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Abstract

Minimum cost spanning tree problems have been widely studied in operation research
and economic literature. Multi-criteria optimal spanning trees provide a more realistic
representation of di↵erent actual problems. Once an optimal tree is obtained, how
to allocate its cost among the agents defines a situation quite di↵erent from what we
have in the minimum cost spanning tree problems. In this paper, we analyze a multi-
criteria problem where the objective is to connect a group of agents to a source with
the highest possible quality at the cheapest cost. We compute optimal networks and
propose cost allocations for the total cost of the project. We analyze properties of the
proposed solution; in particular, we focus on coalitional stability (core selection), a
central concern in the literature on minimum cost spanning tree problems.

Keywords: Minimum cost spanning tree, Multi-criteria decision making, Quality,
Cost sharing
JEL classification: C71, D63, D71.

1. Introduction

The minimum cost spanning tree problem (mcstp) analyzes situations in which some
individuals, who are located at di↵erent places, want to be connected to a source in
order to obtain a good or a service. There are some known fixed costs of linking any two
individuals, and of linking each individual to the source. These problems are used to
analyze di↵erent real-life issues, from telephone and cable TV, to water supply networks.
There are several methods to obtain a way of connecting all agents to the source so that
the total cost of the selected network is minimum (Boruvka (1926), Kruskal (1956), Prim
(1957), for instance). The allocation of this cost among the individuals participating
on the network, once the minimum cost spanning tree is obtained, is an issue deeply
studied in the literature, where di↵erent solutions have been proposed: for instance,
Bird rule (Bird, 1976), Kar (Kar, 2002), Folk (Feltkamp et al., 1994; Bergantiños and
Vidal-Puga, 2007), Cycle-complete (Trudeau, 2012), etc.
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A more realistic situation appears when considering that there are several attributes
defining the connection network (cost for connection, maintenance cost, quality of con-
nection...) that can be represented by multi-criteria spanning tree problems. These
multiple objectives usually conflict with each other, so the solutions to this kind of
problems are selected from the Pareto (non-dominated) alternatives. The calculation
of this Pareto set is not easy because, in general, it is an NP-hard problem. Usual solu-
tions consist of simplifying the multiple objectives into a single objective, or prioritizing
the objectives in a specific order.

The present paper deals with a particular multi-criteria spanning tree problem with
two objectives. The model is inspired in the following example about a water supply
network. Water must be supplied to all the individuals in a society from a source,
and due to the physical characteristics of the possible connections between individuals,
these connections may have di↵erent costs and di↵erent qualities. We consider only
two levels of quality (low and high). Low quality connection entails that the water
passing through this connection gets some impurities (as dust, sand, clay . . . ). An
agent obtains impure water whenever some connection in his path to the source has
low quality. On the contrary, an agent will obtain pure water only if all the connections
from the source to him are of high quality. In this situation, we consider that the
decision maker’s objective is to connect all the individuals to the source providing high
quality connection to the greatest number of agents at the minimum possible cost.

Then, the first question to solve is which network should be implemented. We show
that we can obtain an optimal spanning tree for this problem by using an adaptation of
Prim’s algorithm. Once the collective optimal spanning tree is obtained, an important
question is how to allocate the total cost among the agents in the network, because this
cost sharing should depend not only on the connection costs, but also on the quality
that each individual obtains.

To find a fair and in some sense stable division of the optimal cost among the
agents involved in a minimum cost spanning tree problem has been extensively studied
by using cooperative games. Since cooperation is necessary, the literature singles out
stand alone core stability as the key property of any allocation rule: in order for the
agents to be willing to participate, no coalition of agents should be charged more than
the cheapest cost of connecting all of them to the source, independently of agents
outside the coalition. In our context, agents may be willing to pay more if they can
improve in quality, so the stand alone core stability needs to be redefined. We propose a
cost allocation of the optimal cost extending the Folk solution from mcstp to our more
general context. We prove that our extension is a core selection that fulfills appealing
properties on responsiveness. In addition, we prove that the agents not obtaining high
quality in the implemented network are not harmed by the additional cost due to other
agents getting high quality.
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2. Problem description

Consider a complete undirected graph G “ pN!, Eq, where N “ t1, 2, . . . , nu is a
finite set of nodes representing individuals who want to be connected to a source !.
For any subset of agents S Ñ N , S! denotes the set of agents in S and the source, i.e.,
S! “ S Y t!u. On the other hand, E “ teij “ pi, jq : i, j “ !, 1, ..., n; i ‰ ju is a finite
set of edges that connect the individuals and the source; if i ‰ !, j ‰ !, eij “ eji is the
edge joining individuals i and j, and ei! “ e!i is the edge joining individual i to the
source !.

A spanning tree over N! is an undirected graph with no cycles that connects all
elements of N!. We denote by SpN!q the set of all the spanning trees over N!. In a
spanning tree each agent is connected to the source !. Moreover, for each spanning tree
p, there is a unique path from any agent i to the source. We can identify a spanning tree
with a predecessor map p : N Ñ N! so that j “ ppiq is the agent (or the source) to whom
i connects in his way toward the source. This map p defines the edges epi “ pi, ppiqq

in the spanning tree. The path from any agent i to the source is given by the edges
pi, ppiqq, pppiq, p2piqq, . . . , pptpiq´1

piq, ptpiqpiq “ !q, for some tpiq P N. We use the notation
p0piq “ i.

Each edge in the model has a non-negative cost and a quality level. We consider
each edge has only two possible quality levels: low quality represented by 0, and high
quality represented by 1. For each pair pi, jq P N!, i ‰ j, cij P R` and qij P t0, 1u

represent, respectively, the cost and the quality of the edge eij. For each i P N! we
define cii “ qii “ 0 and then C “ rcijspn`1qˆpn`1q and Q “ rqijspn`1qˆpn`1q are symmetric
matrices representing, respectively, the cost and quality of each connection in the graph.
A quality minimum cost spanning tree problem (qmcstp) is represented by the
triplet pN!, C,Qq. We denote by N q

n the set of all the quality minimum cost spanning
tree problems with n individuals and the described characteristics.

The cost of building a spanning tree p is the sum of the cost of the edges in this
tree. The first algorithm to find the spanning tree of minimum cost was proposed by
Boruvka (1926) as a method of building an e�cient electricity network for Moravia
(Hungary). Other popular algorithms to find such a tree are those of Kruskal (1956)
and Prim (1957). In this work we will use Prim’s algorithm. The achieved solution,
the minimum cost spanning tree, may not be unique. We denote by m (m P SpN!q) a
tree with minimum cost and by Cpmq its cost. That is,

Cpmq “

nÿ

i“1

cimpiq § Cppq “

nÿ

i“1

cippiq for all spanning tree p P SpN!q

When necessary, we will make explicit the dependence of this cost function on the cost
matrix.

For any spanning tree, the quality each agent obtains depends on all the connections
between the individual and the source; i.e., on the unique path from agent i to the
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source. We suppose that if in this path there is an edge of low quality then the individual
has a connection with the source of low quality (if water acquires impurities somewhere
along the path, the agent will get impure water). In this way, for each individual i, and
each spanning tree p P SpN!q

Qi
ppq “

tpiqπ

r“0

qprpiqpr`1piq

denotes the quality that individual i gets, Qi
ppq P t0, 1u . Then, Qppq “

nÿ

i“1

Qi
p represents

the number of agents obtaining high quality with the spanning tree p, and we use this
value as a measure of the quality of the spanning tree. When necessary, we will make
explicit the dependence of these quality functions on the quality matrix.

The objective is to implement a spanning tree with the highest possible quality at
the lowest cost. We call such tree a max-quality optimal tree. Note that a traditional
mcstp can be considered a particular case of our problem in which the quality matrix
has all the entries of the same value; for instance, pN!, Cq is the same problem as
pN!, C, r0sq.

Definition 1. A max-quality optimal tree in a qmcstp pN!, C,Qq is a spanning

tree Mq P SpN!q satisfying:

a) QpMqq • Qppq for all spanning tree p P SpN!q .

b) CpMqq § Cprq for all spanning tree r P SpN!q such that Qprq “ QpMqq.

3. Max-quality optimal trees

In order to build a max-quality optimal tree, first note that quality requirements
originates a partition into the set of agents: those who can achieve high quality, Qi

p “ 1,
for some spanning tree p P SpN!q, and the rest of the agents that can only receive low
quality independently of the implemented spanning tree. We will denote these sets by
N1 and N0, respectively

N1
“
 
i P N : Qi

p “ 1 for some p P SpN!q
(

N0
“
 
i P N : Qi

p “ 0 for all p P SpN!q
(

N “ N1
YN0, N1

XN0
“ H. Obviously, i P N1 does not imply Qi

p “ 1 for any spanning
tree p P SpN!q. The sets N0 and N1 depend on the quality matrix Q although we do
not specify this dependence unless it is necessary. We will use the notation S0

“ SXN0

and S1
“ S X N1, for any subset of individuals S Ñ N .

In order to share the cost of a selected spanning tree, each agent’s allocation should
depend on the quality he receives. In particular, an important problem will arise if an
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agent who is able to receive high quality, i P N1, finally receives low quality: how could
this agent be compensated for this lack of quality? The following result proves that
this problem can not happen in our model because for any max-quality optimal tree all
the individuals who can obtain high quality will obtain it.

Proposition 1. Let Mq P SpN!q be a max-quality optimal tree in pN!, C,Qq. Then,

QpMqq “ |N1
|.

Proof. Let i P N1 and let p P SpN!q be a spanning tree such that Qi
ppq “ 1, and

suppose Qi
pMqq “ 0. Then Qpkpiq

ppq “ 1, for k “ 0, 1, . . . , tppiq, ptppiq
piq “ !. Let us

consider the set of agents T “
 
i, ppiq, p2piq, . . . , ptppiq´1

piq
(
, the chain which connects

i to the source with the tree p, and let us define the new tree s P SpN!q as

spjq “

$
&

%

ppjq if j P T

Mqpjq if j R T

First note that s is a spanning tree, since agents in T are connected to the source via

p, and agents outside T either connect to the source via Mq, or connect to some agent
in T already connected to the source.

Moreover, for all k and j, qskpjq sk`1pjq • qMk
q pjq Mk`1

q pjq so

1. For all j ‰ i, Qj
psq “

tspjq´1π

k“0

qskpjq sk`1pjq •

tMq pjq´1π

k“0

qMk
q pjq Mk`1

q pjq “ Qj
pMqq

2. Qi
psq “ 1 ° Qi

pMqq “ 0.

Then, Qpsq “

ÿ

jPN
Qj

s °

ÿ

jPN
Qj

Mq
“ QpMqq, a contradiction. Then Qi

pMqq “ 1.

Obviously, the existence of high quality connections between individuals in N0 and
N1 is not possible because in case they existed, the individual in N0 could connect to
an individual in N1 obtaining a high quality connection throughout him.

Prim’s algorithm (Prim, 1957) is a well-known method to find a minimum cost
spanning tree in a mcstp pN!, Cq. This method has n steps, as much as the number of
individuals in the network. First, it connects to the source the agent i with smallest
cost to the source, ci! § cj!, for all j P N. In case that more than one agent fulfills this
condition, any of them can be selected. In the second step, an agent in N r tiu with
the smallest cost either to the source or to agent i, who is already connected, is selected
and this connection is used. The process continues until all agents are connected, at
each step connecting an agent still not connected to a connected agent or to the source.
In general, several spanning trees with the same minimum cost may exist but, in case
all the connection costs of the problem are di↵erent, there is only one minimum cost
spanning tree.
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Now, we adapt this algorithm for quality minimum spanning tree problems. We
follow the next process:

Step 1 Identify the agents in N1 (and then agents in N0
“ N rN1 are also identified).

Step 2 Modify the connection costs among individuals in N! in the following way:

c`
ij “

$
&

%

`8 if i, j P N1
! and qij “ 0

cij otherwise

We call C` the e↵ective cost matrix.
Step 3 Apply Prim’s algorithm to find a minimum cost spanning tree in the problem`

N1
!, C

`
|N1

!

˘
. In this way, all individuals in N1 are already connected.

Step 4 Choose the agent in N0 with the minimum cost connection to N1
! and connect

this agent with this cheapest connection.
Step 5 Continue using Prim’s algorithm in order to connect the remaining agents in N0.

Proposition 2. The described algorithm provides a max-quality optimal spanning tree

for any qmstp pN!, C,Qq.

Proof. Let pN!, C,Qq be a qmcstp and apply the modified Prim’s algorithm to obtain
a tree p˚. From the way p˚ is obtained (by applying Prim’s algorithm in two mcst

subproblems), it is clear that the result is a spanning tree and that all agents are
connected to the source. Moreover, since the costs of the low quality edges among
individuals in N1 have been modified to `8, all the agents in N1 are connected with
high quality connections in p˚, so this is a maximum quality spanning tree. In order to
prove the optimality in costs (there is not a maximum quality tree with a strictly lower
cost), suppose a spanning tree r such that Qprq “ Qpp˚

q. Since all agents in N1 (and
only these agents) are connected with high quality to the source, the low quality edges
for agents in N1 are not used, so r|N1 is a spanning tree in the problem pN1, C`

|N1
!
q,

so Cpr|N1q • Cpp˚
|N1q. Now, the connections used in r by agents i P N0 are available

when applying the modified Prim’s algorithm, so Cprq • Cpp˚
q and p˚ is a max-quality

optimal tree.

The first step in the previous algorithm is the identification of the agents in N1 (and
consequently in N0). It is not di�cult to identify agents in those sets by considering
the quality matrix Q as the adjacent matrix of a binary relation using any e�cient al-
gorithm for computing its transitive closure (Q8, the smallest transitive binary relation
containing Q). Existing algorithms to compute Q8 can be classified into two categories:
matrix multiplication based algorithms (see for instance Sankowski and Mucha (2008))
and graph traversal based algorithms (see for instance Simon (1988)). The agents in
N1 are those which can be reached from the source with the transitive closure. Then,
if we know the matrix Q8, its first row will have entries with value 1 for the agents in
N1 and entries with value 0 for those in N0, so Q8 characterizes the individuals that
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can obtain high quality.1 The following example with five agents illustrates how the
modified Prim’s algorithm works.

Example 1. Let us consider the qmcstp with n “ 5 individuals depicted in the following

figure: the vector in each edge denotes, respectively, the cost and quality of such edge

(the non depicted edges have a cost cij “ 30 units, and low quality, qij “ 0).

4

1 3

!

2

5

p2, 0q

p20, 1q

p3, 0q

p2, 0q

p4, 0q

p10, 0q

p5, 1q p4, 1q

p1, 1q

p7, 0q

It is easy to observe that only agents 3, 4 and 5 are able to receive high quality and

N1
“ t1, 2, 3u, N0

“ t4, 5u. Note that the matrix of the transitive closure of Q is

Q8 “

¨

˚̊
˚̊
˚̊
˝

1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1

˛

‹‹‹‹‹‹‚

In order to compute the max-quality optimal tree, we first connect agents in N1
:

1 3

!

2

8

20

8

5 4

1 3

!

2

20

5 4

1Note that we consider N! ordered as t!, 1, 2, . . . , nu, so the first row in Q corresponds to the
quality levels of the connections of agents in N with the source, q!i.
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Now, we connect the individual in N0
with minimum cost to those in N1

! and follow

Prim’s algorithm with the original costs. The final configuration of the (unique) max-

quality optimal tree is

4

1 3

!

2

5

p20, 1q

p3, 0q

p5, 1q p4, 1q

p1, 1q

Therefore, the max-quality optimal tree has a cost CpMqq “ 33 units and agents 1, 2
and 3 receive high quality, QpMqq “ 3.

Without considering quality, the unique minimum cost spanning tree m of the problem

is: mp2q “ !, mp3q “ !, mp4q “ !, mp5q “ 4, mp1q “ 2. The minimal cost is

Cpmq “ 13 and the quality of this tree is Qpmq “ 0. Therefore, obtaining high quality

for the agents in N1
supposes an extra cost of 20 units.

4. Sharing the cost of the max-quality optimal spanning trees

Once a particular spanning tree is selected, an important issue is how to allocate its
cost among the agents. A sharing rule (or simply, a solution) is a function ↵ : N q

n Ñ Rn
`

that proposes for any problem pN!, C,Qq an allocation for the cost of any max-quality
optimal tree Mp P SpN!q

↵pN!, C,Qq “ p↵1,↵2, . . . ,↵nq P Rn
`, such that

nÿ

i“1

↵i “ CpMpq.

Remark 1. We assume that a sharing rule is non-negative, although this is not a gen-

eral assumption in the literature. For instance, Kar or Cycle-complete solutions may

propose negative allocations for some agents. Nevertheless, as pointed out in Bogo-

molnaia and Moulin (2010), non-negativity is considered “virtually ubiquitous in the

literature on fair cost sharing.”
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In this kind of situations cooperation is necessary in order to implement the e�-
cient network. Then, a usual requirement is that the sharing of the cost of a tree is
both individually rational (no one pays more than his own connection to the source)
and collectively stable (no coalition of agents should be charged more than the cost of

connecting all of them to the source). In order to define these concepts, a monotonic
cooperative game associated to a mcstp pN!, Cq is introduced by defining the charac-
teristic function for any S Ñ N :

vpS,Cq “ min
TÑN

tCpmpT!, C|T qq : S Ñ T Ñ Nu

where CpmpT!, C|T qq denotes the cost of the minimum cost spanning tree m in the
problem pT!, C|T q. The above definition allows members of a coalition to freely connect
throughout individuals outside their coalition in order to obtain the cheapest way of
connecting the source. In this case, the cooperative game is monotonic. This situation
is known as non-property rights approach and it is related with the non-negativity of
the cost allocation (see, for instance, Bogomolnaia and Moulin (2010) and Trudeau
(2013)).We follow this non-property rights approach.

In our context, however, individuals may be willing to pay more than their minimum
cost, if the quality they receive is improved. That is, the distribution of the cost should
depend not only on the cost of the connections, but also on the quality that each agent
could obtain and the quality that the individual actually obtains with the implemented
spanning tree. As we are maximizing the quality that the spanning tree provides,
a modification of the characteristic function defining the cooperative game is needed
by only considering spanning trees ensuring maximum quality. Then, given a qmcstp

pN!, C,Qq, for each coalition S Ñ N , the quality characteristic function vQ is defined
by

vQpS,C,Qq “ min
TÑN

tCpMqpT!, C|T , Q|T qq : S Ñ T Ñ Nu

where CpMqpT!, C|T , Q|T qq denotes the cost of the max-quality optimal tree in the
problem pT!, C|T , Q|T q. Unless necessary, we will simply use vQpSq. Now, the quality-

core of a qmcstp pN!, C,Qq is defined in the usual way: those allocations of the total
cost such that no individual, nor group of individuals, has incentives to quit and take
on the project alone, since they can not improve in quality or reduce their cost.

Definition 2. The Q-core associated to a quality minimum spanning tree problem

pN!, C,Qq is defined by:

copN!, C,Qq “

#
↵ P Rn

` :
ÿ

iPS
↵i § vQpSq, @S Ñ N,

ÿ

iPN
↵i “ vQpNq “ CpMqq

+

where CpMqq denotes the cost of a max-quality optimal tree in the problem pN!, C,Qq.
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Other compelling properties of a solution, besides to be in the core, are: Cost Mono-
tonicity (the cost share should weakly increase if some of the direct connecting costs
to other users or to the source increase), Continuity (cost shares should be continuous
functions of the connecting costs) and Ranking (an agent more expensive to connect
than another agent must not pay less). Next we define these properties, in the context
of quality minimum cost spanning trees. On the other hand, we introduce proper-
ties concerning quality requirements: Quality Consistency, Quality Monotonicity and
Quality Ranking.

• Continuity (CO): The sharing rule ↵pN!, C,Qq is a continuous function of C.

• Strong Cost Monotonicity (SCM): For any pair of qmcstp with the same qual-
ity matrix, pN!, C,Qq, pN!, C 1, Qq, C § C 1 implies ↵ipN!, C,Qq § ↵ipN!, C 1, Qq,
for all i P N.2

• Cost Ranking (CRKG): For any qmcstp pN!, C,Qq

If i, j P N0, cik § cjk for all k P N! implies ↵ipN!, C,Qq § ↵jpN!, C,Qq.

If i, j P N1, cik § cjk for all k P N! implies ↵ipN!, C,Qq § ↵jpN!, C,Qq.

• Quality Consistency (QC): For any qmcstp pN!, C,Qq, if i P N0
pQq, then

↵ipN!, C,Qq § ↵ipN!, C, r0sq.

QC asks that the additional cost for obtaining maximum quality will not be
charged on the agents that can not get high quality.

• Quality Mononotonicity (QM): For any pair of qmcstp with the same cost
matrix, pN!, C,Qq, pN!, C,Q1

q, such that matrices Q and Q1 coincide except
in qij “ 0 † q1

ij “ 1 and i P N1
pQ1

q but i R N1
pQq, then ↵ipN!, C,Qq §

↵ipN!, C,Q1
q.

QM asks that whenever the quality of a connection is improved and an agent
switch to receive high quality, this agent will not pay less in the new optimal
spanning tree.

• Quality Ranking (QRKG): For any qmcstp pN!, C,Qq

If i P N0, j P N1, cik “ cjk for all k P N! implies ↵ipN!, C,Qq § ↵jpN!, C,Qq.

QRKG asks that when two agents have identical connection costs but di↵erent
possible quality levels, then the agent receiving high quality will not pay less than
the one with low quality.

2This property implies the usual cost monotonicity condition (Bergantiños and Vidal-Puga, 2007):
For any pair of qmcstp with the same quality matrix, pN!, C,Qq and pN!, C 1, Qq such that matrices
C and C 1 coincide except in cik † c1

ik for some i P N, k P N!, then ↵ipN!, C,Qq § ↵ipN!, C 1, Qq.
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As we have mentioned, in order to allocate the optimal cost of the network among the
agents, we are interested in allocations within the Q-core, so that no subset of agents has
incentives to give up the grand coalition in order to do the project independently since
they can not improve in quality or reduce their cost. Then the non-emptiness of the Q-
core is a crucial issue. For minimum cost spanning tree problems, Bird (1976) proposed
an intuitive solution concept that always belongs to the core and, moreover, is easy to
compute whenever the minimum cost spanning tree is unique. This solution essentially
proposes that each agent pays the connection he directly uses in the optimal tree and
can be extended to quality minimum spanning tree problems in a straightforward way.

Definition 3. Given a qmcstp pN!, C,Qq

1) If there is just one max-quality optimal tree, Mq P SpN!q, the Bird solution
proposes the allocation:

BipN!, C,Qq “ ci Mqpiq

that is, each agent pays for the connection he directly uses.

2) If there are several max-quality optimal trees, M1
q , M

2
q , . . . , M

k
q , then the Bird

solution proposes the allocation:

BipN!, C,Qq “
1

k

kÿ

t“1

ci M t
qpiq

that is, the arithmetic average of the allocations corresponding to each max-quality

optimal tree.

Next result shows that, as in the classical minimum cost spanning tree problem, the
adaptation of Bird solution always belongs to the Q-core, showing that the Q-core is
always a non-empty set.

Proposition 3. The Bird solution of a quality minimum cost spanning tree problem

is in the Q-core of the associated monotonic cooperative game. Then, for any qmcstp

pN!, C,Qq its Q-core is a non-empty set.

Proof. First consider a max-quality optimal tree M˚
q pN!, C,Qq, and we allocate to

each agent i P N the cost of the connection he uses directly in his way to the source,
B˚

i “ ci Mq̊ piq. If we prove that this allocation is in the Q-core, as it is a convex set, the
arithmetic average defining Bird solution (a particular convex combination) will lie in
the Q-core.

Suppose the result is not true; then, there is S Ñ N , and T Ö S such that
ÿ

iPS
B˚

i ° vQpS,C,Qq “ C pMqpT!, C|T , Q|T qq
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then, ÿ

iPT
B˚

i “

ÿ

iPT
ci Mq̊ piq ° vQpT,C,Qq “ C pMqpT!, C|T , Q|T qq .

By following the argument in Granot and Huberman (1984), departing from the max-
quality optimal tree in T , MqpT!, C|T , Q|T q, we can add edges from M˚

q pN!, C,Qq

joining agents outside T so that the cost of the max-quality tree so obtained is strictly
lower than the one in the max-quality optimal tree M˚

q pN!, C,Qq, and the quality
remains unchanged. But this fact contradicts the optimality of M˚

q pN!, C,Qq.

As Bird solution for mcstp is a particular case of our extension, BpN!, Cq “

BpN!, C, r0sq, we know that this solution is little responsive to changes in costs, proposes
extreme points in the core and fails to fulfill continuity and monotonicity properties. In
addition, the Bird extension may have unwanted behavior in this context. Specifically,
as shown in the following example, this solution can allocate to an agent in N0 a higher
payment than he would pay in the mcstp even though he does not improve in quality;
that is, it violates Quality Consistency.

Example 2. Let N “ t1, 2, 3u the set of agents in the following qmcstp

2

1

3

!
p3, 0q

p2, 0q

p10, 0q

p1, 0q

p10, 0q

p4, 1q

The minimum cost spanning tree and the max-quality optimal tree in this problem

are, respectively,
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2

1

3

!
p3, 0q

p2, 0q

p1, 0q

Cpmq “ 6 2

1

3

!p2, 0q

p1, 0q

p4, 1q

CpMqq “ 7

The Bird solution in the mcstp proposes the allocation B “ p3, 1, 2q, whereas in the

quality problem proposes Bq
“ p1, 2, 4q. Although agent 3, the one that obtains high

quality, pays for the extra cost, agent 2 is allocated a greater amount in the quality

problem even though he does not get high quality.

4.1. Extending the Folk solution

In order to obtain a Q-core allocation with better properties, we are going to con-
sider the extension of a solution that was first suggested for mcstp by Feltkamp et al.
(1994) and independently rediscovered by Bergantiños and Vidal-Puga (2007) (we fol-
low Bogomolnaia and Moulin (2010) and call it the Folk solution). This solution is
based in the concept of the irreducible cost matrix, introduced by Bird (1976), that
reduces the cost of each edge as much as possible, with the constraint to leave the total
optimal cost of the project unchanged.

To extend the concept of irreducible cost matrix to quality minimum cost spanning
tree problems, we use the e↵ective cost matrix C` introduced in the modified Prim’s al-
gorithm. It must be noticed that the optimal cost of the max-quality optimal tree in the
problems pN,C`, Qq and pN,C,Qq is the same and then vQpN,C`, Qq “ vQpN,C,Qq.

Definition 4. Given a qmcstp pN!, C,Qq, the q-irreducible cost matrix is defined as

the smallest
3
matrix C˚

such that C˚
§ C`

and vQpN,C˚, Q8q “ vQpN,C,Qq.

The following method provides a way to calculate the q-irreducible cost matrix:

Step 1 Identify the agents in N1 (and then agents in N0
“ N rN1 are also identified).

Step 2 Find a minimum cost spanning tree m1 in the problem
`
N1

!, C
`

|N1
!

˘
.

Step 3 For all i, j P N1
! define the q-irreducible cost as:

c˚
ij “ max

pk,lqPm1pi,jq

 
c`
kl

(
m1pi, jq : unique path in m1 from i to j

3The smallest in the sense that for any C 1 such that C 1 § C` and vQpN,C 1, Q8q “ vQpN,C,Qq
we have C˚ § C 1.

13



Step 4 Define the connection cost among any i P N0 and ! in the following way:

c``
i! “ min

 
cik : k P N1

!

(

and maintain the cost among individuals in N0, c``
ij “ cij, for i, j P N0.

Step 5 Find a minimum cost spanning tree m2 in the problem pN0
!, C

``
q.

Step 6 For all i, j P N0
! define the q-irreducible cost as:

c˚
ij “ max

pk,lqPm2pi,jq
tcklu m2pi, jq : unique path in m2 from i to j

Step 7 For all i P N0 and j P N1 define the q-irreducible cost as:

c˚
ij “ c˚

i!

Proposition 4. The matrix C˚
constructed with the above process is the q-irreducible

cost matrix for the qmcstp pN!, C,Qq.

Proof. Given a mcstp pN!, Cq the irreducible cost matrix (see Bird (1976); Bergantiños
and Vidal-Puga (2007)) rC is:

rcij “ max
pk,lqPmpi,jq

tcklu mpi,jq : unique path in m from i to j

where m is any mcst of the problem pN!, Cq
4.

First, let us see that C˚
§ C`. By construction, for all i, j P N1

!, the matrix

C˚
|N1

!
“ ÄC`|N1

!
and then C˚

|N1
!

§ C`
|N1

!
. For all i, j P N0, the matrix C˚

|N0 “ ÇC``|N0

and then C˚
|N0 § C``

|N0 “ C`
|N0 . Finally, for all j P N1

!, i P N0, c˚
ij “ c˚

i! § c``
i! “

min tcik : k P N1
!u § cij “ c`

ij.

Obviously, vQpN,C˚, Q8q “ vQpN,C˚, Qq § vQpN,C`, Qq “ vQpN,C,Qq. In or-
der to see that the equality holds, suppose a max-quality optimal tree in the qmcstp

pN,C˚, Qq, M˚
q and a max-quality optimal tree for pN,C,Qq, Mq.

Then vQpN,C˚, Qq “ CpM˚
q , C

˚
q and vQpN,C,Qq “ CpMq, Cq. As for any connec-

tion in Mq, cij “ c˚
ij we have that CpM˚

q , C
˚
q § CpMq, C˚

q “ CpMq, Cq. In case that
CpM˚

q , C
˚
q † CpMq, Cq, there is i P N such that c˚

iMq̊ piq † ciMqpiq, but by the way C˚

has been constructed this is not possible. Then CpMq, Cq “ CpM˚
q , C

˚
q.

Finally, let us see that if we consider a cost matrix C 1 such that C 1
§ C` and

vQpN,C 1, Qq “ vQpN,C,Qq we have C˚
§ C 1. Suppose that c˚

ij ° c1
ij for some i, j P

4This notion of irreducible cost is independent of the selection of the minimum cost spanning tree
m. Matrix rC has the property that the cost of the mcst is the same in the problems pN!, Cq and
pN!, rCq.
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N!. If i, j P N1
! this fact contradicts C˚

|N1
!

“ ÄC`|N1
!
. If i, j P N0 this contradicts

C˚
|N0 “ ÇC``|N0 . If j P N1

!, i P N0, and c1
ij † c˚

ij “ min tcik : j P N1
!u § cij “ c`

ij, then
we can consider the max-quality optimal tree for the problem pN,C,Qq, Mq, that fulfills
vQpN,C`, Qq “ vQpN,C,Qq “ CpMq, C`

q. By changing in Mq the first connection of
individuals from N0 to individuals in N1 by pi, jq, we obtain that the new spanning
tree M 1

q has the same quality level and fulfills vQpN,C 1, Qq § CpM 1
q, C

1
q † CpMq, Cq “

vQpN,C,Qq, a contradiction.

Once the q-irreducible matrix is obtained, an irreducible quality minimum cost span-
ning tree problem can be defined by considering the transitive closure of Q. That is,
to any qmcst problem pN!, C,Qq we associate the q-irreducible problem pN!, C˚, Q8q.
Now, we define the q-Folk solution by using the Shapley value of the monotonic coop-
erative game defined by pN!, C˚, Q8q.

Definition 5. Given a qmcstp pN!, C,Qq the q-Folk solution allocates to each agent

i P N the amount

F q
i pN!, C,Qq “ ShipN, v˚Q

q i “ 1, 2, . . . , n

where v˚Q
is the quality cooperative game defined by the problem pN!, C˚, Q8q.

For short, sometimes we use the notation v˚Q
pSq “ vQ pS,C˚, Q8q. The following

result shows that the q-Folk proposal is in the Q-core. The proof is based on the fact
that v˚Q is a concave game and then the Shapley value is in the core of v˚Q, which is
included in the Q-core associated to the problem pN!, C,Qq because all the max-quality
optimal trees in pN!, C,Qq are spanning trees with the same quality for pN!, C˚, Q8q.

Proposition 5. The q-Folk solution of a qmcstp pN!, C,Qq is in the Q-core of the

associated monotonic cooperative game.

Proof. Let us see that the cooperative game v˚Q is concave.
By the way in which C˚ is computed, without lost of generality, we can consider

the individuals in N ordered in the following way (see, for instance, Bergantiños and
Vidal-Puga (2007)): N1

“
 
i11, i

1
2, ..., i

1
n1

(
, N0

“
 
i01, i

0
2, ..., i

0
n0

(
such that

M˚
q pi11q “ !,M˚

q pi1kq “ i1k´1 for all k, 1 † k § n1

M˚
q pi01q P N1

!,M
˚
q pi0kq “ i0k´1 for all k, 1 † k § n0

Then it is easy to check that if we consider S Ñ N and i R S:

• if i P N1 then v˚Q
pS Y tiuq ´ v˚Q

pSq “ min
jPS1

!

c˚
ij.

• if i P N0 then v˚Q
pS Y tiuq ´ v˚Q

pSq “ min
jPS0

!

c˚
ij.
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Then if S Ñ T Ñ N and i R T , for i P N1,

v˚Q
pS Y tiuq ´ v˚Q

pSq “ min
jPS1

!

c˚
ij • min

jPT 1
!

c˚
ij “ v˚Q

pT Y tiuq ´ v˚Q
pT q

In the case i P N0,

v˚Q
pS Y tiuq ´ v˚Q

pSq “ min
jPS0

!

c˚
ij • min

jPT 0
!

c˚
ij “ v˚Q

pT Y tiuq ´ v˚Q
pT q

So the cooperative game is concave and the Shapley value is in the core of v˚Q, which
is included in the Q-core.

Example 3. For the qmcstp in Example 1, the q-irreducible cost matrix is

C˚
“

¨

˚̊
˚̊
˚̊
˝

0 20 20 20 3 3
20 0 5 5 3 3
20 5 0 4 3 3
20 5 4 0 3 3
3 3 3 3 0 1
3 3 3 3 1 0

˛

‹‹‹‹‹‹‚

and the q-Folk solution is F q
“ p10, 9.5, 9.5, 2, 2q. Folk allocation for the mcstp (without

considering quality requirements) is F “ p5, 2, 2, 2, 2q. The three agents obtaining high

quality share the extra-cost.

5. Responsiveness of the q-Folk solution

In this section we show that the q-Folk solution keeps the properties of the Folk

solution and also satisfies the introduced quality properties.

Proposition 6. The q-Folk solution satisfies CO, SCM and CRKG.

Proof. The proof follows similar arguments as in the case of the classical mcstp (see
Bergantiños and Vidal-Puga (2007)).

1. The q-Folk solution satisfies CO:
For a fixed quality matrix Q, the q-Folk solution can be seen as the composition of

the following functions that are obviously continuous: g1pCq “ C`, g2pCq “ C˚ and
g3pCq “ v˚Q, g4pvq “ ShpN, vq. So the q-Folk solution is continuous with respect to
the cost matrix.

2. The q-Folk solution satisfies SCM: Let S Ñ N and i R S. If i P N1, we know that

v˚Q
pS Y tiuq ´ v˚Q

pSq “ min
jPS1

!

c˚
ij

16



On the other hand, C § C 1 implies C˚
§ C 1˚ and, as the quality values are the same

for both problems,

v˚Q
pS Y tiuq ´ v˚Q

pSq “ min
jPS1

!

c˚
ij § min

jPS1
!

c1˚
ij “ v1˚Q

pS Y tiuq ´ v1˚Q
pSq

The same reasoning applies if i P N0. Then,

F q
pN!, C,Qq “ ShpN, v˚Q

q § ShpN, v1˚Q
q “ F q

pN!, C
1, Qq.

3. The q-Folk solution satisfies CRKG:
We prove the property for agents in N1. The case for agents in N0 follows an

identical argument. Let i, j P N1 such that cik § cjk for all k P N!. First, we note that
c˚
ik § c˚

jk for all k P N!, since

a) If k P N0, c˚
ik “ c˚

jk.
b) If k P N1 and we suppose c˚

ik ° c˚
jk, the edge pi, j1

q, j1
“ Mqpjq (or j “ Mqpj1

q,
depending on the position of k) fulfills

cij1 § cjj1 § c˚
jk † c˚

ik

so adding this edge and removing the expensive one we can obtain a cheaper
spanning tree, contradicting the optimality of Mq.

Therefore, for any subset of individuals S Ñ N , i R S we obtain:

1) If j R S,

v˚Q
pS Y tiuq ´ v˚Q

pSq “ min
kPS1

!

c˚
ik § min

kPS1
!

c˚
jk “ v˚Q

pS Y tjuq ´ v˚Q
pSq

2) If j P S, then S “ T Y tju, i, j R T , and we need to prove

v˚Q
pT Y ti, juq ´ v˚Q

pT Y tjuq § v˚Q
pT Y ti, juq ´ v˚Q

pT Y tiuq

or, equivalently,

v˚Q
pT Y tiuq ´ v˚Q

pT q § v˚Q
pT Y tjuq ´ v˚Q

pT q

that reduces to the previous case.

So,
F q
i pN!, C,Qq “ ShipN, v˚Q

q § ShjpN, v˚Q
q “ F q

j pN!, C,Qq.

17



Proposition 7. The q-Folk solution satisfies QC, QM and QRKG.

Proof.

1. The q-Folk solution satisfies QC:

Let pN!, C,Qq be a qmcstp and let i P N0 an individual receiving low quality. Let
us see that F q

i pN!, C,Qq § FipN!, C, r0sq. Note that F pN!, C, r0sq is the Folk solution
for the mcstp pN!, Cq. Then, it is enough to prove that for all S Ñ N, i R S, if rv is the
monotonic game for the problem pN!, rCq

v˚Q
pS Y tiuq ´ v˚Q

pSq § rvpS Y tiuq ´ rvpSq

or, equivalently, see for instance Bogomolnaia and Moulin (2010),

v˚Q
pS Y tiuq ´ v˚Q

pSq “ min
jPS0

!

c˚
ij “ min

jPS!

c˚
ij § rvpS Y tiuq ´ rvpSq “ min

jPS!

rcij

Then, if c˚
ij § rcij, for all j P S! we obtain the result. But,

C˚
|N0 “ ÇC``|N0 § rC|N0

since C``
|N0 § C|N0 . Then, c

˚
ij § rcij, for j P S0. On the other hand, if j P S1,

c˚
ij “ c˚

i! “ Åc``
i! § rcij

and c˚
ij § rcij, for all j P S!.

2. The q-Folk solution satisfies QM:

Let pN!, C,Qq and pN!, C,Q1
q, two qmcst problems with the same cost matrix,

such that matrices Q and Q1 coincide except in qij “ 0 † q1
ij “ 1 with i P N1

pQ1
q but

i R N1
pQq. Then, j P N1

pQq and N1
pQq Y tiu Ñ N1

pQ1
q.

Let us consider a subset of individuals, S Ñ N , such that i R S. In order to prove
that

v˚Q
pS Y tiuq ´ v˚Q

pSq § v˚Q1
pS Y tiuq ´ v˚Q1

pSq

as the entries of the q-irreducible matrix C˚ depend on the quality matrix Q we write
c˚

pQqij and c˚
pQ1

qij to denote this dependence. The individuals in S that can obtain
high quality also depend on quality matrices, so we denote them by S0

pQq “ SXN0
pQq

and S1
pQq “ S X N1

pQq. Then,

v˚Q
pS Y tiuq ´ v˚Q

pSq “ min
kPS0pQq!

c˚
pQqik since i P N0

pQq (1)

v˚Q1
pS Y tiuq ´ v˚Q1

pSq “ min
kPS1pQ1q!

c˚
pQ1

qik since i P N1
pQ1

q (2)

Note that the expression in Equation (1) is lower or equal to cij, since

v˚Q
pS Y tiuq ´ v˚Q

pSq “ min
kPS0pQq!

c˚
pQqik § c˚

pQqi! “ c˚
pQqij § cij

In order to prove that the expression in Equation (1) is not greater than the expression
in Equation (2) we distinguish two cases:
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a) If S0
pQq “ S0

pQ1
q, then for any max-quality optimal spanning tree M 1

q in the
problem pN!, C,Q1

q, it is clear that the edge pi, jq must belong to M 1
q, since it is

the only possibility for agent i to obtain high quality. Then, cij “ c˚
pQ1

qij and
pi, jq P M 1

qpi, kq for any k P N1
pQ1

q. If k P S1
pQ1

q “ S1
pQq, then

c˚
pQ1

qik • c˚
pQ1

qij “ cij

and the required inequality holds.

b) If S0
pQq ‰ S0

pQ1
q, then S1

pQ1
q X S0

pQq ‰ ?. For all k1 P S1
pQ1

q X S0
pQq

v˚Q
pS Y tiuq ´ v˚Q

pSq § c˚
pQqk1i

On the other hand,

v˚Q1
pS Y tiuq ´ v˚Q1

pSq “ min
kPS1pQ1q!

c˚
pQ1

qik “ c˚
pQ1

qik2

If k2 P S1
pQq!, as in the previous case c˚

pQ1
qik2 • cij. Finally, if k2 R S1

pQq!

then k2 P S1
pQ1

q X S0
pQq and

v˚Q
pS Y tiuq ´ v˚Q

pSq § c˚
pQqk2i § c˚

pQ1
qk2i

proving the inequality.

3. The q-Folk solution satisfies QRKG:

Let pN!, C,Qq be a qmcstp such that there are two individuals i P N0 and j P N1

with equal connecting costs: cik “ cjk, for all k P N!. Let Mq be a max-quality optimal
tree in the problem, Mq “ m1 Y m2 (see the construction of the optimal tree). For
r, l P N! let us denote by NMqpr, lq the set of all the nodes in the path in Mq connecting
r and l.

a) Let S Ñ N , such that i R S, j R S. Then,

v˚Q
pS Y tiuq ´ v˚Q

pSq “ min
kPS0

!

c˚
ik “ c˚

ik0

v˚Q
pS Y tjuq ´ v˚Q

pSq “ min
kPS1

!

c˚
jk “ c˚

jk1

Let us prove first that c˚
ik0 “ c˚

i! “ ciMqpiq.

For any r P NMqpi,!q, we know that c˚
ir • ciMqpiq. In the case c˚

ir ° ciMqpiq,
we could remove in the spanning tree Mq the edge with cost, c˚

ir adding the
edge pMqpiq, jq and obtaining a new tree with maximum quality and lower cost,
since cjMqpiq “ ciMqpiq † c˚

ir, which contradicts the optimality of the tree Mq.
Consequently, we obtain c˚

ir “ ciMqpiq. In particular, by applying this reasoning
for r “ !, then c˚

i! “ ciMqpiq. We now distinguish three possibilities depending on
the positions of the nodes i and k0:
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a1) If k0
P NMqpi,!q, we have shown c˚

ik0 “ c˚
i! “ ciMqpiq.

a2) If i P NMqpk0,!q, let i1
P NMqpk0,!q such that Mqpi1

q “ i. Then ci1i § c˚
ik0 .

If c˚
ik0 † c˚

i! “ ciMqpiq, we can change the edge pi,Mqpiqq by the edge pi1, jq

with the same quality and lower cost, contradicting the optimality of Mq.
So, c˚

ik0 • c˚
i! and as we are minimizing this cost, c˚

ik0 “ c˚
i!.

a3) In other case, k0
R NMqpi,!q, i R NMqpk0,!q, then Mqpiq P NMqpi, k0

q, so
c˚
ik0 • c˚

i! “ ciMqpiq and as we are minimizing this cost, c˚
ik0 “ c˚

i!.

Then, the equality c˚
ik0 “ c˚

i! “ ciMqpiq is proved.

Consider now the following possibilities for c˚
jk1 :

i) If k1
P NMqpj,!q and c˚

jk1 † c˚
i! “ ciMqpiq, we can change in Mq the edge

pi,Mqpiqq by pi,Mqpjqq, obtaining a new spanning tree with the same quality
and lower cost, since ciMqpjq “ cjMqpjq § c˚

jk1 † c˚
i!, which contradicts the

optimality of Mq. Then, c˚
jk1 • c˚

i! “ c˚
ik0 .

ii) If j P NMqpk1,!q, let j1
P NMqpk1,!q such that Mqpj1

q “ j. Then, cj1j § c˚
jk1 .

If c˚
jk1 † c˚

i!, we can change the edge pi,Mqpiqq by the edge pi, j1
q obtaining

the same quality and lower cost, contradicting the optimality of Mq.

iii) In other case, k1
R NMqpj,!q, j R NMqpk1,!q, we can change the edge

pi,Mqpiqq by the edge pi,Mqpjqq obtaining a tree with the same quality and
lower cost, contradicting the optimality of Mq.

Then, in all cases c˚
ik0 § c˚

jk1 .

b) Let S Ñ N , such that i R S, j P S. Then, S “ T Y tju, such that i, j R T . We
want to prove that

v˚Q
pT Y ti, juq ´ v˚Q

pT Y tjuq § v˚Q
pT Y ti, juq ´ v˚Q

pT Y tiuq

or, equivalently, for each T Ñ N , i, j R T ,

v˚Q
pT Y tiuq ´ v˚Q

pT q § v˚Q
pT Y tjuq ´ v˚Q

pT q

that coincides with the property proved in a).

Then, F q
i pN!, C,Qq § F q

j pN!, C,Qq.
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6. Final comments

We have presented an extension of the well-known minimum cost spanning tree
problem, in which agents care about the quality they receive with the optimal network.
In fact, we prioritize the quality side of the problem, selecting the cheapest tree among
those with highest quality. Our approach has two remarkable points:

a) In the optimal tree, all the individuals who can reach high quality will have it.
b) Individuals not receiving high quality are not harmed by the greater cost of the

implemented quality optimal network. The additional cost (if any) is shared by
the agents obtaining high quality.

We have extended to our context of quality spanning trees one of the most relevant
solution concept in the mcstp literature: the Folk solution. And we have showed that
our extension maintains the main properties of the original solution, specially the core
selection: no individual, nor coalition of individuals, wants to leave the great coalition.
Properties analyzing the behavior of our extension regarding quality aspects have also
been introduced.

There are some aspects that could be more generals in our model. One of them is
the possible quality levels: we suppose that quality may only take two levels (high and
low). This allows us to determine the objective in quality easily (maximize the number
of agents with high quality). If we had more quality levels, for instance high, medium
and low, there would not be a trivial way to derive the quality that an agent would
receive and the maximization objective would not be clear either.
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Maria Dolores Guilló and Manuela Magalhaes.

WP1803 ’The Dynamics and Determinants of Bullying Victimisation.’
Georgios Marios Chrysanthou and Chrysovalantis Vasilakis.

WP1901 ’The Impact of Bullying Victimisation on Mental Wellbeing.’
Georgios Marios Chrysanthou and Chrysovalantis Vasilakis.

WP1902 ’Sharing the Cost of Maximum Quality Optimal Spanning Trees.’
Begoña Subiza and Josep E. Peris.


