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a b s t r a c t 

In this study, multi-wall carbon nanotubes (MWCNTs) were electrochemically modified with nitrogen 

and phosphorus species and employed as platform to immobilize pyrroloquinoline quinone-dependent 

glucose dehydrogenase (PQQ-GDH) for the fabrication of bioelectrodes for glucose detection. Depending 

on the upper potential limit used during the electrochemical modification of MWCNTs, the nature and 

amount of the nitrogen and phosphorus species incorporated in the carbon material surface can be selec- 

tively controlled. These species act as anchoring groups for the immobilization of the PQQ-GDH. The value 

of the upper potential limit used in the electrochemical modification influences the electron-transfer rate 

between the electrode and the enzyme. The performance of the bioelectrodes for glucose oxidation and 

detection is improved by the electrochemical modification conditions, leading to an increased sensitivity 

towards glucose oxidation from 39.2 to 53.6 mA g MWCNT 
−1 mM 

−1 in a linear range between 0.1 to 1.2 mM. 

This electrochemical modification is considered as an alternative for the preparation of highly sensitive 

glucose bioelectrodes. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

In many applications involving the development of biosensing 

r energy conversion devices, the electron-transfer (ET) between 

n immobilized enzymatic element and the electrode substrate is 

onsidered the triggering factor for an optimal operation of the en- 

isaged bioelectrochemical device. However, the prosthetic group 

f the enzyme which is often deeply buried within the protein 

tructure makes direct electron transfer (DET) between the biocat- 

lyst and the electrode difficult [ 1 , 2 ]. Therefore, continued effort s

ave focused on facilitating and promoting the ET from the redox 

enter within the enzyme and the electrode. Different immobiliza- 

ion methods have been extensively used to preserve the activity 

f the enzyme, improving the orientation of the enzyme or even 
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wiring” the active center of the enzyme with the electrode trans- 

ucer, providing a path for a DET mechanism [3–6] . Unfortunately, 

enaturation and conformational changes in the enzymatic ele- 

ent occur frequently during the immobilization process and can 

ompromise the stability and catalytic behavior of the biomolecule 

6] . 

Carbon nanotubes (CNTs) have been employed as a platform for 

he development of biosensors as well as bioelectrodes used for 

lectrochemical energy generation due to their remarkable chem- 

cal stability, biocompatibility, and unique catalytic and electronic 

roperties [ 7 , 8 ]. Moreover, despite the comparable dimensions of 

NTs and the typical size of enzymes within a few nanometers, 

ome studies have suggested that the structural features of CNTs 

an contribute to reduce the distance between the active-center 

f the enzyme and the electrode surface [ 8 , 9 ]. More importantly,

ne important aspect that promotes the versatility of CNTs lies in 

heir tunable-surface chemistry, which can be done through dif- 

erent procedures including non-covalent or covalent functionaliza- 
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ion methods [ 10 , 11 ]. In this sense, the modification of CNTs with

urface functionalities provides a versatile route for the synthesis 

f active materials with enhanced properties for specific applica- 

ions. 

First approaches of functionalization were focused on the ox- 

dation of CNTs employing acid solutions to incorporate oxygen 

unctionalities, such as carboxylic acid moieties, which can anchor 

he terminal amino-groups at the enzyme structure with the CNT- 

odified surface, promoting the immobilization of the bioelement 

12] . Nowadays, other reactions (for example, amidation, hydro- 

enation, electrografting, etc.), based on the generation of highly 

eactive radical species that can react with the carbon atoms in 

he CNT structure, have become a promising strategy for the as- 

embly of building blocks in the synthesis of bioelectrodes with an 

mproved performance [13–16] . 

The functionalization of CNT surfaces with different types of ac- 

ive species (such as oxygen and nitrogen) by chemical and elec- 

rochemical modification procedures have demonstrated being ef- 

ective for anchoring surface functionalities enabling the formation 

f covalent bonds with amino acids in the enzymes [ 13 , 17 , 18 ]. For

xample, CNT surfaces modified with maleimide groups by electro- 

rafting of primary amines were used to fabricate surface-modified 

lectrodes, which showed high catalytic currents and a long-term 

torage stability [5] . Furthermore, Gutiérrez-Sanchez et al. have 

emonstrated that direct interactions of aldehyde functions and 

ugar residues at the glycosylation shell of laccase via imino bond 

f N-functionalized CNTs improve the biocatalytic activity of the 

btained biocathodes, resulting in a three times higher response 

han electrodes prepared using adsorbed enzyme or other type 

f covalent bonds [19] . Similarly, recent works employing elec- 

rochemically functionalized MWCNTs with pyrenediones species 

ave shown the role of the functional species in providing elec- 

ron pathways for a mediated electron transfer with the redox en- 

yme [20] . Although previous reports have demonstrated the use 

f phosphonic groups for an effective electrochemical communi- 

ation with proteins such as hemoglobin over the electrode sur- 

ace [ 21 , 22 ], the modification of CNTs with P species as functional

roups for immobilization of enzymes is scarce. In a recent work, 

e have shown that electrochemical entrapment within a CNT ma- 

rix incorporating N and P species provides an effective means for 

lectrical communication with immobilized enzymes [23] . 

In this work, multi-wall carbon nanotubes (MWCNTs) were 

lectrochemically functionalized with N and P species for the de- 

elopment of bioelectrodes as platforms for biosensors and bio- 

uel cell applications. The functional carbon materials promote 

n enhanced electron-transfer between an oxidoreductase, namely 

yrroloquinoline quinone-dependent glucose dehydrogenase (PQQ- 

DH), employed as model enzyme and the electrode. Thus, a bio- 

unctional metal-free MWCNTs electrode is developed in which the 

mount of phosphorus and nitrogen species introduced on the car- 

on nanotube surface can be controlled. Depending on the up- 

er potential limit used for electrochemical modification, the op- 

rational stability, electron-transfer kinetics, catalytic activity and 

ensitivity towards glucose oxidation can be significantly improved, 

roviding an interesting platform to modulate the electrocatalytic 

erformance of the bioelectrodes. 

. Experimental section 

.1. Reagents and equipment 

MWCNTs with 95% purity (8 nm diameter, 10–30 μm length) 

ere purchased from Cheap Tubes (Cambridgeport, USA). N,N- 

imethylformamide (DMF), extra pure, provided by Scharlau, was 

sed as solvent to disperse the CNTs. The specific surface area, 

btained from N adsorption isotherms at −196 °C in an auto- 
2 

2 
atic adsorption system (Autosorb-6, Quantachrome) and using 

he Brunauer, Emmett and Teller (BET) method, was 208 m 

2 g −1 . 

The apo enzyme, soluble glucose dehydrogenase (s-GDH), was 

rovided by Roche Diagnostics (Germany). Sulfuric acid (98%) ana- 

ytical reagent to prepare the electrolyte, was obtained from VWR 

hemicals. 4-Aminophenyl phosphonic acid (4-APPA, + 98%) was 

urchased from Tokyo Chemical Industry (TCI-Belgium). Potassium 

ihydrogen phosphate (KH 2 PO 4 ) and dipotassium hydrogen phos- 

hate tri hydrate (K 2 HPO 4 •3H 2 O), obtained from VWR Chemicals, 

ere used to prepare phosphate buffer solution (0.1 M PBS, pH 

.2). 4-(2-hydroxyethyl) −1-piperazineethanesulfonic acid (HEPES, 

99.5%-titration), D -( + )-glucose (ACS reagent) and pyrroloquino- 

ine quinone (PQQ, ≥95%-HPLC) were purchased from Sigma- 

ldrich. All solutions were prepared using ultrapure water (18 M �

m). The gases Ar (99.999%) and H 2 (99.999%) were provided by 

ir Liquide. 

Electrochemical measurements were performed either using a 

IOLOGIC SP-300 or an Autolab PGSTAT302N potentiostat and a 

tandard three-electrode cell with the glassy carbon (GC) elec- 

rodes modified with the MWCNTs as the working electrode (WE), 

 graphite rod as counter electrode (CE) and a Ag/AgCl (3 M KCl), 

ntroduced in the same electrolyte and connected with the work- 

ng solution through a Luggin capillary as reference electrode (RE). 

.2. Electrochemical modification of MWCNTs with 4-aminophenyl 

hosphonic acid 

Dispersions of 1 mg mL −1 of MWCNTs in DMF were prepared. 

rior to the deposition of MWCNTs, the GC surface (3 mm di- 

meter) was sanded with emery paper and polished using 1 and 

.05 μm alumina slurries, then rinsed with ultrapure water. After- 

ards, a 5 μL aliquot of the MWCNTs dispersion was dropped onto 

he GC surface and dried under an infrared lamp to remove the 

olvent. This procedure was repeated twice. No additional binder 

as been incorporated during this procedure. 

The electrochemical modification of MWCNTs was performed by 

yclic voltammetry in deoxygenated 0.5 M H 2 SO 4 + 1 mM aqueous 

-APPA solution. During the measurement inert gas (Ar) flow was 

aintained. Modification of the MWCNTs was achieved by 10 CV 

ycles at 10 mV s −1 reaching different upper potential limits. Af- 

er electrochemical treatment, the carbon electrodes were washed 

ith excess of ultrapure water, removing the remaining electrolyte. 

.3. Physicochemical characterization 

X-Ray photoelectron spectroscopy (XPS) was performed in a 

G-Microtech Mutilab 30 0 0 spectrometer using Al K α radiation 

1253.6 eV). The P2p spectra have been analyzed considering the 

pin-orbit splitting into P2p 3/2 and P2p 1/2 with a 2:1 peak area ra- 

io and 0.87 eV splitting [24] . 

Scanning electron micrographs were taken using an ORIUS 

C600 model Field Emission Scanning Electron Microscopy (FE- 

EM) and a ZEISS microscope, Merlin VP Compact model. The sam- 

les were coated with a thin layer of carbon to avoid decomposi- 

ion of the enzyme and the different oligomers incorporated by the 

lectrochemical modification of 4-APPA. 

.4. Modification of 4-APPA-functionalized MWCNTs with PQQ-GDH 

Glassy carbon electrodes modified with MWCNTs functionalized 

ith 4-APPA were modified with PQQ-GDH as a bioactive species. 

or this, s-GDH was reconstituted with PQQ. 36 mg of s-GDH were 

issolved in 10 mM HEPES buffer solution (pH = 7.0), containing 

50 mM CaCl 2 •2H 2 O and 520 μM freshly prepared PQQ solution, 

ttaining a concentration of 36 mg mL −1 of PQQ-GDH. In this pro- 

edure, the PQQ cofactor is introduced in the apo-enzyme struc- 
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Fig. 1. Cyclic voltammograms of MWCNTs in 0.5 M H 2 SO 4 + 1 mM 4-APPA at 10 mV s −1 , 10 cycles under Ar atmosphere at different upper potential limits: A) 0.97 V, C) 

1.17 V and E) 1.37 V. Cyclic voltammograms for MWCNT-APPA-X electrodes in 0.5 M H 2 SO 4 , B) MWCNT-APPA-0.97, D) MWCNT-APPA-1.17 and F) MWCNT-APPA-1.37 at 50 mV 

s −1 , under Ar atmosphere. 

t

o  

a

s

f

z

a

c

w

d

P

m

�

W

i

c  

t

a

p

c

c

i

c

c

fi

L

[

ure as active center, and the complex is stabilized by the presence 

f three Ca 2 + ions [25] . At the same time, one of the Ca 2 + ions

re required for the activation of the cofactor and oxidation of the 

ubstrate (glucose). The enzyme solution was treated at 1600 rpm 

or 30 min in a vortex and stored at 4 °C until used. 

Bioelectrodes were fabricated dropping a 5 μL aliquot of the en- 

yme solution onto the MWCNTs functionalized with 4-APPA. The 

liquot was dried at 4 °C for 1 hour, promoting the incubation pro- 

ess of the enzyme on the electrode surface. Subsequent washing 

ith 0.1 M PBS (pH = 7.2) removed loosely bound enzymes before 

rying the electrode under an Ar flow. The surface concentration of 

QQ-GDH was calculated from the redox processes in the voltam- 

ogram using Eq (1 ). 

= 

Q 

(1) 

nF A 

3 
here � is the surface concentration of PQQ-GDH (mol m 

−2 ), n 

s the number of electrons in the redox reaction, F is the Faraday 

onstant (C mol −1 ), A is the electrode surface area (m 

2 ) and Q is

he charge (C) obtained from the integration of the anodic peak 

ssociated with the redox process of the enzyme. 

For the estimation of charge and peak current values (i a , anodic 

eak current and i c , cathodic peak current) the background specific 

urrent has been estimated and subtracted. For this, the electro- 

hemical response associated with the contribution of functional- 

zed electrode surfaces in the absence of immobilized enzyme was 

onsidered. 

The apparent electron transfer constant (k s 
app ) for the redox 

enter of the PQQ-GDH with the electrochemically 4-APPA modi- 

ed MWCNTs at different upper potential limits, was derived using 

aviron ́s model [26] based on the classical Butler −Volmer theory 

27] . 
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Fig. 2. A) Normalized charge vs. upper potential limit used for 4-APPA oxidation, B) Amount of oxygen vs. upper potential limit, C) Amount of nitrogen vs. upper potential 

limit and D) Amount of phosphorus vs. upper potential limit. Note: Charge was determined in the potential range from −0.25 to 0.75 V vs. Ag/AgCl (3 M KCl) and at scan 

rate of 50 mV s −1 , under Ar atmosphere. 
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.5. Electrochemical characterization and biocatalytic activity 

owards glucose oxidation 

The electrochemical behavior of MWCNTs modified with 4- 

PPA and PQQ-GDH (MWCNT-PQQ-GDH) was evaluated in 0.1 M 

BS solution (pH = 7.2), in absence and presence of glucose using 

yclic voltammetry. The catalytic behavior towards glucose oxida- 

ion was studied by chronoamperometry using the same electro- 

hemical cell configuration. Considering that the oxidation pro- 

ess of glucose by PQQ-GDH is oxygen independent, the electrolyte 

as equilibrated with air. The current output of the different elec- 

rodes was allowed to stabilize at 0.35 V in 0.1 M PBS (pH 7.2)

or 1 h before the addition of glucose aliquots of a stock solution 

0.1 M) obtaining concentrations between 5 μM and 6 mM. Dur- 

ng chronoamperometry, stirring was maintained to improve the 

ass transport of glucose towards the electrode surface. A cyclic 

oltammogram was recorded at the beginning and at the end of 

he experiment to control that the integrity of the electrode. All 

easurements were carried out in triplicate with three electrodes 

repared using the same conditions. The limit of detection (LOD) 

as determined by progressively measuring more diluted concen- 

rations of the analyte. The LOD was the lowest concentration at 

hich the current signal could be clearly distinguished from the 

lank. Moreover, the limit of quantification (LOQ) was calculated 

s 3.3 times the LOD (LOQ = 3.3 LOD). 

In this work, the electrodes prepared are named as MWCNT- 

PPA-X for those prepared without enzyme, with X the upper po- 

ential limit that was employed for the electrochemical modifica- 

ion, and MWCNT-APPA-X-GDH for the electrodes with immobi- 

ized PQQ-GDH. 

Electrochemical stability was determined by subsequent 

hronoamperometry experiments. In the first experiment, MWCNT- 
4 
PPA-X-GDH electrodes were polarized from the open circuit po- 

ential to 0.35 V and were kept at this potential for 10 min. Then 

n aliquot of 0.1 M glucose was added to achieve a concentration 

f 20 mM. The electrodes were stored at 4 °C and tested each 

ay under the same conditions for 8 subsequent days. The second 

tability test consisted of maintaining the electrode at an applied 

otential of 0.35 V for 24 h without addition of glucose under 

ontinued stirring. 

. Results and discussion 

.1. Electrochemical modification of MWCTNs with 4-APPA 

Cyclic voltammograms recorded during electrochemical oxida- 

ion of 4-APPA on MWCNTs using different upper potential limits 

re shown in Fig. 1 . Irreversible oxidation peaks can be observed 

t potentials higher than 0.8 V that correspond to the oxidation of 

-APPA ( Figs. 1 -A, C and E). During oxidation of 4-APPA, the radi-

al species generated can promote both the formation of adsorbed 

ligomer chains as well as species covalently bonded to the sur- 

ace of MWCNTs [ 28 , 29 ]. The presence of those functional species

n the electrode surface generates different highly reversible re- 

ox processes appearing in the voltammogram recorded after the 

odification procedure and in the absence of 4-APPA in the elec- 

rolyte solution ( Fig. 1 -B, D and F), as result of the adequate inter-

ction between adsorbed and covalently attached functionalities at 

he MWCNTs support [29] . 

Continuous cycling of the electrode in the presence of 4-APPA 

enerates an increase in the charge of the different reversible re- 

ox processes observed between −0.25 V and 0.75 V. Fig. 2 -A 

hows the average of the integrated charge within the indicated 

otential range, determined for the forward and backward scans 
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Fig. 3. Cyclic voltammograms for the MWCNT and MWCNT-APPA-X electrodes in 

0.1 M PBS (pH = 7.2) at 50 mV s −1 under Ar atmosphere. 
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Fig. 4. Representative cyclic voltammograms for MWCNT-APPA and MWCNT-APPA- 

X-GDH at different upper potential limits of modification: A) 0.97 V, B) 1.17 V and 

C) 1.37 V in 0.1 M PBS (pH = 7.2), at 5 mV s −1 under Ar atmosphere. 

i

s

rom voltammograms normalized by the amount of deposited 

WCNTs. It can be observed that the integrated normalized charge 

ncreases with the upper potential limit used for the oxidation of 

-APPA in comparison with the values observed for pristine MWC- 

Ts, reaching values twice as higher as the initially observed for 

WCNTs only with polarization up to 0.97 V, and more than four 

imes for the highest upper potential limit studied. Fig. 2 -B, C and 

 summarize the amount of oxygen, nitrogen and phosphorus, re- 

pectively, as determined by XPS for MWCNT-APPA electrodes at 

ifferent upper potential limits. The quantification performed by 

PS elucidates the degree of modification and incorporation of het- 

roatoms on the MWCNT surface. The corresponding XPS spectra 

re presented in Fig. S1. 

The increased amount of oxygen and nitrogen on the MWCNT- 

PPA-X surfaces ( Fig. 2 B and C) shows a direct dependence with 

he upper potential limit used for the oxidation of 4-APPA. The ox- 

dative conditions achieved at higher applied potentials promote 

he incorporation of oxygen functionalities in the MWCNTs, the 

dsorption of oligomer chains on the surface, and the covalent 

inding of APPA species [28] . Interestingly, the phosphorus con- 

ent shows a maximum value of incorporation at 1.17 V, suggesting 

hat higher applied potentials favor phosphonic acid oxidation and 

esorption due to hydrolysis reactions. An upper potential limit 

f functionalization at higher potentials promotes the formation 

f oxidized species with higher binding energy (such as, amine 

nd oxidized N groups) as well as phosphonic species (see Fig. 

1), suggesting that the degree of incorporation of functionaliza- 

ion species can be controlled by the selection of the upper poten- 

ial limit [ 28 , 29 ]. 

.2. Electrochemical characterization of MWCNTs modified with 

-APPA and PQQ-GDH 

Fig. 3 shows the electrochemical response of MWCNT-APPA- 

 electrodes in 0.1 M PBS (pH 7.2). Pristine MWCNTs present a 

uasi-rectangular shape under these conditions due to double- 

ayer charging. However, the MWCNT-APPA-X samples show addi- 

ionally different redox processes, as those observed under acidic 

onditions but with lower current. Thus, indicating that the elec- 

roactive performance is also maintained under neutral pH condi- 

ions. 
5 
Fig. 4 shows the cyclic voltammograms obtained for the mod- 

fied electrodes after immobilization of PQQ-GDH. It can be ob- 

erved a small decrease of the double-layer charge as compared 
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Table 1 

Electrochemical parameters associated with the PQQ-GDH electron-transfer process on MWCNT-APPA-X-GDH electrodes. 

Electrodes �∗∗ [mol cm 

−2 ] �E ∗∗ [mV] k s 
app [s −1 ] i a 

∗ [A g −1 ] i c 
∗ [A g −1 ] i a 

i c 

MWCNT-APPA-0.97-GDH (1.4 ± 0.3) × 10 −11 28.8 ± 5.1 69.2 0.37 ± 0.07 0.37 ± 0.07 1.00 ± 0.05 

MWCNT-APPA-1.17-GDH (2.1 ± 0.2) × 10 −11 30.1 ± 10.2 71.5 0.47 ± 0.06 0.44 ± 0.05 1.06 ± 0.02 

MWCNT-APPA-1.37-GDH (1.9 ± 0.4) × 10 −11 25.8 ± 4.6 81.7 0.38 ± 0.07 0.35 ± 0.05 1.07 ± 0.07 

All values have been determined by the average of three different electrodes synthetized and characterized in the same conditions 

for each upper potential limit. 
∗ Anodic and cathodic current density and charge of the PQQ-GDH were determined subtracting the contribution of the MWCNT- 

APPA-X without enzyme (see Experimental section). 
∗∗ Values determined at 5 mV s −1 . 
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ith the electrodes in the absence of enzyme. Additionally, a clear 

lectrochemical redox couple is observed for all modified MWCNT- 

PPA-X-GDH electrodes at a formal potential (E 0 ) of about −0.12 V, 

hich can be assigned to the two-electron redox process of PQQ in 

he active center of the holo-enzyme PQQ-GDH [30] . This result is 

n agreement with a similar electrochemical behavior observed for 

mmobilized PQQ-GDH using different electrodes [ 31 , 32 ]. 

The peak potential separation associated with the PQQ center in 

he holo-enzyme (~29 mV) has values corresponding to a theoret- 

cal reversible two-electron transfer process [33] , and is in agree- 

ent with the values of an i a /i c ratio ≈ 1. Taking into account the

H conditions, the redox process of the cofactor within the enzyme 

akes place by formation of an intermediate quinone species and 

ingle protonation of PQQ [34] . 

Table 1 shows the values of surface coverage of PQQ-GDH for 

he different electrodes. These values change in correlation with 

he phosphorus content ( Fig. 2 -D), reaching the maximum value 

or MWCNTs modified with APPA at an upper potential limit of 

.17 V, which is the one with the highest phosphorus content. 

his can be explained due to the electrostatic interactions between 

QQ-GDH, which presents a net positive charge at the pH condi- 

ions employed during the immobilization process [35] , and the 

ifferent deprotonated terminal groups in the phosphorus moieties 

36] incorporated on the MWCNTs surface. 

The electrochemical study at different scan rates shows a linear- 

ependence of the oxidation and reduction currents, associated 

ith the two electron-transfer process for the redox center of the 

nzyme immobilized on the modified MWCNTs (see Figs. S2 and 

3). This corresponds to a surface confined redox process [37–39] , 

onfirming the binding of the enzyme by the functional groups on 

he MWCNTs surface. Interestingly, the slope of the linear-fitting of 

he peak current dependence with the scan rate (v scan ), could be 

orrelated with the concentration of the active species on the elec- 

rode surface (coverage of PQQ-GDH) [ 40 , 41 ], which shows a max-

mum value for the MWCNT-APPA-1.17 electrodes, in agreement 

ith the results shown in Table 1 , which confirms that a higher 

oncentration of enzyme is reached with this electrode. 

The apparent rate constant, k s 
app , ( Table 1 ) was calculated from 

he trumpet-plots (see Fig. S4), providing values between 69 and 

2 s −1 . An increase of the k s 
app with the upper potential limit 

sed during electrode modification suggests that the interaction 

etween the MWCNT-APPA electrodes and PQQ-GDH is improved, 

roviding a fast electron-transfer between the electrode and the 

edox center of the enzyme. 

The morphological characterization obtained by FE-SEM of the 

WCNT-APPA-X and MWCNT-APPA-X-GDH electrodes is presented 

n Fig. 5 . 

Typical bundles can be observed in the deposits of MWCNTs 

see Fig. S5) and the modified MWCNTs with 4-APPA (see Fig. 5 - 

, C and E). However, the oxidation of MWCNTs in presence of 4- 

PPA causes the formation of a thin film and small deposits on 

he MWCNTs’ surface, related to the oligomer chains formed on 

he surface of the modified electrode. Once PQQ-GDH is immo- 

0

6 
ilized on the electrochemically modified MWCNTs (see Fig. 5 -B, 

 and F), the formation of a continuous enzyme coating can be 

bserved. Depending on the applied potential for the modification 

ith APPA, the morphology of the coating changes considerably. 

he electrodes modified using an upper potential limit of 0.97 V 

resent a coating of PQQ-GDH which resembles the roughness and 

undles-like structure of MWCNTs, suggesting a low thickness of 

he enzymatic coating. An increase of the upper potential limit 

romotes the immobilization of a dense and thick enzyme coat- 

ng with high porosity and a sponge-like texture, as observed for a 

otential limit of 1.17 V and evolving into a more defined globular 

orphology for a potential limit of 1.37 V. 

.3. Electrocatalytic response of MWCNT-APPA-X-GDH electrodes 

owards glucose oxidation 

Fig. 6 -A, C and E show cyclic voltammograms in the presence 

nd absence of glucose for MWCNT-APPA-X-GDH electrodes. For 

he three electrodes, the appearance of an oxidation current upon 

ddition of glucose can be observed. The current starts from a 

otential of about −120 mV and increases with respect to the 

oltammogram in absence of glucose at more positive applied po- 

entials. The non-functionalized MWCNTs do not show this oxi- 

ation current in presence of glucose (Fig. S6). Fig. 6 -B, D and F

how chronoamperograms obtained with the same electrodes at 

n applied potential of 0.35 V vs. Ag/AgCl (3 M KCl) and the re- 

ponse when glucose is added at a concentration of 20 mM. After 

ddition of glucose, the anodic current increases as consequence 

f the catalytic activity of the enzyme and the successful elec- 

ron transfer between the immobilized enzyme and the modified 

lectrode surface. The bioelectrode modified at an upper potential 

imit of 1.37 V (MWCNT-APPA-1.37-GDH) shows the highest values 

f current change ( �i), corresponding to 1.47 A g MWCNT 
−1 by cyclic 

oltammetry and 3.06 μA by chronoamperometry. In contrast, with 

he other potential limits applied for the modification of MWCNTs, 

he currents obtained for glucose oxidation were 0.49 A g MWCNT 
−1 

nd 0.89 μA for both electrodes. This behavior can be correlated 

ith the apparent rate constant estimated before ( Table 1 ). It can 

e observed that this value is higher for the MWCNT-APPA-1.37- 

DH electrode. In this sense, despite the lower amount of immo- 

ilized enzyme in the MWCNT-APPA-1.37-GDH electrode, the en- 

yme seems to be immobilized under more favorable conditions; 

hus, enabling an improved electron transfer between the enzyme 

nd the electrode. 

Regarding the electrocatalytic behavior and activity of the en- 

yme immobilized on the differently modified MWCNTs-based 

lectrodes, Figs. 7 -A, C and E show the chronoamperograms car- 

ied out at 0.35 V vs. Ag/AgCl (3 M KCl) under stirring conditions 

or glucose oxidation in the concentration range between 5.0 μM 

nd 6.0 mM in PBS (pH = 7.2). All electrodes present a rapid re- 

ponse to the changes in glucose concentration. The limit of detec- 

ion (LOD) was determined to be 5 μM for the electrodes modified 

t 1.17 V and 1.37 V. In contrast, the bioelectrodes synthesized at 

.97 V exhibit a LOD of 10 μM. 
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Fig. 5. FE-SEM micrographs of A) MWCNT-APPA-0.97, C) MWCNT-APPA-1.17 and E) MWCNT-APPA-1.37. B) MWCNT-APPA-0.97-GDH, D) MWCNT-APPA-1.17-GDH and F) 

MWCNT-APPA-1.37-GDH. All micrographs were attained with a magnification of 10.0 0 0 X. 
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Fig. 7 -B, D and F show the calibration curves for the MWCNT- 

PPA-X-GDH electrodes that present a Michaelis-Menten behavior, 

n which a linear range at low glucose concentrations is observed. 

fterwards, a plateau zone appears corresponding to the satura- 

ion of the enzyme. In the case of MWCNT-APPA-1.17-GDH and 

WCNT-APPA-1.37-GDH electrodes, a change in the slope at low 

lucose concentrations is observed, suggesting either changes in 

he surface chemistry or swelling effects [ 42 , 43 ], leading to mod-

fications in the interaction with the enzyme. In case of the elec- 

rode synthesized at 0.97 V, this behavior is less noticeable due to 

he lower degree of functionalization. Thus, the linear range was 

etermined to be between 0.1 mM and 1.2 mM for all electrodes. 

Interestingly, the sensitivity of the electrodes presents an im- 

ortant enhancement with the increase in the upper potential limit 

sed during the electrochemical modification of MWCNTs, obtain- 

ng at 1.37 V a value 37% higher than for the electrode modified 
7 
t 0.97 V ( Table 2 ). This is most likely due to the faster kinetics

n the electron-transfer process between the enzyme and the elec- 

rode surface, in agreement with the increase in k s 
app ( Table 1 ). 

oreover, taking into account that the active center of the enzyme 

s a redox active species with an external-electron transfer mech- 

nism, the functionalities incorporated during the electrochemical 

odification, could facilitate the transfer of electrons, as a medi- 

ting process, because the redox processes observed in the func- 

ionalized MWCNT-APPA appear at higher potentials than the re- 

ox process associated to the redox active center of the enzyme 

44] . 

The apparent Michaelis-Menten constant (K m 

app ) ( Table 2 ) was 

etermined by Lineweaver-Burk fitting (Fig. S7). The obtained val- 

es are in agreement with reported values for PQQ-GDH in solu- 

ion, which are between 0.5 mM and 22 mM [45] , and also with

revious works in which this parameter presents values between 
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Fig. 6. Cyclic voltammograms for MWCNT-APPA-X-GDH electrodes in 0.1 M PBS (pH = 7.2) in absence (black line) and presence (red line) of 20 mM glucose at 5 mV s −1 

under Ar atmosphere: A) 0.97 V, C) 1.17 V and E) 1.37 V. Amperometric response at 0.35 V for MWCNT-APPA-X-GDH electrodes modified at B) 0.97, D) 1.17 and F) 1.37 V, 

after the addition of 0.1 M glucose in 0.1 M PBS (pH = 7.2) to achieve 20 mM glucose in solution under room atmosphere and stirring conditions. 

Table 2 

Analytical figures of merit for the quantification of glucose for MWCNT-APPA-X-GDH electrodes. 

Parameter ∗
Bioelectrode 

MWCNT-APPA-0.97-GDH MWCNT-APPA-1.17-GDH MWCNT-APPA-1.37-GDH 

Sensitivity [(mA g MWCNT 
−1 ) mM 

−1 ] 39.2 ± 2.8 42.2 ± 4.5 53.6 ± 4.7 

R 2 0.995 0.990 0.992 

Linear range (mM) 0.1–1.2 0.1–1.2 0.1–1.2 

LOD (mM) 0.01 0.005 0.005 

LOQ (mM) 0.033 0.0165 0.0165 

K m 
app (mM) 2.5 2.7 1.6 

∗ All parameters were determined employing three different electrodes fabricated using the same conditions. 

8 
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Fig. 7. Chronoamperometry profiles at 0.35 V vs. Ag/AgCl (3 M KCl) in 0.1 M PBS (pH = 7.2) for successive additions of glucose (marked with arrows), from 5 μM to 6 mM, 

A) MWCNT-APPA-0.97-GDH, C) MWCNT-APPA-1.17-GDH and E) MWCNT-APPA-1.37-GDH. Calibration curves for B) MWCNT-APPA-0.97-GDH, D) MWCNT-APPA-1.17-GDH and 

F) MWCNT-APPA-1.37-GDH. Insets: Calibration curves in the concentration range between 0.1 mM and 1.2 mM. Error bars are estimated as a triple of the standard deviation 

( n = 3). 
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.2 mM to 3 mM for immobilized enzyme [ 45 , 46 ]. The lower K m 

app 

alue is obtained with the MWCNT-APPA-1.37-GDH electrode, in- 

icating a higher apparent affinity of the enzyme to its substrate 

lucose. 

A comparison of the results obtained in this work with other 

elevant bioelectrode platforms previously reported in literature 

nd employing PQQ-GDH is summarized in Table S1. The proposed 

ioelectrode architecture based on MWCNTs functionalized with 

 and P groups shows a comparable performance, while making 

t

9 
se of a simple, controlled, and reproducible electrode modifica- 

ion procedure. 

. Conclusions 

The electrochemical modification of MWCNTs with 4-APPA has 

emonstrated the incorporation of different phosphorus and nitro- 

en surface species which promote the immobilization and elec- 

rical communication with PQQ-GDH. The bioelectrodes have been 
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sed in the oxidation of glucose at neutral pH conditions. Depend- 

ng on the upper potential limit used during the electrochemical 

odification of MWCNTs, the morphological features of the en- 

ymatic coating and the interaction with the enzymatic element 

an be tuned for improving the electron-transfer kinetics, obtain- 

ng values for apparent electron transfer rate constants ranging 

rom 69 to 82 s −1 . This adequate electron transfer could be as- 

ociated with a better orientation of the redox-active center of the 

nzyme to the electrode. Moreover, the different biocatalytic elec- 

rodes show different amounts of immobilized enzyme, catalytic 

xidation current, and sensitivity towards glucose oxidation. 

The MWCNT-APPA-1.37-GDH bioelectrode shows the highest 

alues of glucose oxidation current (1.47 A g −1 , obtained by 

yclic voltammetry and 3.06 μA obtained by chronoamperome- 

ry). The sensitivity obtained for this electrode is (53.63 ± 4.72) 

A g MWCNT 
−1 mM 

−1 . Therefore, the electrochemical modification 

f MWCNTs with phosphorus and nitrogen species, from oxidation 

f 4-APPA, can be considered as a promising alternative to control 

nd improve the electrochemical performance of enzyme-modified 

ioelectrodes. 
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