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Abstract: Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, frequently
associated with obesity and type 2 diabetes. Steatosis is the initial stage of the disease, which is
characterized by lipid accumulation in hepatocytes, which can progress to non-alcoholic steatohepatitis
(NASH) with inflammation and various levels of fibrosis that further increase the risk of developing
cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD is influenced by interactions
between genetic and environmental factors and involves several biological processes in multiple
organs. No effective therapy is currently available for the treatment of NAFLD. Peroxisome
proliferator-activated receptors (PPARs) are nuclear receptors that regulate many functions that are
disturbed in NAFLD, including glucose and lipid metabolism, as well as inflammation. Thus, they
represent relevant clinical targets for NAFLD. In this review, we describe the determinants and
mechanisms underlying the pathogenesis of NAFLD, its progression and complications, as well
as the current therapeutic strategies that are employed. We also focus on the complementary and
distinct roles of PPAR isotypes in many biological processes and on the effects of first-generation
PPAR agonists. Finally, we review novel and safe PPAR agonists with improved efficacy and their
potential use in the treatment of NAFLD.

Keywords: peroxisome proliferator-activated receptors (PPARs); synthetic agonists; non-alcoholic
fatty liver disease (NAFLD); non-alcoholic steatohepatitis (NASH); fibrosis

1. Introduction

The aim of this review is to provide information for a better understanding of the factors that
impact the development, progression and complications of liver steatosis, nonalcoholic fatty liver
disease (NAFLD) and nonalcoholic steatohepatitis (NASH). We discuss the roles of the nuclear receptors
peroxisome proliferator-activated receptors (PPARs) in the regulation of biological processes that are
participating in NAFLD, which include energy metabolism, inflammation, and fibrosis. PPARs are
ligand activated transcription factors; we present new agonists that are currently in clinical trials for
their potential to treat NAFLD for which no effective therapy is available.
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2. NAFLD

2.1. Epidemiology

NAFLD is the most common chronic hepatic disease. It comprises a spectrum of liver conditions
that can eventually lead to cirrhosis and liver cancer. Hepatic steatosis in the absence of excessive
alcohol consumption is the hallmark of NAFLD, which is characterized by abnormal accumulation of
triglycerides (TGs) in hepatocytes, a condition called non-alcoholic fatty liver (NAFL). The condition is
considered to be benign, but can evolve into NASH, which is accompanied by hepatocyte damage and
inflammation, with or without fibrosis, resulting in an increased risk of progression to cirrhosis and
hepatocellular carcinoma (HCC).

The worldwide prevalence of NAFLD is constantly increasing in parallel with the global obesity
pandemic. The prevalence of NAFLD is currently estimated to be approximately 25% in the general
population, with the highest rates reported in South America and the USA, and the lowest in Africa [1].
A rapid and massive increase in NAFLD prevalence has also been observed in China as a result of
an increase in obesity due to urbanization and lifestyle changes [2]. The trends in NAFLD incidence
were followed for 17 years in a US community, finding that the incidence of NAFLD increased 5-fold,
and even more (7-fold) in young adults [3]. Importantly, due to the growing increase in childhood
obesity and children presenting greater vulnerability to genetic and environmental factors, NAFLD
is now affecting up to 20% of the general pediatric population [4,5]. NAFLD in non-obese patients,
so-called lean NAFLD, is also increasing, particularly in Asian patients [6]. Lean NAFLD is not fully
understood, but possible determinants may include genetic background, different fat distribution,
high fructose intake, and altered gut microbiota. Both epidemiological and preclinical studies have
shown that NAFLD is more common in men than in women before menopause [7]. However, the
incidence of NAFLD increases in women after menopause, suggesting a protective role of estrogens [8].
Sex-specific NASH signatures were recently identified in human liver, suggesting that NASH is a
sexually dimorphic disease [9].

2.2. Etiology

The etiology of NAFLD is complex and involves ethnic, genetic, metabolic, and environmental
factors (Figure 1).Cells 2020, 9, x 3 of 54 

 

 
Figure 1. Non-alcoholic fatty liver disease (NAFLD) determinants. Multiple factors contribute to the 
development of NAFLD and its progression. Obesity and T2DM are closely associated with NAFLD, 
and both drive the increasing prevalence of NAFLD. The genetic background also strongly influences 
disease development. In addition, the progression of NAFLD depends on complex interactions 
between genetic and environmental factors, especially dietary factors. More recently, the gut 
microbiota has emerged as an important determinant of NAFLD pathogenesis. Abbreviations: 
NAFLD, non-alcoholic fatty liver disease; T2DM, type 2 diabetes mellitus; PNPLA3, patatin-like 
phospholipase domain containing protein 3; TM6SF2, transmembrane 6 superfamily 2; MBOAT7, 
membrane bound O-acyltransferase domain-containing 7; GCKR, glucokinase regulator. 

2.2.1. Ethnicity 

Ethnic differences have been reported to be associated with the risk of NAFLD. For example, 
Hispanic individuals have a higher prevalence and severity of NAFLD [10]. Ethnic disparities are not 
yet well understood, but genetic and environmental factors are likely to influence the conditions 
associated with NAFLD, such as insulin resistance [11]. 

2.2.2. Genetic Factors 

Genome-wide association studies have identified a number of genetic factors that influence 
NAFLD initiation and/or progression [12,13]. The most validated genes are involved in hepatic lipid 
metabolism and include PNPLA3, TM6SF2, MBOAT7, and GCKR. The most common and well-
described polymorphism is in PNPLA3. Patatin-like phospholipase domain containing protein 3 
(PNPLA3) is an enzyme highly expressed in the liver that hydrolyzes TGs in hepatocytes and retinyl 
esters in hepatic stellate cells (HSCs). The I198M variant (rs738409, isoleucine to methionine 
substitution at position 148) of PNPLA3 is strongly associated with the development and progression 
of NAFLD [14]. This variant has decreased hydrolase activity, resulting in an accumulation of TGs 
and retinyl esters in lipid droplets [15,16]. At the molecular level, PNPLA3 (I148M) accumulates on 
lipid droplets due to defective ubiquitylation, resulting in reduced proteasome degradation [17]. In 
preclinical studies, overexpression of mutant PNPLA3 (I148M) in mouse liver was shown to promote 
hepatic TG accumulation [18]. PNPLA3 (I148M) is present at high levels in Hispanics and may 

Figure 1. Non-alcoholic fatty liver disease (NAFLD) determinants. Multiple factors contribute to the
development of NAFLD and its progression. Obesity and T2DM are closely associated with NAFLD
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, and both drive the increasing prevalence of NAFLD. The genetic background also strongly influences
disease development. In addition, the progression of NAFLD depends on complex interactions
between genetic and environmental factors, especially dietary factors. More recently, the gut
microbiota has emerged as an important determinant of NAFLD pathogenesis. Abbreviations: NAFLD,
non-alcoholic fatty liver disease; T2DM, type 2 diabetes mellitus; PNPLA3, patatin-like phospholipase
domain containing protein 3; TM6SF2, transmembrane 6 superfamily 2; MBOAT7, membrane bound
O-acyltransferase domain-containing 7; GCKR, glucokinase regulator.

2.2.1. Ethnicity

Ethnic differences have been reported to be associated with the risk of NAFLD. For example,
Hispanic individuals have a higher prevalence and severity of NAFLD [10]. Ethnic disparities are
not yet well understood, but genetic and environmental factors are likely to influence the conditions
associated with NAFLD, such as insulin resistance [11].

2.2.2. Genetic Factors

Genome-wide association studies have identified a number of genetic factors that influence
NAFLD initiation and/or progression [12,13]. The most validated genes are involved in hepatic lipid
metabolism and include PNPLA3, TM6SF2, MBOAT7, and GCKR. The most common and well-described
polymorphism is in PNPLA3. Patatin-like phospholipase domain containing protein 3 (PNPLA3) is
an enzyme highly expressed in the liver that hydrolyzes TGs in hepatocytes and retinyl esters in
hepatic stellate cells (HSCs). The I198M variant (rs738409, isoleucine to methionine substitution at
position 148) of PNPLA3 is strongly associated with the development and progression of NAFLD [14].
This variant has decreased hydrolase activity, resulting in an accumulation of TGs and retinyl esters
in lipid droplets [15,16]. At the molecular level, PNPLA3 (I148M) accumulates on lipid droplets
due to defective ubiquitylation, resulting in reduced proteasome degradation [17]. In preclinical
studies, overexpression of mutant PNPLA3 (I148M) in mouse liver was shown to promote hepatic TG
accumulation [18]. PNPLA3 (I148M) is present at high levels in Hispanics and may represent a major
determinant of ethnicity-related differences in hepatic fat accumulation [19]. However, this variant
increases the risk of severe hepatic fat accumulation, inflammation, fibrosis, and HCC in different
ethnicities around the world [20]. A variant of the transmembrane 6 superfamily 2 (TM6SF2) protein
has also been described as a major risk factor for NAFLD [21]. TM6SF2 is predominantly expressed in
hepatocytes and enterocytes and localized in the endoplasmic reticulum and Golgi. The protein’s exact
function remains elusive, but it may be involved in very low-density lipoprotein (VLDL) formation in
hepatocytes. The E167K (rs58542926, glutamate to lysine substitution at postion 167) loss of function
variant of the protein causes higher liver fat content and fibrosis, but reduced secretion of VLDL and
serum TGs [22–24]. This variant is also associated with reduced cardiovascular risk due to lower levels
of circulating VLDL [25]. Results obtained from mouse studies, though often controversial, clearly
indicate that the level of TM6SF2 protein is an important determinant of lipoprotein metabolism and
NAFLD [26]. More recently, a polymorphism (rs641738) in the locus carrying the membrane bound
O-acyltransferase domain-containing 7 (MBOAT7) gene has been associated with the risk and severity
of NAFLD [27]. MBOAT7, also known as lysophosphatidylinositol acyltransferase (LPIAT1) is an
enzyme involved in hepatic phospholipid remodeling by transferring polyunsaturated fatty acids to
lysophospholipids. The variant rs641738 results in suppression of MBOAT7 at the messenger RNA
and protein levels, altered phosphatidylinositol profiles, and was recently associated not only with
steatosis development, but with more severe liver damage and advanced stages of fibrosis [28], as
well as HCC in patients without cirrhosis [29]. In mice, downregulation of MBOAT7 leads to hepatic
steatosis associated with obesity [30]. The rs1260326 polymorphism in the glucokinase regulator
(GCKR) gene is a loss-of-function mutation that has also been linked to NAFLD development [31].
GCKR negatively regulates glucokinase in response to fructose-1-phosphate, modulating glucose
uptake in the liver. The rs1260326 variant results in increased hepatic glucose uptake and malonyl-CoA
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concentration, providing more substrates for de novo lipogenesis [32]. This GCKR variant is also
highly associated with fatty liver in obese youths [33]. Recent genetic and epidemiological studies
have identified other polymorphisms associated with NAFLD progression in several genes involved in
retinol metabolism (hydroxysteroid 17-beta dehydrogenase 3 (HSD17B3)), glycogen synthesis (protein
phosphatase 1 regulatory subunit 3B (PPP1R3B)), bile acid homeostasis (beta-klotho (KLB)), oxidative
stress (uncoupling protein 2 (UCP2), superoxide dismutase 2 (SOD2)), insulin signaling pathway
(tribbles pseudokinase 1 (TRIB1)), and inflammation (suppressor of cytokine signaling 1 (SOCS1),
interferon lambda 3 (IFNL3), MER proto-oncogene tyrosine kinase (MERTK)) [12,34–39]. In addition,
epigenetic mechanisms, including post-translational histone modifications, DNA methylation, and
micro-RNAs, are important in disease development [12]. A recent review presented a new prediction
model that describes enriched genetic pathways in NAFLD, defined as the NAFLD-reactome [40].
Yet another layer of complexity has emerged with several genetic polymorphisms associated with both
NAFLD and other liver diseases and metabolic disorders [41].

2.2.3. Metabolic Factors

In addition to ethnic and genetic factors, several metabolic and environmental factors contribute
to NAFLD (Figure 1). Metabolic syndrome is defined as the presence of three of the five following
conditions: high serum TGs, low serum high-density lipoprotein (HDL), elevated systemic blood
pressure, hyperglycemia, and central obesity. Metabolic syndrome is recognized as a strong risk
factor of NAFLD development and progression [42]. In a large cohort study including different
ethnic groups, the prevalence of NAFLD increased in subjects with more metabolic syndrome criteria,
reaching 98% when all five criteria were present [43]. NAFLD is not only associated with metabolic
syndrome in general, but also with its individual conditions. Among NAFLD patients, the prevalence
of metabolic syndrome is 42%, obesity 51%, type 2 diabetes mellitus (T2DM) 22%, dyslipidemia 69%,
and hypertension 39% [1]. In patients with T2DM and normal circulating aminotransferase levels,
the prevalence of NAFLD has been estimated to be 50% [44]. A recent meta-analysis including more
than 35000 T2DM patients reported a pooled prevalence (24 studies) of NAFLD of 60% [45]. Based on
histopathological assessment, T2DM patients also have a high risk of developing NASH and advanced
fibrosis [46,47]. Obesity has been identified as an independent risk factor, with a 3.5-fold increased
risk of developing NAFLD [48], and a linear relationship exists between body mass index (BMI) and
NAFLD/NASH prevalence [49]. Several studies have highlighted the importance of fat distribution
in showing that the amount of visceral fat is higher in NAFLD patients [50] and correlates with the
severity of the disease [51], whereas large subcutaneous fat areas are associated with regression of
NAFLD. These findings suggest that different types of body fat can increase or reduce the risk of
NAFLD [52]. Several dyslipidemia phenotypes have been described in NAFLD patients [53], and
are characterized by an increase in small dense low density lipoprotein (LDL) particles [54], higher
postprandial lipemia after an oral fat meal [55], and HDL dysfunction [56]. Several studies have also
reported that hypertension increases the risk of NAFLD [57] and the risk of NAFLD progression to
fibrosis [58].

2.2.4. Environmental Factors

Environmental factors, especially dietary factors, also contribute to NAFLD development and
progression [59,60]. The Western diet, which is particularly rich in added fructose, is associated with a
greater risk of NAFLD, whereas the Mediterranean diet, which is high in polyunsaturated fatty acids
(PUFAs), monounsaturated fatty acids (MUFAs), and fiber, has a beneficial effect on NAFLD [61,62].
Several nutrients impact the metabolic pathways leading to the lipid accumulation that characterizes
the NAFLD initiation step, whereas others modulate key features in the pathogenesis of NASH, such
as oxidative stress and inflammation.

NAFLD patients have been shown to have higher fructose intake due to sweetened beverage
consumption [63], which is associated with the progression of fibrosis and inflammation [64]. Fructose
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consumption has dramatically increased in the last few decades, in parallel with the increased
use of added sugars in the form of sucrose and high-fructose corn syrup in processed foods and
beverages [65]. Mechanistically, fructose stimulates de novo lipogenesis, a central mechanism of hepatic
lipid accumulation in NAFLD (see Section 2.3). Fructose metabolism rapidly induces precursors of
lipogenesis, leads to ATP depletion, the suppression of mitochondrial fatty acid oxidation, and the
production of carbohydrate metabolites, which activate the lipogenesis transcriptional program via the
transcription factors carbohydrate-responsive element-binding protein (ChREBP) and sterol regulatory
element binding protein 1c (SREBP1c) [65,66]. Recently, a novel pathway of lipogenesis activation by
fructose, in which fructose is converted to acetate by the gut microbiota, was described. This pathway
results in lipogenic pools of acetyl-CoA [67]. Fructose metabolism also leads to uric acid production,
which has pro-oxidative and pro-inflammatory effects [68].

High-fat diets (HFDs) induce obesity and insulin resistance, which are strongly associated
with NAFLD. A meta-analysis including 1400 NAFLD patients suggested that omega-3 PUFA
supplementation has a beneficial effect on liver fat [69]. In contrast, no effect of omega-3 supplementation
on NASH has been reported [70]. Omega-3 PUFAs, which are particularly abundant in fish oil, impact
the activity of transcription factors, such as PPARα [71], liver X receptor (LXR) [72], ChREBP [73],
SREBP1c [74], and peroxisome proliferator-activated receptor-gamma coactivator 1β (PGC1β) [75],
which control the expression of genes involved in fatty acid homeostasis [76]. In a cohort of T2DM
patients, a MUFA-rich diet induced a reduction in liver fat content [77], potentially through an increase
in hepatic beta-oxidation [78]. In preclinical studies, dietary cholesterol has been shown to promote
NASH and fibrosis, and contribute to HCC progression [79,80]. In human studies, high cholesterol
levels have been associated mostly with cirrhosis and liver cancer [81].

High-protein diets have prevented hepatic lipid accumulation in animal studies [82–84]. In a
small cohort of healthy men, a high-protein diet rich in glutamate increased plasma short-chain TG
levels, which was interpreted as having resulted from increased de novo lipogenesis [85]. In contrast,
alterations in plasma amino acid concentrations are clearly associated with the occurrence and severity
of NAFLD [86], especially amino acids that are involved in glutathione synthesis, such as glycine,
serine, and glutamate [87,88]. The current literature also suggests that branched chain amino acids
(BCAAs) are increased in the plasma of NAFLD patients [89,90]. Interestingly, plasma BCAA levels
correlate with NAFLD severity in a sex-dependent manner, increasing with disease severity in women,
but decreasing in men [91]. Increased BCAA levels may be due to impaired BCAA catabolism
by the gut microbiota [90]. Preclinical studies have proposed that BCAAs promote steatosis by
increasing adipocyte lipolysis and decreasing the conversion of free fatty acids (FFAs) into TGs [92].
Micronutrients, such as vitamins, also play an important role in NAFLD. Plasma vitamin D levels
are inversely associated with the severity of NAFLD [93]. In adult patients with NAFLD, vitamin
E supplementation improves steatosis and hepatic inflammation, but has no effect on fibrosis [94].
Animal studies suggest that vitamin E ameliorates NAFLD/NASH by attenuating oxidative stress and
inflammation [95].

Increasing epidemiological and experimental evidence suggests that exposure to some
environmental contaminants could contribute to NAFLD progression [96–99]. Pesticides, insecticides,
fungicides, and herbicides have demonstrated hepatotoxic effects by modulating lipid metabolism,
inflammation, and oxidative stress [100].

2.2.5. Gut Microbiota

In recent years, gut microbiota and microbiota-derived compounds have emerged as important
players in the pathogenesis of NAFLD in mice and humans [101,102]. Gut microbiota have been shown
to cause NAFLD in animal studies. In humans, NAFLD severity is associated with gut dysbiosis,
with an enrichment of Bacteroides in NASH patients compared to matched healthy individuals [103].
A recent review described the microbiome signature in human NAFLD according to the different
stages of disease severity [104]. Suggested mechanisms by which the gut microbiota impact NAFLD
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and its progression include increased intestinal permeability [105], leading to the release of bacterial
endotoxins (lipopolysaccharide (LPS)), and microbiota-derived factors (short-chain fatty acids), which
may trigger inflammatory responses and affect hepatic metabolism via the modulation of metabolic
gene expression [106]. As mentioned above, the gut microbiota converts fructose into acetate, which
fuels hepatic lipogenesis [67]. Human NAFLD studies have some limiting factors that have not always
been considered, such as possible confounding effects of obesity, insulin resistance, and T2DM on
dysbiosis, as well as the variable demographic characteristics of the analyzed cohorts. Together with
the use of different sequencing tools and NAFLD diagnostic methods, they may have been responsible
for the discrepancy observed in microbiome signatures [104].

2.3. Pathophysiology

The pathogenesis of NAFLD and its complications are complex and not fully understood.
As described previously, several factors acting in collaboration or synergy contribute to NAFLD
development and its progression to NASH, leading to the multiple parallel hit hypothesis of NAFLD
progression [107] (Figure 2).Cells 2020, 9, x 7 of 54 

 

 

Figure 2. NAFLD progression. NAFLD is a progressive disease characterized by fat accumulation in 
hepatocytes, ranging from hepatic steatosis (NAFL) to non-alcoholic steatohepatitis (NASH), with 
additional inflammation with or without fibrosis. The latter is the strongest histological predictor of 
disease-related mortality. Though steatosis has previously been considered to be benign, some NAFL 
patients progress to NASH with or without fibrosis, whereas others develop fibrosis without having 
NASH. The pathogenesis of NAFLD is complex and involves several different pathways in multiple 
organs, including metabolic and inflammatory pathways. Abbreviations: NAFL, non-alcoholic fatty 
liver; NASH, non-alcoholic steatohepatitis; HCC, hepatocellular carcinoma; T2DM, type 2 diabetes 
mellitus; CVD, cardiovascular disease. 

Hepatic steatosis is characterized by excessive accumulation of TGs in hepatocytes due to an 
imbalance between FFA influx and export, and/or catabolism. Increased FFAs within the livers of 
NAFLD patients originate primarily from adipose lipolysis (59%), followed by de novo lipogenesis 
(26%) and diet (15%) [108,109]. Both adipose lipolysis and de novo lipogenesis are normally regulated 
by insulin. However, NAFLD patients are usually insulin-resistant, and insulin is not able to suppress 
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Figure 2. NAFLD progression. NAFLD is a progressive disease characterized by fat accumulation
in hepatocytes, ranging from hepatic steatosis (NAFL) to non-alcoholic steatohepatitis (NASH), with
additional inflammation with or without fibrosis. The latter is the strongest histological predictor of
disease-related mortality. Though steatosis has previously been considered to be benign, some NAFL
patients progress to NASH with or without fibrosis, whereas others develop fibrosis without having
NASH. The pathogenesis of NAFLD is complex and involves several different pathways in multiple
organs, including metabolic and inflammatory pathways. Abbreviations: NAFL, non-alcoholic fatty
liver; NASH, non-alcoholic steatohepatitis; HCC, hepatocellular carcinoma; T2DM, type 2 diabetes
mellitus; CVD, cardiovascular disease.

Hepatic steatosis is characterized by excessive accumulation of TGs in hepatocytes due to an
imbalance between FFA influx and export, and/or catabolism. Increased FFAs within the livers of
NAFLD patients originate primarily from adipose lipolysis (59%), followed by de novo lipogenesis
(26%) and diet (15%) [108,109]. Both adipose lipolysis and de novo lipogenesis are normally regulated
by insulin. However, NAFLD patients are usually insulin-resistant, and insulin is not able to suppress
lipolysis, leading to increased circulating FFAs arriving to the liver. Adipose tissue contributes to
NAFLD by modulating the lipid flux to the liver and via production of hormones and cytokines
that impact hepatocyte physiology [110,111]. In the liver, insulin also fails to inhibit hepatic glucose
production, but continues to stimulate lipid synthesis, leading to hyperglycemia, hyperlipidemia, and
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steatosis. This paradox of hepatic insulin resistance, which is also associated with obesity and T2DM,
is still not fully understood. Current hypotheses to explain the selective hepatic insulin resistance involve
extrahepatic pathways from peripheral metabolic organs [112], which underscores the multi-organ
dimension of NAFLD pathogenesis. Insulin stimulates lipogenesis through the transcription
factor SREBP1c, which regulates the expression of genes encoding enzymes involved in de novo
lipogenesis [113,114]. The resulting hyperglycemia activates the glucose-responsive transcription factor
ChREBP, which is also an important regulator of lipogenic gene expression [115,116]. Both SREBP1c and
ChREBP are required for the maximal postprandial enhancement of lipogenesis [117]. The lipogenesis
product malonyl-CoA inhibits fatty acids from associating with carnitine by down-regulating the
enzyme carnitine acyltransferase, which reduces their entry into mitochondria and their beta-oxidation,
thereby contributing to the overall increase in hepatic lipids. Adipose insulin resistance also leads
to adipose tissue defects, including decreased secretion of adiponectin, an adipokine that increases
beta-oxidation and decreases de novo lipogenesis in the liver [118]. When both fatty acid catabolism
and export via VLDL secretion are not sufficient to compensate for the hepatic lipid overload, toxic
fatty acid derivatives are produced that promote steatosis progression to NASH [119]. NASH is
characterized by fat deposition, inflammation, ballooned hepatocytes, hepatocyte apoptosis and
necrosis, and a variable rate of fibrotic progression. In hepatocytes, candidate lipotoxic lipids include
saturated fatty acids, lysophosphatidylcholine, ceramides, sphingolipids, and diacylglycerol [120].
Hepatic free cholesterol levels are also elevated in NASH patients and contribute to liver toxicity [121].
A specific lipid signature that discriminates between control, steatotic, and NASH patients has been
established and highlights dysregulation in the long-chain fatty acid (LCFA) synthesis pathway in
NASH, leading to accumulation of LCFA and a decrease in phospholipids [122]. In response to
lipid-induced hepatocellular injury, inflammasomes become activated, and endoplasmic reticulum (ER)
and oxidative stress increase, leading to pro-inflammatory cytokine production, lipid peroxidation,
hepatocyte cell death (apoptosis and necrosis), and aggravated liver damage. Chronic hepatocyte
injury induces the recruitment and Toll-like receptor (TLR)-dependent activation of inflammatory
cells, mainly liver macrophages or Kupffer cells, which amplifies inflammation and apoptosis. Kupffer
cells also produce activating factors (platelet-derived growth factor [PDGF] and transforming growth
factor β [TGFβ]) for the activation of HSCs, which proliferate and secrete collagen, as well as other
extracellular matrix proteins, leading to fibrosis [123].

2.4. Progression and Associated Diseases

NAFLD progression is still not clearly understood due, in part, to its heterogeneity. Data indicate
that all NAFLD patients have a risk of developing progressive liver disease over time. However,
fibrosis is currently the best histopathological predictor of hepatic complications and disease-related
mortality [124,125], and stage 2–4 fibrosis is predictive of cirrhosis-related issues [126]. In general,
NAFLD is a slowly progressive disease, and many patients will develop cirrhosis or liver-related
mortality; among NAFL patients who are considered to suffer from a benign condition, approximately
25% may progress to liver fibrosis. Identifying these patients and providing effective treatment remains
a challenge [124]. Other patients will develop NASH, and these patients are more prone to progress to
advanced stages of the disease. Overall, it means that some patients will remain at a stable steatosis
stage, some will progress to NASH with or without fibrosis, and others will develop fibrosis without
NASH (Figure 2). Using paired biopsies, McPherson et al. reported that 44% of patients with NAFL
developed NASH, but that fibrosis progression was not different between patients with NASH and
patients with NAFL at baseline [127]. A meta-analysis of paired liver biopsy studies in patients with
NAFLD confirmed that fibrosis progression does not differ between NAFL and NASH patients, with an
overall 35–40% of patients developing fibrosis [58]. Compared to matched controls, NAFLD patients
are at higher risk of HCC [128], and the incidence of HCC was higher in NAFLD patients with cirrhosis
than in those without cirrhosis [129]. Collectively, these data confirm the heterogeneous nature of
NAFLD and led to classifying patients as fast and slow progressors. Slow progressors may develop
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NASH but have a low risk of fibrosis, whereas fast progressors rapidly progress from steatosis to
advanced fibrosis [130].

Due to its culmination in cirrhosis and HCC, NAFLD is becoming the major cause of liver
transplantation. In addition to liver-related complications, NAFLD is also highly associated with
an increased risk of extra-hepatic cancer [131], as well as cardiovascular and metabolic diseases.
As described above, T2DM, hypertension, and cardiovascular disease (CVD) are major risk factors
for NAFLD, but the link between these cardiometabolic diseases and NAFLD is more complex than
initially thought. Clinical and experimental evidence now suggests a bi-directional relationship and
indicate that NAFLD may precede and promote T2DM, hypertension, and CVD, rather than being the
result of these conditions [132]. The incidence of metabolic comorbidities, cardiovascular events, and
mortality was studied in a cohort of NAFLD patients followed for 17 years [3]. Patients with NAFLD
had more diabetes, hypertension, and hyperlipidemia, increased risk of cardiovascular events and
mortality, and shorter life expectancy than patients without NAFLD.

Altogether, NAFLD is a complex, multi-factorial, metabolic disease, the development and
progression of which are strongly influenced by ethnicity, genetic predisposition, and metabolic
and environmental risk factors (Figure 1). In addition, interactions between all of these factors,
especially gene-diet interaction, promote NAFLD development, which has boosted the emergence of
nutrigenomics as a novel approach for the management of NAFLD patients [133]. The pathogenesis
of NAFLD is complex and involves many hepatic mechanisms, such as defects in lipid and glucose
metabolism and insulin resistance, and important cross-talk between the liver and other organs in the
adipose-liver and gut-liver axes, including important roles of the microbiota (Figure 2). Moreover,
in contrast to NAFL, which can easily be detected by ultrasound and plasma biochemistry, the diagnosis
of NASH and fibrosis requires liver biopsy for precise staging, which remains a limitation for the
diagnosis of advanced phases of the disease. Despite many drugs being in development, there
is currently no U.S. Food and Drug Administration (FDA)-approved pharmacological therapy for
NAFLD treatment.

3. Current Therapeutic Strategies for NAFLD

3.1. Lifestyle Modification and Bariatric Surgery

NAFLD is considered the hepatic expression of metabolic syndrome and is closely associated with
morbidities, such as obesity and insulin-resistance. Thus, weight loss represents the primary effective
strategy for NAFLD management. Weight loss can be achieved through different interventions,
including lifestyle changes, pharmacotherapy, and surgical procedures, and improves NAFLD
biomarkers, though it effect on liver fibrosis is not significant [134]. In the absence of an approved drug
therapy for NAFLD/NASH, weight loss through lifestyle interventions (exercise, diet) remains the
first-line treatment. Bariatric surgery, which can be performed using minimally invasive techniques,
also represents an effective option.

3.1.1. Exercise

Aerobic exercise refers to physical exercise usually performed at light-to-moderate intensity over a
relatively long period, during which increased breathing brings oxygen into the body to sustain aerobic
metabolism. Eight weeks of aerobic exercise in different forms reduces hepatic fat independently from
the dose and intensity of the exercise [135]. Liver fat content is also reduced in pre-diabetic patients
with NAFLD who are subjected to Nordic walking for 8 months [136]. These results are supported by
a recent meta-analysis that found that exercise training alone has a beneficial effect on liver fat content,
even in the absence of significant weight loss [137].

High-intensity interval training (HIIT), which alternates short periods of intense exercise with
less intense recovery periods, performed three times per week for 12 weeks has been reported to
reduce liver fat by 27% in adult NAFLD patients compared to individuals on standard care, and to also
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improve cardiac function [138]. Eight-week HIIT also has a beneficial effect on intra-hepatic TGs in
obese diabetic patients with NAFLD [139]. Twelve weeks of HIIT reduces inflammatory markers and
improves hepatic stiffness in obese men with NAFLD, suggesting that HIIT may have beneficial effects
in patients with NASH [140]. Collectively, these data show that HIIT regimens significantly reduce
hepatic fat in NAFLD/NASH patients.

Resistance training is a form of physical activity that causes muscle contraction against an external
resistance and improves strength and endurance. Resistance exercise for 8 weeks reduces hepatic
lipids in NAFLD patients [141], and 3 months of resistance training reduces liver fat content in
NAFLD patients, but without a significant change in weight [142]. Interestingly, combined aerobic
and resistance training improves aerobic capacity and skeletal muscle strength, and may be the most
effective exercise program for improving NAFLD [143].

Collectively, exercise in whatever form appears to reduce the liver fat content, even in the absence
of weight loss. No significant difference has been found between aerobic or resistance training in the
reduction of liver fat, whereas continuous training of moderate volume and moderate intensity seems
to be more beneficial [144,145]. Interestingly, although combining an exercise program with dietary
interventions augments the reduction in hepatic fat content, exercise only is also effective in reducing
hepatic lipid content in NAFLD patients [136,146]. As most of the studies have been performed with
diabetic and/or obese NAFLD patients, the beneficial effect of exercise still needs confirmation in
large-scale prospective studies, as a recent meta-analysis showed that physical activity only slightly
reduces liver fat content in non-diabetic NAFLD patients [147]. Interestingly, starting to exercise has
been independently associated with NAFLD remission only in men, suggesting a sex-specific hepatic
response to exercise [148].

The above studies are informative, but the mechanisms underlying the reduction in hepatic
fat following exercise are poorly studied. Proposed mechanisms of action include changes in liver
physiology, such as increased VLDL clearance and improved mitochondrial fatty acid oxidation,
together with extra-hepatic effects, such as improved peripheral insulin sensitivity, decreased visceral
fat, and improved cardiovascular function [149,150].

3.1.2. Dietary Interventions

Dietary modifications remain the most effective physiological intervention for losing weight.
Therefore, several studies have analyzed the effects of different dietary patterns on NAFLD development
and progression. Currently, the Mediterranean diet is recommended for the management of
NAFLD [151]. The Mediterranean diet has been shown by proton magnetic resonance spectroscopy to
reduces liver steatosis in obese NAFLD patients without changes in body weight [152]. Adherence to
the Mediterranean diet reduces the severity of liver disease among NAFLD patients and is associated
with lower insulin resistance [153]. These findings are supported by two recent systematic reviews,
which reported a reduction in hepatic steatosis in patients with NAFLD following the Mediterranean
diet [154,155].

Caloric restriction leading to weight loss has also been associated with improved metabolic
parameters in patients with NAFLD. A 12-month hypocaloric diet improved NASH-related histological
parameters (steatosis, inflammation, and ballooning) in a paired biopsy study. In addition, individuals
with weight loss > 10% have better NASH resolution and present with a regression of fibrosis,
reinforcing the importance of weight loss in NAFLD management [156].

Given the detrimental hepatic effects of carbohydrates, especially fructose as described above, very
low-carbohydrate ketogenic diets have received attention for the management of NAFLD. However,
though ketogenic diets have largely been analyzed in rodents, only a few studies have been performed
in humans. A pilot study in obesity-associated fatty liver disease showed that patients on a 6-month
ketogenic diet lost weight and presented with histological improvements in steatosis, inflammation,
and fibrosis [157]. Recently, a short-term ketogenic diet was shown to decrease hepatic lipids in obese
patients in only 6 days, despite increased plasma FFA levels. This effect is attributed to an increase in
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hepatic TG hydrolysis and the use of released fatty acids for ketogenesis [158]. Another recent study
reported that 1 year on a carbohydrate-restricted diet reduces the risk of fatty liver and advanced
fibrosis in obese diabetic patients [159]. Notably, these two studies included obese and/or diabetic
patients with suspicion of NAFLD, but imaging- or biopsy-proven NAFLD was not documented.

High-protein foods for weight loss have received much attention in recent years, and have
started to be tested in NAFLD patients, but still remain poorly studied. A 2-week isocaloric,
low-carbohydrate diet with increased protein content promotes multiple metabolic benefits in obese
NAFLD patients, including a reduction in hepatic lipids due to decreased de novo lipogenesis
and increased beta-oxidation. Interestingly, these changes are associated with an alteration in the
composition of the gut microbiota [160]. Ketone bodies produced in response to carbohydrate restriction
can induce additional protective effects in NAFLD, such as anti-oxidant and anti-inflammatory
effects [161]. Another recent study analyzed the effects of isocaloric diets rich in animal proteins or
plant proteins for 6 weeks in diabetic patients with NAFLD and found that both high-protein diets
reduce liver fat [162]. As several studies have highlighted the role of the gut microbiota in NAFLD
pathogenesis, supplementation with probiotics has been tested in NAFLD patients. To date, clinical
data from such studies are disputed, but most of them report loss of body weight, suggesting that
probiotic supplementation can be used as a complementary approach for patients with NAFLD [163].
Furthermore, high intake of insoluble dietary fiber correlates with a lower prevalence of NAFLD [164],
and high-fiber diets promote short-chain fatty acid producing microbiota with beneficial effects in
T2DM patients [165]. Clinical data on such diets in NAFLD patients are currently lacking. Recently,
1-year administration of a symbiotic combination (one probiotic and one prebiotic) was shown to
change the fecal microbiome but had no effect on liver fat or fibrosis compared to placebo in NAFLD
patients [166].

Taken together, observations from dietary interventions show that the Mediterranean diet and
caloric restriction are beneficial for patients with NAFLD. As mentioned above, the macronutrient
composition of the diet also appears to be important; saturated fatty acids and simple sugars damage
the liver, whereas MUFAs, PUFAs, and dietary fiber induce beneficial hepatic effects [167]. More
recently, studies have underscored that meal timing and frequency may also be important [143]. Studies
in rodents have suggested that intermittent fasting and restricted feeding can have beneficial effects on
NAFLD, and the few human studies agree that regular meals combined with regular fasting periods
may provide physiological benefits (inflammation, circadian rhythm, autophagy, stress resistance, and
gut microbiota) [168]. Combined diet and exercise interventions may induce greater benefits, though
the current data are controversial [150]. Moreover, though lifestyle interventions (diet and exercise) are
effective in reducing intrahepatic lipids without changes in body weight, weight loss appears to be
required for improvement in NASH and fibrosis. Interestingly, lessening of NAFLD was measured in
67% of non-obese patients following lifestyle intervention [169].

The susceptibility to developing NAFLD comprises inherited risk factors, as described earlier,
such as I148M PNPLA3, E167K TM6SF2, P446L GCKR, and rs641738 in MBOAT7. As these variants are
nutrient-sensing, nutritional genomics approaches can be utilized in the future as interventions that
make use of beneficial nutrients suitable to the patients’ genomes and avoid those that have unhealthy
effects. This avenue remains to be explored, though several ongoing clinical trials are already testing
nutrigenomic diets in NAFLD patients [170].

3.1.3. Bariatric Surgery

Bariatric surgery is another effective non-pharmacological weight-loss therapy, and is indicated
for patients with a BMI > 35 and severe comorbidities, such as T2DM and hypertension. Several
studies have reported resolution of steatosis, as well as NASH and fibrosis, in patients who have
undergone weight-loss surgery [171,172]. According to a meta-analysis of 21 studies, bariatric
surgery results in histological or biochemical improvement of steatosis, NASH, and fibrosis in 88%,
59%, and 30% of NAFLD patients, respectively [173]. Furthermore, patients with NAFLD who
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undergo bariatric surgery have a lower risk of progression to cirrhosis compared to matched controls
without surgery [174]. Bariatric surgery has beneficial effects through both weight loss and effects
on metabolic pathways involved in NAFLD, including improved glucose and lipid homeostasis and
decreased inflammation [175]. In a prospective study evaluating fibrosis and NASH in severely obese
patients, most of the patients had low levels of NAFLD 5 years after surgery, but fibrosis had slightly
increased [176]. Overall, bariatric surgery is very effective for reducing weight, but its effect on fibrosis
progression is not yet clear and requires further attention. In addition, complications associated with
this invasive procedure, such as sepsis and hemorrhage, limit its application.

In conclusion, lifestyle interventions and bariatric surgery are effective in NAFLD, especially
through the induction of weight loss. However, studies are still needed to clarify the long-term effect
of these interventions.

3.2. Pharmacotherapy

For most patients, lifestyle interventions such as diet and exercise, although effective, are difficult
to achieve, and even more difficult to maintain. Thus, the development of pharmacological treatments
is necessary. Most of the current pharmacological interventions aim at decreasing metabolic risk
factors, such as obesity, insulin resistance, dyslipidemia, and hypertension. A systemic review of 29
randomized controlled trials testing several anti-diabetic drugs in NAFLD patients with and without
T2DM reported that all anti-hyperglycemic agents have beneficial effects, at least on serum liver
enzymes [177]. Among these anti-diabetic agents, pioglitazone is recommended for NAFLD patients
with T2DM [178]. Vitamin E, which has anti-oxidant activity, is another current strategy for NASH
management in patients without T2DM.

3.2.1. Pioglitazone

Pioglitazone is a thiazolidinedione that improves insulin resistance and glucose and lipid
metabolism in T2DM. The phase 3 Pioglitazone vs Vitamin E vs Placebo for Treatment of Non-Diabetic
Patients With Nonalcoholic Steatohepatitis (PIVENS) trial examined the effect of pioglitazone and
vitamin E in non-diabetic patients with biopsy-proven NASH after 96 weeks of treatment. Compared
to placebo, pioglitazone was associated with reduced hepatic steatosis, inflammation, and ballooning,
but it did not improve fibrosis [94,179]. Several other studies have reported that pioglitazone treatment
leads to histological improvement of steatosis and inflammation in subjects with NASH from 6 months
of treatment onwards [180,181]. Interestingly, a retrospective analysis of data collected from the PIVENS
trial suggested a strong link between the histological features of NASH resolution and improved
fibrosis in NASH [182]. Nevertheless, the benefit of pioglitazone on fibrosis remains to be clarified
because of divergent results. Some studies have reported an improvement in fibrosis [181,183,184],
whereas others have reported no change in fibrosis [94,180].

In a recent study, patients with biopsy-proven NASH and prediabetes or T2DM were given
pioglitazone or placebo for 18 months. A reduction in intrahepatic TG content and NASH resolution was
observed in both groups, whereas fibrosis was reduced only in the T2DM patients [185]. Interestingly,
genetic factors could contribute to the variability in the response to pioglitazone in NASH patients [186].
Adverse effects of pioglitazone include body weight gain, fluid retention, bone loss, and heart
failure [187]. Furthermore, prediabetic and diabetic NASH patients treated with pioglitazone for 3
years exhibit decreased bone mineral density at the level of the spine, which is already present after 18
months of treatment compared to placebo [188]. A systematic review and meta-analysis concluded the
risk of bladder cancer may be increased by pioglitazone and, therefore, recommend that patients on
high-dose and long-term pioglitazone treatment be examined regularly for manifestations of bladder
cancer [189]. Another systemic review of observational studies of the association between pioglitazone
use and bladder cancer concluded that further research needs be conducted to clarify the role of
pioglitazone use in the incidence of this cancer [190].
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Preclinical studies have greatly contributed to our understanding of the mechanisms underlying
the beneficial effects of pioglitazone. Pioglitazone is a ligand of PPARγ, a member of the nuclear receptor
superfamily that is highly expressed in adipose tissue and plays a key role in glucose regulation and
lipid metabolism [191]. Hepatoprotective effects of pioglitazone include increased insulin sensitivity,
adipose TG storage, and adiponectin production, as well as decreased pro-inflammatory cytokine
production by adipose tissue and macrophages [192,193]. These effects lead to a reduction in fatty acid
delivery to the liver and decreased inflammation. In a murine model of NASH (high fructose and high
trans fat), pioglitazone improves the toxic lipid profile by increasing the hepatic mitochondrial oxidative
capacity and changing whole body BCAA metabolism [194]. Pioglitazone reduces HFD-induced
steatosis in mice by stimulating the hepatic expression of genes and proteins involved in lipolysis,
beta-oxidation, and autophagy [195]. In adiponectin-deficient mice, the reduction of HFD-induced
steatosis by pioglitazone is blunted, revealing a role of adiponectin in this process [196].

3.2.2. Vitamin E

Vitamin E, which is known for its anti-oxidant effects, is considered the first-line treatment in
NAFLD patients without T2DM. The PIVENS trial showed that vitamin E improves NASH compared
to placebo (43% vs. 19%) in NAFLD patients without diabetes. As for pioglitazone, there was no
improvement of fibrosis after 96 weeks of treatment [94]. Resolution of NASH in this cohort correlated
with increased HDL levels, decreased TG levels, and reduced lipoprotein-related CVD risk compared to
patients without an improvement in NASH [197,198]. The effect of vitamin E on NASH resolution was
confirmed in non-diabetic children with NASH in the Treatment of Nonalcoholic Fatty Liver Disease
in Children (TONIC) trial despite no improvement in liver enzyme levels [199]. Interestingly, the
vitamin E response in non-diabetic NASH patients has been linked to the genotype of haptoglobin (Hp),
an anti-oxidant protein that prevents hemoglobin-mediated oxidative injury. Two alleles of Hp (Hp 1
and Hp 2) generate three distinct genotypes (Hp 1-1, Hp 2-1, and Hp 2-2). NASH patients carrying
at least one Hp 2 allele respond better to vitamin E treatment in terms of steatohepatitis resolution,
histological improvement, and NAFLD activity score (NAS) compared to those with the Hp 1-1
genotype [200]. In contrast, in diabetic patients with biopsy-proven NASH, vitamin E supplementation
for 18 months did not significantly reduce the NAS compared to placebo, despite resolution of NASH
in 42% of patients vs. 18% with placebo. In this study, the effects of a combination of vitamin E and
pioglitazone on liver histology were also examined. Though no change in fibrosis was observed,
steatosis, inflammation, and ballooning were reduced by the combination therapy [201]. However,
whether the combination of vitamin E and pioglitazone is more beneficial than pioglitazone alone was
not examined. Others have seen differences regarding the vitamin E response between diabetic and
non-diabetic individuals. The serum vitamin E concentration is higher in diabetic NAFLD patients,
and there is an inverse relationship between vitamin E levels and all-cause mortality only in NAFLD
patients without diabetes [202]. Clinical use of vitamin E has been limited because its long-term
treatment has been associated with prostate cancer [203] and hemorrhagic stroke [204]. Vitamin E may
also increase the risk of overall mortality, though this remains controversial [205,206].

The mechanisms of vitamin E action have been investigated in several rodent models of
NAFLD. Well known for its anti-oxidant activities, vitamin E contributes to the scavenging of
reactive oxygen species (ROS) and reactive nitrogen species (RNS), increase in the anti-oxidative
enzyme superoxide dismutase (SOD), and inhibition of lipid peroxidation [207]. Recently, vitamin E
supplementation for 2 weeks in HFD-fed mice showed beneficial effects on lipid accumulation and
glucose homeostasis through activation of the transcription factor nuclear factor erythroid-2-related
factor 2 (Nrf2) and upregulation of carboxylesterase 1 (CES1) [208]. In addition, vitamin E reduces
apoptosis and inflammation through regulation of M1/M2 macrophage polarization and inhibition of
T-cell recruitment [95]. Moreover, vitamin E induces adiponectin expression via a PPARγ-dependent
mechanism [209].
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In summary, the two classic therapies vitamin E and pioglitazone have beneficial effects on
steatosis and inflammation. Vitamin E does not improve liver fibrosis, which is the strongest indicator
of mortality in NAFLD patients, and the effect of pioglitazone on fibrosis varies from study to study.
Furthermore, adverse effects and uncertain long-term benefits associated with both pioglitazone and
vitamin E have limited their clinical use in NAFLD.

3.2.3. Other Current and Emerging Medications

Several other known molecules have been investigated or are currently under investigation
in clinical trials for their effectiveness in NASH patients. Most of these medications target
metabolic comorbidities and have been approved for the treatment of other diseases closely
associated with NAFLD, such as obesity, dyslipidemia, and T2DM. For example, orlistat is an
intestinal lipase inhibitor indicated for the treatment of obesity; statins are inhibitors of the enzyme
hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase that are used to treat dyslipidemia due to
their lipid-lowering effect; glucagon-like peptide (GLP-1) receptor agonists and dipeptidyl peptidase-4
(DPP-4) inhibitors increase incretins and are approved for the treatment of diabetic patients. In addition,
the GLP-1 receptor agonist, liraglutide, is being investigated in a phase 2 clinical trial in NASH patients,
the Liraglutide Efficacy and Action in NASH (LEAN) study [210]. All of these medications are
effective in reducing hepatic steatosis, but no changes in liver inflammation or fibrosis have been
reported [211]. As NAFLD is characterized by a disturbance in lipid and glucose homeostasis, drugs
targeting de novo lipogenesis and glucose metabolism, such as stearoyl-CoA desaturase 1 (SCD1)
and acetyl CoA carboxylase (ACC) inhibitors, sodium-glucose cotransporter-2 (SGLT2) inhibitors,
and fibroblast growth factor (FGF) analogues, are currently being tested in phase 2 or 3 clinical trials.
Several late-stage clinical trials are also investigating the effects of agents that target the mechanisms
involved in advanced stages of NAFLD, such as inflammation (C-C chemokine receptor CCR2/CCR5
antagonist cenicriviroc), apoptosis (caspase inhibitor emricasan, apoptosis signal-regulating kinase
1 ASK1 inhibitor selonsertib), and fibrosis (galectin-3 inhibitor belapectin). Given the multiple-hit
pathogenesis of NAFLD, a multifactorial approach based on combination treatments simultaneously
targeting several pathways (metabolic syndrome conditions, hepatic lipid accumulation, and NASH
features) should be more effective than single drug therapy [211–213].

3.2.4. Drugs Targeting Nuclear Receptors

Hepatic metabolic pathways, the alteration of which characterizes the first step of NAFLD,
are mainly regulated at the transcriptional level. Therefore, transcription factors, and nuclear receptors
in particular, may represent therapeutic targets in NAFLD. Within the nuclear receptor superfamily,
PPARs, farnesoid X receptor (FXR), constitutive androstane receptor (CAR), pregnane X receptor (PXR),
LXR, and thyroid hormone receptor-β (THR-β) are key regulators of the gut-liver-adipose tissue axis
and control the expression of genes involved in lipid and glucose metabolism, bile acid homeostasis,
and inflammation, which are all features of NAFLD/NASH [214–216]. Obeticholic acid is an FXR
agonist that improves the histological features of NASH in patients without cirrhosis [217] and is
currently being investigated in a phase 3 clinical trial [218]. An 18-month interim analysis of this
ongoing study reported improved fibrosis in NASH patients treated with obeticholic acid compared
to placebo [218]. A selective THR-β agonist, resmetirom, has demonstrated a highly significant
reduction in hepatic fat and decreased hepatic inflammation in NASH patients following a 36-week
treatment [219].

The three PPAR isotypes play distinct roles in lipid metabolism, energy homeostasis, and
inflammation, which make them attractive targets in NAFLD, and they are discussed in more detail in
the next section.
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4. PPARs as Promising Targets for the Treatment of NAFLD

4.1. Overview of PPARs

PPARs are ligand-activated transcription factors belonging to the nuclear receptor family. Three
isotypes of PPARs have been identified that are encoded by different genes: PPARα, PPARβ/δ, and
PPARγ. Globally, the PPARs are activated by different ligands, have different tissue distribution, and
distinct biological functions, but there is some overlap in these features (Table 1) and the three PPAR
isotypes have a conserved protein structure and similar mechanisms of action (Figure 3). In addition,
they all regulate energy homeostasis through lipid and glucose metabolism, and inflammation via
modulation of largely specific target gene transcription.

Table 1. Expression, ligands, and functions of Peroxisome proliferator-activated receptors (PPARs)
related to NAFLD and therapeutic potential.

Isotypes PPARα PPARβ/δ PPARγ

Main tissue
expression

Liver
Skeletal & cardiac muscles

WAT
Skeletal muscles BAT

Heart Liver Macrophages
Kidney WAT

BAT BAT
Intestine Macrophages

Main natural
ligands

FA FA FA
Eicosanoids VLDL components Arachidonic acid

metabolitesPhospholipids

Main synthetic
single agonists

Fenofibrate GW501516 Pioglitazone
Wy14643 GW0742 Rosiglitazone

Gemfibrazil Seladelpar
Pemafibrate

Biological
functions related

to NAFLD

TG hydrolysis Muscle FA storage Adipogenesis
FA catabolism FA catabolism Adipose FA storage
Ketogenesis Lipoprotein metabolism Adipokine secretion

FGF21 production Glucose utilization Anti-inflammatory
Glycerol metabolism Anti-inflammatory Anti-fibrotic
Anti-Inflammatory

Potential
therapeutic
target for

Hypertriglyceridemia Atherogenic dyslipidemia Insulin resistance
Atherogenic dyslipidemia Insulin resistance Obesity

NAFLD Obesity T2DM
T2DM NAFLD

NAFLD

Abbreviations: BAT, brown adipose tissue; WAT, white adipose tissue; FA, fatty acid; VLDL, very low density
lipoprotein; TG, triglyceride; FGF21, fibroblast growth factor 21; T2DM, type 2 diabetes mellitus; NAFLD,
non-alcoholic fatty liver disease.

4.1.1. Structure, Tissue Expression, and Mode of Action

PPAR proteins contain four domains. The N-terminal A/B domain contains the ligand-independent
transactivation function called activation function (AF)-1. The C domain is the DNA binding domain
(DBD), which consists of two zinc-finger motifs that bind a specific DNA sequence called the peroxisome
proliferator response element (PPRE), which is usually localized in gene promoters. The D domain is
a flexible hinge region connecting the DBD and the ligand-binding domain (LBD). The C terminus
domain contains the LBD and the ligand-dependent transactivation function AF-2, which includes the
region for dimerization and interaction with regulatory proteins [220] (Figure 3A).
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mechanism of action. In the absence of ligand, PPAR-RXR heterodimers are bound to corepressor 
complexes and prevent gene transcription. Binding of an endogenous ligand or a synthetic agonist to 
the PPAR LBD triggers a conformational change, leading to corepressor complex dissociation and 
recruitment of coactivator complex. The activated PPAR/RXR heterodimer then binds to a specific 
DNA sequence in the promotor region of target genes (PPRE) and stimulates target gene transcription 
(transactivation). Through the binding to inflammatory transcription factors such as NF-κB and AP-
1 (identified by TF), PPARs inhibit their binding to DNA and negatively regulate expression of 
proinflammatory genes (transrepression). Abbreviations: AF-1, activation function-1; AF-2, activation 
function-2; PPRE, peroxisome proliferator response element; DBD, DNA binding domain; LBD, 
ligand binding domain; AA, amino acid; P, phosphorylation; Su, SUMOylation; Ac, acetylation; O, O-
GlcNacylation; RXR, 9-cis retinoic acid receptor; TF, transcription factor; TF RE, transcription factor 
response element; NH2, protein N terminus; COOH, protein carboxyl terminus. 
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and glucose metabolism, which are key processes in NAFLD pathogenesis. 

PPAR expression and activity are regulated at several levels, including gene and protein 
expression, as well as ligand availability, post-translational modifications, and cofactor recruitment, 
and by different factors, such as hormones, cytokines, and growth factors [220,226,232]. Interestingly, 
hepatic expression of PPARs fluctuates in a circadian manner that is linked to the nutritional status 
[233]. For example, hepatic PPARα peaks in the early night, which corresponds to the end of the day-
time fasting period in nocturnal rodents [234,235], whereas PPARβ/δ is active during the 
dark/feeding period [236]. Accordingly, PPARα is mainly active in the fasted state [235,237,238]. In 
response to fasting, hepatocyte PPARα controls the expression of several genes involved in whole-
body fatty acid homeostasis, allowing the liver to use fatty acids and provide energy-rich fuel for 
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Figure 3. Protein structure and mechanisms of transcriptional regulation of PPARs. (A) Functional
domains and posttranslational modifications of human PPARs. PPARs contain four distinct domains: a
N-terminal A/B domain (ligand-independent AF-1), a C-domain (DNA-binding domain), a D- domain
(hinge domain), and a C-terminal E/F domain (ligand-binding domain). Main functions of the 4 domains
are listed. The number inside each domain corresponds to the percentage of amino acid sequence
identity of human PPARβ/δ and γ relative to PPARα. The number of amino acids indicated at the
COOH-terminus are for the human receptors. The locations of posttranslational modification sites are
indicated by arrows. The 2 splice variants of PPARγ are indicated by γ1 and γ2. (B) PPAR mechanism
of action. In the absence of ligand, PPAR-RXR heterodimers are bound to corepressor complexes and
prevent gene transcription. Binding of an endogenous ligand or a synthetic agonist to the PPAR LBD
triggers a conformational change, leading to corepressor complex dissociation and recruitment of
coactivator complex. The activated PPAR/RXR heterodimer then binds to a specific DNA sequence in
the promotor region of target genes (PPRE) and stimulates target gene transcription (transactivation).
Through the binding to inflammatory transcription factors such as NF-κB and AP-1 (identified by
TF), PPARs inhibit their binding to DNA and negatively regulate expression of proinflammatory
genes (transrepression). Abbreviations: AF-1, activation function-1; AF-2, activation function-2; PPRE,
peroxisome proliferator response element; DBD, DNA binding domain; LBD, ligand binding domain;
AA, amino acid; P, phosphorylation; Su, SUMOylation; Ac, acetylation; O, O-GlcNacylation; RXR,
9-cis retinoic acid receptor; TF, transcription factor; TF RE, transcription factor response element; NH2,
protein N terminus; COOH, protein carboxyl terminus.

PPARα is highly expressed in oxidative tissues, such as the liver, skeletal muscle, brown adipose
tissue (BAT), heart, and kidney. PPARβ/δ is most abundant in skeletal and cardiac muscles, adipose
tissue, and skin, but also in inflammatory cells and liver cells, including hepatocytes, Kupffer cells, and
HSCs. PPARγ is expressed predominantly in white and brown adipose tissue and macrophages [221]
(Table 1).

PPARs have a large ligand-binding pocket, which contributes to their ability to bind various
endogenous and synthetic ligands, as well as xenobiotics. The receptors are activated by endogenous
ligands, including fatty acids and their derivatives, such as eicosanoids, which originate from dietary
lipids, de novo lipogenesis, and adipose lipolysis [222–226] (Table 1). The development of several
synthetic PPAR ligands, including molecules used in experimental research and pharmaceutical
agents, has greatly contributed to the understanding of PPAR functions. Several studies reported
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that environmental pollutants also activate PPARs, supporting a role of PPARs in xenobiotic-induced
toxicity in several organs [227–229].

All PPAR isotypes have a similar mechanism of action and function as heterodimers with the 9-cis
retinoic acid receptor (RXR). In the absence of ligand, PPAR and its heterodimerization partner RXR are
bound to corepressor complexes, leading to the repression of some target genes. Upon ligand binding
to the LBD, a conformational change occurs, leading to corepressor dissociation and recruitment of
coactivators. The activated PPAR/RXR heterodimers then bind to a DNA-specific sequence in the
promoter of target genes (i.e., the PPRE) and stimulate transcription of the gene [226,230]. PPARs can also
negatively regulate gene transcription via a PPRE-independent mechanism involving protein-protein
interactions termed transrepression. In this process, PPARs bind other transcription factors, especially
inflammatory transcription factors, inhibiting their binding to DNA and repressing their target gene
transcription. Transrepression is the main mechanism involved in the anti-inflammatory effect of
PPARs [231] (Figure 3B).

4.1.2. PPARs in Glucose and Lipid Metabolism

Through modulation of gene transcription, the three PPAR isotypes play distinct roles in lipid
and glucose metabolism, which are key processes in NAFLD pathogenesis.

PPAR expression and activity are regulated at several levels, including gene and protein expression,
as well as ligand availability, post-translational modifications, and cofactor recruitment, and by different
factors, such as hormones, cytokines, and growth factors [220,226,232]. Interestingly, hepatic expression
of PPARs fluctuates in a circadian manner that is linked to the nutritional status [233]. For example,
hepatic PPARα peaks in the early night, which corresponds to the end of the day-time fasting period
in nocturnal rodents [234,235], whereas PPARβ/δ is active during the dark/feeding period [236].
Accordingly, PPARα is mainly active in the fasted state [235,237,238]. In response to fasting, hepatocyte
PPARα controls the expression of several genes involved in whole-body fatty acid homeostasis, allowing
the liver to use fatty acids and provide energy-rich fuel for other organs. PPARα facilitates fatty acid
uptake by the liver and mitochondrial transport by controlling the transcription of genes encoding
fatty acid transport proteins (fatty acid transport protein-1 [FATP1], CD36, fatty acid binding protein-1
[l-FABP]) and carnitine palmitoyltransferases (CPT1A, CPT2). PPARα is the central regulator of hepatic
fatty acid catabolism, it regulates gene transcription of rate-limiting enzymes required for microsomal
(cytochrome P450 family 4 subfamily A [CYP4A]), peroxisomal (acyl-CoA oxidase 1 [ACOX], enoyl-CoA
hydratase and 3-hydroxyacyl CoA dehydrogenase [EHHADH]), and mitochondrial beta-oxidation
(acyl-CoA dehydrogenase medium chain [ACADM], acyl-CoA dehydrogenase long chain [ACADL],
acyl-CoA dehydrogenase very long chain [ACADVL]) [220,235,239]. In addition, hepatic PPARα
regulates the expression of ketogenic enzymes, such as 3-hydroxy-3-methylglutaryl-CoA synthase 2
(HMGCS2), leading to the production of ketone bodies, which are a vital alternative source of energy
in the absence of glucose for several organs, including the brain and heart [237,240]. Ketone bodies
also act as cell signaling mediators and modulate inflammation [241]. Furthermore, PPARα is required
for the hepatic expression of murine and human fibroblast growth factor 21 (FGF21) [242–244], an
hepatokine with systemic metabolic effects and hepatoprotective properties [245]. Hepatocyte PPARα
is also essential for fasting-induced angiopoietin-like protein 4 (Angptl4; inhibitor of lipoprotein
lipase) expression, whereas expression of the genes encoding growth differentiation factor 15 (Gdf15)
and Igfbp1 is increased in the absence of PPARα in hepatocytes [246,247]. During fasting, PPARα
also increases the transcription of genes involved in autophagy, leading to lipophagy, a mechanism
involved in hepatic lipid catabolism [248]. Interestingly, there is reciprocal regulation of PPARα
and the autophagy-lysosomal signal [249]. Lysosomal inhibition leads to downregulation of PPARα
and its target genes, decreasing peroxisomal lipid oxidation and biogenesis [250]. The class 3 PI3K,
Vps15, which plays a central role in autophagy, has been shown to control PPARα activation for
lipid degradation and mitochondrial biogenesis [251]. In hepatocytes, PPARα activation promotes
lipoprotein TG hydrolysis by increasing the enzyme activity of lipoprotein lipase (LPL) through
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a direct increase in its transcription, and decreases the expression of genes encoding lipoproteins,
such as apolipoprotein C3 and apolipoprotein A4, which act as inhibitors of LPL activity [220,225].
Consequently, activation of mouse and human PPARα reduces plasma TG levels, indirectly leading to
increased plasma HDL-cholesterol levels and decreased plasma LDL-cholesterol levels [252]. A few
studies have reported that, in the fed state, PPARα regulates hepatic lipogenesis, mainly indirectly
through transcriptional upregulation of SREBP1c [253] and increased proteolytic cleavage into its
active form [254]. PPARα also modulates glucose metabolism by regulating the expression of genes
involved in hepatic glycerol metabolism, promoting gluconeogenesis [255], which could explain
the marked hypoglycemia in fasted PPARα-deficient mice [238]. In addition to lipid and glucose
metabolism, PPARα also regulates amino acid metabolism in the liver through regulation of the
expression of enzymes involved in the transamination and deamination of amino acids and urea
synthesis, which correlates with a modulation of the plasma urea concentration [256]. From the
above information, regulation of the hepatic activity of PPARα is expected to impact liver physiology,
especially lipid metabolism. One example of such regulation is that of the NAD+-dependent protein
deacetylase sirtuin 1 (SIRT 1), which increases the activity of PPARα primarily through the activation of
peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α). Deletion or overexpression
of SIRT1 in hepatocytes decreases or increases the expression of PPARα target genes. Accordingly,
hepatocyte-specific SIRT1-knockout mice fed a HFD develop liver steatosis, inflammation, and ER
stress [257]. Lipid oxidation in the skeletal muscle [258] and white adipose tissue [259] is also
controlled by PPARα. Overexpression of PPARα in the heart resulting in high PPARα-dependent fatty
acid oxidation contributes to diabetic cardiomyopathy through a mechanism involving the cardiac
lipoprotein lipase as a source of PPARα ligand [260]. Interestingly, PPARα-dependent regulation of
fatty acid oxidation in extrahepatic tissues plays an important role during fasting and can compensate,
at least in part, for the absence of PPARα in hepatocyte-specific Ppara-null mice [261]. A role for adipose
PPARα in the β-adrenergic regulation of lipolysis has been suggested [262]. Overexpression of PPARα
in adipose tissue is associated with improvement in HFD-induced alterations in glucose metabolism,
mostly through modulation of BCAA metabolism [263]. The role of PPARα in brown adipose tissue
thermogenesis and white adipose tissue browning remains unclear, as some studies have suggested
that PPARα is required to maintain body temperature [235,264] and for adipocyte browning [265],
whereas other studies indicate that PPARα is dispensable for cold-induced adipose browning [266]
and brown adipocyte function in vivo [267]. Redundant roles of PPARα and PPARγ in brown adipose
tissue may account for these discrepancies [268]. A recent study identified hepatocyte B-cell lymphoma
6 protein (BCL6) as a negative regulator of the PPARα-dependent transcription program during fasting.
BCL6 interacts with a high number of the same genes as PPARα and represses lipid catabolism in
the fed state [269]. Intriguingly, though PPARα is required for the adaptive response to fasting, it is
dispensable during intermittent fasting, a condition that ameliorates hepatic steatosis [270]. Finally,
PPARα has demonstrated interesting functions in hepatic sexual dimorphism. Its SUMOylation in
the female liver causes repression of genes involved in steroid metabolism and immunity, which
safeguards female mice against estrogen-induced intrahepatic cholestasis, the most common liver
disease during pregnancy [271].

PPARβ/δ is well-studied in skeletal muscles [272], where its expression is induced by exercise
training and promotes mitochondrial biogenesis and glucose uptake by increasing PGC-1α [273].
PPARβ/δ also increases PGC-1α expression, even after exercise cessation, by preventing its
degradation [274]. In addition, PPARβ/δ is required to maintain oxidative fibers in muscles via the
transcription of PGC-1α [275]. Transgenic mice overexpressing PPARβ/δ in adipose tissue are protected
from HFD-induced obesity and exhibit decreased adipose lipid accumulation through thermogenic gene
regulation [276]. In the liver, PPARβ/δ regulates both lipid and glucose metabolism [230]. Its expression
is highly reduced by fasting and rapidly restored by refeeding [277]. PPARβ/δ activation improves
insulin sensitivity in diabetic mice, mostly by regulating genes related to hepatic fatty acid synthesis
and the pentose phosphate pathway [278]. Accordingly, liver PPARβ/δ overexpression through



Cells 2020, 9, 1638 18 of 53

adenovirus improves glucose tolerance and insulin sensitivity in mice fed a HFD. PPARβ/δ regulates
glucose utilization by increasing the transcription of genes involved in lipogenesis, glucose utilization,
and glycogen synthesis through direct and indirect mechanisms [279]. Such indirect mechanisms
include upregulation of the lipogenic transcription factor SREBP-1c and co-activator PGC-1β [279].
Intriguingly, hepatic PPARβ/δ overexpression leads to decreased liver damage, suggesting that it may
protect from lipotoxicity by regulating MUFA synthesis [279]. In contrast, another study showed
that PPARβ/δ regulates SREBP-1 activity via induction of insulin-induced gene-1 (Insig-1), which
inhibits the proteolytic cleavage of SREBP-1 into its mature form and consequently leads to reduced
lipogenesis [280]. PPARβ/δ also regulates the expression of genes involved in lipoprotein metabolism
(APOA4, VLDLR) [281], which is consistent with the reduced plasma TG levels observed after PPARβ/δ

ligand treatment [282,283]. PPARβ/δ deficiency induces an increase in VLDL receptor (VLDLR) levels
and hepatic steatosis through the activating transcription factor 4 (ATF4) ER stress pathway [284].
Interestingly, Pparβ/δ deletion in CD11b+ Kupffer cells leads to hepatic lipid accumulation in early life,
during the suckling period [230]. Recently, intestinal PPARβ/δ was shown to participate in reducing
obesity, insulin resistance, and dyslipidemia in mice fed a HFD, but the underlying mechanism is
unknown [285]. Notably, outside the scope of this review article, several aspects of PPARβ/δ function
are relevant to cancer growth [286].

PPARγ is mainly active in the fed state and controls fat storage in adipose tissue. It transcriptionally
regulates the expression of genes involved in adipogenesis and adipose differentiation, and in lipid
metabolism, including fatty acid uptake (fatty acid binding protein 4 [FABP4], CD36) and TG lipolysis
(LPL) in adipose tissues. Consequently, adipose-specific deficiency of PPARγ induces a dramatic loss
of adipose tissue and severe insulin resistance, leading to hepatic fat accumulation [287,288]. PPARγ
enhances insulin sensitivity not only by reducing adipose fatty acid influx into the liver, but also by
inducing adipokines, such as adiponectin and leptin [192,193], as well as FGF1 [289]. A recent study
indicated that adipose PPARγ also regulates the plasma levels of BCAA, which may participate in
the insulin-sensitizing effects [290]. Another mechanism contributing to increased insulin sensitivity
upon PPARγ activation is the induction of FGF21 in adipose tissue, which acts in an autocrine
manner to reciprocally regulate PPARγ activity by suppressing its SUMOylation [291]. A more
recent study indicated that PPARγ is required to maintain brown adipose tissue thermogenesis [267].
PPARγ expression in the liver is low under ordinary physiological conditions but increases during
the development of steatosis in rodents. Hepatocyte-specific deletion of PPARγ in diabetic mice
improves steatosis through decreased expression of lipogenic genes (fatty acid synthase (FASN),
ACC, SCD1), but aggravates systemic insulin resistance, likely by decreasing insulin sensitivity in
adipose tissue [292]. PPARγ also promotes hepatic lipid accumulation by regulating the expression of
lipid-droplet-binding protein FSP27 [293,294]. The activator protein-1 (AP-1) complex is an important
regulator of hepatic PPARγ signaling, and distinct AP-1 dimers differentially regulate human and
mouse PPARγ transcription in the liver and, thus, hepatic lipid content [295]. In addition to lipid
droplet formation, PPARγ is also involved in TG synthesis, which may prevent peripheral lipotoxicity
by storing FFAs as TGs [296]. PPARγ activation can also promote hepatic steatosis induced by genetic
insults through the upregulation of glycolytic enzymes (pyruvate kinase M2 (PKM2), hexokinase 2
(HK2)) [297].

Cross-talk between the different PPAR isotypes have been reported but are relatively little
documented so far. The three PPAR isotypes contain a highly conserved DNA-binding domain and
bind the same response element (PPRE) in the regulatory regions of target genes. Furthermore, they
present overlapping expression patterns in several organs. Therefore, cross-talks between PPARs is
likely. In fact, an interplay between PPARα and PPARγ has been reported in BAT. A set of genes
involved in BAT function is activated by both a PPARα agonist (fenofibrate) and a PPARγ agonist
(rosiglitazone) in mice, which suggests a functional redundancy, which may explain why some
findings suggest that PPARα is dispensable for thermogenesis while others clearly indicate a role
of PPARα in BAT function. As an example of redundancy, the gene coding for lysosomal protease
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cathepsin Z, a regulator of BAT thermogenic function, is a shared PPARα and PPARγ target gene [268].
Compensation between PPARs has also been observed. In PPARα-deficient mice fed a HFD, in which
PPARγ is overexpressed in the liver, characteristic PPARα targets involved in fatty acid oxidation are
up-regulated, indicating that PPARγ can compensate for PPARα in gene regulation [222]. Similarly,
a compensatory role of PPARβ/δ in the repression of hepatic Cyp7b1 in female mice has been shown in
the absence of PPARα [271]. Collectively, these studies reveal cross-talk and compensatory mechanisms
between PPAR isotypes, which may be important to consider when testing PPAR agonists.

Overall, all three PPAR isotypes regulate lipid and glucose metabolism by regulating both
overlapping and distinct genes in multiple organs [298] (Figure 4). PPARα is the master regulator of
hepatic lipid catabolism in response to fasting. PPARγ promotes insulin sensitivity by controlling
adipose lipid storage and adipocyte differentiation, whereas its role in the liver remains unclear.
PPARβ/δ promotes hepatic glucose utilization and fatty acid synthesis, as well as fat catabolism
in muscles.

4.1.3. PPARs in Inflammation and HSC Activation

All PPARs play an important role in inflammation [299]. Evidence supports a role of PPARα in the
control of hepatic inflammation [220]. One of the mechanisms by which PPARα exerts anti-inflammatory
effects is through the down-regulation of acute phase genes and genes such as IL-1 receptor antagonist
(IL-1Ra) and the nuclear factor kappa B subunit 1 (NF-κB) inhibitor IκB [220,300]. However, PPARα
regulates inflammation mostly through a transrepression mechanism in which it binds to inflammatory
transcription factors, such as NF-κB components (p65 and c-Jun), AP-1, and signal transducer and
activator of transcription (STAT), thereby suppressing their transcriptional activity. An elegant study
found that mice with a mutation in the DBD of PPARα, which limits its transcriptional activity to
transrepression, are protected against liver inflammation through downregulation of pro-inflammatory
genes and do not progress to liver fibrosis in dietary-induced NASH [301]. In addition, PPARα
modulates the duration of inflammation by controlling the catabolism of its ligand leukotriene B4,
a chemotactic agent involved in the inflammatory response [299,302]. Interestingly, hepatic PPARα
contributes to the regulation of circulating monocytes during fasting through the modulation of bone
marrow C-C motif chemokine ligand 2 (CCL2) production [303]. Few studies have examined the role of
PPARα in Kupffer cells. A study of macrophage-specific PPARα-deficient mice compared to wild-type
mice showed that Kupffer cell PPARα activation downregulates the expression of pro-inflammatory
cytokines IL-15 and IL-18, which are mainly produced by M1 macrophages and Kupffer cells. This
observation suggests that PPARα activation in these cells may prevent M1 polarization and mediate
the anti-inflammatory effects of PPARα agonists [304]. Although anti-fibrogenic effects of PPARα
activation have been reported in mouse models of liver fibrosis [301,305], the role of PPARα in HSCs is
poorly defined. One study indicated that PPARα may inhibit TGFβ-stimulated HSC activation [306].

The role of PPARβ/δ in inflammation is less studied. PPARβ/δ is required for M2 macrophage
activation in both adipose tissue and the liver. Bone marrow transfer experiments have shown that
hematopoietic PPARβ/δ protects against HFD-induced insulin resistance, obesity, and fat accumulation
in the liver. Moreover, PPARβ/δ appears to be necessary in Kupffer cells for oxidative phosphorylation,
suggesting that these liver macrophages directly influence lipid homeostasis [307]. In addition,
PPARβ/δ in CD11+ Kupffer cells has been suggested to prevent lipid accumulation in hepatocytes
during the suckling stage in young mice [308]. PPARβ/δ is highly expressed in HSCs, but its role in
these cells is not yet completely understood [230]. Studies in a mouse model of carbon tetrachloride
(CCl4)-induced liver injury reported that PPARβ/δ activation stimulates HSC proliferation and promotes
liver fibrosis [309], and contributes to HSC proliferation during acute and chronic hepatic inflammation
in rats [310]. Another study in a mouse model of CCl4-induced liver fibrosis indicated that PPARβ/δ

activation has anti-fibrotic effects [311]. The main difference between these studies is the use of different
PPARβ/δ agonists.
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PPARγ is expressed in macrophages, where it inhibits the expression of activated macrophage
markers by reducing the activity of other transcription factors, including AP-1, STAT1, and NF-κB [312].
PPARγ activation induces monocyte differentiation towards M2 anti-inflammatory macrophages
in vitro and in human blood [313]. In addition, PPARγ in macrophages is required for M2 macrophage
activation and to protect mice against diet-induced obesity [314]. In line with these observations,
PPARγ activation decreases HFD-induced M1 polarization through inhibition of the NF-κB pathway,
reducing local inflammation and hepatic steatosis [315]. Interestingly, PPARγ promotes T regulatory
cell accumulation in adipose tissue. Moreover, the PPARγ expressed by T regulatory cells is required
for the insulin-sensitizing effect of PPARγ activation [316]. PPARγ expression and activation are
reduced during HSC activation in vitro and in vivo [317]. In culture-activated HSCs, restoration of
PPARγ levels using an adenoviral vector induces a phenotypic switch back to quiescence associated
with inhibition of HSC activation markers [318]. Accordingly, ligand activation of PPARγ was shown
to reduce HSC activation and proliferation, as well as collagen deposition, in a mouse model of
CCl4-induced liver fibrosis [319]. The contribution of non-parenchymal cell PPARγ to the regulation
of hepatic inflammation and fibrosis has been confirmed in the CCl4 model of liver injury [320].

To summarize, all PPARs play important roles in hepatic inflammation (Figure 4). PPARα
negatively regulates pro-inflammatory genes, PPARβ/δ and PPARγ control macrophage M2 polarization.
In addition, PPARγ has anti-fibrotic effects, but the roles of PPARα and PPARβ/δ in HSCs are not fully
elucidated and require further study.Cells 2020, 9, x 21 of 54 
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Figure 4. PPAR target genes and their implications in major functions associated with NAFLD
pathogenesis. Key target genes of PPARα (A), PPARβ/δ (B), and PPARγ (C) and their association
with four main biological processes driving NAFLD development and progression, i.e., lipid and
glucose metabolism, inflammation, and hepatic stellate cell (HSC) activation. Genes in red, blue, and
green are also regulated by PPARα, PPARβ/δ, and PPARγ, respectively. Genes whose expression is
regulated by all three PPARs are underlined. A question mark (?) after a gene name indicates that
PPAR may potentially regulate it. (A) PPARα promotes the expression of genes involved in fatty
acid catabolism (Hmgcs2, Acox, Cyp4a, Ehhadh, Acad, Cpt1a, Cpt2, Cd36, Slc27a1, Fabp1) [235,237,
321,322], autophagy (Atg, Tfeb) [248,249], and glycerol metabolism (Gyk, Gpdh) [255], and regulates
lipoprotein metabolism (Lpl, ApoC3) [220] and hepatic Fgf21 expression [242,243]. It also downregulates
inflammatory genes and transcription factors (Nf-κb, Ap-1, Stat, Iκb, Il1ra) [220,281,300], and may
downregulate Tgfβ expression [306]. (B) PPARβ/δ increases PGC-1α in muscles [273,275], Insig1 [280]
and Cd36 [279] in the liver, and regulates the expression of genes involved in lipoprotein metabolism
(ApoA4, Vldlr) [281,284] and glucose utilization [279]. PPARβ/δ regulates the expression of genes
induced during alternative macrophage activation (Arg1, Clec7a) [307] and may also influence HSC
activation (Tgfβ, α-Sma, Col1a1) [309,310]. (C) PPARγ controls the expression of genes involved in
adipogenesis (Fabp4, Cd36, Lpl, Mogat1) [296,314] and genes encoding adipokines (Adipoq, leptin,
Fgf21) [192,193,289,291]. It also promotes Fsp27 expression in the liver during steatosis [293]. PPARγ
downregulates inflammatory transcription factors (Nf-κb, Ap-1, Stat) [312,315] and may also reduce
expression of Tgfβ [318,319]. Abbreviations: Hmgcs2, 3-hydroxy-3-methylglutaryl-CoA synthase 2;
Acox, peroxisomal acyl-coenzyme A oxidase 1; Cyp4a, cytochrome P450 family 4 subfamily A; Ehhadh,
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enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase; Acadm, acyl-CoA dehydrogenase
medium chain; Acadl, acyl-CoA dehydrogenase long chain; Acadvl, acyl-CoA dehydrogenase very long
chain; Cpt1a, carnitine palmitoyltransferase 1a; Cpt2, carnitine palmitoyltransferase 2; Slc27a1, solute
carrier family 27 member 1; Fabp1, fatty acid binding protein 1; Fabp4, fatty acid binding protein 4; Lpl,
lipoprotein lipase; ApoC3, apolipoprotein C3; ApoA4, apolipoprotein A4; Atg, autophagy-related genes;
Tfeb, transcription factor EB; Fgf21, fibroblast growth factor 21; Pgc1α, peroxisome proliferator-activated
receptor gamma coactivator 1-alpha; Fasn, fatty acid synthase; Acc, acetyl-CoA carboxylase; Scd1,
stearoyl-CoA desaturase; Insig1, insulin-induced gene 1; Vldlr, very-low density lipoprotein receptor;
Mogat1, monoacylglycerol O-acyltransferase 1; Fsp27, fat specific protein 27; Adipoq, adiponectin;
Gpdh, glyceraldehyde-3-phosphate dehydrogenase; Gyk, glycerol kinase; Glut2, glucose transporter
type 2; Pk, pyruvate kinase; Gk, glucokinase; Nf-κb, nuclear factor kappa B subunit 1; Ap-1, activator
protein; Stat, signal transducer and activator of transcription; Iκb, Nf-κb inhibitor; Il1ra, IL-1 receptor
antagonist; Arg1, arginase 1; Clec7a, C-type lectin domain containing 7A; Tgfβ, transforming growth
factor beta; Col1a1, collagen type I alpha 1 chain; α-Sma, alpha-smooth muscle actin.

4.1.4. PPARs in NAFLD

Human studies indicate a link between PPAR functions and NAFLD pathogenesis. In a cohort
of obese patients with NAFLD, the hepatic expression of PPARβ/δ and PPARγ remained unchanged
during NAFLD progression, but the expression of PPARα and its target genes negatively correlated
with the histological severity of steatosis and NASH both at baseline and after 1 year of follow-up.
In addition, decreased liver PPARα expression is associated with increased insulin resistance and
decreased adiponectin levels [323]. More recently, reduced PPARβ/δ expression and activity were
observed in patients with severe hepatic steatosis [284].

Preclinical evidence indicates a role of PPARs in mouse models of NAFLD. Hepatic expression of
PPARα and its target genes is increased in mice undergoing chronic high-fat feeding. Interestingly, an
increase in PPARγ expression has been observed in PPARα-deficient mice fed a HFD [222]. Whole-body
PPARα-deficient mice develop obesity, which is more pronounced and associated with higher fat
deposition in females [324]. PPARα deficiency in mice fed a HFD promotes hepatic steatosis and
inflammatory gene expression [325,326]. In a mouse model of steatohepatitis induced by methionine
and choline deficiency diet (MCD), PPARα-null mice develop more severe steatosis and steatohepatitis
is associated with increased lipid peroxidation compared to control mice [327]. The systemic deletion of
PPARα also leads to more severe steatosis in response to a trans fatty acid-rich diet [328]. Liver-specific
PPARα-deficiency has revealed the importance of hepatocyte PPARα in protecting the animals from
HFD-induced NAFLD, including steatosis and hepatic inflammation [235]. Interestingly, PPARα-null
mice and hepatocyte-specific PPARα-deficient mice do not present with increased glucose intolerance
when fed a HFD [329]. In addition, hepatocyte-specific deletion of PPARα induces spontaneous steatosis
in aging mice and aggravates MCD-induced liver damage [235]. Interestingly, hepatocyte-specific
depletion of G protein pathway suppressor 2 (Gps2), a co-repressor of PPARα, protects mice from
HFD-induced steatosis and improves MCD-induced fibrosis through PPARα activation. In humans,
liver Gps2 expression positively correlates with NASH and fibrosis [330]. In response to HFD,
whole-body and hepatic deficiencies in PPARα differentially alter the lipid profiles, suggesting that
extrahepatic PPARα is involved in lipid metabolism and the adaptive response to HFD [329]. PPARα
in extrahepatic tissues also contributes to the protection of fasting-induced hepatosteatosis [261].

PPARβ/δ-deficient mice exhibit impaired thermogenesis and increased HFD-induced obesity [276].
PPARβ/δ deletion also leads to fat deposition in the liver and exacerbated hepatic steatosis induced
by ER stress, which is accompanied by an increase in hepatic VLDLR levels [284]. In response to
CCl4-induced liver toxicity, PPARβ/δ-deficient mice present with increased hepatotoxicity, which is
associated with an increase in NF-κB signaling [331].

Systemic deletion of PPARγ induces embryonic lethality due to placental defect [332,333]. Recently,
mice with whole-body PPARγ deletion except in the placenta were obtained. These mice are completely
lipodystrophic, which is consistent with PPARγ being required in mature white and brown adipocytes
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for their survival [287], develop T2DM, and get a fatty liver [334]. As mentioned above, specific deletion
of PPARγ in adipose tissue also leads to hepatic steatosis [288]. Increased hepatic expression of PPARγ
is also observed in mice fed a HFD [335]. Intriguingly, hepatocyte-specific deletion of PPARγ protects
mice against HFD-induced steatosis and glucose intolerance, but has no effect on insulin sensitivity,
hepatic inflammation, or obesity [335,336]. In contrast, PPARγ deficiency in non-parenchymal liver
cells (Kupffer cells and HSCs) aggravates acute and chronic CCl4-induced liver damage, increasing
inflammatory and fibrogenic responses, whereas the deletion of PPARγ in hepatocytes does not have
this effect [320]. Finally, a role of hepatic PPARγ in tumorigenesis has been shown in a mouse model of
liver cancer [337].

Collectively, all PPAR isotypes regulate not only many aspects of glucose and lipid metabolism,
but also contribute to anti-inflammatory responses, and potentially to HSC function (Figure 4).
In addition, caloric restriction, which has beneficial effects in NAFLD patients, reduces the expression
of PPARα and its target genes involved in lipid oxidation in the duodenum. Interestingly, this
change in duodenum gene expression influences the microbiota composition [338]. Reciprocally,
the gut microbiota appears to influence hepatic PPAR activity [339]. Moreover, some beneficial
effects of gut microbiota on NAFLD were recently suggested to involve PPARs [340]. Overall, PPARs
modulate the transcription of both overlapping and distinct downstream target genes involved in
many NAFLD-related functions in multiple organs, including lipid and glucose metabolism and
inflammation (Figure 4). Therefore, PPARs represent relevant targets for NAFLD.

4.2. Available PPAR Agonists

Several experimental and clinical studies have reported the use of PPAR agonists in the treatment
of NAFLD [341,342], which we review below.

4.2.1. PPARα Agonists

Fibrates are lipid-lowering agents used in clinical practice to treat hypertriglyceridemia and
atherogenic dyslipidemia [343]. In rodent models of NAFLD, fibrates have demonstrated beneficial
effects on hepatic steatosis, inflammation, and fibrosis. In MCD-induced mouse steatohepatitis, the
PPARα agonist Wy14643 reduces hepatic TG levels and histological inflammation [327], as well as
liver fibrosis in association with a decrease in HSC activation [305]. In this model, the beneficial
effect of Wy14643 on MCD-induced liver damage is independent of its impact on fat accumulation
in the liver, and due to the expression of genes involved in anti-inflammatory and anti-fibrogenic
pathways [301]. PPARα activation by Wy14643 also decreases steatosis and inflammatory pathways
in foz/foz mice, a genetic model of NASH, fed a HFD [344]. In the thioacetamide rat model of liver
cirrhosis, Wy14643 and fenofibrate reverse histological liver fibrosis, in part by reducing the activity of
the hepatic anti-oxidant enzyme catalase [345]. Fenofibrate also reduces CCl4-induced hepatic fibrosis
in rats [346]. In a recent study, fenofibrate prevented liver damage induced by chronic intoxication of
mice with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), a model that induces key morphological
features of NASH [347].

Conversely, fibrates only exhibit an effect on TG levels in humans. In obese patients with NAFLD,
fenofibrate reduces plasma TGs by increasing VLDL-TG clearance from plasma, but does not change
intrahepatic TG levels after 8 weeks of treatment [348]. Similarly, administration of fenofibrate for
48 weeks improves TG and glucose levels, but not liver histology in NAFLD patients [349]. Liver
stiffness and biochemical markers of fibrosis (hyaluronic acid, TGF-β, and tumor necrosis factor-alpha
(TNFα)) were decreased after 24 weeks of fenofibrate treatment, but no data on liver histology
were given in this study [350]. In the Effects of Epanova Compared to Placebo and Compared to
Fenofibrate on Liver Fat Content in Hypertriglyceridemic Overweight Subjects (EFFECT) I trial,
12 weeks of fenofibrate also reduced plasma TG levels, but increased liver fat content and liver volume
in overweight or obese patients with NAFLD, suggesting a complex effect of fenofibrate on human
hepatic lipid metabolism that requires further investigation [351]. Gemfibrozil has also demonstrated
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PPARα-dependent hypolipidemic actions [352] and attenuated hepatic lipid accumulation in vitro [353].
However, in NAFLD patients, gemfibrozil has only shown beneficial effects on plasma levels of liver
enzymes [354,355].

4.2.2. PPARβ/δ Agonists

Current PPARβ/δ agonists, including GW501516, GW0742, and MBX-8025 (Sedalpar), have
mostly been tested in experimental models of NAFLD, and clinical studies are lacking. Though
treatment of mice with GW501516 results in increased liver TG content after 4 weeks, long-term
treatment (8 weeks) leads to reduced hepatic fat content. Interestingly, both PPARα and PPARβ/δ

are required for the effect of GW501516 on hepatic lipid accumulation, as GW501516-dependent
reduction in hepatic steatosis is abolished in PPARα-null mice. PPARβ/δ may modulate the levels of
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), an endogenous activator of PPARα [356].
GW501516 treatment protects against HFD-induced obesity and insulin resistance, and reduces hepatic
lipid accumulation by increasing muscle lipid oxidation [357]. GW501516 also increases the expression
of hepatic VLDLR in mice fed a HFD [358]. Furthermore, GW501516 administration for 8 weeks
decreases hepatic steatosis and insulin resistance in LDLR−/− mice fed a HFD via the increased
expression of genes involved in hepatic fatty acid oxidation and decreased expression of hepatic fatty
acid synthesis genes [359]. However, GW501516 does not improve liver injury induced by CCl4 [311].
One human study reported that administration of GW501516 to healthy individuals for 2 weeks
reduced liver fat content and serum TG levels [282].

In a diabetic rat model, GW0742 decreased hepatic TGs, glucose intolerance, epididymal fat
weight, and inflammatory cytokines [360]. Another study indicated that GW0742 reduces hepatic
TGs, glucose intolerance, and insulin resistance in mice fed a HFD. These effects were associated
with several changes in hepatic gene expression, including an increase in PPARα and beta-oxidation
gene expression and decreased expression of PPARγ and lipogenic genes, as well as genes involved
in inflammation and ER stress [361]. GW0742 also reduces CCl4-induced hepatotoxicity, which is
associated with modulation of NF-κB signaling [362].

The more recent PPARβ/δ agonist seladelpar reduces glucose intolerance and hepatic TGs in the
foz/foz mouse model of NASH when fed an atherogenic diet. Seladelpar also decreased the NAS by
50% and reversed NASH in all mice. In addition, seladelpar improved liver histology, with decreased
hepatic apoptosis and fibrosis and a reduction in the number of macrophages around hepatocytes
(crown-like structures) [363].

4.2.3. PPARγ Agonists

Thiazolidinediones (pioglitazone, rosiglitazone) are synthetic ligands of PPARγ that are clinically
used as insulin sensitizers in the treatment of T2DM [193]. Though pioglitazone effectively improves
hepatic steatosis in humans, preclinical data in rodents have been controversial, and the exact molecular
mechanisms underlying the action of pioglitazone are not fully understood.

Several studies indicate that pioglitazone reduces HFD-induced steatosis in mice by increasing
adiponectin production and the hepatic expression of genes involved in lipolysis, beta-oxidation, and
autophagy [195,196]. In contrast, pioglitazone was shown to have no effect on liver histology in a
rat dietary model of NASH (high fat, high cholesterol and cholate) [364]. A recent study showed
that the effect of pioglitazone on NAFLD is influenced by CAR activity, as pioglitazone improves
hepatic steatosis much better in CAR-deficient mice, suggesting an interaction between CAR and
PPARγ [365]. Finally, another study indicates that pioglitazone promotes hepatic steatosis. In this
study, the global expression profiles in the livers of mice fed a HFD and treated with pioglitazone
reveal that pioglitazone upregulates the expression of genes involved in fatty acid uptake and de novo
lipogenesis, and reduces the expression of inflammatory genes, leading to hepatic TG accumulation
and improved insulin resistance [366].
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As discussed above, several studies have reported that pioglitazone treatment is effective in
NAFLD patients [94,180,181,183]. Pioglitazone improves the histological features of NAFLD, including
steatosis and inflammation, whereas its effect on fibrosis is less clear. A recent meta-analysis reported
that pioglitazone therapy is associated with an improvement in advanced fibrosis in NAFLD patients,
even in non-diabetic patients. This meta-analysis also indicated that weight gain and limb edema is
associated with pioglitazone treatment [367].

Another thiazolidinedione that has shown promising results in preclinical studies is rosiglitazone.
In animal models, rosiglitazone protects against HFD-induced hepatic steatosis and reduces hepatic
lipid content by increasing the expression of genes involved in beta-oxidation and decreasing the
expression of lipogenic genes. These beneficial effects of rosiglitazone on lipid metabolism are
accompanied by a decrease in hepatic M1 macrophages and modulation of the TLR4/NF-κB signaling
pathways [368]. In the MCD model, rosiglitazone improves hepatic steatosis, inflammation, and
fibrosis and reduces the expression of the HSC activator TGF-β [369]. In a model of liver cholestasis
and fibrosis induced by bile duct ligation, rosiglitazone reduces fibrosis and hepatocyte apoptosis
by inhibiting NF-κB-TNFα signaling in a PPARγ-dependent manner [370]. Interestingly, a recent
study indicated that adipose PPARγ is dispensable for the whole-body insulin-sensitizing effect of
rosiglitazone, suggesting the presence of PPARγ-independent targets of rosiglitazone in adipocytes, or
that rosiglitazone activates PPARγ in other tissues [371]. In a small paired biopsy study, rosiglitazone
treatment of NASH patients for 48 weeks results in improved hepatic steatosis, necroinflammation,
and ballooning. In most patients, body weight increases during the treatment period, and the weight
gain remains after a 6-month post-treatment follow-up [372]. The Fatty Liver Improvement With
Rosiglitazone Therapy (FLIRT) trial assessed the effect of rosiglitazone in patients with biopsy-proven
NASH. Treatment with rosiglitazone for 1 year increased adiponectin levels and reduced insulin
resistance in most patients, and reduced hepatic steatosis in half of patients, but did not improve liver
inflammation or fibrosis. The main adverse effect was weight gain in 40% of responders [373]. In a
post hoc analysis of this cohort, patients treated with rosiglitazone presented with increased hepatic
expression of PPARγ, which was associated with increased expression of several pro-inflammatory
genes in the liver (monocyte chemoattractant protein-1 [MCP1], IL8, SOCS3), suggesting a potential
long-term deleterious effect [374].

Although all PPAR agonists have had beneficial effects in preclinical models of NAFLD, their
effectiveness in human pathology is limited. In NAFLD patients, PPARα activation only reduces
plasma TG levels, whereas PPARγ agonists improve insulin sensitivity and steatosis, but do not seem
to impact liver fibrosis. The efficacy of current PPARβ/δ agonists against NAFLD in humans is not
known. Moreover, some PPAR agonists have adverse effects (weight gain and fluid retention following
pioglitazone) or limited potency (fibrates) that limit their application.

Novel PPAR agonists, called selective PPAR modulators (SPPARMs), aim to maximize the
beneficial effects and minimize the adverse effects of current agonists. Furthermore, given the multiple
and distinct effects of PPARs in the liver and other organs, targeting two or three isotypes has emerged
as a promising novel therapeutic strategy for treating NAFLD (Table 2).
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Table 2. PPAR agonists currently in late-stage clinical trials (phase 2 and phase 3). Overview of new
PPAR agonists: trivial name, chemical structure, and short description.

Compounds Chemical Structure Description
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4.3. Novel PPAR Agonists

4.3.1. Pemafibrate

Pemafibrate (K-877) is a novel selective PPARα modulator that, compared to fenofibrate, exhibits
high potency for human PPARα and enhanced PPARα selectivity and activity in vitro [375]. The
crystal structure of the PPARα-pemafibrate complex showed that pemafibrate is highly flexible
and can change its conformation following coactivator binding. In addition, several hydrophobic
interactions between PPARα and pemafibrate may improve the binding affinity for PPARα [376]. The
hepatic transcriptome of primary human hepatocytes and mice treated with pemafibrate indicates a
PPARα-dependent increase in the expression of genes involved in lipid catabolism and ketogenesis.
Interestingly, VLDLR and FGF21 are also induced by pemafibrate in humans and mice, and at a higher
level than by fenofibrate [377,378]. Pemafibrate decreases plasma TG and total cholesterol levels
in the LDLR−/− mouse model of atherosclerosis, which is associated with increased expression of
PPARα and its target genes in both the liver and intestine [379]. In Western diet-fed ApoE2KI mice,
pemafibrate also improves lipoprotein metabolism, resulting in a greater reduction in TG and increase
in HDL-cholesterol levels compared to fenofibrate. Pemafibrate also decreases atherosclerotic lesions,
lesion macrophage infiltration, and inflammatory markers [380]. In mice fed a HFD, pemafibrate
reduces postprandial accumulation of TGs at the same level as fenofibrate, but at lower doses [381].
In addition, pemafibrate protects against HFD-induced obesity, glucose intolerance, and insulin
resistance, and decreases the cell size in white adipose tissue and brown adipose tissue, but has no
effect on hepatic TG accumulation. Pemafibrate-activated PPARα in the liver increases hepatic and
plasma levels of FGF21, whereas in inguinal adipose tissue, pemafibrate increases the expression of
genes involved in fatty acid oxidation and thermogenesis, and the mitochondrial marker elongation of
very long chain fatty acids protein 3 (Elovl3) in brown adipose tissue [382]. One study examined the
effects of pemafibrate in a mouse model of NASH induced by an amylin diet that exhibits the different
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stages of NASH, including steatosis, inflammation, hepatocyte ballooning, and fibrosis. Pemafibrate
reduces hepatic TG levels, inflammation, and fibrosis, and increases expression of PPARα and its
target genes involved in beta-oxidation. In addition, pemafibrate increases the expression of lipogenic
genes. However, in contrast to previous reports, fenofibrate tested in parallel with pemafibrate was
also effective in reducing fibrosis [383]. Recently, the therapeutic potential of pemafibrate was tested in
a mouse model of a diabetes-based NASH-HCC model. In this model, combined chemical (one low
dose of streptozotocin just after birth) and dietary (continuous HFD feeding) interventions leads to
diabetes in 1 week and sequential liver damage from steatosis, NASH, and HCC but did not induce
obesity and insulin resistance. Pemafibrate reduces macrophage recruitment and inflammation in the
liver, potentially through the downregulation of endothelial adhesion molecules. Intriguingly, hepatic
TG accumulation is not improved with pemafibrate in this model [384].

In clinical studies, pemafibrate has demonstrated safety and efficacy in patients with atherogenic
dyslipidemia [385] and appears to be superior to fenofibrate to reduce plasma TG levels [386–388].
In a phase 3 clinical trial, treatment of Japanese T2DM patients with pemafibrate for 24 weeks reduced
fasting serum TG levels by 45%. Interestingly, in this cohort, pemafibrate increased plasma FGF21 [389].
The ongoing Pemafibrate to Reduce Cardiovascular Outcomes by Reducing Triglycerides in Patients
with Diabetes (PROMINENT) study is a placebo-controlled trial testing the effect of pemafibrate on
cardiovascular events in T2DM patients with elevated TG and low HDL-cholesterol levels [390].

Due to the multiple and distinct effects of PPARs, dual or pan-PPAR agonists represent attractive
approaches for targeting the multiple biological processes involved in the pathogenesis of NAFLD.
Below, we review the most promising of them.

4.3.2. PPARα and β/δ Dual Agonist Elafibranor

The PPARα and PPARβ/δ dual agonist elafibranor (GFT-505) has preferential activity on human
PPARα in vitro and additional but lower activity on human PPARβ/δ [391]. Several experimental
studies indicate that elafibranor has beneficial effects on NAFLD/NASH and fibrosis in rodent models.
Efficiency was first demonstrated in Western diet-fed human apolipoprotein E2 transgenic mice, in
which elafibranor improves lipid profiles and reduces hepatic expression of pro-inflammatory and
pro-fibrotic genes. Histological examination has demonstrated that elafibranor decreases steatosis,
inflammation, and fibrosis. Similar results have been reported in ob/ob mice fed MCD. Using
PPARα-deficient mice, this study demonstrates the importance of PPARα in the effects of elafibranor,
but also reveals PPARα-independent mechanisms [392]. In other mouse models of diet-induced NASH,
elafibranor induces weight loss and improves steatosis, as well as inflammation and fibrosis. Hepatic
transcriptome analysis has revealed that elafibranor modulates the expression of genes involved in
lipid metabolism, inflammation, fibrogenesis, HSC activation, and apoptosis [393,394]. Elafibranor
has also shown efficiency in a rapid diet-induced NASH model with additional cyclodextrin in
drinking water, which induces NASH in 3 weeks without obesity [395]. Elafibranor also prevents
and reverses CCl4-induced liver fibrosis and inflammation in rats [392]. Interestingly, in alcoholic
steatohepatitis, elafibranor reduces adipose tissue autophagy dysfunction, leading to hepatoprotective
and anti-inflammatory effects in several organs, including the liver, intestines, and adipose tissue [396].

Few clinical studies have reported the impact of elafibranor in humans. Eight-week treatment
with elafibranor reduces fasting plasma TG levels and improves both hepatic and whole-body insulin
sensitivity in obese insulin-resistant patients. Elafibranor also improves liver enzyme levels, suggesting
beneficial effects on liver functions [397]. A phase 2 study examined the efficacy of elafibranor
treatment for 1 year in NASH patients. According to the updated definition of resolution for NASH,
elafibranor resolves NASH without fibrosis worsening, but only in patients with severe disease (NAS
> 4). Elafibranor is not efficient in patients with mild disease (NAS < 4) and fails to demonstrate a
beneficial effect on fibrosis [398]. In these human studies, elafibranor had a safety profile with no
specific adverse effects.
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The combination of its insulin-sensitizing and hepatoprotective effects makes elafibranor a good
candidate for treating NAFLD. However, no beneficial effects on fibrosis have been demonstrated. It is
currently being tested in a phase 3 clinical trial in NASH patients with fibrosis (NAS > 4).

4.3.3. PPARα and γ Dual Agonist Saroglitazar

Glitazars are dual PPARα/γ agonists developed to combine the beneficial effects of PPARα on
plasma TGs and lipoproteins and PPARγ on insulin resistance. Most of these agonists have been
discontinued due to adverse effects, but saroglitazar (Lipaglyn) was clinically approved in India in
2013 to treat diabetic dyslipidemia [399]. In vitro, saroglitazar has predominant activity on PPARα
and moderate activity on PPARγ, reducing the adverse effects associated with PPARγ activation by
pioglitazone [400].

In a diet-induced mouse model of NASH (choline-deficient, l-amino acid-defined, HFD),
saroglitazar leads to a greater reduction in NAS than the PPARα agonist fenofibrate and PPARγ
agonist pioglitazone. Histological examination of the liver tissue demonstrated a strong reduction
in steatosis and decreased hepatocyte ballooning and inflammation, but only a trend in reduced
fibrosis. Saroglitazar reduces hepatic expression of pro-inflammatory and pro-fibrotic genes. In vitro,
saroglitazar decreases lipid-mediated oxidative stress and HSC activation. In addition, saroglitazar
reduces CCl4-induced liver fibrosis in rats [401] and regulates adipose tissue homeostasis in mice [402].
In HFD-fed mice, saroglitazar improves serum TG levels and insulin resistance and reduces body
weight and white adipose tissue mass. Histological examination of the adipose tissue has shown
that saroglitazar reduces adipocyte hypertrophy by increasing the expression of thermogenic genes.
In addition, saroglitazar treatment increases M2 macrophages and decreases M1 macrophages in
adipose tissue, indicating that saroglitazar promotes an anti-inflammatory environment in adipose
tissue [402]. In a rapid rat model of NASH induced by high-fat emulsion and small doses of LPS,
saroglitazar improved adipocyte dysfunction through increased plasma adiponectin. In the liver,
saroglitazar induced a decrease in TLR4 signaling upon LPS administration, with reduced NF-κB, TLR4,
and TGFβ, which suggests a role of saroglitazar in response to gut endotoxins [403]. Saroglitazar also
reduces thioacetamide-induced liver fibrosis in rats and decreases leptin, TGF-β, and platelet-derived
growth factor (PDGF-BB) in the liver [404].

Several clinical studies have indicated that saroglitazar treatment in patients with diabetic
dyslipidemia results in improved lipid and glucose parameters, including a reduction in plasma TG
levels and fasting plasma glucose [405,406], and improves whole body insulin sensitivity in these
patients [407]. In a review summarizing 18 studies on the effect of saroglitazar in patients with diabetic
dyslipidemia, saroglitazar treatment was associated with a reduction in ALT levels and fatty liver in
NAFLD patients with diabetic dyslipidemia [408]. A phase 2 study is evaluating the safety and efficacy
of saroglitazar in patients with NASH. The primary endpoint is to assess the changes in NAS with
no worsening of fibrosis from baseline to week 24 of treatment. The 16-week efficacy of saroglitazar
in reducing serum ALT in NAFLD patients is also being tested in a phase 2 trial. Furthermore, two
phase 3 clinical trials are currently evaluating saroglitazar in NAFLD with an amelioration of the
fibrosis score as the primary outcome. The first study is investigating the efficacy of saroglitazar
compared to pioglitazone in NAFLD patients over a period of 24 weeks. The second study is comparing
the effect of combined saroglitazar and vitamin E treatment vs. vitamin E alone vs. saroglitazar
alone (NCT04193982). Based on all observations thus far, saroglitazar shows promise as a potential
NASH drug.

4.3.4. Pan-PPAR Agonist Lanifibranor

Lanifibranor (IVA337) is a moderately potent and well-balanced modulator of the three PPAR
isotypes and has a good safety profile. Compared to glitazones, lanifibranor has demonstrated
differences in co-regulator recruitment [409]. Treatment of db/db mice with lanifibranor induces
a dose-dependent decrease in circulating glucose and TG levels [409]. Lanifibranor has also been
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tested in mouse models of NASH [410,411]. In the MCD model, lanifibranor reduces steatosis and
hepatic TG levels, as well as inflammation. In foz/foz mice fed a HFD, lanifibranor attenuates steatosis,
inflammation, and hepatocyte ballooning. Hepatic gene expression analysis has shown increased
expression of genes involved in fatty acid beta-oxidation and decreased expression of pro-inflammatory
and pro-fibrotic genes. In addition, lanifibranor treatment improves metabolic parameters, such as
glucose intolerance, and increases plasma adiponectin levels [410]. Beneficial effects of lanifibranor
on NASH histology, including reduced fibrosis, were confirmed recently in a preclinical model of
NASH and fibrosis (choline-deficient amino acid-defined HFD mouse model). Interestingly, decreased
macrophage infiltration in the liver has been observed upon lanifibranor treatment, suggesting that
Kupffer cells may be important targets of lanifibranor to improve NAFLD. Similar results of NASH
histology were obtained in the Western diet model, together with a reduction in plasma TG levels [411].
Lanifibranor is also effective in reducing collagen deposition and increasing plasma adiponectin in mice
with CCl4-induced liver fibrosis [409,410]. In vitro results have demonstrated that lanifibranor inhibits
the proliferation and activation of HSCs, as well as the activation of hepatic macrophages [410,411].
The anti-inflammatory and anti-fibrotic effects of lanifibranor were also demonstrated in preclinical
mouse models of skin and pulmonary fibrosis [412,413].

Lanifibranor is currently undergoing phase 2 clinical trials in NAFLD. The first study is evaluating
the efficacy and the safety of two doses of lanifibranor for 24 weeks vs. placebo in adult NASH patients
with liver steatosis and moderate to severe necroinflammation without cirrhosis. The second study is
designed to study lanifibranor in patients with T2DM and NAFLD.

The therapeutic potential of the novel PPAR agonists discussed above appears to be
well-established in experimental models. However, none of the current preclinical models of NASH
reproduce all features of human NASH [414]. In addition, differences exist between humans and
mice regarding the PPARs. For example, hepatic PPARα expression is higher in rodents than in
humans, which may explain why PPARα activation has stronger beneficial effects in rodent NAFLD.
In this respect, “humanized” preclinical strategies, for example using transgenic mice expressing
human PPARs or mice with a humanized liver may represent a relevant strategy for the evaluation of
PPAR agonists [342]. In addition, a better understanding of the molecular mechanisms, especially the
transcriptional coregulator network, underlying PPAR-dependent transcription in different species,
tissues and diseases may be needed for designing more-specific and more-potent PPAR ligands [415].
Finally, PPAR functions are also regulated at the level of posttranslational modifications that influence
protein stability and localization, ligand binding, and co-factor interaction. Understanding the role of
these posttranslational modifications and their association with diseases might help in the development
of novel molecules that specifically inhibit or promote such modifications [232].

In a relatively near future, the results of phase 2 and phase 3 clinical trials will determine the
therapeutic potential of these novel compounds in NAFLD. Given the role of PPARs in multiple
pathways involved in NAFLD and the beneficial effects of each single isotype agonist, we consider
combined activation of several PPARs as a promising approach for NAFLD treatment because of
potential optimization of the benefits and reduction of the side effects (Figure 5).
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by the PPARα agonist pemafibrate, the dual PPARα and β/δ agonist elafibranor, the dual PPARα
and γ agonist saroglitazar, and the pan-PPAR agonist lanifibranor in preclinical models of NAFLD.
Through the modulation of gene expression, these novel compounds regulate several hepatic and
extrahepatic pathways, including lipid and glucose metabolism, inflammation, and hepatic stellate cell
activation, which are all key processes involved in NAFLD. Abbreviations: BAT, brown adipose tissue;
WAT, white adipose tissue; Pdk4, pyruvate dehydrogenase kinase 4; Lpl, lipoprotein lipase; ApoC3,
apolipoprotein C3; Vldlr, very-low density lipoprotein receptor; Cpt, carnitine palmitoyltransferase;
Slc27a1, solute carrier family 27 member 1; Fabp, fatty acid binding protein; Cyp4a, cytochrome P450
family 4 subfamily A; Ehhadh, enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase; Acad,
acyl-CoA dehydrogenase; Hmgcs2, 3-hydroxy-3-methylglutaryl-CoA synthase 2; Acot1, acyl-CoA
thioesterase 1; Fgf21, fibroblast growth factor 21; Nrf1, nuclear respiratory factor 1; Sod1, superoxide
dismutase 1; Il1β, interleukin-1 beta; Il6, interleukin-6; Tnfα, tumor necrosis factor-alpha; Ccr2, C-C
motif chemokine receptor 2; Tlr4, Toll-like receptor 4; Mcp1, monocyte chemoattractant protein 1;
Ccl5, C-C motif chemokine ligand 5; Nlrp3, NLR family pyrin domain containing 3; Nfκb, nuclear
factor kappa B subunit 1; Tgfβ, transforming growth factor beta; Col1a1, collagen type I alpha 1 chain;
Timp1, metalloproteinase inhibitor 1; α-Sma, alpha-smooth muscle actin; Ucp1, uncoupling protein
1; Cidea, cell death inducing DFFA like effector A; Elovl3, elongation of very long chain fatty acids
protein 3; Acox, peroxisomal acyl-coenzyme A oxidase 1; Abca1, ATP binding cassette subfamily A
member 1; Npc1l1, Niemann-Pick C1-like protein 1; Pgc1α, peroxisome proliferator-activated receptor
gamma coactivator 1-alpha; Ifnγ, interferon gamma; Il4, interleukin-4; Il10, interleukin-10; Stat6, signal
transducer and activator of transcription 6.

5. Concluding Remarks

The prevalence of NAFLD is dramatically increasing in developed countries, but no approved
therapy is available. Most of the current pharmacological strategies target comorbidities, such as
the manifestations of metabolic syndrome. Vitamin E and pioglitazone have beneficial effects on
steatosis and inflammation, but can induce adverse effects in some patients. In addition, none of
the currently used medications improve fibrosis, which is the strongest indicator of mortality in
NAFLD. As highlighted in this review, the pathogenesis of NAFLD is multifactorial, which represents
both a challenge and an opportunity for developing intervention strategies. As regulators of gene
expression, the three PPARs impact, in some way, all currently known functions associated with
NAFLD pathogenesis. The PPARs have emerged as crucial regulators of the whole organism and
cellular metabolic functions. As links between lipid signaling and inflammation, they also fine-tune
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the crosstalk between metabolic processes and the innate immune system. All of these attributes make
them relevant targets for treating NAFLD. Different approaches may be successful. One approach
would be to selectively modify the pharmacological characteristics of agonists, as has been done with
the PPARα selective modulator pemafibrate, to ameliorate the profile of beneficial effects with respect
to issues associated with fibrate treatment. Developing molecules simultaneously targeting two or all
three PPAR isotypes is another promising approach for NAFLD treatment that allows targeting of the
multifaceted roles of PPARs. The dual agonists—elafibranor and saroglitazar—and the pan agonist
lanifibranor have demonstrated many beneficial effects on liver histology with minimal adverse effects.
Some of these novel agonists are currently in phase 3 clinical trials and appear promising for NASH
treatment. As discussed herein, PPARs not only impact liver, but also other organs. In particular,
they can have both positive and negative effects on heart physiology, pathology and injury [416,417].
Therefore, it is of importance that the new potential NASH drugs are evaluated for potential beneficial
as well as deleterious effects on cardiac functions. In a post hoc analysis, elafibranor resolved NASH
without fibrosis worsening and did not cause cardiac events [398]. Saroglitazar showed a potential
to lower the cardiovascular risk in T2DM patients [418]. Pemafibrate is currently being tested for its
effect on reducing cardiovascular events in diabetic patients with high TG levels in the PROMINENT
study (NCT03071692) [390].

In parallel with the study of these novel promising agonists, it will be important to increase
knowledge of the liver-specific functions of the PPAR isotypes, particularly in hepatocytes, Kupffer
cells, and HSCs, and deepen our understanding of their roles in inflammation and fibrosis. Drugs that
combine PPAR activation and other PPAR-independent pathways, which converge in ameliorating the
manifestations of NAFLD, are also worth exploring. Interestingly, telmisartan, an angiotensin receptor
blocker, is also a PPARα/γ dual agonist and worth exploring in the treatment of NAFLD. Inhibition of
angiotensin converting enzyme (ACE) and angiotensin II type 1 receptor (AT1) improves liver fibrosis
by keeping HSCs in a quiescent state through suppression of TGF-β [419]. These effects, combined
with those known of PPARα/γ activation, deserve further investigation. Given the importance of
circadian clock proteins in coordinating energy metabolism, the clock regulation of drug targets should
also be taken into account in the development of pharmaceuticals for the treatment of NAFLD [420].
Despite recent remarkable and fast progress in the field, there are still many challenges imposed by the
complex physiopathology underlying the development and progression of NAFLD, not least of all its
heterogeneity, which is not fully understood. For example, why some patients will progress to advanced
stages and others will not is not clear, and NAFLD in lean patients is also not completely understood.
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