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those we have recently detected. In this paper we overview the existing literature on the radius of ro-
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types of uncertain mathematical programs.
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1. Introduction

The radius of robustness for certain desirable property of a
given uncertain mathematical object is, roughly speaking, the
greatest size of the uncertainty set such that this property is pre-
served for any possible value of the uncertain parameter. For in-
stance, radii of robustness concepts have been introduced in the
context of committee elections (Misra & Sonar, 2019), where the
property to be preserved is the voting rule and the perturbations
affect the input preference orders, and in Schur polynomials (Choo,
2014; Gao & Sun, 2002; Mastorakis, 2000), where the property to
be preserved is the stability of the given (nominal) polynomial and
the perturbations affect its coefficients.

In particular, two concepts of radii of robustness have been pro-
posed in the emerging field of robust optimization (see, e.g., Ben-
Tal, El Ghaoui, & Nemirovski, 2009, Ben-Tal & Nemirovski, 1999,
Ben-Tal & Nemirovski, 2000, Ben-Tal & Nemirovski, 2001, Ben-
Tal & Nemirovski, 2002, Ben-Tal & Nemirovski, 2008, Bertsimas &
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Brown, 2009, Bertsimas, Brown, & Caramanis, 2011, Bertsimas &
Sim, 2004, etc.): that of radius of highly robustness introduced
in Goberna, Jeyakumar, Li, and Vicente-Pérez (2018) for uncertain
multi-objective convex programs, where the property to be pre-
served is the existence of highly robust weakly efficient solutions
and the perturbations affect all the data, and that of radius of
robust feasibility for optimization problems with uncertain con-
straints reviewed in this paper, which was introduced in Goberna,
Jeyakumar, Li, and Vicente-Pérez (2014) as the largest size of the
uncertainty sets so that the robust counterpart remains feasible.
We consider in this paper uncertain problems of the form

(P)  min  f(x)

XeZk xRk (1)
s.t. g(x) € —K,

where x is the decision variable, ke {0,...,n}, f:R" — R is a
deterministic function, K c R' is a given convex cone, I is an
arbitrary (possibly infinite) set, and g= (g);;:R" — R/ is an
uncertain mapping. Following Goberna and Lépez (1998, 2018),
we associate with (P) its constraint system, posed in ZK x
R"*  denoted by op={g(x) € —K}, and its feasible set F =
{xezkxrk: g(x) e —K}.

According to Ben-Tal and Nemirovski (2002), the major ques-
tions associated with the application of the robust optimization
methodology to (P) include the following:
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e When and how can we reformulate (P) as a (computational)
tractable optimization problem, or at least approximate (P) by a
tractable problem. This requires to chose a tractable uncertainty
set, e.g., the solution set of a system of either linear inequali-
ties, or conic quadratic inequalities, or linear matrix inequalities
(see Ben-Tal & Nemirovski, 2002, Theorem 1). This objective is
not viable for complex uncertain problems as the mixed-integer
linear programs.

* How to specify reasonable uncertainty sets in specific applica-
tions.

Regarding the uncertain constraint mapping g in (P), we now
assume that it not only depends on the decision variable x, but
also on an uncertain parameter u, whose corresponding uncer-
tainty set is some nonnegative multiple aZ/ of some pattern-set
U that will be assumed to be a convex subset containing the
null vector of certain linear space. To each « > 0 determining the
size of the uncertainty set al/, we associate the parameterized ro-
bust counterparts of op, Fp, and (P), that is, the system, posed in
7k x Rk,

op :={gx, u) e =K, u e ad},
the set
Ee = {x e z¥ x R™* : g(x,u) e =K for all u € at/}
and the optimization problem
(RPy) m;n fX).

respectively. Obviously, o may be infeasible (i.e., F* be empty)
whenever « is too large, in which case the optimal value v(RP) of
(RPy) is +oo by convention. We assume that the nominal problem
(RPy) is feasible, i.e., F9 = Fp # ¢. Thanks to the assumptions on %,

(2)

Due to (2), {a € Ry : F¥ % ¢} is an interval in R (with 0 as lower
limit), maybe {0} or the whole of R,.

The radius of robust feasibility can be defined as the largest size
of the uncertainty set o/ so that (RPy) is feasible. More precisely,
the radius of robust feasibility (RRF in short) of the uncertain prob-
lem (P) is the extended real number

O<oy <oy = ol Copld = F? CE".

pp=supf{o e Ry : F # 0} € Ry U {+o0}. (3)

The RRF pp is said to be attained when the max in (3) exists and
equals sup, that is, FJ? # ¢.

We first note from (2) that the optimal value function v(RPy) of
(RPy) is a non-decreasing function of « along the interval [0, pp].
As pointed out in Bertsimas and Sim (2004), there is a price to pay
for an increase of safety (understood as the degree of confidence
in the feasibility of the computed optimal solution of the robust
counterpart for any conceivable perturbation of the data).

Any robust optimizer should choose her/his suitable value of «,
which determines her/his preferred uncertainty set o/, by balanc-
ing the price of robustness with the price of safeness according
to her/his attitude towards risk, with o = pp (o = 0, respectively)
only for extremely pessimistic (optimistic) decision makers. When
0 < pp < +o0, sensible measures for the price of robustness and for

: . _ .. U(RPy)—V(RPy)
the price of safeness, in scale 0-1, would be the ratios VRPy)0(RRy)

and plp, respectively.
Let us illustrate this decision-making situation regarding robust
optimization modelling with a toy example.

Example 1. Consider the one-dimensional uncertain optimization
problem

P fx) =x?

g(x) == (=x,x—2) e —R2,

min
XeR
s.t.
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Fig. 1. Trade-off between prices.

where f is deterministic while the coefficients of each of the two
constraints, g;(x) ;= —x <0 and g,(x) :=x—2 <0, are uncertain
with pattern-set i = [-1, 1]2. This means, regarding the first con-
straint (—1)x <0, that it can be perturbed as gy(x,u) := (—1+
u1)x —uy <0, with u = (uq,up) € [-1, 1]2; analogously, the second
constraint can be perturbed as gy(x,u) ;= (1 +up)x— 2+1uy) <
0, with uq,uy; € [-1,1]. Then, the uncertain robust feasible set
is given by F¥ = {x: gi(x,u) <0,i=1,2, for all u = (u,uy) € ald}.
For « > 0 sufficiently small, one has

FF={xeR:(1zxa)x>+a, (1ta)x<2+ta}
2-«a ¢ 2-«a

([ =Do(~a)) =l =e)

so that F¢ # ¢ if and only if « € [0, §], with F{> = {1}. Thus, the

RRF pp = 1 is attained. Since v(RPy) = %)2 the maximum price

of robustness is v(RP,,) — V(RP)) =1—0=1, and the prices of ro-
bustness and safeness for choosing a parameter « are, in scale 0-1,
(%)2 and 2o, respectively.

Fig. 1 allows to compare both prices as « grows from 0 to 0.5,
i.e., both prices between 0 and 1. It shows that small values of «
have small impact on the optimal value of the robust counterpart,
for instance, one gets the 25, 50 and 75% of the maximum price
of robustness for o = % o=+2-1~04142, and o =2+/3 -3 ~
0.4641, respectively (equivalent to the 66.67%, the 82.84% and the
92.82% of the maximum price of safeness, respectively).

This bi-objective approach to robust modelling, consisting in the
simultaneous maximization of the safety price and minimization of
the robustness price has been used in the facility location setting
(Carrizosa & Nickel, 2003), before the introduction of the RRF in
the literature, i.e., without determining the interval of variation of
o providing feasible robust counterparts.

The generic intention of this review of RRF is to present this
useful tool of robust optimization to its potential users and to
avoid undesirable overlapping of future research works on the
topic. To do this, we comment known results on the RRF and prove
new ones for the following five types of optimization problems:

o Linear programming (LP) problems (and other linearly con-
strained programs): k=0, I ={1,...,m}, K=RT (where R, :=
[0, 4+oc[), and gq,...,gm are affine functions. The problem (P)
in Example 1 belongs to this class of problems.

o Mixed-integer linear programming (MILP) problems (and
other linearly constrained programs with integer constraints):
k>0, 1={1,...,m}, K=R7, and gj,...,8n are affine func-
tions.

« Linear semi-infinite programming (LSIP) problems (and other
programs with infinitely many linear constraints): k =0, [ is an
infinite set, K = R!,, and g; is an affine function for all i e I.
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e Convex programming (CP) problems (and other programs
with a finite number of convex constraints): k=0, [=
{1,...,m}, K=RT, and g, ...,gm are convex functions.

e Conic linear programming (CLP) problems (and other pro-
grams with linear conic constraint): k=0, I ={1,...,m}, and
g1, ...,8m are affine functions.

We are primarily interested in the available formulas and meth-
ods to compute the RRF pp, or at least lower and upper bounds
for pp, always expressed in terms of the data, emphasizing those
situations in which it is possible to obtain “numerically tractable”
formulas and bounds for the RRF.

We are secondarily interested in necessary and sufficient condi-
tions for pp > 0 (positiveness of the RRF) and for the attainability
of pp, problems which have been recently considered in the frame-
work of MILP (Liers, Schewe, & Thiirauf, 2021) and we analyze here
for LP, LSIP, CP, and CLP. We also provide scalarized versions of
these results which are suitable for those uncertain optimization
problems whose constraints, of the form g;(x) <0, are expressed
in different units.

Finally, we also consider the existing connection of the RRF
with the well-studied concept of “distance to ill-posedness” in
parametric LP, LSIP, and CLP, providing new numerically tractable
formulas and bounds for the distance to ill-posedness with respect
to feasibility in CLP. Formulas and bounds for the “distance to ill-
posedness” in parametric LP and LSIP (respectively, CLP) can be
found in Canovas, Gémez-Senent, and Parra (2007), Canovas, Lépez,
Parra, and Toledo (2005), Canovas, Lopez, Parra, and Toledo (2006),
Canovas, Lopez, Parra, and Toledo (2011) (respectively, Renegar
(1994), Freund and Vera (1999), Vera (2014)).

When (P) is an uncertain LP or CLP problem, or belongs to cer-
tain types of uncertain CP problems, the computation of v(RP,) for
a given « € [0, pp[ requires to solve a tractable optimization prob-
lem provided that ¢/ is conveniently chosen (some tractable set).
Otherwise, taking into account that rough estimations of the ratios

v(RPy)—V(RPy) . . ; “ )
V(RBy) v (RRy) are sufficient to decide the suitable o, the “computa

tionally intractable” programs (RPy) can be approximately solved
by means of the available numerical methods, e.g., the linear SIP
methods recently reviewed in Goberna and Lépez (2018), for un-
certain LP and LSIP, or convex SIP methods, as those proposed in
Auslender, Ferrer, Goberna, and Lépez (2015), Gao, Yiu, and Wu
(2018), Guo and Sun (2020), Mehrotra and Papp (2014), Okuno,
Hayashi, Yamashita, and Gomoto (2016) and Pang, Lv, and Wang
(2016) (all of them published along the last six years), and ref-
erences therein, for uncertain CP. The numerical Examples 3-5 in
Liers et al. (2021) illustrate three different situations for the trade-
off between robustness and minimum cost in MILP.

The paper is organized as follows. Section 2 deals with un-
certain linearly constrained programs, Section 3 with uncertain
mixed-integer linearly constrained programs, Section 4 with un-
certain linearly constrained semi-infinite programs (including the
connection between the RRF and the “distance to ill-posedness”),
Section 5 with uncertain convexly constrained programs, and
Section 6 with uncertain conic linearly constrained programs.

These methods are based on solving (preferably) tractable op-
timization problems whose objective function may be either the
distance from the origin to certain subset of R"*! (as it happens
with the distance to ill-posedness in quantitative stability theory),
the Minkowski gauge function or the support function of certain
subset set of R™1,

Section 7 analyzes for the first time the relationship between
the RRF and the distance to ill-posedness for CLP uncertain pro-
grams. Finally, Section 8 summarizes the content of the paper and
identifies the main open problems.

The main antecedents of the paper are as follows. The first two
papers on RRF, (Goberna, Jeyakumar, Li, & Vicente Pérez, 2015;
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Goberna et al., 2014), dealt with uncertain LSIP and uncertain
multi-objective LP, respectively, providing different proofs of the
formula for the RRF, when the pattern-set is the Euclidean unit
ball; the proof in Goberna et al. (2014) was based on formulas for
the distance to ill-posedness in LSIP (Canovas et al., 2005), where
the notion of epigraphical set plays a crucial role, while the proof
in Goberna et al. (2015) was based on an existence theorem for
linear semi-infinite systems in Fan (1968); the unit ball was re-
placed, as pattern-set, in Chuong and Jeyakumar (2017) by an arbi-
trary convex body, using as main tools the gauge function and the
epigraphical set; finally, (Liers et al., 2021) has revisited recently
the RRF in LP, introducing safe and deterministic constraints and
more flexible pattern-sets.

The unique antecedents for Sections 3 and 4 are (Goberna et al.,
2014; Liers et al., 2021), respectively. The antecedents for Section
5, under affine perturbations, are (Chen, Li, Li, Lv, & Yao, 2020; Li
& Wang, 2018), which mimic the methodology used in Chuong and
Jeyakumar (2017) in the linear framework, i.e., they combine gauge
functions and epigraphical sets; moreover, (Goberna, Jeyakumar, Li,
& Linh, 2016) provided computable formulas for the RRF in CP un-
der strong assumptions on the constraint functions, but allowing
polynomial perturbations (instead of affine ones). Section 6 also
has a unique antecedent, (Goberna, Jeyakumar, & Li, 2021), whose
methodology is inspired in that of Goberna et al. (2014) via the lin-
earization of the positive dual cone of K. Finally, the antecedents of
Section 7 are a stream of works on ill-posedness in CLP, (Freund &
Vera, 1999; Renegar, 1994; Vera, 2014), which is here tackled from
the RRF perspective.

2. RRF of uncertain linearly constrained programs

We consider, as in uncertain LP, constraint systems posed in R"
of the form

op={a/x<b.i=1,...m}

where (a;,b;)) e R" x R are uncertain vectors, with a;=
T .

(al,....a")" for iel={1,....,m}, and the symbol T denotes

transpose.

We also assume that the pattern-set 2/ c (R 1)m is the carte-
sian product [];.;U; of m convex sets ¢; ¢ R"! such that 0, € U;
for all i el. We denote by u; the ith component of u e, ie.,
u= (uq,...,un). Regarding g, whose ith component is g;(x) :=
alx — b;, we assume the existence of a vector (@, b;) € R™*! such
that the uncertainty of g; is captured by the expression

— T T X
gi(xw) == (@ b) +w) (_1>,
for all u; € U4; and x € R™. So, the parameterized robust counterpart
of o;p, posed in R", is
O‘Lc;; = {CZITX <b;, (a;, b;) € (ﬁ,-,E,-) +al;,ie I}
with solution set
F%={xeR":a/x <b; for all (a;, b;) € (@, bi) +ath,iel}.
Thus, the RRF of o;p reads
pip :=sup {o € Ry : F§ # 0}

From the existence theorem for linear systems (Fan, 1968, Theorem
1), denoting by cl cone X the closed convex hull of X,

F% # @ <= (On, —1) ¢ clcone | J [ (@, bi) + 4]
iel
We assume that Ff # @, that is (On, —1) ¢ cone {(a;, b;),i <1} or,
equivalently,
sup {y:@x+y<b,iel}>0,

XxeRM yeR
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so that the fulfilment of FL% # ¢ can be checked by solving a feasi-
ble LP program.

Following Liers et al. (2021), the ith constraint is called safe (or
deterministic) whenever U; = {0,,1}. We denote by S the set of safe
indices, i.e., S = {i e I : U4; = {0,,1}}. Analogously, the jth variable x;
is called safe whenever the j-th projection of ¢; is {0} for all i € L.

The following interiority assumption guarantees that 0 < pjp <
+oo (cf. Goberna et al, 2015, Lemma 1), but obviously precludes
the existence of safe constraints and variables.

(A1) There exists a compact convex set Z such that 0,,; € intZ
and ¢;=Z forall i e L.

From the existence theorem for linear systems (Fan, 1968, The-
orem 1) (whose finite dimensional version is Gale’s alternative the-
orem (Goberna and Lépez, 1998, Corollary 3.1.1)), since U; = Z for
all i e I, denoting by conv X the convex hull of X; ...

E%#0 <= (0p.—1) ¢ R, (conv {(@;. by).iel} +aZ). (4)

Condition (4) can be checked by solving tractable programs in sim-
ple cases, e.g., an LP program whenever Z is a polytope.
We associate with o;p satisfying (A1) the epigraphical set

E@@,b) := conv{(@;. by).i eI} +R {(0s, D} (5)

The first known formula for the RRF was given for the special
case of (A1) in which Z c R"! is the unit Euclidean closed ball

Bpya:
pip = dist (0n+l’E(as E))
— inf{||(a, b)|| : (a, b) € E@, b)), (6)

that is, the Euclidean distance from E (@, b) to the origin. The first
proof of (6), in (Goberna et al,, 2014, Theorem 2.5), used stability
analysis tools introduced in Canovas et al. (2005), while the second
one, in Goberna et al. (2015, Theorem 4), was direct. In geometrical
terms, computing po;p by means of (6) consists in projecting the
origin 0,1 onto the epigraphical set. This geometrical problem can
be reformulated as a tractable optimization one as follows:

ll(a. b)||?

2 .
(pp)” = min _
(a.b)eE(@.b)

m m _ 2
D &b+ S| (7)
i1 i1

where Ay = {8 eR™: Y, § =1} is the unit simplex in R™. The
solvability of the linearly constrained convex quadratic program in
(7) does not guarantee that p;p is attained.

The unit ball B,,; was replaced in Chuong and Jeyakumar
(2017) by an arbitrary convex body (i.e., a full dimensional compact
convex set) Z such that 0,,,1 € intZ. The assumptions on Z guaran-
tee the continuity of its Minkowski function or gauge ¢, defined
for every x ¢ R" by

¢7(x) = inf{t > 0: x e tZ}.

The gauge ¢, is a norm whenever Z is a symmetric compact con-
vex set such that 0,7 € intZ

= min
(8. p)eAm xR,

Proposition 2 (Two formulas for p;p under (A1)). (Chuong &
Jeyakumar, 2017, Theorem 2.1 and Corollary 2.1) Under (A1), one has

inf  ¢z(—a, —b). (8)
(a,b)eE(a.b)

Prp =
If, additionally, Z is symmetric, then
prp = dist (On+1 E(a, B))~ 9)

where dist is the distance associated to the norm ¢, on R™! gener-
ated by Z.

European Journal of Operational Research 296 (2022) 749-763

The analytic formula (8) is exactly (Chuong and Jeyakumar,
2017, Theorem 2.1) (and also the linear version of (Li & Wang,
2018, Theorem 3.1)), while the geometric formula (9) is (Chuong
and Jeyakumar, 2017, Corollary 2.1) (and also the linear version of
(Li & Wang, 2018, Corollary 3.2)).

From (8) it is possible to compute the RRF p;p by solving
tractable programs when Z is a spectrahedron in R™!, i.e., there
exist n + 2 symmetric q x q matrices Ay, ..., Ay+1 such that

n+1
Z= {zeR"“ :AO+ZZ,-A,~ 50},

i=1

where A; = 0 means that A; is a square positive semidefinite ma-
trix. The uncertainty sets of many robust optimization problems
arising in practice are spectrahedra, e.g., ellipsoids, balls, polytopes
and boxes (Nie, 2013; Ramana & Goldman, 1995; Vinzant, 2014).
Remarkable features of this large class of sets is that they are al-
ways closed and convex, as they can be written as intersections of
closed half-spaces,

n+1
7= {z e R™1 g7 (Ao + Zz,A,)s >0,s e8! }
i—1

where S9! denotes the unit sphere in RY, and that the other two
conditions involved in (A1), boundedness of Z and 0, € intZ, can
be checked in terms of the matrices Ao, ..., A1 (see, e.g., Goberna
& Lopez, 1998, Theorems 5.9 and 9.3 and Nie, 2013, Page 252). In
the following three cases, p;p can be found by solving tractable
programs obtained from (8):

o If Z is an ellipsoid centered at the origin, it can be written
as Z={zeR"!:zTM~1z < 1}, with M being a positive defi-
nite symmetric (n+ 1) x (n+ 1) matrix. Then, by (Chuong and
Jeyakumar, 2017, Corollary 3.1),

fé. ). (10)

2 .
(op)” = min
(6. p)eAmxRy

where

m m T m m
f@.pn)= (Z 8iai, 1+ Z(Sibi> M- (Z 8idi, L+ Z‘Sibi)-
io1 iz1 io1 io1

So, pp can be found by solving a linearly constrained convex
quadratic program. In particular, if Z=Bp,¢, (10) with M =1,
collapses to (7).

If Z is the ¢ unit ball, ie, Z={zeR™": 1" |z] <1}, by
(Chuong & Jeyakumar, 2017, Corollary 3.3),

n | m m
OLp = min {Z Z&ﬁf + (UL + Z(Sib,’ } (11)
i=1

O,pn)eAmxRy =1 |i=1

Thus, p;p can be computed by solving a linear program (see,
e.g., (Aragén, Goberna, Lopez, & Rodriguez, 2019, § 1.1.5.4)).

o If Z is the loo unit ball, ie., Z=
{zerm!: |zj| <1.j=1.....n+1}, by (Chuong & Jeyaku-
mar, 2017, Corollary 3.4),

m m
= min {y:y>i28ia{.j=],...,n;y>i<u+28ibi)}.

m :
>sal
i=1

op = min  max j=1,...,m
(8. p)eAm xRy ‘

m
o+ Z 8;b;
i=1

Gty )eAmxR2 et pacy
(12)
So, pp can be found by solving a linear program, too.

Now we show that, under (A1), it is possible to check the pos-
itivity and the attainability of p;p by solving suitable LP programs.
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Even though the next result is the linear version of Proposition
18 below, on uncertain CP, we include here a direct proof that will
inspire the corresponding result for uncertain LSIP. It consists in
proving that p;p > 0 is equivalent to the fulfilment of the Slater
condition, that is, the existence of some X € R" such that @ X < b;
for all i e I (recall that, for finite linear systems, int FL(I’, # () implies
the Slater condition and the converse statement holds whenever
(ﬁi, B,) #* 0n+1 forallie I)

Proposition 3 (Positiveness of p;p under (A1)). If (A1) holds, then

pwp>0 <= sup {y:@ x+y<b,iel}>0.

XeR" yeR
Proof. [—] Let p;p > 0. Then, by (9), 0,,,1 ¢ E(a, b) and so, there
exists a hyperplane in R™1which separates strongly 0,,; from
the polyhedron E(a, b). Let (u, v) € R**1\{0,,1} and y € R be such
that

u,v)"(a,b) <y < (u,v) 0,41 =0, for all (a,b) € E@,b).
Since
07E(@ b) = 0" [conv { (@, by).i € I} + Ry {(0n, 1)}] = Ry {(0n, 1)},

where O0*E(@,b) stands for the recession cone of E(a,b),
and (u,v)T(a,b) is bounded above on E(a,b), necessarily v=
(u,v) " (05, 1) < 0. Two cases can arise:

L If v<0, given iel, one has (—%,—I)T(E,-,B,-)<—Z, ie.,
@ (-4)+ % <b;. Thus,

v

sup {y:@/x+y<bh.iell> Yoo
XxeR" yeR v
. If v=0, we have EiTu <y for all i el. For a sufficiently large
positive scalar  one has w(aju—y) <b;, for all i el. Then,
@ (uu) —py <b;, foralliel. So,
sup {y:@/x+y<bh,iell>-uy>0.
XeRM yeR
[<=] Let X ¢ R" and ¥ € R be such that a/X+y < b; for all i
and y > 0. We now show that 0, ¢ E(a, b) by contradiction. Let
A eR™ and p € Ry be such that Y ;;A; =1 and Y A;(@;, b)) +
1 (0pn, 1) = 0,,1. We thus get the following contradiction:

0= —-1)"0p1 =) Ai(a/x—b)) —

iel

< (yZ/\f+u> =-F+n) <0.

iel
This completes the proof. O

Section 3 shows why it is important in robust MILP to deter-
mine whether p;p is attained or not. Recall that the pointed cone
of a convex cone K in R" is KN (linK)~..

Proposition 4 (Attainment of p;p under (A1)). If the pointed cone
of cone{a;,i € I} x Ry is a half-line, then p;p is attained. Moreover, if
Z is symmetric, pyp is attained if and only if

(O, —1) ¢ Ry (conv {(@;, by), i € I} + dist (Ony1, E(@. b))Z).

Proof. According to (Goberna et al., 2014, Proposition 2.3), a suf-
ficient condition for p;p being attained is that the recession cone
0+F% = {x e R" : @ x < 0,i I} of the nominal solution set F3, of the
nominal system aﬁ, is a linear subspace of R". This fact follows by
(Goberna & Lopez, 1998, Theorem 5.13(ii)), since 0+FL(I’, is an affine
manifold if and only if the pointed cone of cone{a;,i eI} x R; is a
half-line.
Last statement

Proposition 2 and (4).

(13)

immediately follows, under (A1), from

O
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The second statement of Proposition 4 has the advantage that
it only involves the data, {(@;, b;).i € I}, and the disadvantage that
it is a hardly checkable condition as it involves the exact value of
prp = dist (Oy,1. E(@, b)). However, Proposition 4 can be useful in
some particular cases.

o If Z=Byq, (13) fails if and only if (04, —1) can be ex-
pressed as (X, 8;(a;, by) +y (u,v)), with B >0, 318, 8; =1,
§i=0foralli=1,....m 0<y <dist(0n1.E@ b)) = prp. and

(u,v) € Z. Denoting (. = % (13) holds if and only if there do not

exist w >0, § € A, and (v, w) € prpBpq such that (0p, —p0) =

Yy 8i(a bi) + (v, w), ie, X 8iG =—v and Y, &b+ =

—w. with (@)l = | (57 8@ 1+ X0 80) | < (o).

This is equivalent to assert that the optimal value of the fol-

lowing convex quadratic problem with linear objective function

is not positive:

m m _
(Z 8,@, M+ Z 5,’b,‘>
i=1 i=1

o If Z=conv{(vj,w;).jeJ} cR™!, with J finite, (13) holds if

2

< (/OLP)2
SelAnpm

sup u:‘

and only if there does not exist y = (/Li,j)(i.j)dxj € R’f] such
that
On. =)= Y wi;[(@. b) + e (vj. wj)].

(i.j)elx]

if and only if the following LP problem is not unbounded:

| }~

The equal size condition on the uncertainty sets in (A1) may
seem unrealistic in practical situations where the vector of co-
efficients of g; represents a random vector in R™! with Gaus-
sian distribution, with mean (E,-,E,- and variance-covariance ma-
trix A;lp, for some A; > 0 (e.g., the standard deviation of the scalars
| (@i by) — (a;. by)||) for all i & I). Then, the natural choice of the un-
certainty set for the i-th constraint is &; = A;B,, 1, with A; e Ry, =
10, +o0[, that is, the pattern set ¢/ is the cartesian product of m Eu-
clidean balls of different radii, reflecting the fact that the vectors
of coefficients of the different constraints have different degree of
uncertainty. The next assumption allows to handle this type of sit-
uations, but not only for Euclidean balls.

inf
per!

Z /‘Lij(Bi +,0LPW]') .
(i.j)elx]

Z Wi j (ai + /OLPVj) =0y,
(i.j)elxJ]

(A2) There exists a vector A € R, and a compact convex set Z
such that 0,1 eint Zand ¢; =1 ;Z foralliel

Obviously, the scaled interiority assumption (A2) means that the
uncertainty sets of all constraints are identical up to scaling, i.e.,
that given i # j, U; is a positive multiple of ¢/; and viceversa. Now,
we associate with ojp satisfying (A2) the scaled epigraphical set

E@, b, 1) := conv {A;1 (@, by), i e I} + R {(0n, 1)}. (14)

Obviously, (A1) is nothing else than (A2) with A being the vector
1 of all ones, and so E(a, b) = E(a, b, 1,).

Corollary 5 (Two formulas for p;p under (A2)). If (A2) holds, the
RRF Of arp is

pp=  inf _
(a.b)eE@b.x)

¢z(—a, —b).

If, additionally, Z is symmetric, then pyp = dist (0n. 1. E(@. b, 1)).
Proof. Since the parameterized scaled robust solution set is
Fg = {xeR":a[x <b; for all (a;, b;) € (@, b)) +ariZ iel}

= {xeR":¢x < d; for all (¢ d;) € A7 (@. b)) +aZiell,
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the scaled RRF pip =sup {@ e R, : F% # ¢} can be computed by
replacing in Proposition 2 the vector (@;, b;) by A;'(@;. by), for all
iel. O

Formulas for p;p when Z is the unit ball for the ¢, (i.e., the Eu-
clidean), the ¢; and the ¢, norms, can be obtained just replacing
G; and b; by A;'d; and A;'b;., respectively, in (7), (11), and (12). For
instance, if Z=B,,, then

2 _ i 2 a Ztp.
(op)* = min ;(/\i>a,,u+; (A,)b' :

where ||-|| denotes the Euclidean norm.

Since the Slater condition holds for the nominal system
{a'x <b.iel} if and only if it holds for {A;'a/x <A b iel},
Proposition 3 remains valid under assumption (A2) (instead of
(A1)).

Corollary 6 (Attainment of p;p under (A2)). If the pointed cone of
cone {a;, i € I} x Ry is a half-line, then pyp is attained. Moreover, if Z
is symmetric, pyp is attained if and only if

(O, —1) ¢ R, (conv {1 @, by). i e I} + dist (Op.1, E(@ b, 1))2).

From now on in this section we get rid of interiority assump-
tions by introducing the following relaxation of (A2).

(A3) There exists a compact convex set Z and scalars A; > 0, i€
I\S, such that 0,1 € Z c R*! and ¢; = 1;Z for all i e I\S.

Obviously, (A3) means that the uncertainty sets of all non-safe
constraints are identical up to scaling. For instance, in uncertain
production planning problems, the right-hand side coefficients are
the available amounts of different type of resources (raw materials,
working force, etc.). Assuming that the left-hand side coefficients,
depending on the available technology are deterministic, we could
take Z = {0y} x [-1, 1] and as A; an estimation of the mean of the
ith demand.

In contrast with (A1) and (A2), (A3) is compatible with p;p =
+oo and with the existence of safe constraints and variables. This
advantage is accompanied by two main disadvantages: under (A3)
prp can seldom be obtained via a tractable optimization problem,
even for the simplest instances of o;p, and do not exist counter-
parts of the previous results on positiveness and attainment of p;p
under (A1) and (A2).

We denote by &3 the support function of Z, that is, §;(a,b) =
max{z' (a,b) : z € Z}. By the assumptions on Z, &3 is a continuous
nonnegative and sublinear convex function. Let us associate with
orp the following auxiliary program:

(AP) LN 83 (v, —t) )
s.t. a'y+w;—th;<0,iecl\S,
a/y—th<0,ieS,
w; > )\,‘, ie I\S,
t>0.

We denote by v(AP) € R, the optimal value of (AP).

Proposition 7 (A formula for p;p under (A3)). (Liers et al, 2021,
Lemma 4.8) If assumption (A3) holds and there exists a feasible solu-
tion (y,w,t) of (AP) with t > O, then

IOLP:{

We now show the independence of Corollary 5 and Proposition
7 due to the fact that, even though (A3) is weaker than (A1), the

if V(AP) > 0,
if V(AP) = 0.

1
v(AP)’

400, (15)
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additional assumption on (y, w,t) may fail under (A1). In fact, un-
der (A1), S=¢ and (AP) is equivalent to

AP min Sx(y, —t
(AP) . 7y, —t) )
s.t. a'y+r—th<0jiel,
t>0,

and there exists a feasible solution (y,w,t) of (AP) with t > 0 if
and only if there exists a feasible solution (y, t) of (AP) with ¢ > 0.
Then, if there exists a feasible solution (y, t) of (AP) such that t >
0, one has

()

for all i € I, which entails ¥ e intF2. Conversely, if x € intFJ, there

exists & > 0 such that @ x+¢& <b;, for all i el. Then, taking ¢ :=
%max {Ai,iel} >0, (tx,t) is a feasible solution of (AP) such that
t > 0. So, under (A1), the existence of a feasible solution (y, w, t) of
(AP) such that t > 0 means that dim FL(I’, = n, which is independent
of (A1) and (A3).

The conceptual Algorithm 1 in Liers et al. (2021), based on
Proposition 7, computes p;p under the corresponding assumptions.
Observe that (AP) is tractable in simple cases, e.g., it is an LP
problem when Z is a polytope and a linearly constrained convex
quadratic program when Z = B, 1.

—T
<bi—

a; %<Ei

3. RRF of uncertain mixed-integer linearly constrained
programs

We now consider, as in uncertain MILP, constraint systems
posed in Zk x R"* (meaning that the first k > 0 decision variables
X1, ...,X; are integer) of the form

oMmILp = {(JITX < b,’, i=1,..., m}

We also assume that ¢/ = []%; and consider the parameterized ro-
iel

bust counterpart of opyp, posed in Zk x Rk,

Opip = {aiTX <b;, (a;, b)) € (@, b)) + atd;, i e I},

with solution set

Finp = {x € 2 x R"™* 1 a/x < b; for all (a;, by) € (@, b) +atty,iel}.
The RRF of opyp is

pomip = sup {a € Ry : Ejp # 0}

where, to the best of our knowledge, no characterization of F, , #
¢ in terms of the data is available. Observe that the relaxed sys-
tem of oy p and oy, are respectively the systems ojp and o}, of
Section 2, whose notation we maintain. In particular, p;p denotes
the RRF of the relaxed problem of oy p. Of course, 0 < ppyp <
prp < +oo. Assumptions (A1) and (A3) are also as in Section 2.

The next result summarizes the relationships between ppyp
and p;p under assumption (A1), which implies p;p < +oc.

Proposition 8 (Attainment of oy, p and ppp). (Liers et al., 2021, The-
orem 2.6) Under (A1), the following statements hold:

(i) If prp is not attained, then ppp = Prp-
(ii) If ppip is attained, then pyp is also attained.
(iii) The attainment of pp is compatible with pyyp being attained
or not.

Statement (i) is particularly important, as it reduces, under the
interiority assumption, the computation of the RRF of oy p to that
of its relaxed problem. The drawback is that applying Proposition
4 requires the exact computation of p;p, while Proposition 2 can-
not guarantee the identity ppp = Orp.
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The solution set of the nominal problem,

Fiup = {x e Z¥ xR : @/ x < by, i e},

is closed (but not even connected), and it is related with ppp =
+oo as follows.

Proposition 9 (Conditions for pyp = +o0). (Liers et al., 2021, Lem-
mas 4.10 and 4.11) Assume that (A3) holds and FISHLP is bounded. The
following statements hold:

(i) Either ppyp is attained or ppyp = +oo.
(ii) pM,Lp = +oo if and only if there exists x € {0, 1}" such that
x<b forallze]ansz* (x,—1) <0 forall i e \S.

An algorithmic scheme (Liers et al, 2021, Algorithm 2) has
been proposed by Liers, Schewe, and Thiirauf to compute ppyp,
and the computational efficiency of several instances of that algo-
rithm have been compared through numerical experiments which
include 13 test problems which could not be solved in the time
limit of 2 h by any method based on Algorithm 2 and implemented
with an empirical stopping rule of absolute and relative tolerances
10~4. Section 1 in Liers et al. (2021) briefly reviews applications
of the RRF of uncertain MILP to facility location design (Carrizosa
& Nickel, 2003), flexibility index problem (Zhang, Grossmann, &
Lima, 2016), and design and control of gas networks (AfZmann,
Liers, & Stingl, 2019; Koch, Hiller, Pfetsch, & Schewe, 2015; Schewe,
Schmidt, & Thiirauf, 2020).

4. RRF of uncertain linearly constrained semi-infinite programs

The seminal paper on the RRF (Goberna et al., 2014) dealt with
uncertain linear semi-infinite systems posed in R" of the form
orsip «= {Cl,TX < bi, ie ]},

where [ is an infinite index set. All symbols have the same mean-
ing as in Section 2, with the unique difference of the cardinality
of I. Here, we assume that &/ = [TY;, with ¢; =Z, for all i € I, and

iel
Z c R™1 is a symmetric compact convex set such that 0,,; € int Z,
that is, (A1) with Z symmetric. The results in (Goberna et al., 2014,

Section 2) considered the particular case Z =B, . So, U is a con-

P . . I .
vex subset of the infinite dimensional space (R”“) which con-
tains the null function, and the parameterized robust counterpart
of o5p of parameter o > 0 is

Ofsip = {aiTX <b;, (a;.b;) € (aiin) +ald,ie I},
whose solution set
Fép={x e R":a/x < b; for all (a;, by) € (@, b)) +aZ iel}

is closed and convex as it is the intersection of infinitely many
closed half-spaces.

From the existence theorem for linear systems (Fan, 1968,
Theorem 1),

Fp# 0 <= (0Oy,—1) ¢ clcone { | J[ (@ b;) + @Z]
iel

We assume FS, # ¢, that is,

(On, —1) ¢ clcone {(a;, bi),i e 1}.

We denote the RRF of oi5p by pofp. Let E(a, b) be as in (5),
ie,

E@@.b) := conv {(@;. by).i e} + R {(0n. 1)},

the difference being that, here, E(a, b) may be non-closed.
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The following result, with Z =B, 1, has been recently used in
computational geometry, in order to guarantee the existence of ro-
bust farthest Voronoi cells under perturbations of the sites pre-
serving the generator (Goberna, Ridolfi, and Vera de Serio, 2020,
Section 4.1).

Proposition 10 (A geometric formula for p;qp under (A1)) Under
(A1) with Z symmetric, the following formula for the RRF of ogp
holds:

PLsip = dist (0n+] s E(E, B)) (]6)

The proof of this proposition follows the lines of that of
Goberna et al. (2014, Theorem 2.5) where Z = B, . Instead, now
we assume (A1) with Z symmetric. Then, the proof follows analo-
gously and gives us that

. a X
prsip = dist (Opi1, E(@, b)) = sup ',sz ¢z(x _1)*
the last value known as the consistency value of the linear system
associated to FL%“,, where ¢z(-), denotes the dual norm of ¢z(.),
that is, ¢z (v), := max{v'w: ||w| < 1}.

In geometrical terms, computing o;sp consists in projecting the
origin 0,,1 onto clE(a, b). In contrast with its LP counterpart, this
geometrical problem can hardly be reformulated as a tractable op-
timization one. Actually, the proof of the above result consisted in
showing that p;sp coincides with the distance from the nominal
system & jgp = {a x < b;.iel} to ill-posedness, a stability concept
briefly introduced in the next remark.

Remark 11. The stability analysis of linear ordinary and semi-
infinite systems posed in R" is based on embedding the given
nominal constraint system o = {a; x < b;.i € I}, identified with the
couple & = (@, b) € (R")' x Rl into a suitable topological space of
admissible perturbed systems, the so-called space of parameters
®, which is formed by all linear systems having the same num-
bers of variables and constraints as ¢. So, the generic element
of ® is a couple o = (a, b) representing an admissible perturba-
tion o = {a]x < b;.i eI} of 7. We equip © with the pseudo metric
(when I is infinite) or metric (when I is finite)

d(01.02) = sup; | (al. b}) — (a?. b7)||.

with 01,07 € ©. The set of feasible parameters ®. is formed by
those feasible systems o which result of perturbing o while pre-
serving the same numbers of variables and constraints as o.
The distance from & to ill-posedness (in the feasibility sense) is
inf;c@\@, d(0, 0). The equation

aelg\fo d(@ s 0) = dist (Ons1, E(@, b))

was proved in Canovas et al. (2005), and the proof of Goberna et al.
(2014, Theorem 2.5) consisted in showing that the RRF in LSIP,
with the uncertainty pattern-set &/ described at the beginning of
this section, is prsip = infyce\0, d(@1sip, 0). The argument is also
valid when [ is finite, but the proof of (6) in Goberna et al. (2015,
Theorem 4) was direct.

The next two results, on the positiveness and the attainment
of prsp, extend Propositions 3 and 4 to the semi-infinite setting,
with the inconvenient that they do not provide “computationally
tractable” attainability tests. We first show that the strong Slater
condition (existence of X € R" and & > 0 such that @/ X+ & < b; for
all i e I) implies the positiveness of p;sp while the converse state-
ment is also true under a condition that is fulfilled in the main
LSIP real applications.

Proposition 12 (Positiveness of p;qp under (A1)) Under (A1) with
Z symmetric, the following implication holds:

sup {y:@x+y<b,iel}>0 = pgp>0.
XeRM yeR
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The converse statement also holds whenever {(a;, b;),i € I} is a com-
pact subset of R™1,

Proof. The argument for the first statement is the same as the part
[«<=] of Proposition 3, just replacing the positive cone R7T of R™
by the positive cone Ri’) of the linear space R® of generalized
finite sequences (real-valued functions on I which vanish every-
where except on a finite subset of I). In fact, let X e R" and y e R
be such that a,.T§+37 <b; forallielandy > 0. We now show that

0n41 ¢ E(@ b) by contradiction. Let A e Ri’) and u € Ry be such
that Y, A =1 and Y Ai(@;, b;) + £ (0p, 1) = 0. We thus get
the following contradiction:

X ) Y h(aTR—b)

X
-1 :
iel

< —(yz)»ﬁ-l/«)
iel

We now assume that {(a;, b;), i € I} is a compact subset of R**1.
Then, E(@, b) is a closed convex set. So, by (16), pysp > O if and only
if 0,,1 ¢ E(@. b). The rest of the proof is exactly the same as the
part [=>] of Proposition 3. O

0=0,

n+1

-yY+npn) <0

Proposition 13 (Attainment of p;qp under (A1)). Under (A1) with
Z symmetric, the following statements hold:

(i) prsip is attained if and only if

(On. —1) ¢ c R (conv { (@;. by). i € I} + dist (0.1, E(@. b))Z).
(17)

(ii) If the pointed cone of clcone {a;,i € I} x R is a half-line, then
Prsip 1S attained.

Proof. (i) From Gale’s alternative theorem (see, e.g., Goberna &
Lopez, 1998, Corollary 3.1.1), Fp,,, = ¢ if and only if

(On, —1) € clcone (U [(a,', E,) + pLSIPZ]>

iel
= CIR+ (COHV {(Ei, B,‘), ie I} + pLs”JZ).

(ii) As in Proposition 4, a sufficient condition for p;qp being
attained is that the recession cone 0+FL%”, ={xeR":a/x<0,iel}
of the nominal solution set FL‘?SIP of the nominal system & gp is a lin-
ear subspace of R". By Goberna and Lopez (1998, Theorem 5.13(ii)),
this happens if and only if clcone{a;,i € I} x Ry is a half-line.

Regarding Proposition 13(i), if {(@;b;),iel} is compact and
conv {(@;, b;),i €I} N pygpZ = @, then the closure operator can be
removed from (17). In fact, under the additional assumption,
Ons1 ¢ conv {(@;, by), i € I} + pgpZ, so that conv {(a;, by, iel}+
prsipZ is a compact convex set that does not contain 0,q. Thus,
cone (Ui [ (a;, by) + prsipZ]) is closed. O

We finish this section by considering the scaled parameterized
robust counterpart of ojgp under the assumption that #; = A;Z,
with A € Ri +- So, (A2) holds with Z symmetric. Let E(a, b, ) be
as in (14), i.e.,

E@@, b, 1) := conv { A1 (@, by), i e I} + R {(0n, 1)}.

The proofs of the next three corollaries are similar to those of
the corresponding propositions in Section 2. We only provide the
first one.

Corollary 14 (A geometric formula for p;qp under (A2)). Under
(A2) with Z symmetric, the RRF of osp is

pusip = dist (On1, E(@, b, 1)).
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Proof. As in Corollary 5, one has

Fe, = {xeRm:c]x <d; forall (¢, di) e A" (@, b)+azZiel}

So, the scaled RRF pjp = sup {a € Ry : Fo 2 #} can be obtained by
replacing in (16) the vector (G, b;) by A;'(@;.b;), foralliel. O

Observe that, due to the infiniteness of I, the fulfilment of the
Slater condition for the nominal system {ax <b;.i <} is inde-
pendent of its fulfilment by {A-'a/x < A;'b;.ieI}. Similarly, the
boundedness of the set {(a;, b;), i € I} is independent of the bound-
edness of {A;!(a;. by).iel}.

Corollary 15 (Positiveness of p;sp under (A2)). Under (A2) with Z
symmetric, the following implication holds:

sup {y:A7'qx+y <A b iel} >0 = pgp>0.
XeR",yeR

The converse statement also holds whenever {A;(a;,by),iel} is a
compact subset of R"1,

Corollary 16 (Attainment of p;gp under (A2)). Under (A2) with Z
symmetric, the following statements hold:

(i) prsp is attained if and only if
(On, —1) ¢ cIRy (conv {41 (@, by), i € I} + dist (0n.1, E(@, b, 1))Z).

(ii) If the pointed cone of clcone {a;,i € I} x Ry is a half-line, then
Prsip 1S attained.

5. RRF of uncertain convexly constrained programs under
affine perturbations

We now consider, as in uncertain CP, a convex constraint sys-
tems posed in R" of the form

ocp={gi(x) <0,i=1,...,m},

where g;: R" — R is an uncertain convex function for iel=
{1,....m}. We also assume that the pattern-set U/ C (R”“)m is
the cartesian product [];; 4 of m convex sets &; ¢ R™! such that
U; # ¢ for all i e I. We denote by u; the ith component of u € U, i.e.,
u= (uq,...,um). Regarding g, whose ith component is g;, we as-
sume the existence of a convex function g; : R" — R (the nominal
i-th constraint function) such that the uncertainty of g; is captured
by the expression

gi(x,u) :=gi(x)+u?<x1), Yu; e U;, Vx e R". (18)
For any i € I we can pick a point (d;, b;) € int4;. Defining V; = U; —
(@, b;). (18) becomes

gi(x, u) :=hi(x) +v] (_x]> Yv; e Vi, Vx e R",

where the function h;(x) :=g;(x) + @ x— b; is convex and 0O, €
V; for all iel. In the below formulas for the RRF appear the
epigraphs of the conjugate functions of the constraints. Recall
that g (x*) := supyen{(x*)"x — g;(x)} is the conjugate of g; while
epig = {(x,r) e R . g (x*) <r} is its epigraph. Accordingly,
h; (x*) = b; + & (x*) and epih; = epig + (a;. b;).

Hence, we can assume without loss of generality that (18) holds
with 0,,1 € i4; for all i € I. In the same way, if intl4; # ¢ for all i €
I, we can assume without loss of generality that (18) holds with
0pyq einty; foralliel

Thus, the parameterized robust counterpart of ocp is the convex
system posed in R"

0& ={&) +a/x <b;, (@, b) eatiiel},
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whose solution set is
F%={xeR":g(x) +a/x—b; <0 for all (a; by) € ath,iel}.

Since epi (g; + {(a;, -) — b;)" = epig; + (a;, b;), by Dinh, Goberna, and
Lopez (2006, Theorem 3.1),

We assume FJ, # ¢, that is, (Op, —1) ¢ clcone {U;. epig; }.
The RRF of acp is

| (epig + att) (19)

iel

B #0 — (On,—1)¢clcone=

pep i=sup{a € Ry : F$ # 0},
We associate with o¢p satisfying (A1) the epigraphical set
E(®) := conv (U epig}‘),
iel

where g:= (g1,....8n). B
If gi(x) =@ x—b; for all i el since g = b;+8z,. where 8,
denotes the indicator function of {g;} (i.e., 8, (x) =0 if x=; and

+o0 otherwise), one has
) =E(a,b),
the epigraphical set defined in (5).
We first consider the RRF of ocp under the interiority assump-
tion (A1).

iel

E(g) := conv (U {@} x [by, +oo]

Proposition 17 (Two exact formulas for pcp under (A1)) ((Chen
et al, 2020, Corollaries 3.1 and 3.2) and (Li and Wang, 2018, Theo-
rem 3.1, Corollary 3.2)) Under (A1),

inf  ¢z(—a, -b).

cp =
o (a.b)eE(g)

If, additionally, Z is symmetric,

Pcp = dist (0n+17 E(g))

n+2

n+2
¢z Z‘Skak’zakbk .
k=1 k=1

In some simple cases, (20) allows to compute pcp by solving
optimization problems:

= inf -
8eAnsa, (a.br)elJepig;
il

(20)

¢ IfZ={zeR™':zTM~1z < 1}, with M being a positive definite
symmetric (n+ 1) x (n+ 1) matrix, then, by Chen et al. (2020,
Corollary 3.3(i)),

= inf +/(a,b)"M-1(a,b). 21
Pcp @il e (a, b) (a,b) (21)
o If Z =By, by (21),
n
= inf b2+ a2 22
Ocp P ; k (22)

o If Z is the ¢1 unit ball {ze R™1: Y141 |z] < 1}, by Chen et al.
(2020, Corollary 3.3(iii)),

{|b|+2j:|ak|}-

e If Z is the ¢4 unit ball{z eR™l: |zl <1,ie I}, by Chen et al.
(2020, Corollary 3.3(iv)),

= inf 2
Ocp (avbl)f;E ® (23)

Pcp = bingfmax{|b|,|ak|:k=1,...,n}. (24)
€

(a.b)eE(®)
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However, the above formulas (22)-(24) do not provide tractable
optimization problems for pcp when not all constraints are linear
because E(g) is seldom polyhedral.

In order to check the positivity of pcp one has to decide
whether the nominal constraint convex system satisfies, or not, the
Slater condition. This can be done by maximizing a linear function
under convex constraints, i.e., by solving certain CP problem.

Proposition 18 (Positiviness of pcp under (A1)). ((Chen et al., 2020,
Proposition 3.1) and (Li & Wang, 2018, Theorem 3.5)) Assume that
(A1) holds. Then,

pcp > 0 <= supinfly; e R: g(x) +y; <0} > 0

XeRn 1€

< sup

XxeRM,yeR

{y:g(x)+y<0,iel}>0.

The next corollary is the result of combining (19) and (20).

Proposition 19 (Attainment of pcp under (A1)). Assume that (A1)
holds with Z being symmetric. Then, pcp is attained if and only if

(0n, —1) ¢ clcone { (U epigf) + dist (Op1, E(g))Z}.

iel
As in previous sections, we consider scaled CP, i.e., the counter-
parts of the above propositions when (A2) holds instead of (A1).
The parameterized scaled robust solution set is now
R =

XeR": g(x) +a/x—b; <0 forall (a;,b;) € ahiZ,iel}
XeR":ATg(x) +¢x—d; <0 for all (¢;,dy) eaZiel}.

We associate with o¢p satisfying (A2) the epigraphical set

E(g, A) := conv (U epi ()\i]gi)*)'

iel

It is easy to see that (A;lgi)*(x*) =g (Ax*). Thus, defining A :=
diag (A1, ..., Am, 1), we can write

E(g »):=conv || JAepig .
iel
Corollary 20 (Two formulas for pcp under (A2)). If (A2) holds, the
RRF Of ocp is
inf
(a.b)eEE )

(ﬁz(—ﬂ, _b)

Pcp =

If, additionally, Z is symmetric, then pcp = dist (Op,1,E(g, 1)).

Since the Slater condition holds for the nominal system
{80 <0,iel} if and only if it holds for {A;'g/(x) <0,iel},
Proposition 18 remains valid under assumption (A2).

Corollary 21 (Attainment of pcp under (A2)). Assume that (A2)
holds with Z being symmetric. Then, pcp is attained if and only if

(0, -1) ¢ clcone { (U A epig;‘) + dist (0pi1, EE, k))Z}.
iel

The following assumption is an extension of the interiority as-

sumption (A2) introduced in Section 2 as the uncertainty sets i;

are no longer required to be coincident up to scaling:

(A4) For each i< there exists a compact convex set Z; c R"*1
such that 0,,,1 € intZ; and Uf; = Z;.

Assumption (A4) holds in convex programs with determinis-
tic objective function and uncertain constraints whose uncertainty
sets are closed balls for different norms, e.g., polyhedral and non-
polyhedral balls, in which case they cannot be nonnegative multi-
ples of a unique convex body.
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Proposition 22 (Lower and upper bounds for pcp under (A4)).
(Chen et al., 2020, Theorem 3.1) Under (A4), the following inequal-
ities hold:

inf _infgz(—a, —b) < pcp < (

@i o ind inf sup¢z(—a, —b).

a,b)eE(g) el

Remark 23. The admissible perturbations of each constraint func-
tion g; in ocp are not linear in Goberna et al. (2016), so that they
are not covered by the above results. To be more precise, the ad-
missible perturbations g; are sums of nonnegative combinations of
the m constraint functions with affine functions, so that each per-
turbed functions is convex. Even though the interior of the uncer-
tainty pattern-set ¢/ does not contain the zero vector, in the same
vein as (A3), (Goberna et al., 2016, Theorem 3.1) provides an exact
formula for pcp computable by solving a suitable tractable opti-
mization problem

6. RRF of conic linearly constrained programs

This section deals with uncertain conic linear systems posed in
R" of the form

ajx—by

ocLp = e Ky,

ayx —bm

where {0} #KCR™ is a given closed pointed convex cone
such that intK # ¢ (implying that its positive dual cone K* =
{y eR":z'y>0,z¢ K} enjoys the same properties), and (a;, b;) €
R™1 iel={1,...,m}. Particular cases of (CLP) are:

o If K =R7, then o¢p coincides with the uncertain linear system
orp analyzed in Section 2.

o If f is linear and K = S? is the cone consisting of all g x g posi-
tive semi-definite symmetric matrices, then (P) in (1) is an un-
certain semi-definite programming (SDP) problem, with con-
straint system opp. Let Tr(M) be the trace of a matrix M € S9.
As S9 and RI(@+1)/2 have the same dimensions, there exists an
invertible linear map L : S — R9(@+1)/2 sych that

L(M])TL(Mz) = TI'(M]Mz) for all M1, M; € s, (25)

By (25), L establishes an isomorphism between S9 and
RI@+D/2 " equipped with the trace and the Euclidean inner
product, respectively which preserves inner products. So, one
can identify the space S7 of all (g x ¢) symmetric matrices with
the Euclidean space R4(@+1)/2,

o If f is linear and K is the second order cone KJ'={x e R™:
xm > || (%1 Xm—-1)|l}, then (P) in (1) is an uncertain second
order cone programming (SOCP) problem.

.....

The wuncertain constraint of ogp can be written as
gx) =[A]| b](_xl) e —K, where  A:=[a;]|...|apn]|" e R™"
and b= (by,....bm)" €R™. We assume the existence of a

pattern-set ¢/ formed by m x (n+ 1) real matrices, &/ being a
convex subset of R™(™+1) containing the zero matrix, a matrix
A:=[d;|...|Gn]" eR™" and a vector b= (by,...,by)T € R™
such that the uncertainty of g is captured by the expression

gx.u) == ([A| b] +V) (_"1>

for all U € U4 and x € R™. So, the parameterized robust counterpart of
ocip, depending on a parameter « > 0, is the conic linear system
posed in R"

08p = {([Alb]+U)(_xl> e-K. U eau}.
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It remains to choose a suitable pattern-set ¢/. The size of a ma-
trix can be defined through any of the well-known matrix norms.
Since our approach is based on the linearization of the solution set
E4p of 0fp, we use a norm which is not popular (it does not ap-
pear in Horn and Johnson (1985, Chapter 5)) but allows to use the
results on the RRF of uncertain LSIP problems. Given an m x n ma-
trix M = [m;;]. we define |[M]| as the maximum of the Euclidean
norms of the rows of M, that is,

IM]| = max (26)

Our pattern-set ¢/ will be the unit closed ball for the norm |-||
defined by (26) in the linear space of m x (n + 1) matrices, i.e., i/ is
formed by the matrices U whose rows belong to B, ;. Interpreting
the entries of the rows (a;, b;) as coefficients of linear inequalities
al.Tx < b;, we could say that the interiority assumption (A1) holds
with Z = B,H_].

So, the solution set of 6§, can be written as

ESp = {x eR":[A] b](_"1> e —K for all (a;, by) € (@;, b;) + aBpyy,ie 1},
(27)

and the RRF of o¢;p is

pcip = sup {a € Ry : Fgp # ¥} € RU {+00}.

The assumptions on K ensure the existence of a compact base
B for K*, that is, a compact and convex subset B of K* such
that Oy, ¢ B and K* =R, B (see, e.g., Gopfert, Riahi, Tammer, &
Zalinescu, 2003, Lemma 2.2.17). In what follows B is such a base
for K*. This allows us to represent E$, by a linear semi-infinite
system which does not contain the trivial inequality 0] x < 0 from
which Fan's existence theorem (Fan, 1968, Theorem 1) yields

m
Fp#0 < (0n,1) ¢ clcone { | J D yi((@;, by) + aByi1)
yeB | i=1

(28)

0 .
So, we assume Fy, # 9, ie,

(On. 1) ¢ clcone § 3" yi(@. b)) 1y € B,

i=1

so that the fulfilment of FCOLP # ¢ can be checked by solving a fea-
sible LP program whenever 3 is a polytope.

The epigraphical set of ocp associated with a compact base B of
K* is the set

E(A.b,B) :={y"[A|b]:yeB}+({0a}xR,).
Observe that E(A, b, B) not only depends here on the nominal data
(A and b), as it happens in Cinovas et al. (2007), Canovas et al.
(2005), Canovas et al. (2006), Canovas et al. (2011), but also on
the chosen compact basis B of K*. As in uncertain LSIP, the epi-
graphical set E(A, b, B) is the sum of a compact convex subset of
R™1 with the vertical ray emanating from 0,,,, so it is a closed
convex set too. If K =R and we define B as the convex hull of
the canonical basis of R™, which is actually a base of K* =R'",
one gets the epigraphical set of o;p with constraints written in the
form a/x < b;,iel

The next result provides lower and upper bounds for pcpp
which are expressed in terms of dist (0n.1. E(A, b, B)).

Proposition 24 (Lower and upper bounds for pcp under (A1)).
(Goberna et al., 2021, Theorem 3.1) Let B be a compact base of K*.
Then, the RRF of ocp satisfies

Ci(B) dist (0n41, E(A, b, B)) < par < G (B) dist (0p41, E(A, b.B)).
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(29)
where
CI(B)Zl/maX{”i.Viui” 1y € B |luill 51} (30)
and -
Cz(B)zl/min{zm:|yi|:yeB}. (31)
i=1

Fortunately, it is possible to obtain tractable optimization prob-
lems for the computation of the term dist (01, E(A, b, B)) under
a mild condition.

Proposition 25 (A computable formula for dist (0,1, E(A, b, B))
under (A1)). (Goberna et al, 2021, Theorem 3.2) Let B be a compact
base of K*. Then,
dist (0ns1. E(A, b, B))
|z s) <t.yeB,
= T =T .
(z.5.t.y) R xRxRxRM z=Ay, s>by

In particular, if B is a spectrahedron with the formB = {y ¢ R™ : By +
>, yiB; = 0} for some s x s symmetric matrices B;, i=0,1,...,m,

then
dist (0n.1, EA, b, B))’
z
s >0,
1
z=A'y, s>b'y,
m

Bo+ ) yiBi > 0.
i=1

tl, 0Oy
0] ¢t
zZl s

= inf
(z,5,t,y)eR"xRxRxRM

We now show how to obtain tractable lower and upper bounds
for the RRF of uncertain SDP and SOC problems by exploiting the
fact that K is self-dual for both types of problems, i.e., K* = K.

* SDP: Taking B = {M e S : Tr(M) = 1} in Propositions 24 and

25, one gets

2
—/Uspp < < VUspp,
@+ 1) sop < Pspp < /G ~/Usp

where pgpp is the RRF of ogpp and vgpp is the optimal value of
the following SDP problem:

z

S >0,

1

tl, 0y
[ o
zl s
(2.5.6,7) R XRXRXR™ z=A'y, s=Dby,
e y =L(M)
MeSi, Tr(M) =1.

* SOCP: Taking B ={y € KJ' : ym = 1} in Propositions 24 and 25,

one gets

;Usoc = Psoc = Vsoc

vm-1+1 - - '

where vgoc is the optimal value of the following SOCP problem
[z 9l <t
z= ZTy, s> BTJ/,
o1 Ym-Dl =1, ym =1

To get an exact formula for pcp from the epigraphical set we
need some qualification of the dual cone K*, more exactly the set

inf t:
(z,5,t.y)eR"xRxRxR™M

i=1

Bs = {yeK*:Em:yizl} (32)
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be a compact base for K*. According to Gopfert et al. (2003, Theo-
rem 2.1.15) and (Aliprantis & Tourky, 2007, Theorem 1.47), a suffi-
cient condition for the set Bs defined in (32) to be a compact base
of K* is that 31", y; > 0 for all y € K*\{Om} and Bs be bounded.
In contrast with ST and K}, any K such that R™ c K satisfies this
condition as Y"1, y; > 0 for all y € K*\{0m} c R™\{0n}.

Proposition 26 (An exact formula for pcp under (A1)). If Bs =
{yeK*: >, y; =1} is a compact base of K*, then

pcp < dist (0n+17 E(A,D, Bs))-

Moreover, the exact formula

pcip = dist (0n.1. E(A, b, By)) (33)
holds whenever the additional assumption RT' C K is satisfied.

Proof. Let C; and C, be the constants (30) and (31) in
Proposition 24 in the particular case that B=Bs;={A e K*:
>, A; = 1}. Obviously, C; < G,.

We first assume that Bs is a compact base. If A € Bs, then
YAl =X Ai=1, so that Gl =min{¥X[, A : 4 € Bs} >
1, which combined with Proposition 24 yields pcp <
dist (Op.1. E(A. b, By)).

We now assume that RT C K, so that Bs ¢ K* c R. Then we
have

i=1

m
G'l= max{” Dol e B, [luil < 1}

IA

m
max {ZMHM‘H 1€ B, |luill < 1} <1

i=1

This implies that C; > 1. This together with C; <, and Cz‘1 >1
gives us that C; = G, = 1. So, dist (Ops1. E(A. b, Bs)) = pcrp. by ap-
plying again Proposition 24 with B=B;. O

o LP: Since the additional assumption in Proposition 26 trivially
holds, (33) provides a new formula for p;p by solving the fol-
lowing SOCP problem (compare with (7) and (15)):

@9l =t .
z=A'y, s>Dby, . (34
yeR], Yiliyi=1

pPLp = inf t:

(z,5,t,y)eRTxRxRxR™

The next result is an immediate consequence of the double in-
equality (29) in Proposition 24.

Proposition 27 (Positiveness of pcp under (A1)). Let B be a com-
pact base of K*. Then, pcip > 0 if and only if 0,1 ¢ E(A, b, B).

The attainment of pc;p can be characterized by putting o = pcrp
in (28).

Proposition 28 (Attainment of pc;p under (A1)). Assume that R C
A~1K. Then, pcip is attainable if and only if

(04, 1) ¢ clcone (U {iyi((ai,bi) + dist (OnH,E(ﬁ, b, Bs))IBH])}).

yeB | i=1

An application of Proposition 26 to uncertain support vector
machine problems can be found in Goberna et al. (2021).

Assumption (A2), with Z=B,,;, in the robust CLP set-
ting, consists in replacing ¢/ by AU :={AU :U e U}, where A =
diag (A1,...,Am), with A; > 0, i=1,..., m, U being the pattern-set
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of 6§,. So, the parameterized scaled robust solution set is

Fop=xeRrn:[A] b](_"]> e —K for all (a;. by) € (. ;) + Ay, i € 1}
={xeR": ([/?lE]+U)<_)‘1> e —K for allUsaAu}
={xecR"

(AT[AIB] +V) <f1> e —A-'Kforall Ve au},

where the cone A~!K is a closed pointed convex cone such that
int (A~'K) # ¢ and

(A'K) =y eRrm: (A*ly)Tz >0,z¢ K}

AVER™:vTz>0,z¢ 1<} = AK*.

We associate with o¢p satisfying (A2) the epigraphical set
E(Ab,B A):={y"[ATA| A7b] :y € B} + ({04} x Ry).

The following result
Propositions 25 and 26.

is an immediate consequence of

Corollary 29 (Bounds and an exact formula for pcp under (A2)).
Let B be a base of AK*, and C;(B) and C,(B) be as in (30) and (31).
Then,

C] (8) dist (O,H] N E(Z, E, B, A)) < Pcip =< C2 (B) dist (0n+1 N E(E, E, B, A))

Moreover, if Bs := {y € AK* : Y1, y; = 1} is a compact base of AK*,
then

pcip < dist (0n+1, E(A D, Bs, A)),

and the exact formula

pctp = dist (Op41. E(A, b, B, A))

holds whenever the additional assumption RT ¢ A=K is satisfied.

Corollary 30 (Positiveness of pc;p under (A2)). Let B be a compact
base of AK*. Then, pcip > 0 if and only if 0,1 ¢ E(A, b, B, A).

Corollary 31 (Attainment of pcp under (A2)). Assume that RT C
A~TK. Then, pcip is attainable if and only if

(On, 1) ¢ clcone (U {

yeB
where Bs := {y e AK* : Y11 y; = 1}.

ZYi((ais by) + dist (On+1 E@A.b, Bs))]BnH)

i=1

7. Distance to ill-posedness

In this section, we show that our derived bounds and formulas
for RRF can also provide new formulas for computing the distance
to ill-posedness for uncertain conic systems.

Consider the conic linear system Ax—be —K parameter-
ized by the parameter [A,b] e R™ D For two parameters

[A1.b']. [A2,B2] e R™<(+D) with Ai=[d||...|d},] and bi =

m, we define the distance between [A1, bl]

..........

nax {0

1’71

) - (@ 7) |}

Then, the so-called space of parameters ® can be defined as the
space of all m x (n+ 1) matrices [A, b] equipped with the above
metric d. The set of feasible parameters is defined as

O :={[A,b] € ® : Ax — b € —K for some x € R"}.

Let [A,b] € ®c be a given matrix parameter. We say the matrix
parameter [ A, b] € O is well-posed with respect to feasibility when
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[E,ﬂ € int ©.. The distance to ill-posedness of the given matrix pa-
rameter [AT,E] € O, denoted as 8@, E), is defined as
8(A,b) =dist ([A.b]. ©\O).

Next, using results from the previous section, we provide com-
putable bounds for the distance to ill-posedness of a given matrix

parameter [A,b]. These bounds can be aggregated to those pro-
vided by Vera (2014, Section 3) under suitable assumptions.

Proposition 32 (Bounds for the distance to ill-posedness). Let B be
a compact base for K*. Then,

Pcrp = 5(/1 B) =< g? Eg; OcLp, (35)
and
C1(B) dist (Ony1, E(A, b, B)) < 8(A. E)
< GO it (0,11, EA.B. B)). (36)

- GB)
where C;(B), C,(B) are given as in (30) and (31), that is,

|

m
I Al = & e B, lluill < 1

: }'

Proof. For the sake of simplicity, we write C; and C, instead of
Ci1(B) and G, (B), respectively, along the proof. We first establish
(35). To do this, we observe that pcp < 8(A, b) holds because, re-
calling (27),

Fipc{xeR":Ax—b e —K}
for all [A, b] € © such that d([A, b], [A, b]) < a.

Take an arbitrary p > pcip. By the same argument as in the first
part of Proposition 24, we can write for any € > 0

G (B) :=1/max {
and

m
Z|)\.,|)\.€B

i=1

and G, (B) := 1/ min {

m
Y i@, b) + (On, ) = —(pCy +€) (U, 5), (37)
i=1
where y € B, u is a positive scalar, and (u,s) € B,,1. Let wy :=
min{}>", |A;| : A € B} > 0, and, for eachi=1,...,m,

signy; signy;

(U-,S-):z( u, s)ewﬁB )
o YE vl X il 2 o

This together with the fact that G, = Wz_] implies that || (u;, —s;)]|| <
G, i=1,....m. Let € >0. Defining (a;b;) := (@.b)+ (pC;' +
)y, —sp),i=1 m,A:=[a;|...|an]" and b := (b, bm)T,
we have

d([A,b],[Ab]) = (pC' +€) max | (us, —si)|| < (oG +€)Ga.

..........

where the last inequality holds because || (u;, —s;)|| < C;. Moreover,
noting the fact that 31, y;(u;, ;) = (u, s), it follows from (37) that
(On, ) = ¥ T[A] b]. So,

(On, 1) € cone {A[A | b] : & € B},

which yields [A,b] ¢ ®. by Proposition 28 for o =0. Hence,
S8(A,b) < (,oC]*1 +¢€)C. Letting € — 0 we have §(ADb) <
G, (C1)~1p, which shows that §(A, b) < C3(C;)~1pcrp. So, (37) holds.

Finally, combining (35) and Proposition 24, we see that (36) fol-
lows. Thus, the conclusion follows. O

As an immediate corollary, we obtain complete characteriza-
tions for well-posedness of a given data matrix [A, b] with respect
to feasibility of the linear conic system Ax — b € —K.
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Corollary 33 (Characterizing well-posedness). Let B be a compact
base for K*. Then [A,b] € ©c is well-posed if and only if Opq ¢
E(A, Db, B).

Proof. By Proposition 32, we see that

[A.b] € int® <= dist (0p41. E(A, b, B)) > 0 <= Ony1 ¢ E(A, b, B).

Thus, the conclusion follows. O

The next exact formula, applied to the particular case of K = R
and its natural base Ap,, coincides with the formula in (Canovas
et al., 2005, Theorem 6) specialized to linear programming prob-
lems.

Proposition 34. Let R c K and Bs = {y e K* : 18, y; = 1}. Then,
8(A,b) = pap = dist (0n.1, E(A, b, By)).

Proof. Using same argument as in Proposition 26, we see
that C;(Bs) =G, (Bs) =1 and so, the conclusion follows from
Proposition 32. O

In particular, one recovers the formula in (6)
dist(0,,1, E(@, b)) by taking K = R in Proposition 34.

In concluding this Section, we briefly comment on the re-
lationship between our results and previous works on the dis-
tance to ill-posedness. Firstly, note that our nominal conic lin-
ear system {Ax — b € —K} satisfies the assumptions of Freund and
Vera (1999, Theorems 6 and 7), where the norm of [A, b] € ® is
max{||Al[, ||b|}, with ||A]| := {||Ax|| : ||x]| < 1} (instead of the norm
used in Section 6, i.e., maxj=1mm{||(Ej,Bj)H}) and whose proofs
are based on a result of Renegar (1994) and a suitable “lineariza-
tion” of the involved cones.

Denote by 8y(A,b) the distance from [A, b] to ill-posedness
measured this way, which was proposed in Freund and Vera
(1999) and by |lu]|+ = max{y"x: |ly|| <1} the dual norm of u e R™.
Theorem 7 in Freund and Vera (1999) asserts that

ﬂ](Ufl < 80(/@, B) < Uil, (38)

where By := supycpm |y, =1 infyerm |x=1 47X is the so-called coeffi-
cient of linearity of the cone K (Freund and Vera, 1999, Definition
1
— K,y eR,

1) and
ocren

Let d := max {m, n}. From the known inequalities for pairs of vec-
tor and matrix norms in Horn and Johnson (1985) (see the tables
in pp. 279 and 314) one gets

8(A,b)
v2d
which combined with (29) yields

(Cl) dist (0,1, EA. 5. 5))

Pp =

v::inf{||x||+y :yb—Ax —

<380(A,b) <d8(A D),

v2d

Lo (A3 —
<38(A.b) < (q) dist (Op11, E(A, b, B)). (39)
Observe that (38) and (39) provide lower and upper bounds for
SO(A, b) which are expressed as positive multiples of v~! and

dist (0.1, E(A, b, B)), respectively. In LP, K=R™ and one gets

from either (38), with Bx = J]—m (see the comment after Freund

& Vera, 1999, Remark 4), or from (39), an interval for 8¢ (A, b)
while our Proposition 26 provides the exact formula §(A,b) =
dist (Oy.1. E(A, b, Am)). which has a nice geometric interpretation
and can easily be computed by solving a second-order cone pro-
gram, see (34). So, at least in LP, §(A, b) seems preferable to
8o(A, b) as a measure of the distance to ill-posedness.
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Table 1
Classification of the main results on the RRF.
RRF (A1) (A2) (A3) (A4)
Formula for prp Prop. 2 Cor. 5* Prop. 7
PmiLp Prop. 9
PLsip Prop. 10* Cor. 14*
Pcp Prop. 17 Cor. 20* Prop. 22
PcLp Props. 24-26 Cor. 29*
Positiveness of  ppp Prop. 3*
Pmip
Prsip Prop. 12* Cor. 15*
Pcp Prop. 18
PcLp Prop. 27 Cor. 30*
Attainment of pLp Prop. 4* Cor. 6*
PmiLp Prop. 8
PLsip Prop. 13* Cor. 16*
Pcp Prop. 19* Cor. 21*
PcLp Prop. 28 Cor. 31*

8. Conclusions and further research

This paper provides formulas and methods to compute either
the RRF, or at least lower and upper bounds for the RRF, for five
types of uncertain optimization programs under different assump-
tions. It also provides conditions for the positiveness of the RRF
and its attainment. Table 1 summarizes the content of Sections 2—
6, classifying the given results according to two criteria: informa-
tion provided on the RRF (either a formula for its exact or ap-
proximate computation, or a positiveness condition, or an attain-
ment condition) and assumption (from (A1) to (A4)) under which
the corresponding result is valid. Moreover, the new results (some
of them are corollaries), are marked with an asterisk. The empty
cells identify (not necessarily difficult) open problems on the
RRE.

A good part of the above results involve formulas or conditions
which are not checkable through tractable optimization problems.
Specifying types of pattern-sets (likely spectrahedra) allowing to
obtain checkable formulas or conditions is a challenging problem,
together with the narrowing of the intervals for the RRF in those
results providing lower and upper bounds, specially under (A4).
There is no hope of characterizing the attainability of the RRF until
the obtaining of an existence theorem for linear systems posed in
Z" (a hard theoretical open problem). Of course, the study of the
RRF is still to be made for other types of optimization problems
whose constraint system do not belong to the five type families of
systems analyzed in this paper, e.g., uncertain convex semi-infinite
programs, whose RRF will likely be characterized by combining the
tools used in Sections 4 and 5.

A major challenging problem is to extend the RRF results to
adjustable robust optimization (Ben-Tal et al., 2009), which of-
fers less conservative decisions than the classical static (single-
stage) robust optimization for multi-stage optimization prob-
lems involving both “here and now” and “wait and see” deci-
sion variables. In the simplest case of two-stage LP, according
to Woolnough, Jeyakumar, and Li (2021), the parameterized ro-
bust counterpart of the nominal constraint system can be written
as

ogp = {AWX +By(u) <d(u), u € ald},

where the pattern-set ¢/ is a convex subset containing the null vec-
tor of some linear space, x € R" is the first-stage “here and now”
decision variable that is made before u is realized. The second-
stage “wait and see” decision, y(-), that can be adjusted according
to the actual data, is a mapping, rather than a vector. The coeffi-
cient matrix A € R™" and the right hand side vector d € R™ de-
pend on the uncertainty parameter u, while the (fixed recourse)
coefficient matrix B € R™ does not depend on u. Then, the RRF
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o0 could be defined as

of the nominal adjustable LP problem o,

oap = sup{a € R, : Ef, # 0},

o 1 o
where Fg, represents the solution set of o .

Formally, everything is apparently as in the definition of pyp,
but there is a substantial difference: the decision space is now in-
finite dimensional, making harder obtaining the exact value and
even bounds for p4;p, as well as conditions guaranteeing its pos-
itivity and attainability. An approach for obtaining numerically
tractable results, based on decision rules, is to restrict y(-) to some
specific class of functions such as affine or quadratic functions (see
Ben-Tal et al., 2009, Woolnough et al., 2021). It is of particular
interest to examine how the pattern-sets can be constructed us-
ing RRF for specific practical decision-making problems such as
the lot-sizing problems and production planning problems (Ben-Tal
et al., 2009).

The relationship between the RRF and the distance to ill-
posedness in mathematical programming is mentioned in passing
in Section 4, as it was used to obtain the RRF in linear semi-infinite
programming in the first paper on RRF. Section 7 provides bounds
for the distance to ill-posedness in parametric conic linear pro-
gramming which are derived from the corresponding bounds for
RRF obtained in Section 6. As a by-product, we characterize the
well-posedness and obtain an exact formula for the distance to ill-
posedness under the mentioned strong condition on K. All results
in this section, Propositions 32 and 34, and Corollary 33, are orig-
inal. Of course, new connections between both concepts can po-
tentially be obtained by combining different norms in the space of
parameters and different bases of K*.
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