulus and attenuation, respectively.

The SWAM was placed in a Paterson pressure rig (Paterson
and Olgaard, 2000), which employed argon gas as a confining
medium. To avoid flow of pore fluid across the curved side of the
sample, and to prevent argon from seeping into the sample, a
0.1 mm thick copper jacket was used as a sealing (Figure 5A).
The aluminum standard was enclosed in a 0.75 mm thick
heat-shrinkable fluorinated ethylene propylene (FEP) tube
(Figure 5B). The SWAM was connected to a syringe pump
using pipes of 1 mm internal diameter to saturate the sample.
Over time, there was a tiny leak of argon into the sample
(0.01–0.05 MPa/h, as per the pump reading). The pore
pressure system was kept open to the atmosphere so that the
gas could escape through the pore fluid pipes. Therefore, during
measurements, pore pressure was equal to atmospheric pressure
(Subramaniyan et al., 2015).

Laboratory measurements were conducted at 5 MPa confining
pressure, 20°C temperature, and two fluid saturation conditions:
dry and 100% water-saturated. The sample was oven-dried before
performing the measurements in dry conditions. Once such a
measurement was completed, a water volume corresponding to
the desired saturation level (100%) was introduced into the
sample. To ensure full saturation, the sample was flushed with
a volume of water more than ten times the sample pore volume.
While flushing the pressure gradient across the sample was kept
at ∼2 MPa. After each saturation step, the pore fluid valves were
left open, thereby the pore pressure equilibrated to the
atmospheric pressure.

TABLE 1 | Numerical simulation results from the modified-SLOT.

Sub-volume number Extracted location ϕ Aspect ratio = 0.4 Aspect ratio = 0.5

Edry (GPa) Esat (GPa) Edry (GPa) Esat (GPa)

1 (1:300, 1:300, 1:300) 0.1583 25.5 27.3 26.1 29.4
2 (237:536, 1:300, 1:300) 0.1669 22.6 25.0 25.1 27.0
3 (1:300, 237:536, 1:300) 0.1571 25.3 27.6 26.8 30.0
4 (237:536, 237:536, 1:300) 0.1427 28.2 30.5 29.2 31.5
5 (101:450, 101:450, 1:300) 0.1544 25.6 27.9 26.9 30.5

TABLE 2 | Properties of the carbonate sample and aluminum standard.

Sample Permeability (mD) Porosity (%) Length (mm) Diameter (mm)

Carbonate 45 15.5 62.4 25.4
Aluminum standard 0 0 59.9 25.4
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Each series of measurements resulted in 20 data points across
the frequency range of 1–100 Hz. By looping five times over the
frequency range, we obtained five repetitions of the measurement
and the corresponding precision error. Such an error and those
corresponding to sample length and LVDTs calibration were
propagated into the results of Young’s modulus. The strain across
the sample was 2 × 10–6, hence similar to the strain caused by
seismic waves measured in exploration geophysics (Mavko et al.,
2020).

Digital Rock Physics on CT-Images
In our study, we simulated the static compression of the digital
sample to calculate the effective elastic properties of the sample.
The numerical solver employed in this study was elas3D
(Garboczi, 1998). Details about the numerical solver will be
explained in the next section. Elas3D numerically solves the
elastic deformation of the digital sample using the Finite
Element method on a cubic mesh. The first step of DRP is to
estimate the bulk and shear modulus for each voxel as input
parameters for the solver. We considered two methods to define
the elastic tensor at each element: a segmentation-based method
and a newly developed segmentation-less method. Elements were
defined at each voxel in the CT-images, and we assumed that our
sample was isotropic.

Segmentation-Less DRP
In our segmentation-less method we consider a voxel being a
mixture of two different materials e.g., a mineral (e.g., calcite or
dolomite) and air; and we assume that the elastic tensor of the
voxel is a weighted average of the elastic properties of the two
materials. Two segmentation-less procedures are briefly
summarized as follows, and a complete description of such
methods can be found in Ikeda et al. (2020).

The Segmentation-Less wIth Targets (SLIT) uses the densities
and CT-numbers of reference materials–targets–to calibrate the
CT dataset and obtain a density map of the CT imagery. On the
other hand, if targets are not scanned along with the sample, the
Segmentation-Less withOut Targets (SLOT) could be used. SLOT
assumes that extreme CT-numbers within the CT-dataset
represent pristine materials to create a CT-number-to-density
calibration. The algorithm iteratively optimizes the calibration

curve to minimize the difference between ϕlab and ϕCT, which is
the porosity of the CT-imagery dataset - this step is called
optimization process. The calibration creates a density model
that is then converted to a porosity model. Both the methods use a
negative-linear-proportional relationship. For example, to
convert the density model to the porosity model, we apply:

ϕ(X) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ0 − ρ(X)
ρ0 − ρair

ρ(X)< ρ0

0 ρ(X)≥ ρ0
(1)

where ϕ(X) is the porosity at loation X in the CT-imagery, ρ(X)
is the density at locationX, and ρair is the density of the pore-filled
fluid (in our case, this is air and ρ0 ≫ ρair ∼ 0), and ρ0 is the cut-
off porosity of the solid phase. These two methods are currently
limited to monomineralic rocks because in such rocks ρ0 is the
density of the solid phase i.e., the methods cannot define the
proper value for ρ0 if the rock comprises two or more minerals.
The present work overcomes such a limitation.

FIGURE 4 | Displacement signals of the sample and aluminum standard at 100 Hz.

FIGURE 5 | Jacketing (A) Copper jacket, used for the carbonate (B)
Shrink tube, used for the aluminum standard.
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After we obtain the porosity model, we convert the porosity
model to the elastic properties model using an Effective Medium
Theory (EMT). In this study, we use the modified-Differential
Effective model (modified-DEM) as our choice of EMT (Norris
et al., 1985; Mukerji et al., 1995; Mavko et al., 2020). DEM solves a
set of differential equations to evaluate the effective elastic
properties of a composite medium comprising a solid and
inclusions. The solution to DEM depends on the shape of the
inclusions. The modified-DEM assumes a critical porosity. To
estimate the low-frequency elastic properties of the dry sample,
we considered inclusion that are air-filled. On the other hand, to
compute the low-frequency elastic modulus of the saturated
sample, we avoided using water-filled inclusions, as such
would have provided the high-frequency or undrained limit of
the moduli (Mavko et al., 2020). Instead, to obtain the drained
limit of the elastic moduli we created the elastic property models
of the saturated sample by applying Gassmann fluid substitution
to each voxel of the dry sample.

Modified-SLOT
CT-Imagery Partitioning.
The modified-SLOT consists of three steps: 1) partitioning, 2)
SLOT, and 3) recombination. With the partitioning, the
modified-SLOT subdivides a polymineralic rock into smaller
monomineralic subdomains. Each subdomain contains only

two phases: pore space and one of the minerals making up
the rock.

Let us consider a CT-volume of a rock sample that
comprises three mineral phases and an air phase
(Figure 6A). By segmenting the sample CT-images, we
obtain a mask that contains the spatial distribution of each
phase (Figure 6B). With a polymineralic rock with three
minerals, the sample is partitioned into three subdomains:
1) mineral 1 and air (S(1)), 2) mineral 2 and air (S(2)), and 3)
mineral 3 and air (S(3)). Notice that voxels, which are classified
as the air phase, are repeatedly counted in all subdomains.
Since each subdomain is monomineralic, the original SLOT
method is applied directly to each subdomain. We use SLOT
to transform subdomain CT-images into subdomain elastic
properties maps. Nonetheless, such a step requires the
knowledge of the porosity of each subdomain (e.g., ϕ(1),
ϕ(2), and ϕ(3)). One can approximate the porosity of each
subdomain from the laboratory-measured density of the
sample, the laboratory-measured porosity of the sample
(MICP data), and the CT-imagery. In fact, in the next
section, we show that the exact sub-resolution porosity in
each subdomain could be computed in a special case when a
sample only comprises of two minerals.

The last step of the modified-SLOT is to recombine all
subdomains elastic property maps, obtaining an elastic

FIGURE 6 | The diagram of the modified-SLOT. Here, we show an example of a two-dimensional section of a rock sample consisting of three mineral phases (A). In
the CT-volume, the domain is discretized on a uniform grid depending on the resolution of the scan. The first step of the modified-SLOT is to partition the domain into
small subdomains (S(1) , S(2) , and S(3)) using the segmentation mask (B). Each subdomain consists of two phases: a mineral phase and the air phase (C). Next, since
the subdomains aremonomineralic, we apply the SLOT to each subdomain, transforming the CT-volumes in the elastic properties volumes (D). Finally, we combine
each subdomain, getting back the full volume elastic properties volume. In the figure, x1 is located in the air phase. The elastic properties at x1 in the full volume is the
average of the elastic properties from each subdomain (i.e., (K1 + K2 + K3)/3) (E).
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properties model of the full sample. The processes to
recombine minerals and pores are different. For minerals,
the elastic properties of the voxels in the subdomain and in the
recombined volume are the same. For pores, the elastic
properties in the recombined volume are computed as the
arithmetic average of the voxel elastic properties in all the
subdomains. For example, in a polymineralic rock with three
minerals, a voxel that is located at x1 is classified as air
(i.e., pore space) (Figures 6A,B). The partitioning step
copies this voxel into three subdomains (Figure 6C). The
SLOT algorithm will assign to such a voxel a slightly different
elastic modulus in each subdomain (K1,K2, and K3)
(Figure 6D). K1,K2, and K3 values are slightly different
from one another due to the different parameters used by
the SLOT in each subdomain. When the voxel is recombined
to the full sample elastic properties model, the modulus of x1
will be (K1 + K2 + K3)/3 (Figure 6E).

Estimating Sub-Resolution Pore Space in Each Subdomain
When the rock sample contains only two-minerals, the sub-
resolution porosity in each subdomain (f pore1and f pore2) can be
computed from the measured porosity (ϕlab), the density of the
sample (ρlab), and the segmented CT-images.

The segmentation described in the previous section provides
approximations for 1) the volume fraction of mineral 1
(f seg1 − f pore1), 2) the volume fraction of mineral 2
(f seg2 − f pore2), and 3) the volume fraction of air (f segair ). f seg1 and
f seg2 comprises S(1) and S(2), respectively, and unknown amounts
of sub-resolution pore space that here we call fpore1 and fpore2 -
i.e., the unknown volume fractions of sub-resolution pore space
in f seg1 and f seg2 , respectively. Thus, the density of the CT-
imagery is:

ρCT � ρ1(f seg1 − f pore1) + ρ2(f seg2 − f pore2) + ρair(f segair + f pore1 + f pore2)
(2)

where ρ1, ρ2, and ρair are the densities of the mineral comprised
of S(1), S(2), and air, respectively. Moreover, the estimated porosity
from the CT-volume is:

ϕCT � f pore1 + f pore2 + f segair (3)

If we assume that the CT-volume is a representative sample, the
density obtained from Eq. 2 and the porosity obtained from Eq. 3
are equivalent to ρlab and ϕlab, respectively. Solving the system of
two equations yields fpore1 and fpore2. Thus, the porosity of the two
subdomains are:

ϕ(1)
lab � f segair + f pore1

f segair + f seg1

ϕ(2)
lab � f segair + f pore2

f segair + f seg2

(4)

Remember that the total porosity of the sample, ϕlab, is defined as
the ratio of the void space over the total volume of the sample. On
the other hand, ϕ(1)lab and ϕ(2)lab , are the ratio of the void space over
the subdomain volumes, which are smaller than the total volume

of the sample. Therefore, the values of ϕ(1)lab and ϕ(2)lab are greater
than ϕCT and ϕlab.

Evaluating Effective Elastic Properties of the Sample
We used Elas3D to estimate the elastic properties of sample B.
“Elas3D” is a numerical code written in Fortran 77 by the
National Institute of Standards and Technology (Garboczi,
1998). Such a code uses finite element methods to solve the
linear elastic equation on a discrete domain with a cubic mesh.
The code solves the equation:

−∇ · σ � f (5)

where σ is the stress tensor, f is the body force, and ∇· is the
divergence operator. Equation 5 is subjected to the prescribed
strain boundary condition:

ϵ � ϵ0 (6)

where ϵ0 is the prescribed strain tensor at the domain boundary.
In this study, we apply a strain boundary condition of ϵ0 �
[1.0, 1.0, 1.0, 0.5, 0.5, 0.5] to the sample (Voigt’s notation).
Note that solving Eq. 5 and Eq. 6 is equivalent to the energy
minimization problem:

min
σ
∫
Ω

1
2
C : ϵ (7)

where C is the elastic properties tensor and : denotes the inner
tensor product (dot product). The elas3D code is implemented
with a periodic boundary condition. Given the elastic properties
of a material at each voxel and the prescribed strain magnitude at
the boundaries, the code numerically solves Eqs 5–7 for the stress
tensor at each element with the conjugate gradient algorithm.
Then, effective elastic properties are calculated with the average
stress and the average strain. Using Voigt’s notation, let σ i(x,y,z)
and ϵi(x,y,z) denote the ith component of the stress and the strain
tensor at (x,y,z), respectively. Assuming that the sample is
isotropic, the effective Bulk modulus Keff, and the effective
shear modulus Geff, of the sample are:

Keff � ∑ σ1 + ∑ σ2 +∑  σ3

3(∑ ϵ1 + ∑ ϵ2 + ∑ ϵ3)
Geff � 1

3
(∑ σ4

2∑ ϵ4
+ ∑  σ5

2∑ ϵ5
+ ∑ σ6

2∑  ϵ6
)

(8)

where Σ denoted the sum over the entire domain. The effective
Young’s modulus is computed as:

Eeff � 9Keff Geff

3Keff + Geff
(9)

Segmentation-Based DRP
We also created and tested a segmented model to compare a
segmentation-based DRP approach to our proposed technique.
In the segmentation-based DRP, voxels are categorized based on
the CT-number. The voxels are then assigned with the elastic
properties of the pristine material. For example, a voxel that had
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been identified as the calcite would have the bulk modulus of
65 GPa and shear modulus of 32 GPa (Table 3). Each voxel is
associated with only one material. To create our segmented
model, we use the simple-threshold method, where a cut-off
CT-number is defined to separate different phases. Here, the cut-
off CT-number is chosen so that the digital sample porosity
equals ∅lab.

Parameters and Assumptions
To compute the sub-resolution porosity, we assumed that the
sample contains only two mineral phases: dolomite and calcite.
Voxels that were classified as heavy minerals were grouped
alongside calcite. To verify that such an approximation did
not significantly affect the final effective modulus of the
sample, we compared the Young’s moduli of two samples
calculated through the Voigt-Reuss-Hill average (Hill, 1963).
The first sample comprised 8.65% pore space, 69.17% calcite,
22.13% dolomite, and 0.05% heavy mineral (i.e., the volumetric
fractions estimated via segmentation). The second sample
comprised of 8.65% pore space, 69.22% calcite, and 22.13%
dolomite. We then assumed that the heavy mineral was pyrite
(one of the most rigid and stiff heavy minerals) with bulk and
shear modulus of 147 GPa and 132 GPa, respectively. The
absolute difference between the two estimated Young’s moduli
was 0.2% (i.e., 41.5 vs. 41.4 GPa), suggesting that a sample
comprising only dolomite and calcite was a good proxy for
our sample.

The pore aspect ratio of the sub-resolution porosity, that was
an input parameter for the modified-DEM, was estimated from
the TOMCAT dataset using AVIZO 9.0 (Avizo, 2019) with the
following workflow. First, pore space was segmented from the
images with the AVIZO thresholding tool. Then, we applied
the watershed algorithm (Separate Object command in AVIZO)
to label each pore. We then computed the aspect ratio of each
pore with the Label Analysis tool. Finally, the weighted harmonic
average of the aspect ratios of all the pores was computed. Such an
estimate yielded a pore aspect ratio of 0.47. Nonetheless, to
account for uncertainties, we computed the elastic properties
of sample B for aspect ratio end-members of 0.4 and 0.5. Note
that the higher the aspect ratio, the higher the effective elastic
properties.

To convert CT-numbers to density, we used a linear
calibration. Such a procedure is described in detail in the
Supplementary Information. In the density-to-porosity
conversion, the cut-off densities (ρ0) for the two subdomains
(S(1)dol and S(2)cal ) were the density of dolomite (2870 kg/m3) and

calcite (2710 kg/m3), respectively. The elastic properties used in
the modified-DEM are given in Table 3. We assumed a critical
porosity for both subdomains of 0.40, which is a typical value for
carbonate rocks (Nur et al., 1998; Fournier et al., 2018).

RESULTS

Laboratory Results
Attenuation curves (Figure 7) reveal that for both cases, dry and
full saturation (100%), attenuation ranges between 0 and 0.03 and
increases with increasing frequency. Young’s modulus patterns
show dispersion in each case in agreement with a non-zero
attenuation. At 5 MPa confining pressure and frequencies
between 1 and 5 Hz, the average Young’s modulus are 23.8 ±
0.1 GPa and 29.4 ± 0.1 GPa for the dry and 100% water-
saturated case, respectively. It can also be observed that the
saturated sample presents an increased values of the Young’s
modulus as predicted by the Gassmann theory (Gassmann, 1951).

DRP Results
Modified-SLOT on the Sample
According to the segmented CT-volume, the super-resolution
porosity is 8.65%. The segmented volumes fraction of the
first mineral (dolomite) and the second mineral (calcite) are
f seg1 � 0.2213 and f seg2 � 0.6922, respectively. We substitute ρlab
and ϕlab into Eqs 2–4 and perform the optimization process, this
gives the porosity volumes of the two subdomains equal toϕ(1)CT � 0.294
and ϕ(2)CT � 0.192, respectively (Figure 8). Recombination yields a
porosity for the entire sample ϕCT � 0.1535, which is 0.97% lower than
ϕlab. The five sub-volumes extracted from sample F have porosities
ranging between 0.1427 and 0.1669 (Table 3).

Young’s Modulus from Numerical Simulations
The five sub-volume Young’s moduli that were computed from
the modified-SLOT range between 22.6 and 29.2 GPa and from
25.1 to 31.5 GPa for aspect ratio of 0.4 and 0.5, respectively
(Table 1). On average, the predicted Young’s modulus is 26.1 ±
1.7 GPa and 28.7 ± 1.9 GPa for the dry case and the water-
saturated case, respectively. The fifth sub-volume, which has the
closest porosity to the laboratory-measured porosity, yields
Young’s modulus of 25.6 GPa and 26.9 GPa for aspect ratio of
0.4 and 0.5 scenarios, respectively. The results suggest that, in the
worst-case scenario, the calculated Young’s modulus of the
sample computed with aspect ratio of 0.5 would give 13%
higher than the laboratory-measured Young’s modulus. We

TABLE 3 | Elastic properties of minerals and air.

Phase Bulk modulus (GPa) Shear modulus (GPa) References

Air 1.0 × 10–4 0 International Standard Atmosphere (ISA)
Calcite 65 32 Carmichael (1989)
Dolomite 95 45 Carmichael (1989)
Water 2.2 0 Carmichael (1989)
Heavy minerala 147 132 Carmichael (1989)

aThe bulk and the shear modulus of the heavy mineral phase are assumed to be equal to that of pyrite.

Frontiers in Earth Science | www.frontiersin.org February 2021 | Volume 9 | Article 6285449

Ikeda et al. Rock Physics of Polymineralic Carbonate

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


observe a similar trend in the 100% water-saturated case. On the
fifth sub-volume with the simulation aspect ratio of 0.5, Young’s
modulus obtained from modified-SLOT is 30.5 GPa, which is
4.1% higher than the laboratory measurement at 1 Hz. Instead,
Young’s modulus predicted from the segmentation-based DRP
overpredicts the laboratory-measured Young’s modulus by 180%
and 140% for the dry and the water-saturated case, respectively.
Table 1 and Figure 9 summarize the numerical simulation results
from the modified-SLOT.

DISCUSSION

Microporosity Estimation
Roughly 40% of the porosity of our sample is not detectable from
the ETH-dataset. The amount of sub-resolution porosity agrees
with the literature on similar lithologies (e.g., Sok et al., 2010; Lin
et al., 2016) and the MICP test. The distribution of sub-resolution

porosity cannot be estimated using the segmentation-based DRP
on CT-images. As such, we suggest that the segmentation-less
DRP is a more suitable technique. Note that the aspect ratio of
pores could be estimated from theMICP data and the CT-images.
Future research should focus on improving the estimate of pore
aspect ratios.

Static Young’s Modulus Estimation
The static Young’s modulus that is computed from the numerical
simulations is a proxy for the zero-frequency limit of the
laboratory measured Young’s modulus measured in the
laboratory. Nonetheless, the overprediction of the modulus
might come from the type of boundary conditions that we
used in the simulation. Here, the numerical code prescribes
strain boundary conditions. The strain boundary condition
gives the upper bound of the effective modulus if the size of
the sample is not representative (Ostoja-Starzewski, 1999). On
the other hand, the stress boundary condition gives the lower

FIGURE 7 | Laboratory measurements of Young’s modulus (E) and attenuation (1/QE) for the carbonate under dry conditions and full saturation (100%) with water
(1 cP) at confining pressures of 5 MPa.

FIGURE 8 | A schematic diagram of the modified-SLOT on the sample. The sample is partitioned into two subdomains. The dolomite subdomain (S(1)
dol ) is shown in

the bottom row and the calcite subdomain (S(2)
cal ) is shown in the top row. Notice that the air phases in both samples are the same.
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bound under the same condition. Hence, the numerical predicted
modulus might give the upper limit of the Young’s modulus
instead of the actual modulus of the sample that was measured by
applying stress boundary conditions.

The static Young’s moduli that we obtained from the
modified-SLOT are more precise than those from the
segmentation-based DRP. We speculate that such an

improvement is due to the material-mixing strategy, creating a
more realistic and flexible model (Tisato and Spikes, 2016). In
addition, the improvement is also from the ability of the
modified-SLOT to account for the effect of microporosity on
the elastic properties.

In the segmentation-based DRP, the predicted Young’s
modulus overestimates the laboratory-measured result by
180% even though the porosity of the model matches ϕlab.
This observation suggests that the spatial distribution of the
pore space does affect the effective Young’s modulus of the
sample. Note that the simple threshold-based segmentation
method has been shown to be ineffective for computing elastic
properties of carbonate rocks (e.g., Madonna et al., 2012; Andrä
et al., 2013b; Saenger et al., 2016; Sun et al., 2017). Therefore, we
also conclude that the threshold-based segmentation is not a
suitable technique for rocks with complex mineralogy and pore
structures.

The successful result using modified-SLOT implies that we
could have used the same strategy with the SLIT if we had
physical targets scanned along with the sample. Such a
method could have spared the measurement of porosity from
the laboratory. In the worst-case scenario where the simulations
are performed with aspect ratio of 0.5, the average error in
Young’s modulus computed from the modified-SLOT is 9.9%,
which implies an error on the extensional wave velocity of 4.8%.
An error of ∼5% on wave velocities is similar to that yielded by the
SLOT method that was applied on a Berea sandstone sample
(Ikeda et al., 2020).We know the precision but not the accuracy of
our laboratory measurements. Nevertheless, we can assume that
accuracy for our laboratory measurements is around ±7%, which
is similar to the uncertainty of the modified-SLOT.

Young’s Modulus Prediction from Effective
Medium Theories
The effective Young’s modulus of the rock could also be estimated
using theoretical models. We compare the effective Young’s
modulus of the fifth sub-volume obtained from the numerical
simulation and EMTs, applied to the entire sample. The
composition of the fifth sub-volume, estimated from the
modified-SLOT, is 20.7% dolomite, 63.8% calcite, and 15.4%
air. Dolomite has 0.35% of sub-resolution pore space, and
calcite has 7.20% of sub-resolution pore space. Overall the
sample has 7.85% super-resolution pore space. We consider
the dry case and three EMTs to estimate Young’s modulus of
the sample: 1) Voigt-Reuss-Hill average (Hill, 1963), 2) average
Hashin-Shtrikman bounds (Hashin and Shtrikman, 1963), and 3)
modified-DEM. The latter provides a comparison between the
modified-SLOT, where the modified-DEM is applied to each
voxel, and the modified-DEM applied on the entire sample.
Unfortunately, the modified-DEM is only applicable to a rock
with two minerals. Thus, we estimate the Young’s modulus of the
sample using the modified-DEM with a mixture material strategy
as follow. First, we define two new phases: the porous dolomite
phase and the porous calcite phase. The modulus of the porous
dolomite phase, Mdol, is computed by mixing dolomite with
penny shaped inclusions whose aspect ratio is 0.4. The volume

FIGURE 9 | The comparison between the laboratory-measured and the
numerical simulated Young’s modulus. Here, we show the result from two
scenario: simulation with aspect ratio of 0.4 (A) and aspect ratio if 0.5 (B). The
dry case and the 100%water-saturated case are represented in red and
green, respectively. Five numerical simulations on sub-volumes are shown
with the cross symbol, and the sub-volume numbers are labeled next to the
cross symbol. We fit the first-order polynomial through the numerical
simulation results, observing a decreasing trend between the Young’s
modulus and the porosity. The gray triangle and square symbols represent the
estimated Young’s modulus using Gassmann’s equation. The mineral
modulus is approximated with the linear extrapolation of the sub-volume
modulus (triangle symbols) and the Voight-Reuss-Hill average (square
symbols).
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fraction of the inclusions is 0.35%. Similarly, the modulus of the
porous calcite phase,Mcal, is computed bymixing calcite to penny
shaped pores having aspect ratio 0.4 and volume fraction 7.20%.
These inclusion volume fractions are equal to the missing
porosity in each subdomain. Then, the mixed moduli are
computed from the modified-DEM where the critical porosity
is 0.40. Next, the modulus of the sample -i.e., the mixture of the
porous calcite and dolomite - is obtained from the Voigt-Reuss-
Hill average.

The Young’s modulus of the sample computed from Voigt-
Reuss-Hill average, average Hashin-Shtrikman bounds, and
modified-DEM are 38.4 GPa, 33.9 GPa, and 30.5 GPa, respectively.
Such estimates are approximately 44% higher than the laboratory-
measured Young’s modulus. EMTs overestimate elastic properties
because they do not incorporate the spatial distribution of phases and
the geometry of grains and pores.

Gassmann Fluid Substitution on DRP
The Young’s modulus of the 100% water-saturated sample from
the numerical simulation mostly agrees with Gassmann fluid
substitution. Figure 9 shows a comparison between all the
numerical simulations (green dots) and the algebraically
estimated Young’s modulus (gray dots). We also show the
results on both simulation scenarios: aspect ratio of 0.4 and
0.5 (Figures 9A,B). The algebraically estimated Young’s
modulus is computed by directly applying Gassmann’s fluid
substitution to the dry bulk and shear modulus, porosity,
mineral fraction, and mineral modulus (usually refer as K0) of
each sub-volume. The mineral modulus is estimated in two ways.
The first method approximates the mineral modulus by
computing the Voigt-Reuss- Hill average of the mineral
constituents (square symbol in Figure 9). The second method
finds K0 by linearly extrapolating the dry bulk modulus of the
sample at zero porosity. Both methods yield similar results except
for sample sub-volume 1, 3, and 5 in the aspect ratio of 0.5
simulations (Figure 9B).

The fluid substituted Young’s modulus computed from the
modified-SLOT underestimates the laboratory measurement.
The results from the laboratory measurement suggest a 23%
increase in Young’s modulus when the sample is fully saturated.
On the other hand, Gassman predicts that the average increment
in Young’s modulus should be 9.7%. A similar modulus
mismatch between the Gassmann prediction and the
laboratory measurement for carbonate samples has been
reported in the literature (e.g., Marion and Jizba, 1997; Wang,
1997; Røgen et al., 2005). These discrepancies imply that the
Gassmann fluid substitution does not provide accurate results for
this type of rock. We hypothesize that some reasons could be:

• During the saturation process in the laboratory, chemical
interaction between pore fluid and rock frame altered the
elastic properties of the rock (e.g., Assefa et al., 2003; Baechle
et al., 2005);

• Compliant pore spaces (aspect ratio of ∼0.4–0.5) in the
sample might introduce anisotropic behaviors (Adam et al.,
2006); hence, the isotropic Gassman substitution equation
might not be valid; and,

• As previously mentioned, the laboratory measurement of
Young’s modulus has an error ∼7%.

Another source of uncertainty is related to the boundary
conditions. The laboratory experiment was performed under
drained conditions. The numerical simulation, on the other
hand, is performed under undrained condition and the
modulus computed under the undrained condition is expected
to be higher than that in the drained condition. Therefore, further
investigation is needed for a more suitable model to simulate the
elastic properties of rocks at drained water-saturated conditions.

Size of the Sample in the Numerical
Simulation
We would like to emphasize that due to limitations on
computational resources, the numerical simulations are
performed on sub-volumes smaller than the core used in
laboratory measurements. We assume that the numerical
simulation on the small sample is still a proxy for the
laboratory-sized sample. We consider the lithology understudy
to have a low heterogeneity degree. Such an assumption is
partially supported by the fact that sample C, D and E have
similar measured porosity.

Nevertheless, the size of REVs depends on the heterogeneity
level of the lithology. Rozenbaum and Roscoat (2014) studied
REVs of CT-images of carbonate samples. They found that a sub-
volume of size ∼3 mm3 is considered to be a representative size
for calculating the porosity of limestone. Araújo et al. (2018), on
the other hand, suggested that sub-volumes of size ∼10 mm3

could be used to compute porosities effectively. Nonetheless, the
physical properties of the sub-volumes still depend on the
location where the sub-volumes are extracted. Therefore, we
cannot certainly conclude that the subsamples used in the
numerical simulations are REVs for the sample. Nonetheless,
the purpose of this manuscript is to demonstrate the possibility of
using the segmentation-less DRP on polymineralic samples and
achieve an improvement over the segmentation-based DRP.
Future study is required to simulate the numerical tests on a
larger rock sample. Such additional tests will be more efficiently
performed on shared memory cluster systems and a parallelized
version of elas3D using, for instance, OpenMPI (Bohn and
Garboczi, 2003).

The Effect of Phase Segmentation
The modified-SLOT uses a segmentation algorithm to separate
different phases. In our study, we used a simple threshold-based
algorithm. Nevertheless, other algorithms could be chosen,
introducing uncertainty in the final results as different
segmentation algorithms could potentially lead to different
rock models (e.g., Andrä et al., 2013a). Here, we consider the
uncertainty related to the threshold-based segmentation method
in segmenting the air phase. We suppose that an x fraction of
dolomite voxels, due to the segmentation threshold, is classified as
air. We can write:

f seg, newair � f segair + (1 − x)f seg1 , f seg, new1 � (1 − x)f seg1 (10)
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The porosity of the segmentation-based model will increase by x.
On the other hand, the porosity of the model created from the
modified-SLOT, will increase only by a fraction of x. For example,
if x � 0.05, solving Eqs 2–5 gives ϕ(1), newlab � 0.298 and
ϕ(2), new
lab � 0.197, which are ∼0.3% and ∼2% greater than the

porosities obtained in the original model. Then, when we apply
the SLOT optimization process, the effective porosity of sample F is
estimated to be 0.159, which is 1.3% higher than the original
estimated porosity. Using different thresholds, we obsevere an
increase in porosity of 0% (no change) and 2.6%when x � 0.01 and
x � 0.1, respectively. Such limited analysis suggests that the
modified-SLOT is less sensitive to the threshold level compared
to the segmentation-based DRP. Future investigation is needed to
study how the segmentation algorithm and parameters affect the
final result: elastic properties of materials. And, we need to
investigate the effect of the segment threshold on the other phases.

Possible Applications
Segmentation-less DRP allows capturing sub-resolution features
without having to scan a sample at nanometric resolutions
(i.e., segmentation-based DRP). The low-resolution scan
(microns) covers a larger portion of the sample, which are
likely to be REVs of formations (e.g., Lai et al., 2017; Hertel
et al., 2018). Hence, such a scan could be used to compute
properties of samples, served as a first-order approximation
for further analysis.

Since the modified-SLOT relaxes the monomineralic
assumption of the current segmentation-less DRP
workflows, numerical simulations could be performed on a
wide variety of rocks such as limestone and lithic sandstone.
The EMT needs to be adjusted according to the sample
lithology (e.g., grain packing model for clastic rocks).
Incorporating EMTs to DRP also allows us to combine
theoretical rock physics templates with digital rock physics
simulations, giving the possibilities of investigating the
impact of different rock physics models on rocks’
properties. Note that the procedure could also be used to
compute petrophysical properties other than elastic
properties. For example, we can use the Hashin-Shtrikman
bounds of electrical conductivity with modified-SLOT to
create a conductivity model (Hashin and Shtrikman, 1963;
Waff, 1974; Brovelli and Cassiani, 2010). Further studies are
needed to test the validity of the concept.

CONCLUSION

We have introduced the modified-SLOT, a new digital rock
physics technique, to evaluate the elastic properties of
polymineralic rocks. The modified-SLOT combines segmentation-
based DRP to reconstruct the spatial distribution of mineral phases,
and segmentation-less DRP to account for the effect of sub-resolution
features. Segmentation partitions a polymineralic rock sample into
smaller subsamples that are monomineralic. Then, segmentation-less
converts CT-images into density, porosity, and elastic property
arrays. DRP results were compared to low-frequency
measurements of Young’s modulus on a polymineralic carbonate

sample. The modified-SLOT provides a more accurate prediction of
Young’s modulus over the segmentation-based DRP. Such an
improvement is because the modified-SLOT can capture the effect
of microporosity on the sample elastic properties. Thus, modified-
SLOT provides more realistic models for numerical simulations.
Nonetheless, the modified-SLOT still inherits the segmentation-
based DRP uncertainties in choosing segmentation algorithms.
Future works need to be focused on assessing the uncertainties
arising from the choice of segmentation algorithms. Although the
modified-SLOT needs the information about the porosity of the
samples, the success of modified-SLOT implies that a similar
technique could be used when phantoms are presented in the
scan (i.e., SLIT). Hence, the modified-SLOT and modified-SLIT
could be used as a first-order proxy for predicting petrophysical
properties of samples, cores, or cuttings, assisting geoscientists in
creating fast and accurate subsurface models using X-ray CT
technology.
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