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Abstract—In this paper we present a metric to assess the
smoothness of a trigonometric interpolation through an in-
complete set of sample points. We measure smoothness as the
power of a particular derivative of a 2π-periodic Dirichlet
interpolant through some sample points. We show that we do
not need to explicitly complete the sample set or perform the
interpolation, but can simply work with the available sample
points, under the assumption that any missing points are chosen
to minimise the metric, and present a simple and robust approach
to the computation of this metric. We assess the accuracy and
computational complexity of this approach, and compare it to
benchmarks.

I. INTRODUCTION

In the context of broadband array processing, the eigenvalue

decomposition of a parahermitian polynomial matrix R(z) [1]

has in most cases the factorisation into analytic eigenvalues

and eigenvectors [2], [3] as a desirable solution. Approxi-

mating this solution requires a metric that distinguishes this

solution from others, which approximate non-differentiable or

even discontinuous functions as obtained by many existing

algorithms [1], [4], [5]. An approximation of this analytic

solution is advantageous as it minimises the order — and

therefore the associated computational complexity [6] — of

the factors that enable solutions to problems such as source

separation [7], angle of arrival estimation [8], broadband

beamforming [9], and many more.

Similar challenges to identify an analytic and therefore

infinitely differentiable and smooth function have arisen, for

example, in the analytic singular value decomposition [10]–

[15]. There metrics such as minimum arc length have been

employed in [11] in order to determine the analytic solution.

Different from [10]–[15], we specifically operate in a discrete

time scenario, where R(z), when evaluated in the unit circle

for |z| = 1 or R(ejΩ) = R(z)|z=ejΩ , is 2π-periodic. Hence,

we are also looking for an analytic solution that reflects this

2π-periodicity.

To extract analytic eigenvalues, new polynomial EVD algo-

rithms operate in the discrete Fourier transform (DFT) domain,

and the challenge there is to associate functions smoothly

across independent frequency bins [16]. Previously, the power

in a derivative of a Dirichlet or trigonometric interpolation has
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been proven as a powerful metric for this. However, for M
eigenvalues across K frequency bins, in principle, (M)K−1

different associations are possible, which is not feasible even

for moderate values of M and K. Therefore, in [16] a

maximum likelihood sequence estimation approach inspects

possible associations as the number of considered sample

points iteratively increases from J = 2 to J = K. This dras-

tically reduces the search space, but requires the interpolation

from a only a subset of J < K sample points on the unit

circle, similar to the ‘missing samples problem’ [17]. Any yet

unassigned sample points are chosen such that a maximally

smooth function for the given sample set is extracted. As a

drawback, the calculation of this metric in [18], [19] is both

computationally costly and can be poorly conditioned.

Therefore in this paper, we propose a calculation of the

smoothness metric in [18], [19] that bypasses the inversion

of an ill-conditioned matrix for every value of J and K,

with a QR decomposition [20] that is independent of J and

only needs to be evaluated once for a value of K. Thus, the

evaluation of the metric is better conditioned (thus avoiding

biased results due to regularisation necessary in [18], [19]) and

overall significantly less costly.

In order to present the approach method, Sec. II defines the

Dirichlet or trigonometric interpolation of sample points of 2π-

periodic functions. Sec. III characterises the missing samples

problem, and reviews a Schur complement approach [18], [19],

which in Sec. IV forms the basis of the proposed method. We

present numerical examples and a comparison in Sec. V and

draw conclusions in Sec. VI.

II. MAXIMALLY SMOOTH INTERPOLATION

Before we address the incomplete sample set or missing

samples problem in a subsequent section, we explore the issue

of interpolation given a complete, regularly spaced set of sam-

ples, Fk = F (ejΩk) with Ωk = 2πk/K, k = 0, . . . (K − 1),
and how we can measure the smoothness of the interpolant.

A. Dirichlet Interpolation

We based an interpolant F̂ (ejΩ) on an interpolation function

PK(ejΩ), such that

F̂ (ejΩ) =
1

K

K−1
∑

k=0

FkPK(ej(Ω−Ωk)) . (1)
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In this case, a Dirichlet kernel can provide a maximally smooth

interpolation in the sense that the time domain support of

f̂ [n] ◦—• F̂ (ejΩ) will be as short as possible. For reasons

that will be addressed below, we must distinguish between

a complex-valued and real valued interpolation, and, for the

latter, between odd and even support K of this kernel PK(ejΩ).
In the case of a complex-valued interpolation, we assume

that f̂ [n] is causal and that the time domain equivalent of

the Dirichlet kernel forms a rectangular window starting from

n = 0,

pK [n] =

{

1, 0 ≤ n < K
0, otherwise .

(2)

The Dirichlet kernel or periodic sinc function Pk(e
jΩ),

PK(ejΩ) =

K−1
∑

k=0

e−jkΩ = e−jK−1
2

Ω sin(K2 Ω)

sin( 12Ω)
, (3)

is well-established in the signal processing community [21],

[22].

For the case where fk and the interpolant F̂ (ejΩ) are real-

valued, f [n] necessarily is symmetric. This property must be

reflected by the kernel. For odd values of K, it is straightfor-

ward to achieve this by shifting p
(r,odd)
k [n] = pK [n− K−1

2 ] to

sit symmetrically w.r.t. n = 0, and thus creating a zero-phase

P (r,odd)K(ejΩ) =
sin(K2 Ω)

sin( 12Ω)
. (4)

For even values of K, pk[n] in its above definition cannot be

centred on the sampling grid. Likewise, omitting the phase

term from PK(ejΩ) leads to a 4π-periodic function, losing

the demanded 2π-periodicity. Hence the requirement of a

maximally short but symmetric time domain equivalent leads

to [23]

p
(r,even)
K [n] =

1

2

(

pK [n− K
2 ] + pK [n− K

2 + 1]
)

, (5)

or equivalently

P
(r,even)
K (ejΩ) =

sin(K2 Ω)

tan( 12Ω)
(6)

for the real-valued Dirichlet kernel for K even.

In all cases, the Dirichlet kernel can we expressed as a sum

of complex exponentials,

K−1
∑

k=0

e−j(k−L)Ω =

K−L−1
∑

n=−L

e−jnΩ =

K−1
∑

n=0

e−jnΩ , (7)

with generally L = 0 for the complex valued case. For the

real-valued case, odd K means L = K−1
2 , while for K even,

L = K
2 −1. For the latter, the support of p

(r,even)
K [n] is K+1,

but the outer complex exponential terms in the expansion of(6),

weighted by 1
2 each, are aliased versions of each other, and

can be combined with a unit weight. However, due to aliasing

the sum can be simplified without any offset as in the last step

of (7).

B. Smoothness Metric

To determine the smoothness of the interpolant F̂ (ejΩ), we

rely on the power in its pth derivative [18], [19],

χp =
1

2π

π
∫

−π

∣

∣

∣

∣

dp

dΩp
F̂ (ejΩ)

∣

∣

∣

∣

2

dΩ . (8)

For F̂ (ejΩ), with (7) we can write

F̂ (ejΩ) =
1

K

K−1
∑

k=0

Fk

K−1
∑

n=0

e−jn(Ω−Ωk) (9)

=

K−1
∑

n=0

f̂ [n]e−jnΩ =

K−L−1
∑

n=−L

f̂ [n]e−jnΩ , (10)

as expected for the inverse Fourier transform. For the last

step in (10), we have exploited the discrete Fourier transform

applied to Fk. Because Fk is discrete and periodic, so is f̂ [n].
Hence, we focus on a single period around zero; it no longer

matters whether Fk is real-valued or complex valued, but for

both cases we distinguish between L = (K − 1)/2 of K odd,

and L = K/2− 1 for K even.

Since f̂ [n] ◦—• Fk, the differentiation property of the

Fourier transform or direct consideration of (10) lead to the pth

derivative of F̂ (ejΩ) w.r.t. the normalised angular frequency

Ω,

dp

dΩp
F̂ (ejΩ) =

K−L−1
∑

n=−L

(−jn)pf̂ [n]e−jnΩ . (11)

Therefore using Parseval’s theorem [22], we obtain

χp =

K−L−1
∑

n=−L

n2p|f̂ [n]|2 =
1

K2
f
H
WD

2
K,L,pW

H
f , (12)

whereby f̂ [n] is related back to the sample points f =
[F0, . . . , FK−1]

T, W via a K-point DFT-matrix. Because the

DFT matrix operated from index k = 0 to K − 1, the order

of the coefficients (jn)p has to be reflected in the diagonal

weighting matrix

DK,L,p=diag{0, . . . , (K−L−1)p, (−L)p, . . . , (−1)p} . (13)

Similar to [18], [19], it is also possible to accumulate deriva-

tive powers up to the P th order, such that χ(P ) =
∑P

p=0 χp =

f
H
∑P

p=0 D
2
K,L,pf .

C. Properties of the ‘Smoothness Matrix’

The matrix C = WD
2
K,L,pW

H that weighs the inner prod-

uct in (12) has been referred to as a ‘smoothness matrix’ [18]

since it is central to measuring the smoothness f
H
Cf of a

Dirichlet interpolation through the elements of f . We note that

the elements d[n] along the diagonal of D2
K,L,p are real valued

by construction and symmetric by inspection of (13). Since W

is a discrete Fourier transform (DFT) matrix, we find that (i)

the elements d[n] are the eigenvalues of C, and (ii) that C is

a circulant matrix.



The elements of the the circulant matrix C are made up

of the DFT of d[n]. Since d[n] is real-valued and symmetric,

its DFT will be symmetric and real-valued. Hence, C(z) is

real-valued, C ∈ R
K×K . Since its eigenvalues satisfy d[n] ≥

0, it also is a positive semi-definite matrix. From the above

definition of smoothness, χp, there is at least one eigenvalue

that is zero. The remaining eigenvalues, n2p, can possess a

considerable dynamic range.

III. MISSING SAMPLES PROBLEM

A. Optimisation Problem

In a missing samples problem [17], some of sample points

Fk, k = 0, . . . (K − 1) are unavailable, and the aim is to

replace these missing sample points such that the interpolation

through the given ones is as smooth as possible. Here, we

define smoothness in the sense of the metric χp in (8), and

partition the vector f = [F0, . . . , FK−1]
T as f = [fT

J|K x
T]T,

where fJ|K ∈ C
J , J < K contains the given samples, and

x ∈ C
K−J the missing sample points. Thus the determination

of a smoothness metric for the missing samples problem can

be formulated as

χp = min
x

[

f
H
J|K x

H
]

C

[

fJ|K
x

]

, (14)

where C = WD
2
K,L,pW

H as defined in (12).

For simplicity, (14) assumes that the given samples are

contiguous with fJ|K = [F0, . . . , FJ−1]
T. However, an

arbitrary arrangement is possible by absorbing a permutation

matrix into C. Similarly, the problem can accommodate a

cumulative cost χ(P ) by changing the diagonal component of

C. To address the resulting problem, [18], [19] have explored a

constrained optimisation problem and a Schur-based approach.

We below briefly sketch the Schur-based approach, which will

form the basis of what Sec. IV will propose.

B. Schur Complement-Based Solution

To solve (14), we partition C into

C =

[

C1 C2

C
T
2 C4

]

, (15)

where C1 ∈ R
J×J , C2 ∈ R

J×K , and C4 ∈ R
K×K .

Subsequently, the cost function becomes

f
H
Cf = f

H
J|KC1fJ|K + f

H
J|KC2x+

+ xC
T
2 fJ|K + f

H
J|KC4fJ|K . (16)

By addressing this quadratic problem using Wirtinger calcu-

lus [24] to differentiate (16) w.r.t. x and setting the gradient to

zero, we obtain the least squares solution xopt = −C4C
T
2 fJ|K

for the optimal completion vector, as well as

χp = f
H
J|K

(

C1 −C2C
−1
4 C

T
2

)

fJ|K (17)

for the minimum mean square error. The term C1−C2C
−1
4 C

T
2

is known as the Schur complement of C [20].

The solution in (17) is problematic, since C is rank defi-

cient, and even a subpartition of it, because of its eigenvalues

n2p, is likely ill-conditioned. Particularly for J −→ K, (i) the

cost for the inversion of C4 increases and (ii) its conditioning

worsens [18]. An alternative is a constrained optimisation

approach to solve for xopt and χp, which behaves better

for J −→ K, but has high computational cost and poor

conditioning for J ≪ K [18], [19]. Hence, we next want

to explore an approach that is less afflicted by computational

cost and poor conditioning.

IV. CHOLESKY APPROACH

A. Cholesky Decomposition

In Sec. II-C, we have established that the ‘smoothness

matrix’ C is circulant, which therefore implies a Töplitz

structure of C. Thus, we are permitted to write

C =

[

C1 C2

C
T
2 C4

]

=

[

C4 C
T
2

C2 C1

]

, (18)

and not affect the overall matrix.

Further, we know that C is real-valued and positive semi-

definite. It therefore admits a Cholesky decomposition C =
LL

T, where L is a lower-left triangular matrix [20], [25].

Partitioning it analogously to the r.h.s. of (18) leads to

L =

[

L4 0

L2 L1

]

, (19)

with L4 ∈ R
(K−J)×(K−J), L2 ∈ R

J×(K−J), and L1 ∈ R
J×J .

Using (19), we can expand the Cholesky decomposition of (18)

such that
[

C4 C
T
2

C2 C1

]

=

[

L4L
T
4 L4L

T
2

L2L
T
4 L2L

T
2 + L1L

T
1

]

.

Thus, the Schur complement C1−C
T
2 C

−1
4 C2 simplifies to

C1 −C
T
2 C

−1
4 C2 = L2L

T
2 + L1L

T
1 −

− L2L
T
4

(

L4L
T
4

)−1
L4L

T
2 (20)

= L1L
T
1 .

The diagonal elements in the Cholesky factor L are assumed to

be ordered. Since C has a rank of K−1, therefore only the last

column of L will be zero. Therefore the L4 will be invertible

provided that J < K, thus permitting the simplification step in

(20). For the case J = K where there are no missing samples,

we can simply operate with C = LL
T = L1L

T
1 to weigh the

inner product of fK|K = f .

Since the inversion of L4 is not explicitly required in

order to work with L1, it suffices to calculate the Cholesky

decomposition of C, such that the smoothness metric can be

obtained via

χp = f
H
J|KL1L

T
1 fJ|K = ‖LT

1 fJ|K‖22 , (21)

which therefore does not suffer from the costly matrix in-

version and conditioning problems of the Schur approach

in Sec. III-B for J −→ K or the constrained optimisation

approach in [18], [19].



TABLE I
ERROR IN POWER OF THE pTH DERIVATIVE WHEN BASED ON K SAMPLES

OF F (ejΩ), WITH VALUES STATED IN DECIBEL.

p K = 8 K = 9 K = 16 K = 17 K = 32 K = 33

1 -309.5 -312.7 -311.1 -312.7 -307.0 -312.2
2 -309.5 -312.8 -312.9 -312.3 -307.0 -312.7
4 -309.5 -311.5 -310.7 -312.7 -308.2 -312.2
6 -309.5 -312.6 -310.8 -312.9 -307.1 -312.3
8 -309.5 -312.8 -311.1 -309.5 -268.9 -253.3

10 -309.5 -312.7 -273.4 -285.9 -167.6 -162.8
12 -309.5 -312.6 -209.3 -217.6 -72.8 -61.4
14 -309.5 -307.0 -136.4 -134.0 11.0 33.1
16 -274.9 -270.1 -63.7 -66.6 96.6 127.1
18 -231.3 -227.8 11.7 13.2 217.4 218.5
20 -178.7 -173.3 78.0 82.7 303.1 323.0

B. Simplification via QR

Since C = WD
2
K,L,pW

H represents the eigenvalue de-

composition of C, we can obtain the Cholesky factor L
T

by means of a QR decomposition of DK,L,pW
H = UR,

such that R ∈ R
K×K is an upper right triangular matrix and

U ∈ C
K×K is unitary. Partitioning this QR decomposition as

DK,L,pW
H =

[

U1 U2

]

·
[

R4 R2

0 R1

]

,

with U1 ∈ C
K×(K−J), U2 ∈ C

K×J , R4 ∈ R
(K−J)×(K−J),

R2 ∈ R
(K−J)×J , and R1 ∈ R

J×J , we obtain L1L
T
1 =

R
T
1 U

H
2 U2R1 = R

T
1 R1 or LT

1 = R1, such that

χp = ‖LT
1 fJ|K‖22 = ‖R1fJ|K‖22 . (22)

Hence, a Cholesky decomposition of C is not required,

and instead a QR decomposition of DK,L,pW
H suffices in

order to compute the smoothness associated with a Dirichlet

interpolation through a reduced set of J ≤ K sample points.

V. SIMULATIONS AND RESULTS

A. Numerical Examples

We first provide some numerical examples for calculating

the power χp in a pth derivative using (12). For this, we

assume the example function

F (ejΩ) = 1 + 1√
2
ejΩ . (23)

It is straightforward to analyse that the power for every

derivative of F (ejΩ) is σ2
p = 1

2 for p > 0. Based on

various number of sample points K, and different values of p,

evaluation of (12) in double floating point precision leads to

errors 10 log10 |σ2−χp|2 as shown in Tab. I. The terms np in

(12) can cause numerical problems for larger p, particularly

when K (and therefore some values of n) are high. The

method works well for lower values of p and K, with results

to an accuracy in the region of machine accuracy for p ≤ 6
for the chosen values of K. With Tab. I showing errors for

K = {8, 9, 16, 17, 32, 33}, the approach works equally well

for both odd and even K.

For the missing samples problem, we operate with F (ejΩ)
in (23), sampled on a uniform grid of K = 8 sample

TABLE II
POWER IN THE pTH DERIVATIVE OF AN INTERPOLATION THROUGH

J = 1 . . .K SAMPLE POINTS OF F (ejΩ) WITH K = 8.

χp

J p = 1 p = 2 p = 3 p = 4 p = 5 p = 7 p=10

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0921 0.1925 0.2354 0.2465 0.2491 0.2499 0.2500
3 0.1825 0.3315 0.4446 0.4859 0.4965 0.4998 0.5000
4 0.2827 0.4080 0.4729 0.4931 0.4983 0.4999 0.5000
5 0.3773 0.4649 0.4933 0.4990 0.4999 0.5000 0.5000
6 0.4468 0.4895 0.4985 0.4998 0.5000 0.5000 0.5000
7 0.4886 0.4989 0.4999 0.5000 0.5000 0.5000 0.5000
8 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

Im
{·
}

Re{·}
Ω

Fig. 1. Example function F (ejΩ) (blue) and interpolant F̂ (ejΩ) based on
f1|8 (green) and f2|8 (red), i.e. the first one or two sample points out of
K = 8.

points. However, we base the smoothness cost only on the

first J sample points according to Sec. III, with results for

p = {1, 2, 3, 4, 5} summarised in Tab. II. For J = 1, i.e. a

single sample point, the smoothest interpolation is a constant

function with zero gradient, hence χp = 0 for J = 1 and

independent of p. For J = 2, it is possible to construct a

complex exponential of smaller amplitude through the first two

sample points, as indicated in Fig. 1. This complex exponential

only oscillates on a line in the complex plane, and differs by

1/
√
2 in amplitude compared to F (ejΩ). For J > 2, χp tends

to σ2 = 1
2 as both J and p increase.

B. Computational Complexity

To evaluate the smoothness χp for a single fJ|K , i.e. for

one instance of K and J ≤ K, computational complexities in

terms of multiply-accumulate operations were derived in [18].

We compare these there to the computational cost of the

proposed approach, which requires a QR decomposition of

DK,L,pW
H/

√
K, which O( 13K

3) multiply-accumulates with-

out exploiting any further structural aspects. These costs are

compared for different values of K and ratios N
K

in Fig. 2.

As detailed earlier, Schur is costly for N ≪ K, while the

constraint optimisation approach solving a minimum variance

distortionless response (MVDR) problem is most costly for

J −→ K. The proposed approach is independent of J , and

generally has a computational cost that can always be undercut

by either the Schur or MVDR approach.
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Schur

MVDR

QR

Fig. 2. Cost of a smoothness evaluation for a single instance of J out of K
sample points using Schur, MVDR [18], [19] and the proposed approaches.

Schur

MVDR

QR

Fig. 3. Cumulative cost of a evaluating χp over J = 1 . . .K instances for
different values of K; comparing the Schur (blue), MVDR (red dashed) [18],
[19], and the best combination of Schur/MVDR (red-blue) to the proposed
Cholesky/QR approach (green dash-dotted).

For the problem in [16], where for a fixed value of K,

J goes from one to K to iteratively calculate the cost for

a Viterbi-style maximum likelihood sequence estimator, the

compared methods behave differently from Fig. 2. While

MVDR and Schur approaches require a recalculation of a

smoothness metric for every value of J , a single QR decompo-

sition suffices for the proposed Cholesky/QR approach. Thus,

the cumulative cost in terms of multiply-accumulate operations

over all K iterations is given in Fig. 3. The curves for Schur

and MVDR approaches are accompanied by a scheme that

will, for every value J , pick the less expensive of the two,

bearing in mind the different dependencies analysed in Fig. 2.

All of these however are significantly more expensive than the

proposed Cholesky/QR approach.

VI. CONCLUSIONS

Based on a trigonometric or Dirichlet interpolation through

a potentially incomplete set of sample points of a 2π-periodic

function, we have reviewed how a metric for smoothness — re-

quired to extract analytic and therefore infinitely differentiable

functions — can be calculated based on the sample points only

using the Schur complement of a ‘smoothness matrix’. Based

on this Schur complement with its inherent matrix inversion.

we have evaluated an inversion-free Cholesky decomposition.

The latter can be easily calculated via a standard QR de-

composition from given quantities. We have demonstrated the

accuracy of the proposed approach, and highlighted how the

cumulative complexity encountered in an application such as

the extraction of analytic eigenvalues from a parahermitian

matrix, can be significantly lower than the existing methods.
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