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The radius of robust feasibility provides a numerical value for the largest possible uncertainty set that 

guarantees feasibility of a robust counterpart of a mathematical program with uncertain constraints. The 

objective of this review of the state-of-the-art in this field is to present this useful tool of robust opti- 

mization to its potential users and to avoid undesirable overlapping of research works on the topic as 

those we have recently detected. In this paper we overview the existing literature on the radius of ro- 

bust feasibility in continuous and mixed-integer linearly constrained programs, linearly constrained semi- 

infinite programs, convexly constrained programs, and conic linearly constrained programs. We also ana- 

lyze the connection between the radius of robust feasibility and the distance to ill-posedness for different 

types of uncertain mathematical programs. 
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. Introduction 

The radius of robustness for certain desirable property of a 

iven uncertain mathematical object is, roughly speaking, the 

reatest size of the uncertainty set such that this property is pre- 

erved for any possible value of the uncertain parameter. For in- 

tance, radii of robustness concepts have been introduced in the 

ontext of committee elections ( Misra & Sonar, 2019 ), where the 

roperty to be preserved is the voting rule and the perturbations 

ffect the input preference orders, and in Schur polynomials ( Choo, 

014; Gao & Sun, 2002; Mastorakis, 2000 ), where the property to 

e preserved is the stability of the given (nominal) polynomial and 

he perturbations affect its coefficients. 

In particular, two concepts of radii of robustness have been pro- 

osed in the emerging field of robust optimization (see, e.g., Ben- 

al, El Ghaoui, & Nemirovski, 2009, Ben-Tal & Nemirovski, 1999, 

en-Tal & Nemirovski, 20 0 0, Ben-Tal & Nemirovski, 2001, Ben- 

al & Nemirovski, 2002, Ben-Tal & Nemirovski, 2008, Bertsimas & 
� This research was partially supported by the Australian Research Council, Dis- 

overy Project grant DP210101025 and the Ministry of Science, Innovation and Uni- 

ersities of Spain and the European Regional Development Fund (ERDF) of the Eu- 

opean Commission, Grant PGC2018-097960-B-C22. 
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rown, 2009, Bertsimas, Brown, & Caramanis, 2011, Bertsimas & 

im, 2004 , etc.): that of radius of highly robustness introduced 

n Goberna, Jeyakumar, Li, and Vicente-Pérez (2018) for uncertain 

ulti-objective convex programs, where the property to be pre- 

erved is the existence of highly robust weakly efficient solutions 

nd the perturbations affect all the data, and that of radius of 

obust feasibility for optimization problems with uncertain con- 

traints reviewed in this paper, which was introduced in Goberna, 

eyakumar, Li, and Vicente-Pérez (2014) as the largest size of the 

ncertainty sets so that the robust counterpart remains feasible. 

We consider in this paper uncertain problems of the form 

(P ) min 

x ∈ Z k ×R n −k 
f (x ) 

s.t. g(x ) ∈ −K, 
(1) 

here x is the decision variable, k ∈ { 0 , . . . , n } , f : R 

n −→ R is a

eterministic function, K ⊂ R 

I is a given convex cone, I is an 

rbitrary (possibly infinite) set, and g = ( g i ) i ∈ I : R 

n −→ R 

I is an 

ncertain mapping. Following Goberna and López (1998, 2018) , 

e associate with (P ) its constraint system, posed in Z 

k ×
 

n −k , denoted by σP = { g(x ) ∈ −K } , and its feasible set F P = 

x ∈ Z 

k × R 

n −k : g(x ) ∈ −K 

}
. 

According to Ben-Tal and Nemirovski (2002) , the major ques- 

ions associated with the application of the robust optimization 

ethodology to (P ) include the following: 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Trade-off between prices. 
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• When and how can we reformulate (P ) as a (computational) 

tractable optimization problem, or at least approximate (P ) by a 

tractable problem. This requires to chose a tractable uncertainty 

set, e.g., the solution set of a system of either linear inequali- 

ties, or conic quadratic inequalities, or linear matrix inequalities 

(see Ben-Tal & Nemirovski, 2002 , Theorem 1). This objective is 

not viable for complex uncertain problems as the mixed-integer 

linear programs. 
• How to specify reasonable uncertainty sets in specific applica- 

tions. 

Regarding the uncertain constraint mapping g in ( P ) , we now 

ssume that it not only depends on the decision variable x, but 

lso on an uncertain parameter u, whose corresponding uncer- 

ainty set is some nonnegative multiple αU of some pattern-set 

that will be assumed to be a convex subset containing the 

ull vector of certain linear space. To each α ≥ 0 determining the 

ize of the uncertainty set αU , we associate the parameterized ro- 

ust counterparts of σP , F P , and (P ) , that is, the system, posed in

 

k × R 

n −k , 

α
P := { g(x, u ) ∈ −K, u ∈ αU } , 

he set 

 

α
P := 

{
x ∈ Z 

k × R 

n −k : g(x, u ) ∈ −K for all u ∈ αU 

}
nd the optimization problem 

(RP α) min 

x ∈ F α
P 

f (x ) , 

espectively. Obviously, σα
P 

may be infeasible (i.e., F α
P 

be empty) 

henever α is too large, in which case the optimal value v (RP α) of

RP α) is + ∞ by convention. We assume that the nominal problem 

RP 0 ) is feasible, i.e., F 0 
P 

= F P � = ∅ . Thanks to the assumptions on U ,

 ≤ α1 ≤ α2 �⇒ α1 U ⊂ α2 U �⇒ F α2 

P 
⊂ F α1 

P 
. (2) 

ue to (2) , { α ∈ R + : F αP � = ∅} is an interval in R + (with 0 as lower

imit), maybe { 0 } or the whole of R + . 
The radius of robust feasibility can be defined as the largest size 

f the uncertainty set αU so that (RP α) is feasible. More precisely, 

he radius of robust feasibility (RRF in short) of the uncertain prob- 

em (P ) is the extended real number 

P := sup { α ∈ R + : F αP � = ∅ } ∈ R + ∪ { + ∞} . (3) 

he RRF ρP is said to be attained when the max in (3) exists and

quals sup, that is, F 
ρP 

P 
� = ∅ . 

We first note from (2) that the optimal value function v (RP α) of

RP α) is a non-decreasing function of α along the interval [ 0 , ρP ] . 

s pointed out in Bertsimas and Sim (2004) , there is a price to pay

or an increase of safety (understood as the degree of confidence 

n the feasibility of the computed optimal solution of the robust 

ounterpart for any conceivable perturbation of the data). 

Any robust optimizer should choose her/his suitable value of α, 

hich determines her/his preferred uncertainty set αU , by balanc- 

ng the price of robustness with the price of safeness according 

o her/his attitude towards risk, with α = ρP ( α = 0 , respectively) 

nly for extremely pessimistic (optimistic) decision makers. When 

 < ρP < + ∞ , sensible measures for the price of robustness and for

he price of safeness, in scale 0–1, would be the ratios 
v (RP α ) −v (RP 0 ) 
v (RP ρP 

) −v (RP 0 ) 

nd 

α
ρP 

, respectively. 

Let us illustrate this decision-making situation regarding robust 

ptimization modelling with a toy example. 

xample 1. Consider the one-dimensional uncertain optimization 

roblem 

(P ) min 

x ∈ R 
f (x ) = x 2 

s.t. g(x ) := ( −x, x − 2 ) ∈ −R 

2 
+ , 
750 
here f is deterministic while the coefficients of each of the two 

onstraints, g 1 (x ) := −x ≤ 0 and g 2 (x ) := x − 2 ≤ 0 , are uncertain

ith pattern-set U = [ −1 , 1 ] 
2 . This means, regarding the first con- 

traint ( −1 ) x ≤ 0 , that it can be perturbed as g 1 (x, u ) := (−1 +
 1 ) x − u 2 ≤ 0 , with u = ( u 1 , u 2 ) ∈ [ −1 , 1 ] 

2 ; analogously, the second 

onstraint can be perturbed as g 2 (x, u ) := (1 + u 1 ) x − (2 + u 2 ) ≤
 , with u 1 , u 2 ∈ [ −1 , 1 ] . Then, the uncertain robust feasible set 

s given by F α
P 

= { x : g i (x, u ) ≤ 0 , i = 1 , 2 , for all u = (u 1 , u 2 ) ∈ αU} .
or α ≥ 0 sufficiently small, one has 

 

α
P = { x ∈ R : ( 1 ± α) x ≥ ±α, ( 1 ± α) x ≤ 2 ± α} 

= 

([ 
α

1 − α
, + ∞ 

[ )
∩ 

(] 
−∞ , 

2 − α

1 + α

] )
= 

[ 
α

1 − α
, 

2 − α

1 + α

] 
, 

o that F α
P 

� = ∅ if and only if α ∈ 

[
0 , 1 2 

]
, with F 0 . 5 

P 
= { 1 } . Thus, the

RF ρP = 

1 
2 is attained. Since v (RP α) = 

(
α

1 −α

)2 
, the maximum price 

f robustness is v (RP ρP 
) − v (RP 0 ) = 1 − 0 = 1 , and the prices of ro-

ustness and safeness for choosing a parameter α are, in scale 0–1, 
α

1 −α

)2 
and 2 α, respectively. 

Fig. 1 allows to compare both prices as α grows from 0 to 0.5, 

.e., both prices between 0 and 1. It shows that small values of α
ave small impact on the optimal value of the robust counterpart, 

or instance, one gets the 25, 50 and 75% of the maximum price 

f robustness for α = 

1 
3 , α = 

√ 

2 − 1 � 0 . 4142 , and α = 2 
√ 

3 − 3 �
 . 4641 , respectively (equivalent to the 66 . 67% , the 82 . 84% and the

2 . 82% of the maximum price of safeness, respectively). 

This bi-objective approach to robust modelling, consisting in the 

imultaneous maximization of the safety price and minimization of 

he robustness price has been used in the facility location setting 

 Carrizosa & Nickel, 2003 ), before the introduction of the RRF in 

he literature, i.e., without determining the interval of variation of 

providing feasible robust counterparts. 

The generic intention of this review of RRF is to present this 

seful tool of robust optimization to its potential users and to 

void undesirable overlapping of future research works on the 

opic. To do this, we comment known results on the RRF and prove 

ew ones for the following five types of optimization problems: 

• Linear programming (LP) problems (and other linearly con- 

strained programs): k = 0 , I = { 1 , . . . , m } , K = R 

m + (where R + :=
[0 , + ∞ [ ), and g 1 , . . . , g m 

are affine functions. The problem (P )

in Example 1 belongs to this class of problems. 
• Mixed-integer linear programming (MILP) problems (and 

other linearly constrained programs with integer constraints): 

k > 0 , I = { 1 , . . . , m } , K = R 

m + , and g 1 , . . . , g m 

are affine func-

tions. 
• Linear semi-infinite programming (LSIP) problems (and other 

programs with infinitely many linear constraints): k = 0 , I is an 

infinite set, K = R 

I + , and g i is an affine function for all i ∈ I. 
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• Convex programming (CP) problems (and other programs 

with a finite number of convex constraints): k = 0 , I = 

{ 1 , . . . , m } , K = R 

m + , and g 1 , . . . , g m 

are convex functions. 
• Conic linear programming (CLP) problems (and other pro- 

grams with linear conic constraint): k = 0 , I = { 1 , . . . , m } , and 

g 1 , . . . , g m 

are affine functions. 

We are primarily interested in the available formulas and meth- 

ds to compute the RRF ρP , or at least lower and upper bounds 

or ρP , always expressed in terms of the data, emphasizing those 

ituations in which it is possible to obtain “numerically tractable”

ormulas and bounds for the RRF. 

We are secondarily interested in necessary and sufficient condi- 

ions for ρP > 0 (positiveness of the RRF) and for the attainability 

f ρP , problems which have been recently considered in the frame- 

ork of MILP ( Liers, Schewe, & Thürauf, 2021 ) and we analyze here

or LP, LSIP, CP, and CLP. We also provide scalarized versions of 

hese results which are suitable for those uncertain optimization 

roblems whose constraints, of the form g i (x ) ≤ 0 , are expressed 

n different units. 

Finally, we also consider the existing connection of the RRF 

ith the well-studied concept of “distance to ill-posedness” in 

arametric LP, LSIP, and CLP, providing new numerically tractable 

ormulas and bounds for the distance to ill-posedness with respect 

o feasibility in CLP. Formulas and bounds for the “distance to ill- 

osedness” in parametric LP and LSIP (respectively, CLP) can be 

ound in Cánovas, Gómez-Senent, and Parra (2007) , Cánovas, López, 

arra, and Toledo (2005) , Cánovas, López, Parra, and Toledo (2006) , 

ánovas, López, Parra, and Toledo (2011) (respectively, Renegar 

1994) , Freund and Vera (1999) , Vera (2014) ). 

When ( P ) is an uncertain LP or CLP problem, or belongs to cer- 

ain types of uncertain CP problems, the computation of v (RP α) for 

 given α ∈ [ 0 , ρP [ requires to solve a tractable optimization prob- 

em provided that U is conveniently chosen (some tractable set). 

therwise, taking into account that rough estimations of the ratios 
v (RP α ) −v (RP 0 ) 
v (RP ρP 

) −v (RP 0 ) 
are sufficient to decide the suitable α, the “computa- 

ionally intractable” programs (RP α) can be approximately solved 

y means of the available numerical methods, e.g., the linear SIP 

ethods recently reviewed in Goberna and López (2018) , for un- 

ertain LP and LSIP, or convex SIP methods, as those proposed in 

uslender, Ferrer, Goberna, and López (2015) , Gao, Yiu, and Wu 

2018) , Guo and Sun (2020) , Mehrotra and Papp (2014) , Okuno, 

ayashi, Yamashita, and Gomoto (2016) and Pang, Lv, and Wang 

2016) (all of them published along the last six years), and ref- 

rences therein, for uncertain CP. The numerical Examples 3–5 in 

iers et al. (2021) illustrate three different situations for the trade- 

ff between robustness and minimum cost in MILP. 

The paper is organized as follows. Section 2 deals with un- 

ertain linearly constrained programs, Section 3 with uncertain 

ixed-integer linearly constrained programs, Section 4 with un- 

ertain linearly constrained semi-infinite programs (including the 

onnection between the RRF and the “distance to ill-posedness”), 

ection 5 with uncertain convexly constrained programs, and 

ection 6 with uncertain conic linearly constrained programs. 

These methods are based on solving (preferably) tractable op- 

imization problems whose objective function may be either the 

istance from the origin to certain subset of R 

n +1 (as it happens 

ith the distance to ill-posedness in quantitative stability theory), 

he Minkowski gauge function or the support function of certain 

ubset set of R 

n +1 . 

Section 7 analyzes for the first time the relationship between 

he RRF and the distance to ill-posedness for CLP uncertain pro- 

rams. Finally, Section 8 summarizes the content of the paper and 

dentifies the main open problems. 

The main antecedents of the paper are as follows. The first two 

apers on RRF, ( Goberna, Jeyakumar, Li, & Vicente Pérez, 2015; 
x

751 
oberna et al., 2014 ), dealt with uncertain LSIP and uncertain 

ulti-objective LP, respectively, providing different proofs of the 

ormula for the RRF, when the pattern-set is the Euclidean unit 

all; the proof in Goberna et al. (2014) was based on formulas for 

he distance to ill-posedness in LSIP ( Cánovas et al., 2005 ), where 

he notion of epigraphical set plays a crucial role, while the proof 

n Goberna et al. (2015) was based on an existence theorem for 

inear semi-infinite systems in Fan (1968) ; the unit ball was re- 

laced, as pattern-set, in Chuong and Jeyakumar (2017) by an arbi- 

rary convex body, using as main tools the gauge function and the 

pigraphical set; finally, ( Liers et al., 2021 ) has revisited recently 

he RRF in LP, introducing safe and deterministic constraints and 

ore flexible pattern-sets. 

The unique antecedents for Sections 3 and 4 are ( Goberna et al., 

014; Liers et al., 2021 ), respectively. The antecedents for Section 

 , under affine perturbations, are ( Chen, Li, Li, Lv, & Yao, 2020; Li

 Wang, 2018 ), which mimic the methodology used in Chuong and 

eyakumar (2017) in the linear framework, i.e., they combine gauge 

unctions and epigraphical sets; moreover, ( Goberna, Jeyakumar, Li, 

 Linh, 2016 ) provided computable formulas for the RRF in CP un- 

er strong assumptions on the constraint functions, but allowing 

olynomial perturbations (instead of affine ones). Section 6 also 

as a unique antecedent, ( Goberna, Jeyakumar, & Li, 2021 ), whose 

ethodology is inspired in that of Goberna et al. (2014) via the lin- 

arization of the positive dual cone of K. Finally, the antecedents of 

ection 7 are a stream of works on ill-posedness in CLP, ( Freund & 

era, 1999; Renegar, 1994; Vera, 2014 ), which is here tackled from 

he RRF perspective. 

. RRF of uncertain linearly constrained programs 

We consider, as in uncertain LP, constraint systems posed in R 

n 

f the form 

LP = 

{
a � i x ≤ b i , i = 1 , . . . , m 

}
, 

here (a i , b i ) ∈ R 

n × R are uncertain vectors, with a i =
a 1 

i 
, . . . , a n 

i 

)� 
for i ∈ I = { 1 , . . . , m } , and the symbol � denotes 

ranspose. 

We also assume that the pattern-set U ⊂
(
R 

n +1 
)m 

is the carte- 

ian product 
∏ 

i ∈ I U i of m convex sets U i ⊂ R 

n +1 such that 0 n +1 ∈ U i 
or all i ∈ I. We denote by u i the i th component of u ∈ U , i.e.,

 = ( u 1 , . . . , u m 

) . Regarding g, whose i th component is g i (x ) :=
 

� 
i 

x − b i , we assume the existence of a vector ( a i , b i ) ∈ R 

n +1 such

hat the uncertainty of g i is captured by the expression 

 i (x, u ) := 

(
( a i , b i ) + u i 

)� ( x 
−1 

)
, 

or all u i ∈ U i and x ∈ R 

n . So, the parameterized robust counterpart

f σLP , posed in R 

n , is 

α
LP := 

{
a � i x ≤ b i , (a i , b i ) ∈ 

(
a i , b i 

)
+ αU i , i ∈ I 

}
ith solution set 

 

α
LP = 

{
x ∈ R 

n : a � i x ≤ b i for all ( a i , b i ) ∈ 

(
a i , b i 

)
+ αU i , i ∈ I 

}
. 

hus, the RRF of σLP reads 

LP := sup { α ∈ R + : F αLP � = ∅ } . 
rom the existence theorem for linear systems ( Fan, 1968 , Theorem 

), denoting by cl cone X the closed convex hull of X , 

 

α
LP � = ∅ ⇐⇒ ( 0 n , −1 ) / ∈ cl cone 

{ ⋃ 

i ∈ I 

[(
a i , b i 

)
+ αU i 

]} 

. 

e assume that F 0 
LP 

� = ∅ , that is ( 0 n , −1 ) / ∈ cone 
{(

a i , b i 
)
, i ∈ I 

}
or, 

quivalently, 

sup 

 ∈ R n ,y ∈ R 

{
y : a 

� 
i x + y ≤ b i , i ∈ I 

}
≥ 0 , 
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i

o that the fulfilment of F 0 
LP 

� = ∅ can be checked by solving a feasi-

le LP program. 

Following Liers et al. (2021) , the i th constraint is called safe (or

eterministic ) whenever U i = { 0 n +1 } . We denote by S the set of safe 

ndices, i.e., S = { i ∈ I : U i = { 0 n +1 } } . Analogously, the jth variable x j 
s called safe whenever the j-th projection of U i is { 0 } for all i ∈ I. 

The following interiority assumption guarantees that 0 ≤ ρLP < 

 ∞ (cf. Goberna et al., 2015 , Lemma 1), but obviously precludes 

he existence of safe constraints and variables. 

(A1 ) There exists a compact convex set Z such that 0 n +1 ∈ int Z

and U i = Z for all i ∈ I. 

From the existence theorem for linear systems ( Fan, 1968 , The- 

rem 1) (whose finite dimensional version is Gale’s alternative the- 

rem ( Goberna and López, 1998 , Corollary 3.1.1)), since U i = Z for 

ll i ∈ I, denoting by conv X the convex hull of X; ... 

 

α
LP � = ∅ ⇐⇒ ( 0 n , −1 ) / ∈ cl R + 

(
conv 

{
( a i , b i ) , i ∈ I 

}
+ αZ 

)
. (4) 

ondition (4) can be checked by solving tractable programs in sim- 

le cases, e.g., an LP program whenever Z is a polytope. 

We associate with σLP satisfying (A1 ) the epigraphical set 

( a , b ) := conv 
{
( a i , b i ) , i ∈ I 

}
+ R + { ( 0 n , 1 ) } . (5) 

The first known formula for the RRF was given for the special 

ase of (A1 ) in which Z ⊂ R 

n +1 is the unit Euclidean closed ball 

 n +1 : 

LP = dist 
(
0 n +1 , E( a , b ) 

)
:= inf { ‖ 

(a, b) ‖ 

: (a, b) ∈ E( a , b ) } , (6) 

hat is, the Euclidean distance from E( a , b ) to the origin. The first 

roof of (6) , in (Goberna et al., 2014 , Theorem 2.5), used stability

nalysis tools introduced in Cánovas et al. (2005) , while the second 

ne, in Goberna et al. (2015 , Theorem 4), was direct. In geometrical 

erms, computing ρLP by means of (6) consists in projecting the 

rigin 0 n +1 onto the epigraphical set. This geometrical problem can 

e reformulated as a tractable optimization one as follows: 

 

ρLP ) 
2 = min 

( a,b ) ∈ E( a , b ) 
‖ ( a, b ) ‖ 

2 

= min 

( δ,μ) ∈ �m ×R + 

∥∥∥∥∥
( 

m ∑ 

i =1 

δi a i , μ + 

m ∑ 

i =1 

δi b i 

) 

∥∥∥∥∥
2 

, (7) 

here �m 

= 

{
δ ∈ R 

m + : 
∑ m 

i =1 δi = 1 
}

is the unit simplex in R 

m . The 

olvability of the linearly constrained convex quadratic program in 

7) does not guarantee that ρLP is attained. 

The unit ball B n +1 was replaced in Chuong and Jeyakumar 

2017) by an arbitrary convex body (i.e., a full dimensional compact 

onvex set) Z such that 0 n +1 ∈ int Z. The assumptions on Z guaran- 

ee the continuity of its Minkowski function or gauge φZ , defined 

or every x ∈ R 

n by 

Z (x ) = inf { t > 0 : x ∈ tZ } . 
he gauge φZ is a norm whenever Z is a symmetric compact con- 

ex set such that 0 n +1 ∈ int Z. 

roposition 2 (Two formulas for ρLP under (A1 ) ). ( Chuong & 

eyakumar, 2017 , Theorem 2.1 and Corollary 2.1) Under (A1 ) , one has 

LP = inf 
(a,b) ∈ E( a , b ) 

φZ (−a, −b) . (8) 

f, additionally, Z is symmetric, then 

LP = dist 
(
0 n +1 , E( a , b ) 

)
. (9) 

here dist is the distance associated to the norm φZ on R 

n +1 gener- 

ted by Z. 
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The analytic formula (8) is exactly ( Chuong and Jeyakumar, 

017 , Theorem 2.1) (and also the linear version of (Li & Wang, 

018 , Theorem 3.1)), while the geometric formula (9) is ( Chuong 

nd Jeyakumar, 2017 , Corollary 2.1) (and also the linear version of 

Li & Wang, 2018, Corollary 3.2) ). 

From (8) it is possible to compute the RRF ρLP by solving 

ractable programs when Z is a spectrahedron in R 

n +1 , i.e., there 

xist n + 2 symmetric q × q matrices A 0 , . . . , A n +1 such that 

 = 

{ 

z ∈ R 

n +1 : A 0 + 

n +1 ∑ 

i =1 

z i A i � 0 

} 

, 

here A i � 0 means that A i is a square positive semidefinite ma- 

rix. The uncertainty sets of many robust optimization problems 

rising in practice are spectrahedra, e.g., ellipsoids, balls, polytopes 

nd boxes ( Nie, 2013; Ramana & Goldman, 1995; Vinzant, 2014 ). 

emarkable features of this large class of sets is that they are al- 

ays closed and convex, as they can be written as intersections of 

losed half-spaces, 

 = 

{ 

z ∈ R 

n +1 : s � 

( 

A 0 + 

n +1 ∑ 

i =1 

z i A i 

) 

s ≥ 0 , s ∈ S q −1 

} 

, 

here S q −1 denotes the unit sphere in R 

q , and that the other two 

onditions involved in (A1 ) , boundedness of Z and 0 n +1 ∈ int Z, can 

e checked in terms of the matrices A 0 , . . . , A n +1 (see, e.g., Goberna

 López, 1998 , Theorems 5.9 and 9.3 and Nie, 2013 , Page 252). In

he following three cases, ρLP can be found by solving tractable 

rograms obtained from (8) : 

• If Z is an ellipsoid centered at the origin, it can be written 

as Z = { z ∈ R 

n +1 : z � M 

−1 z ≤ 1 } , with M being a positive defi-

nite symmetric (n + 1) × (n + 1) matrix. Then, by ( Chuong and

Jeyakumar, 2017 , Corollary 3.1), 

( ρLP ) 
2 = min 

( δ,μ) ∈ �m ×R + 
f (δ, μ) , (10) 

where 

f (δ, μ) = 

( 

m ∑ 

i =1 

δi a i , μ + 

m ∑ 

i =1 

δi b i 

) � 

M 

−1 

( 

m ∑ 

i =1 

δi a i , μ + 

m ∑ 

i =1 

δi b i 

) 

.

So, ρLP can be found by solving a linearly constrained convex 

quadratic program. In particular, if Z = B n +1 , (10) with M = I n 
collapses to (7) . 

• If Z is the � 1 unit ball, i.e., Z = 

{
z ∈ R 

n +1 : 
∑ n +1 

i =1 | z i | ≤ 1 
}
, by 

(Chuong & Jeyakumar, 2017, Corollary 3.3) , 

ρLP = min 

( δ,μ) ∈ �m ×R + 

{ 

n ∑ 

j=1 

∣∣∣∣∣ m ∑ 

i =1 

δi a 
j 
i 

∣∣∣∣∣+ 

∣∣∣∣∣μ + 

m ∑ 

i =1 

δi b i 

∣∣∣∣∣
} 

. (11) 

Thus, ρLP can be computed by solving a linear program (see, 

e.g., (Aragón, Goberna, López, & Rodríguez, 2019, § 1.1.5.4) ). 
• If Z is the � ∞ 

unit ball, i.e., Z = {
z ∈ R 

n +1 : 
∣∣z j ∣∣ ≤ 1 , j = 1 , . . . , n + 1 

}
, by (Chuong & Jeyaku- 

mar, 2017, Corollary 3.4) , 

ρLP = min 
( δ,μ) ∈ �m ×R + 

max 

{ 

∣∣∣∣∣ m ∑ 

i =1 

δi a 
j 
i 

∣∣∣∣∣, j = 1 , . . . , n ;
∣∣∣∣∣μ + 

m ∑ 

i =1 

δi b i 

∣∣∣∣∣
} 

= min 
( δ,μ,γ ) ∈ �m ×R 

2 + 

{ 

γ : γ ≥ ±
m ∑ 

i =1 

δi a 
j 
i 
, j = 1 , . . . , n ;γ ≥ ±

( 

μ + 

m ∑ 

i =1 

δi b i 

) } 

. 

(12) 

So, ρLP can be found by solving a linear program, too. 

Now we show that, under (A1 ) , it is possible to check the pos- 

tivity and the attainability of ρ by solving suitable LP programs. 
LP 
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ven though the next result is the linear version of Proposition 

8 below, on uncertain CP, we include here a direct proof that will 

nspire the corresponding result for uncertain LSIP. It consists in 

roving that ρLP > 0 is equivalent to the fulfilment of the Slater 

ondition , that is, the existence of some ̂ x ∈ R 

n such that a � i 
̂ x < b i 

or all i ∈ I (recall that, for finite linear systems, int F 0 
LP 

� = ∅ implies

he Slater condition and the converse statement holds whenever 

a i , b i 
)

� = 0 n +1 for all i ∈ I). 

roposition 3 (Positiveness of ρLP under (A1 ) ). If (A1 ) holds, then 

LP > 0 ⇐⇒ sup 

x ∈ R n ,y ∈ R 

{
y : a 

� 
i x + y ≤ b i , i ∈ I 

}
> 0 . 

roof. [ �⇒ ] Let ρLP > 0 . Then, by (9) , 0 n +1 / ∈ E( a , b ) and so, there

xists a hyperplane in R 

n +1 which separates strongly 0 n +1 from 

he polyhedron E( a , b ) . Let ( u, v ) ∈ R 

n +1 \ { 0 n +1 } and γ ∈ R be such

hat 

 

u, v ) � ( a, b ) < γ < ( u, v ) � 0 n +1 = 0 , for all ( a, b ) ∈ E( a , b ) . 

ince 

 

+ E( a , b ) = 0 

+ [conv 
{
( a i , b i ) , i ∈ I 

}
+ R + { ( 0 n , 1 ) } ] = R + { ( 0 n , 1 ) } ,

here 0 + E( a , b ) stands for the recession cone of E( a , b ) ,

nd (u, v ) � (a, b) is bounded above on E( a , b ) , necessarily v =
 

u, v ) � ( 0 n , 1 ) ≤ 0 . Two cases can arise: 

I. If v < 0 , given i ∈ I, one has 
(
− u 

v , −1 
)� 

( a i , b i ) < − γ
v , i.e.,

a � i 

(
− u 

v 
)

+ 

γ
v < b i . Thus, 

sup 

x ∈ R n ,y ∈ R 

{
y : a 

� 
i x + y ≤ b i , i ∈ I 

}
≥ γ

v 
> 0 . 

II. If v = 0 , we have a � i u < γ for all i ∈ I. For a sufficiently large

positive scalar μ one has μ
(
a � i u − γ

)
≤ b i , for all i ∈ I. Then, 

a � i ( μu ) − μγ ≤ b i , for all i ∈ I. So, 

sup 

x ∈ R n ,y ∈ R 

{
y : a 

� 
i x + y ≤ b i , i ∈ I 

}
≥ −μγ > 0 . 

[ ⇐�] Let x ∈ R 

n and y ∈ R be such that a � 
i 

x + y ≤ b i for all i ∈ I

nd y > 0 . We now show that 0 n +1 / ∈ E( a , b ) by contradiction. Let

∈ R 

m + and μ ∈ R + be such that 
∑ 

i ∈ I λi = 1 and 

∑ 

i ∈ I λi ( a i , b i ) +
( 0 n , 1 ) = 0 n +1 . We thus get the following contradiction: 

 = ( x , −1) � 0 n +1 = 

∑ 

i ∈ I 
λi 

(
a � i x − b i 

)
− μ

≤ −
( 

y 
∑ 

i ∈ I 
λi + μ

) 

= −( y + μ) < 0 . 

his completes the proof. �

Section 3 shows why it is important in robust MILP to deter- 

ine whether ρLP is attained or not. Recall that the pointed cone 

f a convex cone K in R 

n is K ∩ ( lin K) ⊥ . 

roposition 4 (Attainment of ρLP under (A1 ) ). If the pointed cone 

f cone { a i , i ∈ I} × R + is a half-line, then ρLP is attained. Moreover, if

is symmetric, ρLP is attained if and only if 

 

0 n , −1 ) / ∈ R + 
(
conv 

{
( a i , b i ) , i ∈ I 

}
+ dist 

(
0 n +1 , E( a , b ) 

)
Z 
)
. (13) 

roof. According to (Goberna et al., 2014 , Proposition 2.3), a suf- 

cient condition for ρLP being attained is that the recession cone 

 

+ F 0 
LP 

= { x ∈ R 

n : a � i x ≤ 0 , i ∈ I} of the nominal solution set F 0 
LP 

of the

ominal system σ 0 
LP 

is a linear subspace of R 

n . This fact follows by 

Goberna & López, 1998 , Theorem 5.13(ii)), since 0 + F 0 
LP 

is an affine 

anifold if and only if the pointed cone of cone { a i , i ∈ I} × R + is a

alf-line. 

Last statement immediately follows, under (A1 ) , from 

roposition 2 and (4) . �
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The second statement of Proposition 4 has the advantage that 

t only involves the data, { ( a i , b i ) , i ∈ I} , and the disadvantage that

t is a hardly checkable condition as it involves the exact value of 

LP = dist 
(
0 n +1 , E( a , b ) 

)
. However, Proposition 4 can be useful in 

ome particular cases. 

• If Z = B n +1 , (13) fails if and only if ( 0 n , −1 ) can be ex- 

pressed as β( 
∑ m 

i =1 δi ( a i , b i ) + γ (u, v )) , with β > 0 , 
∑ m 

i =1 δi = 1 ,

δi ≥ 0 for all i = 1 , . . . , m, 0 ≤ γ ≤ dist 
(
0 n +1 , E( a , b ) 

)
= ρLP , and 

( u, v ) ∈ Z. Denoting μ = 

1 
β

, (13) holds if and only if there do not 

exist μ > 0 , δ ∈ �m 

, and ( v , w ) ∈ ρLP B n +1 such that ( 0 n , −μ) = ∑ m 

i =1 δi 

(
a i , b i 

)
+ ( v , w ) , i.e., 

∑ m 

i =1 δi a i = −v and 

∑ m 

i =1 δi b i + μ = 

−w, with ‖ ( v , w ) ‖ 2 = 

∥∥(∑ m 

i =1 δi a i , μ + 

∑ m 

i =1 δi b i 
)∥∥2 ≤ ( ρLP ) 

2 
. 

This is equivalent to assert that the optimal value of the fol- 

lowing convex quadratic problem with linear objective function 

is not positive: 

sup 

δ∈ �m 

⎧ ⎨ ⎩ 

μ : 

∥∥∥∥∥
( 

m ∑ 

i =1 

δi a i , μ + 

m ∑ 

i =1 

δi b i 

) 

∥∥∥∥∥
2 

≤ ( ρLP ) 
2 

⎫ ⎬ ⎭ 

. 

• If Z = conv 
{(

v j , w j 

)
, j ∈ J 

}
⊂ R 

n +1 , with J finite, (13) holds if 

and only if there does not exist μ = 

(
μi, j 

)
( i, j ) ∈ I×J 

∈ R 

I×J 
+ such 

that 

( 0 n , −1 ) = 

∑ 

( i, j ) ∈ I×J 

μi, j 

[(
a i , b i 

)
+ ρLP 

(
v j , w j 

)]
, 

if and only if the following LP problem is not unbounded: 

inf 
μ∈ R I×J 

+ 

{ ∑ 

( i, j ) ∈ I×J 

μi, j 

(
b i + ρLP w j 

)
: 

∑ 

( i, j ) ∈ I×J 

μi, j 

(
a i + ρLP v j 

)
= 0 n 

} 

. 

The equal size condition on the uncertainty sets in (A1 ) may 

eem unrealistic in practical situations where the vector of co- 

fficients of g i represents a random vector in R 

n +1 with Gaus- 

ian distribution, with mean 

(
a i , b i 

)
and variance-covariance ma- 

rix λi I n , for some λi > 0 (e.g., the standard deviation of the scalars 

( a i , b i ) −
(
a i , b i 

)∥∥) for all i ∈ I). Then, the natural choice of the un- 

ertainty set for the i -th constraint is U i = λi B n +1 , with λi ∈ R ++ :=
0 , + ∞ [ , that is, the pattern set U is the cartesian product of m Eu-

lidean balls of different radii, reflecting the fact that the vectors 

f coefficients of the different constraints have different degree of 

ncertainty. The next assumption allows to handle this type of sit- 

ations, but not only for Euclidean balls. 

(A2 ) There exists a vector λ ∈ R 

m ++ and a compact convex set Z

such that 0 n +1 ∈ int Z and U i = λi Z for all i ∈ I. 

Obviously, the scaled interiority assumption (A2 ) means that the 

ncertainty sets of all constraints are identical up to scaling, i.e., 

hat given i � = j, U i is a positive multiple of U j and viceversa. Now,

e associate with σLP satisfying (A2 ) the scaled epigraphical set 

( a , b , λ) := conv 
{
λ−1 

i 
( a i , b i ) , i ∈ I 

}
+ R + { ( 0 n , 1 ) } . (14) 

bviously, (A1 ) is nothing else than (A2 ) with λ being the vector 

 m 

of all ones, and so E( a , b ) = E( a , b , 1 m 

) . 

orollary 5 (Two formulas for ρLP under (A2 ) ). If (A2 ) holds, the 

RF of σLP is 

LP = inf 
(a,b) ∈ E( a , b ,λ) 

φZ (−a, −b) . 

f, additionally, Z is symmetric, then ρLP = dist 
(
0 n +1 , E( a , b , λ) 

)
. 

roof. Since the parameterized scaled robust solution set is 

 

 

α
LP = 

{
x ∈ R 

n : a � i x ≤ b i for all (a i , b i ) ∈ ( a i , b i ) + αλi Z, i ∈ I 
}

= 

{
x ∈ R 

n : c � i x ≤ d i for all (c i , d i ) ∈ λ−1 
i 

( a i , b i ) + αZ, i ∈ I 
}
, 



M.A. Goberna, V. Jeyakumar, G. Li et al. European Journal of Operational Research 296 (2022) 749–763 

t

r  

i

c

a

i

(

w{
P

(

C

c

i

(

t

c

p

t

w

d

t

i

+
a

ρ
e

p

u

m  

n

σ

W

P  

L

t

ρ

7

a

d

a

a  

T

0

a

f  

e  

t  

(
o

P

O

p

q

3

p

p

x

σ

W

b

σ

w

F

T

ρ

w

∅
t

S

t

ρ

a

P

o

i

o

4

n

he scaled RRF ρLP = sup 

{
α ∈ R + : ̃  F α

LP 
� = ∅ 

}
can be computed by 

eplacing in Proposition 2 the vector ( a i , b i ) by λ−1 
i 

( a i , b i ) , for all

 ∈ I. �

Formulas for ρLP when Z is the unit ball for the � 2 (i.e., the Eu- 

lidean), the � 1 and the � ∞ 

norms, can be obtained just replacing 

 i and b i by λ−1 
i 

a i and λ−1 
i 

b i , respectively, in (7), (11) , and (12) . For 

nstance, if Z = B n +1 , then 

 

ρLP ) 
2 = min 

( δ,μ) ∈ �m ×R + 

∥∥∥∥∥
( 

m ∑ 

i =1 

(
δi 

λi 

)
a i , μ + 

m ∑ 

i =1 

(
δi 

λi 

)
b i 

) 

∥∥∥∥∥
2 

, 

here ‖ ·‖ denotes the Euclidean norm. 

Since the Slater condition holds for the nominal system 

a � i x ≤ b i , i ∈ I 
}

if and only if it holds for 
{
λ−1 

i 
a � i x ≤ λ−1 

i 
b i , i ∈ I 

}
, 

roposition 3 remains valid under assumption (A2 ) (instead of 

A1 ) ). 

orollary 6 (Attainment of ρLP under (A2 ) ). If the pointed cone of 

one { a i , i ∈ I } × R + is a half-line, then ρLP is attained. Moreover, if Z

s symmetric, ρLP is attained if and only if 

 

0 n , −1 ) / ∈ R + 
(
conv 

{
λ−1 

i 
( a i , b i ) , i ∈ I 

}
+ dist 

(
0 n +1 , E( a , b , λ) 

)
Z 
)
. 

From now on in this section we get rid of interiority assump- 

ions by introducing the following relaxation of (A2 ) . 

(A3 ) There exists a compact convex set Z and scalars λi > 0 , i ∈ 

I\ S, such that 0 n +1 ∈ Z ⊂ R 

n +1 and U i = λi Z for all i ∈ I\ S. 

Obviously, (A3 ) means that the uncertainty sets of all non-safe 

onstraints are identical up to scaling. For instance, in uncertain 

roduction planning problems, the right-hand side coefficients are 

he available amounts of different type of resources (raw materials, 

orking force, etc.). Assuming that the left-hand side coefficients, 

epending on the available technology are deterministic, we could 

ake Z = { 0 n } × [ −1 , 1 ] and as λi an estimation of the mean of the 

 th demand. 

In contrast with (A1 ) and (A2 ) , (A3 ) is compatible with ρLP = 

 ∞ and with the existence of safe constraints and variables. This 

dvantage is accompanied by two main disadvantages: under (A3 ) 

LP can seldom be obtained via a tractable optimization problem, 

ven for the simplest instances of σLP , and do not exist counter- 

arts of the previous results on positiveness and attainment of ρLP 

nder (A1 ) and (A2 ) . 

We denote by δ∗
Z 

the support function of Z, that is, δ∗
Z 
(a, b) = 

ax { z � (a, b) : z ∈ Z} . By the assumptions on Z, δ∗
Z is a continuous

onnegative and sublinear convex function. Let us associate with 

LP the following auxiliary program: 

( AP ) min 

( y,w,t ) ∈ R n + m +1 
δ∗

Z (y, −t) 

s.t. a 
� 
i y + w i − t b i ≤ 0 , i ∈ I\ S, 

a 
� 
i y − t b i ≤ 0 , i ∈ S, 

w i ≥ λi , i ∈ I\ S, 
t ≥ 0 . 

e denote by v (AP ) ∈ R + the optimal value of ( AP ) . 

roposition 7 (A formula for ρLP under (A3 ) ) . ( Liers et al., 2021 ,

emma 4.8) If assumption (A3 ) holds and there exists a feasible solu- 

ion ( y, w, t ) of ( AP ) with t > 0 , then 

LP = 

{
1 

v (AP) 
, if v (AP ) > 0 , 

+ ∞ , if v (AP ) = 0 . 
(15) 

We now show the independence of Corollary 5 and Proposition 

 due to the fact that, even though (A3 ) is weaker than (A1 ) , the 
754 
dditional assumption on ( y, w, t ) may fail under (A1 ) . In fact, un- 

er (A1 ) , S = ∅ and ( AP ) is equivalent to 

( ̃  AP ) min 

( y,t ) ∈ R n +1 
δ∗

Z ( y, −t ) 

s.t. a 
� 
i y + λi − t b i ≤ 0 , i ∈ I, 

t ≥ 0 , 

nd there exists a feasible solution ( y, w, t ) of ( AP ) with t > 0 if 

nd only if there exists a feasible solution ( y, t ) of ( ̃  AP ) with t > 0 .

hen, if there exists a feasible solution ( y, t ) of ( ̃  AP ) such that t > 

 , one has 

 

� 
i 

(
y 

t 

)
≤ b i −

λi 

t 
< b i 

or all i ∈ I, which entails y 
t ∈ int F 0 

LP 
. Conversely, if x ∈ int F 0 

LP 
there

xists ε > 0 such that a � i x + ε ≤ b i , for all i ∈ I. Then, taking t :=
1 
ε max { λi , i ∈ I } > 0 , ( t x, t ) is a feasible solution of ( ̃  AP ) such that 

 > 0 . So, under (A1 ) , the existence of a feasible solution ( y, w, t ) of

 

AP ) such that t > 0 means that dim F 0 
LP 

= n, which is independent 

f (A1 ) and (A3 ) . 

The conceptual Algorithm 1 in Liers et al. (2021) , based on 

roposition 7 , computes ρLP under the corresponding assumptions. 

bserve that ( AP ) is tractable in simple cases, e.g., it is an LP 

roblem when Z is a polytope and a linearly constrained convex 

uadratic program when Z = B n +1 . 

. RRF of uncertain mixed-integer linearly constrained 

rograms 

We now consider, as in uncertain MILP, constraint systems 

osed in Z 

k × R 

n −k (meaning that the first k > 0 decision variables 

 1 , . . . , x k are integer) of the form 

MILP := 

{
a � i x ≤ b i , i = 1 , . . . , m 

}
. 

e also assume that U = 

∏ 

i ∈ I 
U i and consider the parameterized ro- 

ust counterpart of σMILP , posed in Z 

k × R 

n −k , 

α
MILP := 

{
a � i x ≤ b i , ( a i , b i ) ∈ ( a i , b i ) + αU i , i ∈ I 

}
, 

ith solution set 

 

α
MILP = 

{
x ∈ Z 

k × R 

n −k : a � i x ≤ b i for all ( a i , b i ) ∈ ( a i , b i ) + αU i , i ∈ I 
}
. 

he RRF of σMILP is 

MILP = sup { α ∈ R + : F αMILP � = ∅ } , 
here, to the best of our knowledge, no characterization of F α

MILP 
� = 

 in terms of the data is available. Observe that the relaxed sys- 

em of σMILP and σα
MILP 

are respectively the systems σLP and σα
LP 

of 

ection 2 , whose notation we maintain. In particular, ρLP denotes 

he RRF of the relaxed problem of σMILP . Of course, 0 ≤ ρMILP ≤
LP ≤ + ∞ . Assumptions (A1 ) and (A3 ) are also as in Section 2 . 

The next result summarizes the relationships between ρMILP 

nd ρLP under assumption (A1 ) , which implies ρLP < + ∞ . 

roposition 8 (Attainment of ρMILP and ρLP ). ( Liers et al., 2021 , The- 

rem 2.6) Under (A1 ) , the following statements hold: 

(i) If ρLP is not attained, then ρMILP = ρLP . 

(ii) If ρMILP is attained, then ρLP is also attained. 

(iii) The attainment of ρLP is compatible with ρMILP being attained 

or not. 

Statement ( i ) is particularly important, as it reduces, under the 

nteriority assumption, the computation of the RRF of σMILP to that 

f its relaxed problem. The drawback is that applying Proposition 

 requires the exact computation of ρLP , while Proposition 2 can- 

ot guarantee the identity ρ = ρ . 
MILP LP 
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The solution set of the nominal problem, 

 

0 
MILP = 

{
x ∈ Z 

k × R 

n −k : a 
� 
i x ≤ b i , i ∈ I 

}
, 

s closed (but not even connected), and it is related with ρMILP = 

 ∞ as follows. 

roposition 9 (Conditions for ρMILP = + ∞ ). ( Liers et al., 2021 , Lem-

as 4.10 and 4.11) Assume that (A3 ) holds and F 0 
MILP 

is bounded. The 

ollowing statements hold: 

(i) Either ρMILP is attained or ρMILP = + ∞ . 

(ii) ρMILP = + ∞ if and only if there exists x ∈ { 0 , 1 } n such that

a � i x ≤ b i for all i ∈ I and δ∗
U i 

(x, −1) ≤ 0 for all i ∈ I\ S. 

An algorithmic scheme ( Liers et al., 2021 , Algorithm 2) has 

een proposed by Liers, Schewe, and Thürauf to compute ρMILP , 

nd the computational efficiency of several instances of that algo- 

ithm have been compared through numerical experiments which 

nclude 13 test problems which could not be solved in the time 

imit of 2 h by any method based on Algorithm 2 and implemented 

ith an empirical stopping rule of absolute and relative tolerances 

0 −4 . Section 1 in Liers et al. (2021) briefly reviews applications 

f the RRF of uncertain MILP to facility location design ( Carrizosa 

 Nickel, 2003 ), flexibility index problem ( Zhang, Grossmann, & 

ima, 2016 ), and design and control of gas networks ( Aßmann, 

iers, & Stingl, 2019; Koch, Hiller, Pfetsch, & Schewe, 2015; Schewe, 

chmidt, & Thürauf, 2020 ). 

. RRF of uncertain linearly constrained semi-infinite programs 

The seminal paper on the RRF ( Goberna et al., 2014 ) dealt with

ncertain linear semi-infinite systems posed in R 

n of the form 

LSIP := 

{
a � i x ≤ b i , i ∈ I 

}
, 

here I is an infinite index set. All symbols have the same mean- 

ng as in Section 2 , with the unique difference of the cardinality 

f I. Here, we assume that U = 

∏ 

i ∈ I 
U i , with U i = Z, for all i ∈ I, and

 ⊂ R 

n +1 is a symmetric compact convex set such that 0 n +1 ∈ int Z, 

hat is, (A1 ) with Z symmetric. The results in (Goberna et al., 2014 , 

ection 2 ) considered the particular case Z = B n +1 . So, U is a con-

ex subset of the infinite dimensional space 
(
R 

n +1 
)I 

which con- 

ains the null function, and the parameterized robust counterpart 

f σLSIP of parameter α ≥ 0 is 

α
LSIP := 

{
a � i x ≤ b i , (a i , b i ) ∈ 

(
a i , b i 

)
+ αU i , i ∈ I 

}
, 

hose solution set 

 

α
LSIP = 

{
x ∈ R 

n : a � i x ≤ b i for all ( a i , b i ) ∈ 

(
a i , b i 

)
+ αZ, i ∈ I 

}
s closed and convex as it is the intersection of infinitely many 

losed half-spaces. 

From the existence theorem for linear systems ( Fan, 1968 , 

heorem 1), 

 

α
LSIP � = ∅ ⇐⇒ ( 0 n , −1 ) / ∈ cl cone 

{ ⋃ 

i ∈ I 

[(
a i , b i 

)
+ αZ 

]} 

. 

e assume F 0 
LSIP 

� = ∅ , that is, 

 

0 n , −1 ) / ∈ cl cone 
{(

a i , b i 
)
, i ∈ I 

}
. 

We denote the RRF of σLSIP by ρα
LSIP 

. Let E( a , b ) be as in (5) ,

.e., 

( a , b ) := conv 
{
( a i , b i ) , i ∈ I 

}
+ R + { ( 0 n , 1 ) } , 

he difference being that, here, E( a , b ) may be non-closed. 
x

755 
The following result, with Z = B n +1 , has been recently used in 

omputational geometry, in order to guarantee the existence of ro- 

ust farthest Voronoi cells under perturbations of the sites pre- 

erving the generator ( Goberna, Ridolfi, and Vera de Serio, 2020 , 

ection 4.1). 

roposition 10 (A geometric formula for ρLSIP under (A1 ) ) Under 

A1 ) with Z symmetric, the following formula for the RRF of σLSIP 

olds: 

LSIP = dist 
(
0 n +1 , E( a , b ) 

)
. (16) 

The proof of this proposition follows the lines of that of 

oberna et al. (2014 , Theorem 2.5) where Z = B n +1 . Instead, now 

e assume (A1 ) with Z symmetric. Then, the proof follows analo- 

ously and gives us that 

LSIP = dist 
(
0 n +1 , E( a , b ) 

)
= sup 

x ∈ R n 
inf 
i ∈ I 

b i − a 
� 
i x 

φZ (x, −1) ∗
, 

he last value known as the consistency value of the linear system 

ssociated to F 0 
LSIP 

, where φZ ( ·) ∗ denotes the dual norm of φZ ( ·) , 
hat is, φZ (v ) ∗ := max { v � w : ‖ w ‖ ≤ 1 } . 

In geometrical terms, computing ρLSIP consists in projecting the 

rigin 0 n +1 onto cl E( a , b ) . In contrast with its LP counterpart, this 

eometrical problem can hardly be reformulated as a tractable op- 

imization one. Actually, the proof of the above result consisted in 

howing that ρLSIP coincides with the distance from the nominal 

ystem σ LSIP = 

{
a � i x ≤ b i , i ∈ I 

}
t o ill-posedness, a stability concep t 

riefly introduced in the next remark. 

emark 11. The stability analysis of linear ordinary and semi- 

nfinite systems posed in R 

n is based on embedding the given 

ominal constraint system σ = 

{
a � i x ≤ b i , i ∈ I 

}
, identified with the 

ouple σ = ( a , b ) ∈ ( R 

n ) 
I × R 

I , into a suitable topological space of 

dmissible perturbed systems, the so-called space of parameters 

, which is formed by all linear systems having the same num- 

ers of variables and constraints as σ . So, the generic element 

f  is a couple σ = (a, b) representing an admissible perturba- 

ion σ = 

{
a � 

i 
x ≤ b i , i ∈ I 

}
of σ . We equip  with the pseudo metric 

when I is infinite) or metric (when I is finite) 

 ( σ1 , σ2 ) := sup i ∈ I 
∥∥(a 1 i , b 

1 
i 

)
−
(
a 2 i , b 

2 
i 

)∥∥, 

ith σ1 , σ2 ∈ . The set of feasible parameters c is formed by 

hose feasible systems σ which result of perturbing σ while pre- 

erving the same numbers of variables and constraints as σ . 

he distance from σ to ill-posedness (in the feasibility sense) is 

nf σ∈ \ c 
d ( σ , σ ) . The equation 

inf 
∈ \ c 

d ( σ LSIP , σ ) = dist 
(
0 n +1 , E( a , b ) 

)
as proved in Cánovas et al. (2005) , and the proof of Goberna et al.

2014 , Theorem 2.5) consisted in showing that the RRF in LSIP, 

ith the uncertainty pattern-set U described at the beginning of 

his section, is ρLSIP = inf σ∈ \ c 
d ( σ LSIP , σ ) . The argument is also 

alid when I is finite, but the proof of (6) in Goberna et al. (2015 ,

heorem 4) was direct. 

The next two results, on the positiveness and the attainment 

f ρLSIP , extend Propositions 3 and 4 to the semi-infinite setting, 

ith the inconvenient that they do not provide “computationally 

ractable” attainability tests. We first show that the strong Slater 

ondition (existence of ̂ x ∈ R 

n and ε > 0 such that a � i 
̂ x + ε ≤ b i for

ll i ∈ I) implies the positiveness of ρLSIP while the converse state- 

ent is also true under a condition that is fulfilled in the main 

SIP real applications. 

roposition 12 (Positiveness of ρLSIP under (A1 ) ) Under (A1 ) with 

symmetric, the following implication holds: 

sup 

 ∈ R n ,y ∈ R 

{
y : a 

� 
i x + y ≤ b i , i ∈ I 

}
> 0 �⇒ ρLSIP > 0 . 
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he converse statement also holds whenever { ( a i , b i ) , i ∈ I } is a com- 

act subset of R 

n +1 . 

roof. The argument for the first statement is the same as the part 

 

⇐�] of Proposition 3 , just replacing the positive cone R 

m + of R 

m 

y the positive cone R 

( I ) 
+ of the linear space R 

( I ) of generalized 

nite sequences (real-valued functions on I which vanish every- 

here except on a finite subset of I). In fact, let x ∈ R 

n and y ∈ R

e such that a � 
i 

x + y ≤ b i for all i ∈ I and y > 0 . We now show that

 n +1 / ∈ E( a , b ) by contradiction. Let λ ∈ R 

( I ) 
+ and μ ∈ R + be such

hat 
∑ 

i ∈ I λi = 1 and 

∑ 

i ∈ I λi ( a i , b i ) + μ( 0 n , 1 ) = 0 n +1 . We thus get

he following contradiction: 

 = 0 

� 
n +1 

(
x 

−1 

)
= 

∑ 

i ∈ I 
λi 

(
a � i x − b i 

)
− μ

≤ −
( 

y 
∑ 

i ∈ I 
λi + μ

) 

= −( y + μ) < 0 . 

We now assume that { ( a i , b i ) , i ∈ I } is a compact subset of R 

n +1 . 

hen , E( a , b ) is a closed convex set. So, by (16) , ρLSIP > 0 if and only

f 0 n +1 / ∈ E( a , b ) . The rest of the proof is exactly the same as the

art [ �⇒ ] of Proposition 3 . �

roposition 13 (Attainment of ρLSIP under (A1 ) ). Under (A1 ) with 

symmetric, the following statements hold: 

(i) ρLSIP is attained if and only if 

( 0 n , −1 ) / ∈ cl R + 
(
conv 

{
( a i , b i ) , i ∈ I 

}
+ dist 

(
0 n +1 , E( a , b ) 

)
Z 
)
. 

(17) 

(ii) If the pointed cone of cl cone { a i , i ∈ I } × R + is a half-line, then 

ρLSIP is attained. 

roof. ( i ) From Gale’s alternative theorem (see, e.g., Goberna & 

ópez, 1998 , Corollary 3.1.1), F ρLSIP 
= ∅ if and only if 

 

0 n , −1 ) ∈ cl cone 

( ⋃ 

i ∈ I 

[
( a i , b i ) + ρLSIP Z 

]) 

= cl R + 
(
conv 

{
( a i , b i ) , i ∈ I 

}
+ ρLSIP Z 

)
. 

(ii ) As in Proposition 4 , a sufficient condition for ρLSIP being 

ttained is that the recession cone 0 + F 0 
LSIP 

= { x ∈ R 

n : a � i x ≤ 0 , i ∈ I}
f the nominal solution set F 0 

LSIP 
of the nominal system σ LSIP is a lin- 

ar subspace of R 

n . By Goberna and López (1998 , Theorem 5.13(ii)), 

his happens if and only if cl cone { a i , i ∈ I} × R + is a half-line. 

Regarding Proposition 13 ( i ) , if 
{
( a i , b i ) , i ∈ I 

}
is compact and 

onv 
{
( a i , b i ) , i ∈ I 

}
∩ ρLSIP Z = ∅ , then the closure operator can be 

emoved from (17) . In fact, under the additional assumption, 

 n +1 / ∈ conv 
{
( a i , b i ) , i ∈ I 

}
+ ρLSIP Z, so that conv 

{
( a i , b i ) , i ∈ I 

}
+ 

LSIP Z is a compact convex set that does not contain 0 n +1 . Thus, 

one ( 
⋃ 

i ∈ I [( a i , b i ) + ρLSIP Z]) is closed. �

We finish this section by considering the scaled parameterized 

obust counterpart of σLSIP under the assumption that U i = λi Z, 

ith λ ∈ R 

I ++ . So, (A2 ) holds with Z symmetric. Let E( a , b , λ) be

s in (14) , i.e., 

( a , b , λ) := conv 
{
λ−1 

i 
( a i , b i ) , i ∈ I 

}
+ R + { ( 0 n , 1 ) } . 

The proofs of the next three corollaries are similar to those of 

he corresponding propositions in Section 2 . We only provide the 

rst one. 

orollary 14 (A geometric formula for ρLSIP under (A2 ) ). Under 

A2 ) with Z symmetric, the RRF of σLSIP is 

LSIP = dist 
(
0 n +1 , E( a , b , λ) 

)
. 
756 
roof. As in Corollary 5 , one has ˜ F αLSIP = 

{
x ∈ R 

n : c � 
i 

x ≤ d i for all (c i , d i ) ∈ λ−1 
i 

( a i , b i ) + αZ, i ∈ I 
}
. 

o, the scaled RRF ρLP = sup 

{
α ∈ R + : ̃  F α

LP 
� = ∅ 

}
can be obtained by 

eplacing in (16) the vector ( a i , b i ) by λ−1 
i 

( a i , b i ) , for all i ∈ I. �

Observe that, due to the infiniteness of I, the fulfilment of the 

later condition for the nominal system 

{
a � i x ≤ b i , i ∈ I 

}
is inde- 

endent of its fulfilment by 
{
λ−1 

i 
a � i x ≤ λ−1 

i 
b i , i ∈ I 

}
. Similarly, the 

oundedness of the set { ( a i , b i ) , i ∈ I } is independent of the bound- 

dness of 
{
λ−1 

i ( a i , b i ) , i ∈ I 
}
. 

orollary 15 (Positiveness of ρLSIP under (A2 ) ). Under (A2 ) with Z

ymmetric, the following implication holds: 

sup 

 ∈ R n ,y ∈ R 

{
y : λ−1 

i 
a 

� 
i x + y ≤ λ−1 

i 
b i , i ∈ I 

}
> 0 �⇒ ρLSIP > 0 . 

he converse statement also holds whenever 
{
λ−1 

i ( a i , b i ) , i ∈ I 
}

is a 

ompact subset of R 

n +1 . 

orollary 16 (Attainment of ρLSIP under (A2 ) ). Under (A2 ) with Z

ymmetric, the following statements hold: 

(i) ρLSIP is attained if and only if 

( 0 n , −1 ) / ∈ cl R + 
(
conv 

{
λ−1 

i 
( a i , b i ) , i ∈ I 

}
+ dist 

(
0 n +1 , E( a , b , λ) 

)
Z 
)
. 

(ii) If the pointed cone of cl cone { a i , i ∈ I } × R + is a half-line, then 

ρLSIP is attained. 

. RRF of uncertain convexly constrained programs under 

ffine perturbations 

We now consider, as in uncertain CP, a convex constraint sys- 

ems posed in R 

n of the form 

CP = { g i (x ) ≤ 0 , i = 1 , . . . , m } , 
here g i : R 

n −→ R is an uncertain convex function for i ∈ I =
 

1 , . . . , m } . We also assume that the pattern-set U ⊂
(
R 

n +1 
)m 

is 

he cartesian product 
∏ 

i ∈ I U i of m convex sets U i ⊂ R 

n +1 such that 

 i � = ∅ for all i ∈ I. We denote by u i the i th component of u ∈ U , i.e.,

 = ( u 1 , . . . , u m 

) . Regarding g, whose i th component is g i , we as-

ume the existence of a convex function g i : R 

n −→ R (the nominal 

 -th constraint function ) such that the uncertainty of g i is captured 

y the expression 

 i (x, u ) := g i (x ) + u 

� 
i 

(
x 

−1 

)
, ∀ u i ∈ U i , ∀ x ∈ R 

n . (18)

or any i ∈ I we can pick a point ( a i , b i ) ∈ int U i . Defining V i = U i −
 a i , b i ) , (18) becomes 

 i (x, u ) := h i (x ) + v � i 

(
x 

−1 

)
, ∀ v i ∈ V i , ∀ x ∈ R 

n , 

here the function h i (x ) := g i (x ) + a � i x − b i is convex and 0 n +1 ∈
 i for all i ∈ I. In the below formulas for the RRF appear the

pigraphs of the conjugate functions of the constraints. Recall 

hat g ∗i (x ∗) := sup x ∈ R n { ( x ∗) � x − g i (x ) } is the conjugate of g i while

pi g ∗i = 

{
( x ∗, r ) ∈ R 

n +1 : g ∗i (x ∗) ≤ r 
}

is its epigraph . Accordingly, 

 

∗
i (x ∗) = b i + g ∗i (x ∗) and epi h 

∗
i = epi g ∗i + ( a i , b i ) . 

Hence, we can assume without loss of generality that (18) holds 

ith 0 n +1 ∈ U i for all i ∈ I. In the same way, if int U i � = ∅ for all i ∈
, we can assume without loss of generality that (18) holds with 

 n +1 ∈ int U i for all i ∈ I. 

Thus, the parameterized robust counterpart of σCP is the convex 

ystem posed in R 

n 

α
CP := 

{
g i (x ) + a � i x ≤ b i , ( a i , b i ) ∈ αU i , i ∈ I 

}
, 
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hose solution set is 

 

α
CP = 

{
x ∈ R 

n : g i (x ) + a � i x − b i ≤ 0 for all ( a i , b i ) ∈ αU i , i ∈ I 
}
. 

ince epi ( g i + 〈 a i , ·〉 − b i ) 
∗ = epi g ∗i + ( a i , b i ) , by Dinh, Goberna, and 

ópez (2006 , Theorem 3.1), 

 

α
CP � = ∅ ⇐⇒ ( 0 n , −1 ) / ∈ cl cone 

{ ⋃ 

i ∈ I 

(
epi g 

∗
i + αU i 

)} 

. (19) 

e assume F 0 
CP 

� = ∅ , that is, ( 0 n , −1 ) / ∈ cl cone 
{⋃ 

i ∈ I epi g ∗i 
}
. 

The RRF of σCP is 

CP := sup { α ∈ R + : F αCP � = ∅ } . 
We associate with σCP satisfying (A1 ) the epigraphical set 

 ( g ) := conv 

( ⋃ 

i ∈ I 
epi g 

∗
i 

) 

, 

here g := ( g 1 , . . . , g m 

) . 

If g i (x ) = a � i x − b i for all i ∈ I, since g ∗i = b i + δ{ a i } , where δ{ a i } 
enotes the indicator function of { a i } (i.e., δ{ a i } (x ) = 0 if x = a i and

 ∞ otherwise), one has 

 ( g ) := conv 

( ⋃ 

i ∈ I 
{ a i } ×

[
b i , + ∞ [ 

) 

= E( a , b ) , 

he epigraphical set defined in (5) . 

We first consider the RRF of σCP under the interiority assump- 

ion (A1 ) . 

roposition 17 (Two exact formulas for ρCP under (A1 ) ) (( Chen 

t al., 2020 , Corollaries 3.1 and 3.2) and ( Li and Wang, 2018 , Theo-

em 3.1, Corollary 3.2)) Under (A1 ) , 

CP = inf 
( a,b ) ∈ E( g ) 

φZ ( −a, −b ) . 

f, additionally, Z is symmetric, 

CP = dist ( 0 n +1 , E( g ) ) 

= inf 
δ∈ �n +2 , ( a k ,b k ) ∈ 

⋃ 

i ∈ I 
epi g 

∗
i 

φZ 

( 

n +2 ∑ 

k =1 

δk a k , 

n +2 ∑ 

k =1 

δk b k 

) 

. (20) 

In some simple cases, (20) allows to compute ρCP by solving 

ptimization problems: 

• If Z = 

{
z ∈ R 

n +1 : z � M 

−1 z ≤ 1 
}
, with M being a positive definite 

symmetric (n + 1) × (n + 1) matrix, then, by Chen et al. (2020 ,

Corollary 3.3(i)), 

ρCP = inf 
( a,b ) ∈ E( g ) 

√ 

( a, b ) 
� 

M 

−1 ( a, b ) . (21) 

• If Z = B n +1 , by (21) , 

ρCP = inf 
( a,b ) ∈ E( g ) 

√ 

b 2 + 

n ∑ 

k =1 

a 2 
k 
. (22) 

• If Z is the � 1 unit ball 
{

z ∈ R 

n +1 : 
∑ n +1 

i =1 | z i | ≤ 1 
}
, by Chen et al. 

(2020 , Corollary 3.3(iii)), 

ρCP = inf 
( a,b ) ∈ E( g ) 

{ 

| b | + 

n ∑ 

k =1 

| a k | 
} 

. (23) 

• If Z is the � ∞ 

unit ball 
{

z ∈ R 

n +1 : | z i | ≤ 1 , i ∈ I 
}
, by Chen et al. 

(2020 , Corollary 3.3(iv)), 

ρCP = inf max { | b | , | a k | : k = 1 , . . . , n } . (24) 

( a,b ) ∈ E( g ) p

757 
However, the above formulas (22) –(24) do not provide tractable 

ptimization problems for ρCP when not all constraints are linear 

ecause E( g ) is seldom polyhedral. 

In order to check the positivity of ρCP one has to decide 

hether the nominal constraint convex system satisfies, or not, the 

later condition. This can be done by maximizing a linear function 

nder convex constraints, i.e., by solving certain CP problem. 

roposition 18 (Positiviness of ρCP under (A1 ) ). (( Chen et al., 2020 , 

roposition 3.1) and ( Li & Wang, 2018 , Theorem 3.5)) Assume that 

A1 ) holds. Then, 

CP > 0 ⇐⇒ sup 

x ∈ R n 
inf 
i ∈ I 

{ y i ∈ R : g i (x ) + y i ≤ 0 } > 0 

⇐⇒ sup 

x ∈ R n ,y ∈ R 
{ y : g i (x ) + y ≤ 0 , i ∈ I } > 0 . 

The next corollary is the result of combining (19) and (20) . 

roposition 19 (Attainment of ρCP under (A1 ) ). Assume that (A1 ) 

olds with Z being symmetric. Then, ρCP is attained if and only if 

 

0 n , −1 ) / ∈ cl cone 

{ ( ⋃ 

i ∈ I 
epi g 

∗
i 

) 

+ dist ( 0 n +1 , E( g ) ) Z 

} 

. 

As in previous sections, we consider scaled CP, i.e., the counter- 

arts of the above propositions when (A2 ) holds instead of (A1 ) . 

he parameterized scaled robust solution set is now 

 

 

α
CP = 

{
x ∈ R 

n : g i (x ) + a � 
i 

x − b i ≤ 0 for all ( a i , b i ) ∈ αλi Z, i ∈ I 
}

= 

{
x ∈ R 

n : λ−1 
i 

g i (x ) + c � 
i 

x − d i ≤ 0 for all ( c i , d i ) ∈ αZ, i ∈ I 
}
. 

We associate with σCP satisfying (A2 ) the epigraphical set 

 ( g , λ) := conv 

( ⋃ 

i ∈ I 
epi 

(
λ−1 

i 
g i 
)∗
) 

. 

t is easy to see that 
(
λ−1 

i 
g i 
)∗

(x ∗) = g ∗i (λi x 
∗) . Thus, defining � :=

iag ( λ1 , . . . , λm 

, 1 ) , we can write 

 ( g , λ) := conv 

( ⋃ 

i ∈ I 
� epi g 

∗
i 

) 

. 

orollary 20 (Two formulas for ρCP under (A2 ) ). If (A2 ) holds, the 

RF of σCP is 

CP = inf 
( a,b ) ∈ E ( g ,λ) 

φZ ( −a, −b ) . 

f, additionally, Z is symmetric, then ρCP = dist ( 0 n +1 , E ( g , λ) ) . 

Since the Slater condition holds for the nominal system 

g ∗i (x ) ≤ 0 , i ∈ I 
}

if and only if it holds for 
{
λ−1 

i 
g ∗i ( x ) ≤ 0 , i ∈ I 

}
, 

roposition 18 remains valid under assumption ( A2 ) . 

orollary 21 (Attainment of ρCP under (A2 ) ). Assume that (A2 ) 

olds with Z being symmetric. Then, ρCP is attained if and only if 

 

0 , −1 ) / ∈ cl cone 

{ ( ⋃ 

i ∈ I 
� epi g 

∗
i 

) 

+ dist ( 0 n +1 , E ( g , λ) ) Z 

} 

. 

The following assumption is an extension of the interiority as- 

umption (A2 ) introduced in Section 2 as the uncertainty sets U i 
re no longer required to be coincident up to scaling: 

(A4 ) For each i ∈ I there exists a compact convex set Z i ⊂ R 

n +1 

such that 0 n +1 ∈ int Z i and U i = Z i . 

Assumption (A4 ) holds in convex programs with determinis- 

ic objective function and uncertain constraints whose uncertainty 

ets are closed balls for different norms, e.g., polyhedral and non- 

olyhedral balls, in which case they cannot be nonnegative multi- 

les of a unique convex body. 
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roposition 22 (Lower and upper bounds for ρCP under (A4 ) ). 

 Chen et al., 2020 , Theorem 3.1) Under (A4 ) , the following inequal- 

ties hold: 

inf 
 

a,b ) ∈ E( g ) 
inf 
i ∈ I 

φZ i (−a, −b) ≤ ρCP ≤ inf 
( a,b ) ∈ E( g ) 

sup 

i ∈ I 
φZ i (−a, −b) . 

emark 23. The admissible perturbations of each constraint func- 

ion g i in σCP are not linear in Goberna et al. (2016) , so that they

re not covered by the above results. To be more precise, the ad- 

issible perturbations g i are sums of nonnegative combinations of 

he m constraint functions with affine functions, so that each per- 

urbed functions is convex. Even though the interior of the uncer- 

ainty pattern-set U does not contain the zero vector, in the same 

ein as (A3 ) , ( Goberna et al., 2016 , Theorem 3.1) provides an exact 

ormula for ρCP computable by solving a suitable tractable opti- 

ization problem 

. RRF of conic linearly constrained programs 

This section deals with uncertain conic linear systems posed in 

 

n of the form 

CLP = 

⎧ ⎨ ⎩ 

⎡ ⎣ 

a � 1 x − b 1 
. . . 

a � m 

x − b m 

⎤ ⎦ ∈ −K 

⎫ ⎬ ⎭ 

, 

here { 0 m 

} � = K � R 

m is a given closed pointed convex cone 

uch that int K � = ∅ (implying that its positive dual cone K 

∗ =
y ∈ R 

m : z � y ≥ 0 , z ∈ K 

}
enjoys the same properties), and ( a i , b i ) ∈ 

 

n +1 , i ∈ I = { 1 , . . . , m } . Particular cases of (CLP ) are: 

• If K = R 

m + , then σCLP coincides with the uncertain linear system 

σLP analyzed in Section 2 . 
• If f is linear and K = S 

q 
+ is the cone consisting of all q × q posi-

tive semi-definite symmetric matrices, then (P ) in (1) is an un- 

certain semi-definite programming (SDP) problem, with con- 

straint system σDP . Let Tr (M) be the trace of a matrix M ∈ S q .

As S q and R 

q (q +1) / 2 have the same dimensions, there exists an 

invertible linear map L : S q → R 

q (q +1) / 2 such that 

L (M 1 ) 
� L (M 2 ) = Tr (M 1 M 2 ) for all M 1 , M 2 ∈ S q . (25)

By (25) , L establishes an isomorphism between S q and 

R 

q (q +1) / 2 , equipped with the trace and the Euclidean inner 

product, respectively which preserves inner products. So, one 

can identify the space S q of all (q × q ) symmetric matrices with 

the Euclidean space R 

q (q +1) / 2 . 
• If f is linear and K is the second order cone K 

m 

p = { x ∈ R 

m :

x m 

≥ ‖ (x 1 , . . . , x m −1 ) ‖} , then (P ) in (1) is an uncertain second

order cone programming (SOCP) problem. 

The uncertain constraint of σCLP can be written as 

(x ) = [ A | b] 

(
x 

−1 

)
∈ −K, where A := [ a 1 | . . . | a m 

] � ∈ R 

m ×n 

nd b = ( b 1 , . . . , b m 

) 
� ∈ R 

m . We assume the existence of a 

attern-set U formed by m × ( n + 1 ) real matrices, U being a 

onvex subset of R 

m ×( n +1 ) containing the zero matrix, a matrix 

 := [ a 1 | . . . | a m 

] 
� ∈ R 

m ×n , and a vector b = ( b 1 , . . . , b m 

) � ∈ R 

m 

uch that the uncertainty of g is captured by the expression 

(x, u ) := 

([
A | b ]+ U 

)( x 
−1 

)
or all U ∈ U and x ∈ R 

n . So, the parameterized robust counterpart of

CLP , depending on a parameter α ≥ 0 , is the conic linear system 

osed in R 

n 

α
CLP := 

{([
A | b ]+ U 

)( x 
−1 

)
∈ −K, U ∈ αU 

}
. 
758 
It remains to choose a suitable pattern-set U . The size of a ma- 

rix can be defined through any of the well-known matrix norms. 

ince our approach is based on the linearization of the solution set 

 

α
CLP 

of σα
CLP 

, we use a norm which is not popular (it does not ap-

ear in Horn and Johnson (1985 , Chapter 5)) but allows to use the 

esults on the RRF of uncertain LSIP problems. Given an m × n ma- 

rix M = 

[
m i j 

]
, we define ‖ M ‖ as the maximum of the Euclidean 

orms of the rows of M, that is, 

 

M ‖ 

= max 
i =1 , ... ,m 

√ 

n ∑ 

j=1 

m 

2 
i j 
. (26) 

ur pattern-set U will be the unit closed ball for the norm ‖ ·‖ 
efined by (26) in the linear space of m × ( n + 1 ) matrices, i.e., U is 

ormed by the matrices U whose rows belong to B n +1 . Interpreting 

he entries of the rows ( a i , b i ) as coefficients of linear inequalities 

 

� 
i 

x ≤ b i , we could say that the interiority assumption (A1 ) holds 

ith Z = B n +1 . 

So, the solution set of σα
CLP 

can be written as 

 

α
CLP = 

{
x ∈ R n : [ A | b ] 

(
x 

−1 

)
∈ −K for all ( a i , b i ) ∈ 

(
a i , b i 

)
+ αB n +1 , i ∈ I 

}
, 

(27) 

nd the RRF of σCLP is 

CLP := sup { α ∈ R + : F αCLP � = ∅ } ∈ R ∪ { + ∞ } . 
The assumptions on K ensure the existence of a compact base 

for K 

∗, that is, a compact and convex subset B of K 

∗ such 

hat 0 m 

/ ∈ B and K 

∗ = R + B (see, e.g., Göpfert, Riahi, Tammer, & 

 ̆alinescu, 2003 , Lemma 2.2.17). In what follows B is such a base 

or K 

∗. This allows us to represent F α
CLP 

by a linear semi-infinite 

ystem which does not contain the trivial inequality 0 � n x ≤ 0 from 

hich Fan’s existence theorem (Fan, 1968 , Theorem 1) yields 

 

α
CLP � = ∅ ⇐⇒ ( 0 n , 1 ) / ∈ cl cone 

( ⋃ 

y ∈B 

{ 

m ∑ 

i =1 

y i 
(
( a i , b i ) + αB n +1 

)} ) 

. 

(28) 

o, we assume F 0 
CLP 

� = ∅ , i.e., 

 

0 n , 1 ) / ∈ cl cone 

{ 

m ∑ 

i =1 

y i ( a i , b i ) : y ∈ B 

} 

, 

o that the fulfilment of F 0 
CLP 

� = ∅ can be checked by solving a fea-

ible LP program whenever B is a polytope. 

The epigraphical set of σCLP associated with a compact base B of 

 

∗ is the set 

E( A , b , B) := 

{
y � 
[

A | b ] : y ∈ B 

}
+ ({ 0 n } × R + ) . 

bserve that E( A , b , B) not only depends here on the nominal data 

 A and b ), as it happens in Cánovas et al. (2007) , Cánovas et al.

20 05) , Cánovas et al. (20 06) , Cánovas et al. (2011) , but also on

he chosen compact basis B of K 

∗. As in uncertain LSIP, the epi- 

raphical set E( A , b , B) is the sum of a compact convex subset of

 

n +1 with the vertical ray emanating from 0 n +1 , so it is a closed 

onvex set too. If K = R 

m + and we define B as the convex hull of

he canonical basis of R 

m , which is actually a base of K 

∗ = R 

m + ,
ne gets the epigraphical set of σLP with constraints written in the 

orm a � 
i 

x ≤ b i , i ∈ I. 

The next result provides lower and upper bounds for ρCLP 

hich are expressed in terms of dist 
(
0 n +1 , E( A , b , B) 

)
. 

roposition 24 (Lower and upper bounds for ρCLP under (A1 ) ). 

 Goberna et al., 2021 , Theorem 3.1) Let B be a compact base of K 

∗.

hen, the RRF of σCLP satisfies 

 1 (B) dist 
(
0 n +1 , E( A , b , B) 

)
≤ ρCLP ≤ C 2 (B) dist 

(
0 n +1 , E( A , b , B) 

)
, 
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(29) 

here 

 1 (B) = 1 / max 

{ 

‖ 

m ∑ 

i =1 

y i u i ‖ : y ∈ B, ‖ u i ‖ ≤ 1 

} 

(30) 

nd 

 2 (B) = 1 / min 

{ 

m ∑ 

i =1 

| y i | : y ∈ B 

} 

. (31) 

Fortunately, it is possible to obtain tractable optimization prob- 

ems for the computation of the term dist 
(
0 n +1 , E( A , b , B) 

)
under 

 mild condition. 

roposition 25 (A computable formula for dist 
(
0 n +1 , E( A , b , B) 

)
nder (A1 ) ). ( Goberna et al., 2021 , Theorem 3.2) Let B be a compact

ase of K 

∗. Then, 

dist 
(
0 n +1 , E( A , b , B) 

)
= inf 

(z,s,t,y ) ∈ R n ×R ×R ×R m 

{
t : 

‖ (z, s ) ‖ ≤ t, y ∈ B, 

z = A 

� 
y, s ≥ b 

� 
y 

}
. 

n particular, if B is a spectrahedron with the form B = { y ∈ R 

m : B 0 +
 m 

i =1 y i B i � 0 } for some s × s symmetric matrices B i , i = 0 , 1 , . . . , m ,

hen 

dist 
(
0 n +1 , E( A , b , B) 

)2 

= inf 
(z,s,t,y ) ∈ R n ×R ×R ×R m 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

t : 

[ 

tI n 0 n z 
0 

� 
n t s 

z � s 1 

] 

� 0 , 

z = A 

� 
y, s ≥ b 

� 
y, 

B 0 + 

m ∑ 

i =1 

y i B i � 0 . 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

. 

We now show how to obtain tractable lower and upper bounds 

or the RRF of uncertain SDP and SOC problems by exploiting the 

act that K is self-dual for both types of problems, i.e., K 

∗ = K. 

• SDP: Taking B = 

{
M ∈ S 

q 
+ : Tr (M) = 1 

}
in Propositions 24 and 

25 , one gets 

2 

q (q + 1) 

√ 

v SDP ≤ ρSDP ≤
√ 

q 
√ 

v SDP , 

where ρSDP is the RRF of σSDP and v SDP is the optimal value of 

the following SDP problem: 

inf 
(z,s,t,y ) ∈ R n ×R ×R ×R 

m 

M∈ S q 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

t : 

[ 

tI n 0 n z 
0 

� 
n t s 

z � s 1 

] 

� 0 , 

z = A 

� 
y, s ≥ b 

� 
y, 

y = L (M) 
M ∈ S q + , Tr (M) = 1 . 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

. 

• SOCP: Taking B = { y ∈ K 

m 

p : y m 

= 1 } in Propositions 24 and 25 ,

one gets 

1 √ 

m − 1 + 1 

v SOC ≤ ρSOC ≤ v SOC , 

where v SOC is the optimal value of the following SOCP problem 

inf 
(z,s,t,y ) ∈ R n ×R ×R ×R m 

⎧ ⎨ ⎩ 

t : 

‖ (z, s ) ‖ ≤ t, 

z = A 

� 
y, s ≥ b 

� 
y, 

‖ (y 1 , . . . , y m −1 ) ‖ ≤ 1 , y m 

= 1 . 

⎫ ⎬ ⎭ 

. 

To get an exact formula for ρCLP from the epigraphical set we 

eed some qualification of the dual cone K 

∗, more exactly the set 

 s := 

{ 

y ∈ K 

∗ : 

m ∑ 

i =1 

y i = 1 

} 

(32) 
759 
e a compact base for K 

∗. According to Göpfert et al. (2003 , Theo-

em 2.1.15) and (Aliprantis & Tourky, 2007 , Theorem 1.47), a suffi- 

ient condition for the set B s defined in (32) to be a compact base

f K 

∗ is that 
∑ m 

i =1 y i > 0 for all y ∈ K 

∗\ { 0 m 

} and B s be bounded.

n contrast with S 
q 
+ and K 

m 

p , any K such that R 

m + ⊂ K satisfies this 

ondition as 
∑ m 

i =1 y i > 0 for all y ∈ K 

∗\ { 0 m 

} ⊂ R 

m + \ { 0 m 

} . 
roposition 26 (An exact formula for ρCLP under (A1 ) ). If B s := 

 y ∈ K 

∗ : 
∑ m 

i =1 y i = 1 } is a compact base of K 

∗, then 

CLP ≤ dist 
(
0 n +1 , E( A , b , B s ) 

)
. 

oreover, the exact formula 

CLP = dist 
(
0 n +1 , E( A , b , B s ) 

)
(33) 

olds whenever the additional assumption R 

m + ⊂ K is satisfied. 

roof. Let C 1 and C 2 be the constants (30) and (31) in 

roposition 24 in the particular case that B = B s = { λ ∈ K 

∗ :
 m 

i =1 λi = 1 } . Obviously, C 1 ≤ C 2 . 

We first assume that B s is a compact base. If λ ∈ B s , then
 m 

i =1 | λi | ≥ ∑ m 

i =1 λi = 1 , so that C −1 
2 

= min 

{∑ m 

i =1 | λi | : λ ∈ B s 

}
≥

 , which combined with Proposition 24 yields ρCLP ≤
ist 
(
0 n +1 , E( A , b , B s ) 

)
. 

We now assume that R 

m + ⊂ K, so that B s ⊂ K 

∗ ⊂ R 

m + . Then we

ave 

 

−1 
1 = max 

{ 

‖ 

m ∑ 

i =1 

λi u i ‖ : λ ∈ B s , ‖ u i ‖ ≤ 1 

} 

≤ max 

{ 

m ∑ 

i =1 

λi ‖ u i ‖ : λ ∈ B s , ‖ u i ‖ ≤ 1 

} 

≤ 1 . 

his implies that C 1 ≥ 1 . This together with C 1 ≤ C 2 and C −1 
2 

≥ 1

ives us that C 1 = C 2 = 1 . So, dist 
(
0 n +1 , E( A , b , B s ) 

)
= ρCLP , by ap-

lying again Proposition 24 with B = B s . �

• LP: Since the additional assumption in Proposition 26 trivially 

holds, (33) provides a new formula for ρLP by solving the fol- 

lowing SOCP problem (compare with (7) and (15) ): 

ρLP = inf 
(z,s,t,y ) ∈ R n ×R ×R ×R m 

⎧ ⎨ ⎩ 

t : 

‖ (z, s ) ‖ ≤ t, 

z = A 

� 
y, s ≥ b 

� 
y, 

y ∈ R 

m 

+ , 
∑ m 

i =1 y i = 1 

⎫ ⎬ ⎭ 

. (34) 

The next result is an immediate consequence of the double in- 

quality (29) in Proposition 24 . 

roposition 27 (Positiveness of ρCLP under (A1 ) ). Let B be a com- 

act base of K 

∗. Then, ρCLP > 0 if and only if 0 n +1 / ∈ E( A , b , B) . 

The attainment of ρCLP can be characterized by putting α = ρCLP 

n (28) . 

roposition 28 (Attainment of ρCLP under (A1 ) ). Assume that R 

m + ⊂
−1 K. Then, ρCLP is attainable if and only if 

 

0 n , 1 ) / ∈ cl cone 

( ⋃ 

y ∈B 

{ 

m ∑ 

i =1 

y i 
(
( a i , b i ) + dist 

(
0 n +1 , E( A , b , B s ) 

)
B n +1 

)} ) 

. 

An application of Proposition 26 to uncertain support vector 

achine problems can be found in Goberna et al. (2021) . 

Assumption (A2 ) , with Z = B n +1 , in the robust CLP set- 

ing, consists in replacing U by �U := { �U : U ∈ U } , wher e � = 

iag ( λ , . . . , λm 

) , with λ > 0 , i = 1 , . . . , m, U being the pattern-set 
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. So, the parameterized scaled robust solution set is 

 

 

α
CLP = 

{
x ∈ R 

n : [ A | b ] 
(

x 

−1 

)
∈ −K for all ( a i , b i ) ∈ 

(
a i , b i 

)
+ αλi B n +1 , i ∈ I 

}
= 

{
x ∈ R 

n : 
([

A | b ]+ U 

)( x 

−1 

)
∈ −K for all U ∈ α�U 

}
= 

{
x ∈ R 

n : 
(
�−1 

[
A | b ]+ V 

)( x 

−1 

)
∈ −�−1 K for all V ∈ αU 

}
, 

here the cone �−1 K is a closed pointed convex cone such that 

nt 
(
�−1 K 

)
� = ∅ and 

�−1 K 

)∗= 

{ 
y ∈ R 

m : 
(
�−1 y 

)� 
z ≥ 0 , z ∈ K 

} 
= 

{
�v ∈ R 

m : v � z ≥ 0 , z ∈ K 

}
= �K 

∗. 

We associate with σCLP satisfying (A2 ) the epigraphical set 

( A , b , B, �) := 

{
y � 
[
�−1 A | �−1 b 

]
: y ∈ B 

}
+ ({ 0 n } × R + ) . 

The following result is an immediate consequence of 

ropositions 25 and 26 . 

orollary 29 (Bounds and an exact formula for ρCLP under (A2 ) ). 

et B be a base of �K 

∗, and C 1 (B) and C 2 (B) be as in (30) and (31) .

hen, 

 1 (B) dist 
(
0 n +1 , E( A , b , B, �) 

)
≤ ρCLP ≤ C 2 (B) dist 

(
0 n +1 , E( A , b , B, �) 

)
. 

oreover, if B s := 

{
y ∈ �K 

∗ : 
∑ m 

i =1 y i = 1 
}

is a compact base of �K 

∗, 
hen 

CLP ≤ dist 
(
0 n +1 , E( A , b , B s , �) 

)
, 

nd the exact formula 

CLP = dist 
(
0 n +1 , E( A , b , B s , �) 

)
olds whenever the additional assumption R 

m + ⊂ �−1 K is satisfied. 

orollary 30 (Positiveness of ρCLP under (A2 ) ). Let B be a compact 

ase of �K 

∗. Then, ρCLP > 0 if and only if 0 n +1 / ∈ E( A , b , B, �) . 

orollary 31 (Attainment of ρCLP under (A2 ) ). Assume that R 

m + ⊂
−1 K. Then, ρCLP is attainable if and only if 

 

0 n , 1 ) / ∈ cl cone 

( ⋃ 

y ∈B 

{ 

m ∑ 

i =1 

y i 
(
( a i , b i ) + dist 

(
0 n +1 , E( A , b , B s ) 

)
B n +1 

)} ) 

, 

here B s := 

{
y ∈ �K 

∗ : 
∑ m 

i =1 y i = 1 
}
. 

. Distance to ill-posedness 

In this section, we show that our derived bounds and formulas 

or RRF can also provide new formulas for computing the distance 

o ill-posedness for uncertain conic systems. 

Consider the conic linear system Ax − b ∈ −K parameter- 

zed by the parameter [ A, b ] ∈ R 

m ×( n +1 ) . For two parameters 

A 

1 , b 1 
]
, 
[
A 

2 , b 2 
]

∈ R 

m ×(n +1) with A 

i = 

[
a i 

1 
| . . . | a i m 

]� 
and b i = 

b i 
1 
, . . . , b i m 

)� 
, i = 1 , . . . , m , we define the distance between 

[
A 

1 , b 1 
]

nd 

[
A 

2 , b 2 
]

as 

 

([
A 

1 , b 1 
]
, 
[
A 

2 , b 2 
])

:= max 
i =1 , ... ,m 

{∥∥(a 1 i , b 
1 
i 

)
−
(
a 2 i , b 

2 
i 

)∥∥}. 
hen, the so-called space of parameters  can be defined as the 

pace of all m × ( n + 1 ) matrices [ A, b ] equipped with the above 

etric d. The set of feasible parameters is defined as 

c := { [ A, b ] ∈  : Ax − b ∈ −K for some x ∈ R 

n } . 
et 
[

A , b 
]

∈ c be a given matrix parameter. We say the matrix 

arameter 
[

A , b 
]

∈ c is well-posed with respect to feasibility when 
760 
A , b 
]

∈ int c . The distance to ill-posedness of the given matrix pa- 

ameter 
[

A , b 
]

∈ c , denoted as δ
(
A , b 

)
, is defined as (

A , b 
)

= dist 
([

A , b 
]
, \ c 

)
. 

Next, using results from the previous section, we provide com- 

utable bounds for the distance to ill-posedness of a given matrix 

arameter 
[

A , b 
]
. These bounds can be aggregated to those pro- 

ided by Vera (2014 , Section 3) under suitable assumptions. 

roposition 32 (Bounds for the distance to ill-posedness) . Let B be 

 compact base for K 

∗. Then, 

CLP ≤ δ
(
A , b 

)
≤ C 2 ( B ) 

C 1 ( B ) 
ρCLP , (35) 

nd 

C 1 ( B ) dist 
(
0 n +1 , E( A , b , B) 

)
≤ δ

(
A , b 

)
≤ (C 2 ( B ) ) 2 

C 1 ( B ) 
dist 

(
0 n +1 , E( A , b , B) 

)
, (36) 

here C 1 (B) , C 2 (B) are given as in (30) and (31) , that is, 

 1 ( B ) := 1 / max 

{ 

‖ 

m ∑ 

i =1 

λi u i ‖ : λ ∈ B, ‖ u i ‖ ≤ 1 

} 

nd 

and C 2 ( B ) := 1 / min 

{ 

m ∑ 

i =1 

| λi | : λ ∈ B 

} 

. 

roof. For the sake of simplicity, we write C 1 and C 2 instead of 

 1 (B) and C 2 (B) , respectively, along the proof. We first establish 

35) . To do this, we observe that ρCLP ≤ δ( A , b ) holds because, re- 

alling (27) , 

 

α
CLP ⊂ { x ∈ R 

n : Ax − b ∈ −K } 
or all [ A, b] ∈  such that d([ A, b] , [ A , b ]) ≤ α. 

Take an arbitrary ρ > ρCLP . By the same argument as in the first 

art of Proposition 24 , we can write for any ∈ > 0 

m 

 

i =1 

γi ( a i , b i ) + ( 0 n , μ) = −(ρ C −1 
1 + ε) ( u, s ) , (37) 

here γ ∈ B, μ is a positive scalar, and (u, s ) ∈ B n +1 . Let w 2 :=
in { ∑ m 

i =1 | λi | : λ ∈ B} > 0 , and, for each i = 1 , . . . , m , 

u i , s i ) := 

(
sign γi ∑ m 

i =1 | γi | u, 
sign γi ∑ m 

i =1 | γi | s 
)

∈ w 

−1 
2 B n +1 . 

his together with the fact that C 2 = w 

−1 
2 

implies that ‖ (u i , −s i ) ‖ ≤
 2 , i = 1 , . . . , m . Let ε > 0 . Defining (a i , b i ) := ( a i , b i ) + (ρ C −1 

1 
+

)(u i , −s i ) , i = 1 , . . . , m, A := [ a 1 | . . . | a m 

] � and b := (b 1 , . . . , b m 

) � ,
e have 

 

(
[ A, b ] , 

[
A , b 

])
= (ρ C −1 

1 + ε) max 
1 ≤i ≤m 

‖ ( u i , −s i ) ‖ 

≤
(
ρC −1 

1 + ε
)
C 2 , 

here the last inequality holds because ‖ (u i , −s i ) ‖ ≤ C 2 . Moreover,

oting the fact that 
∑ m 

i =1 γi (u i , s i ) = (u, s ) , it follows from (37) that

0 n , μ) = γ � [ A | b] . So, 

 

0 n , 1 ) ∈ cone 
{
λ� [ A | b ] : λ ∈ B 

}
, 

hich yields [ A, b] / ∈ c by Proposition 28 for α = 0 . Hence, 

( A , b ) ≤ (ρC −1 
1 

+ ε) C 2 . Letting ε −→ 0 we have δ( A , b ) ≤
 2 (C 1 ) 

−1 ρ, which shows that δ( A , b ) ≤ C 2 (C 1 ) 
−1 ρCLP . So, (37) holds.

Finally, combining (35) and Proposition 24 , we see that (36) fol- 

ows. Thus, the conclusion follows. �

As an immediate corollary, we obtain complete characteriza- 

ions for well-posedness of a given data matrix [ A , b ] with respect 

o feasibility of the linear conic system Ax − b ∈ −K. 
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Table 1 

Classification of the main results on the RRF. 

RRF (A1) (A2) (A3) (A4) 

Formula for ρLP Prop. 2 Cor. 5 ∗ Prop. 7 

ρMILP Prop. 9 

ρLSIP Prop. 10 ∗ Cor. 14 ∗

ρCP Prop. 17 Cor. 20 ∗ Prop. 22 

ρCLP Props. 24 –26 Cor. 29 ∗

Positiveness of ρLP Prop. 3 ∗

ρMILP 

ρLSIP Prop. 12 ∗ Cor. 15 ∗

ρCP Prop. 18 

ρCLP Prop. 27 Cor. 30 ∗

Attainment of ρLP Prop. 4 ∗ Cor. 6 ∗

ρMILP Prop. 8 

ρLSIP Prop. 13 ∗ Cor. 16 ∗

ρCP Prop. 19 ∗ Cor. 21 ∗

ρCLP Prop. 28 Cor. 31 ∗
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orollary 33 (Characterizing well-posedness) . Let B be a compact 

ase for K 

∗. Then [ A , b ] ∈ c is well-posed if and only if 0 n +1 / ∈
( A , b , B) . 

roof. By Proposition 32 , we see that 

A , b 
]

∈ int c ⇐⇒ dist 
(
0 n +1 , E( A , b , B) 

)
> 0 ⇐⇒ 0 n +1 / ∈ E( A , b , B

hus, the conclusion follows. �

The next exact formula, applied to the particular case of K = R 

m + 
nd its natural base �m 

, coincides with the formula in (Cánovas 

t al., 2005 , Theorem 6) specialized to linear programming prob- 

ems. 

roposition 34. Let R 

m + ⊂ K and B s = { y ∈ K 

∗ : 
∑ m 

i =1 y i = 1 } . Then, (
A , b 

)
= ρCLP = dist 

(
0 n +1 , E( A , b , B s ) 

)
. 

roof. Using same argument as in Proposition 26 , we see 

hat C 1 (B s ) = C 2 (B s ) = 1 and so, the conclusion follows from

roposition 32 . �

In particular, one recovers the formula in (6) ρLP = 

ist (0 n +1 , E( a , b )) by taking K = R 

m + in Proposition 34 . 

In concluding this Section, we briefly comment on the re- 

ationship between our results and previous works on the dis- 

ance to ill-posedness. Firstly, note that our nominal conic lin- 

ar system { A x − b ∈ −K} satisfies the assumptions of Freund and 

era (1999 , Theorems 6 and 7), where the norm of [ A , b ] ∈  is

ax {‖ A ‖ , ‖ b ‖} , with ‖ A ‖ := {‖ A x ‖ : ‖ x ‖ ≤ 1 } (instead of the norm

sed in Section 6 , i.e., max j=1 , ... ,m 

{‖ ( a j , b j ) ‖} ) and whose proofs

re based on a result of Renegar (1994) and a suitable “lineariza- 

ion” of the involved cones. 

Denote by δ0 ( A , b ) the distance from [ A , b ] to ill-posedness 

easured this way, which was proposed in Freund and Vera 

1999) and by ‖ u ‖ ∗ = max { y � x : ‖ y ‖ ≤ 1 } the dual norm of u ∈ R 

m .

heorem 7 in Freund and Vera (1999) asserts that 

K v −1 ≤ δ0 ( A , b ) ≤ v −1 , (38) 

here βK := sup u ∈ R m , ‖ u ‖ ∗=1 inf x ∈ R m , ‖ x ‖ =1 u 
� x is the so-called coeffi- 

ient of linearity of the cone K ( Freund and Vera, 1999 , Definition 

) and 

 := inf 

{
‖ 

x ‖ 

+ γ : γ b − A x − 1 m √ 

m 

∈ K, γ ∈ R + 

}
. 

et d := max { m, n } . From the known inequalities for pairs of vec- 

or and matrix norms in Horn and Johnson (1985) (see the tables 

n pp. 279 and 314) one gets 

δ( A , b ) √ 

2 d 
≤ δ0 ( A , b ) ≤ d δ( A , b ) , 

hich combined with (29) yields (
C 1 √ 

2 d 

)
dist 

(
0 n +1 , E( A , b , B) 

)
≤ δ0 

(
A , b 

)
≤
(

dC 2 2 

C 1 

)
dist 

(
0 n +1 , E( A , b , B) 

)
. (39) 

bserve that (38) and (39) provide lower and upper bounds for 

0 

(
A , b 

)
which are expressed as positive multiples of v −1 and 

ist 
(
0 n +1 , E( A , b , B) 

)
, respectively. In LP, K = R 

m + and one gets 

rom either (38) , with βK = 

1 √ 

m 

(see the comment after Freund 

 Vera, 1999 , Remark 4), or from (39) , an interval for δ0 ( A , b )

hile our Proposition 26 provides the exact formula δ( A , b ) = 

ist 
(
0 n +1 , E( A , b , �m 

) 
)
, which has a nice geometric interpretation 

nd can easily be computed by solving a second-order cone pro- 

ram, see (34) . So, at least in LP, δ( A , b ) seems preferable to

( A , b ) as a measure of the distance to ill-posedness. 
0 

761 
. Conclusions and further research 

This paper provides formulas and methods to compute either 

he RRF, or at least lower and upper bounds for the RRF, for five 

ypes of uncertain optimization programs under different assump- 

ions. It also provides conditions for the positiveness of the RRF 

nd its attainment. Table 1 summarizes the content of Sections 2 –

 , classifying the given results according to two criteria: informa- 

ion provided on the RRF (either a formula for its exact or ap- 

roximate computation, or a positiveness condition, or an attain- 

ent condition) and assumption (from (A1 ) to (A4 ) ) under which 

he corresponding result is valid. Moreover, the new results (some 

f them are corollaries), are marked with an asterisk. The empty 

ells identify (not necessarily difficult) open problems on the 

RF. 

A good part of the above results involve formulas or conditions 

hich are not checkable through tractable optimization problems. 

pecifying types of pattern-sets (likely spectrahedra) allowing to 

btain checkable formulas or conditions is a challenging problem, 

ogether with the narrowing of the intervals for the RRF in those 

esults providing lower and upper bounds, specially under (A4 ) . 

here is no hope of characterizing the attainability of the RRF until 

he obtaining of an existence theorem for linear systems posed in 

 

n (a hard theoretical open problem). Of course, the study of the 

RF is still to be made for other types of optimization problems 

hose constraint system do not belong to the five type families of 

ystems analyzed in this paper, e.g., uncertain convex semi-infinite 

rograms, whose RRF will likely be characterized by combining the 

ools used in Sections 4 and 5 . 

A major challenging problem is to extend the RRF results to 

djustable robust optimization ( Ben-Tal et al., 2009 ), which of- 

ers less conservative decisions than the classical static (single- 

tage) robust optimization for multi-stage optimization prob- 

ems involving both “here and now” and “wait and see” deci- 

ion variables. In the simplest case of two-stage LP, according 

o Woolnough, Jeyakumar, and Li (2021) , the parameterized ro- 

ust counterpart of the nominal constraint system can be written 

s 

α
ALP := { A (u ) x + By (u ) ≤ d(u ) , u ∈ αU } , 
here the pattern-set U is a convex subset containing the null vec- 

or of some linear space, x ∈ R 

n is the first-stage “here and now”

ecision variable that is made before u is realized. The second- 

tage “wait and see” decision, y (·) , that can be adjusted according 

o the actual data, is a mapping, rather than a vector. The coeffi- 

ient matrix A ∈ R 

m ×n and the right hand side vector d ∈ R 

m de-

end on the uncertainty parameter u, while the (fixed recourse) 

oefficient matrix B ∈ R 

m ×k does not depend on u. Then, the RRF 
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f the nominal adjustable LP problem σ 0 
ALP 

could be defined as 

ALP := sup { α ∈ R + : F αALP � = ∅ } , 
here F α

ALP 
represents the solution set of σα

ALP 
. 

Formally, everything is apparently as in the definition of ρLP , 

ut there is a substantial difference: the decision space is now in- 

nite dimensional, making harder obtaining the exact value and 

ven bounds for ρALP , as well as conditions guaranteeing its pos- 

tivity and attainability. An approach for obtaining numerically 

ractable results, based on decision rules, is to restrict y (·) to some 

pecific class of functions such as affine or quadratic functions (see 

en-Tal et al., 2009, Woolnough et al., 2021 ). It is of particular 

nterest to examine how the pattern-sets can be constructed us- 

ng RRF for specific practical decision-making problems such as 

he lot-sizing problems and production planning problems ( Ben-Tal 

t al., 2009 ). 

The relationship between the RRF and the distance to ill- 

osedness in mathematical programming is mentioned in passing 

n Section 4 , as it was used to obtain the RRF in linear semi-infinite

rogramming in the first paper on RRF. Section 7 provides bounds 

or the distance to ill-posedness in parametric conic linear pro- 

ramming which are derived from the corresponding bounds for 

RF obtained in Section 6 . As a by-product, we characterize the 

ell-posedness and obtain an exact formula for the distance to ill- 

osedness under the mentioned strong condition on K. All results 

n this section, Propositions 32 and 34 , and Corollary 33 , are orig-

nal. Of course, new connections between both concepts can po- 

entially be obtained by combining different norms in the space of 

arameters and different bases of K 

∗. 
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