
PRIVACY OF ENCRYPTED VOICE OVER INTERNET PROTOCOL

A Thesis

by

TUNEESH KUMAR LELLA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2008

Major Subject: Computer Science

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Texas A&M Repository

https://core.ac.uk/display/4274068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PRIVACY OF ENCRYPTED VOICE OVER INTERNET PROTOCOL

A Thesis

by

TUNEESH KUMAR LELLA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Riccardo Bettati
Committee Members, Ricardo Gutierrez-Osuna

A.L.Narasimha Reddy
Head of Department, Valerie Taylor

August 2008

Major Subject: Computer Science

iii

ABSTRACT

Privacy of Encrypted Voice Over Internet Protocol. (August 2008)

Tuneesh Kumar Lella, B.E.; M.S., Birla Institute of Technology

Chair of Advisory Committee: Dr.Riccardo Bettati

In this research, we present a investigative study on how timing-based traffic analysis

attacks can be used for recovery of the speech from a Voice Over Internet Protocol

(VOIP) conversation by taking advantage of the reduction or suppression of the gen-

eration of traffic whenever the sender detects a voice inactivity period. We use the

simple Bayesian classifier and the complex HMM (Hidden Markov Models) classifier

to evaluate the performance of our attack. Then we describe the usage of acoustic

features in our attack to improve the performance. We conclude by presenting a

number of problems that need in-depth study in order to be effective in carrying out

silence detection based attacks on VOIP systems.

iv

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II TRAFFIC ANALYSIS . 3

III MOTIVATION . 6

A. Silence Suppression in VOIP 6

B. Problem Statement . 8

IV SYSTEM MODEL AND IMPLEMENTATION 10

A. System Model . 10

B. Methodology . 11

1. Context-Unaware Training 11

2. Context-Aware Training 12

V EXPERIMENTAL RESULTS 14

A. Talk Spurt Analysis with Accurate Talk Spurt Lengths . . 15

B. Talk Spurt Analysis on Packetized Voice Signal 18

C. Improvement with n-Viterbi 21

VI IMPROVEMENT OF RESULTS USING ACOUSTIC FEATURES 23

A. Acoustic Features . 23

1. Dominant Feature Vector Based Similarity Measure . 24

2. Bhattacharyya Distance 26

B. Experiments . 27

1. Dominant Feature Vector Based Similarity Measure . 27

2. Bhattacharyya Distance 29

VII CONCLUSION AND FUTURE WORK 32

REFERENCES . 34

APPENDIX A . 38

APPENDIX B . 43

v

CHAPTER Page

VITA . 50

vi

LIST OF TABLES

TABLE Page

I Silence suppression in GTalk . 7

II Silence suppression in SpeakFreely 8

vii

LIST OF FIGURES

FIGURE Page

1 Accurate spurt lengths of voice signals 16

2 Comparing confusion coefficients of random, Bayesian and HMM(15)

classifiers on sentences using accurate spurt lengths of Rhyme 1 . . . 17

3 Histogram of classification errors using random, Bayesian and

HMM(15) classifiers on sentences using accurate spurt lengths of

Rhyme 1 . 17

4 Talk spurt length estimation procedure 19

5 Estimated spurt lengths based on packet timing in GTalk 19

6 Histogram of classification errors using random, Bayesian and

HMM(15) classifiers on sentences using estimated spurt lengths

of Rhyme 1 . 20

7 Comparing performance of 1-Viterbi and 4-Viterbi on sentences

using estimated spurt lengths from Rhyme 1 and combination of

Rhyme 2 and Rhyme 3 . 22

8 Plot of sorted Eigen values . 25

9 Dendrogram of distancei,j between symbols of Rhyme 1 27

10 Similarity measure improvements for symbols of Rhyme 1 with

accurate and estimated talk spurts 28

11 Dendrograms for Bhattacharyya distances and error rates for sym-

bols of Rhyme 1 . 29

12 Bhattacharyya improvements for symbols of Rhyme 1 with accu-

rate and estimated talk spurts . 30

13 Weighing the originally obtained errors with Bhattacharyya dis-

tance based errors . 31

viii

FIGURE Page

14 Accurate spurt lengths of voice signals of symbols from Rhyme 2

and Rhyme 3 . 38

15 Comparing Bayesian and HMM(24) classifiers on sentences using

accurate spurt lengths of symbols from Rhyme 2 and Rhyme 3 39

16 Estimated spurt lengths of symbols from Rhyme 2 and Rhyme 3

based on packet timing in GTalk . 39

17 Comparing Bayesian and HMM(24) classifiers on sentences using

estimated spurt lengths of symbols from Rhyme 2 and Rhyme 3 . . . 40

18 Dendrogram of distancei,j between symbols of Rhyme 2 and Rhyme

3 . 40

19 Similarity measure improvements for symbols with accurate and

estimated talk spurts of symbols from Rhyme 2 and Rhyme 3 41

20 Dendrograms for Bhattacharyya distances and error rates for sym-

bols of Rhyme 2 and Rhyme 3 . 41

21 Bhattacharyya improvements for symbols with accurate and esti-

mated talk spurts of symbols from Rhyme 2 and Rhyme 3 41

22 Weighing the originally obtained errors with Bhattacharyya dis-

tance based errors . 42

1

CHAPTER I

INTRODUCTION

VOIP calls may be considered difficult to intercept, but there are already many tools

over the internet that can capture and replay the entire conversations. So VOIP

community has come to a general agreement that VOIP communications must be

encrypted and in result many scalable and light-weight encryption methodologies have

been proposed. [2] and [3] are some among them. To be successful in maintaining the

privacy and security of the VOIP conversations, utmost importance should be given

to the confidentiality measures such as encryption to make sure that they are robust

to both cryptographic and “out-of-the-box” attacks and their capabilities are clearly

understood.

In the proposed research we are measuring the ability of the attacker to intercept

the encrypted VOIP conversation using the silence suppression feature of VOIP. To

compete with traditional phones and to have a wide and scalable deployment, VOIP

applications should be able to compete well by conserving bandwidth using silence

suppression and other such methods.

It is therefore likely that encrypted VOIP systems will continue to use silence

suppression in some way to conserve bandwidth.In this research we will propose traffic

analysis methodologies based on Bayesian classification and Hidden Markov models

and we will perform a series of experiments to measure how much information can be

gathered from an encrypted conversation that uses silence suppression.

The motivation for using traffic analysis is from different sources. The usage

of traffic and timing analysis to break confidentiality of the communication sessions

The journal model is IEEE Transactions on Automatic Control.

2

has become inevitable these days, as almost all the network communications are

involving the use of data encryption and header portions. Wagner et al. [4] used

the inter-keystroke time intervals of keyboard in SSH connections to infer the typing

behavior of users, and are able to crack the SSH passwords entered by the user. They

collected the inter-keystroke timings on the keyboard by many users and constructed

a Hidden Markov Model using which they are able to crack the passwords. We are

applying similar kind of approach in this research. Using the talk spurt lengths of

the words, we are using different approaches like simple Bayesian classification and

Hidden Markov Models to map the talk spurt lengths back to the spoken words.

3

CHAPTER II

TRAFFIC ANALYSIS

When the communication between participants in a network application is encrypted

and the content of the communication is beyond the reach of crypto-analysis, attackers

may want to resort to traffic analysis in order to gain information. Traffic analysis

infers information from traffic patterns, which may range from existence or absence of

communication to fine-grained timing analysis of packets or messages. The usage of

traffic and timing analysis to break confidentiality of the communication sessions has

become inevitable these days, as almost all the network communications are involving

the use of data encryption and header portions. Traffic analysis is also shown to be

applicable against anonymous communication systems [5], [6].

Wagner et al. [4] analyzed the inter-packet time intervals in SSH connections to

infer the typing behavior of users, and are able to crack the SSH passwords entered

by the user. For this they collected keyboard timings and trained a Hidden Markov

Model on keyboard inputs from users using which they are able to crack the passwords.

Packet timing analysis has been used in different variations to break anonymous

communication systems. In [5] and [6], traffic analysis based attacks on anonymous

web servers are described and quantitatively analyzed.The functionality of anonymous

web server is such that it acts as a proxy for the web clients and uses encryption and

packet header mangling like in a NAT proxy to reduce the correlation between any

incoming requests from users and outgoing requests to servers. The fact that number

of HTTP objects and their sizes are often revealed is used for this particular attack.

Number of objects and object sizes are used as a signature for identifying considerable

fraction of the webpages accurately. These signatures can be exploited by the attacker

until the web anonymizer takes care of this issue.

4

The so called MIXes [8] are commonly used in anonymity networks, for example

in TOR [7]. These MIXes re-route traffic, encrypt the content and the headers,

and perturb the timing and order of packets to make the traceability of connection

hard. Attacks exist on these MIXes as well. Serjantov and Sewell [9] analyzed the

possibility of a lone flow on an input link of a MIX. If the rate of this lone input flow

is approximately equal to the rate of a flow out of the MIX, this pair of input and

outflow flows are correlated.

Similarity between sender’s outbound traffic and receiver’s inbound traffic be-

came a source of analysis for some traffic analysis experts. For example Zhu et

al. used statistical measures like mutual information to correlate the flows and are

successful. Their observation from the TCP flows indicate that too much timing per-

turbation in the MIXes makes anonymity weak to maintain. Levine et al. [11] are

also interested in the problem of discovering if two participants are communicating,

and they use cross correlation to measure similarity between flows. They proposed a

defensive dropping method to thwart the attack. In continuous MIXes, each packet

is delayed independently and Danezis [12] uses this fact as a starting point for attack

and describes the departure distribution of packets as a convolution of the arrival with

delay distribution, which in turn provides the basis for the correlation of incoming

and outgoing packets.

Traffic analysis has been used to develop detectors for honeypots or other forms

of bots in multiplayer online games. To emulate user behavior (game-bots or crawlers)

or system-level latencies (in honeynets) , the bots typically follow a timing pattern.

This observation is shown in [17] with the implementation of the timer management

mechanism of the operating system which shows the pattern in form of periodicities

in inter-response times in honeynets.

Correlation attacks may not be able to scale up when large systems are used. Zhu

5

and Bettati [13] considered appropriate preconditioning of timing data and they used

Blind-Source-Separation [14] to separate the traffic into groups of flows. Manipulation

of timing data is also considered by some. For example, Serjantov et al. [9] uses

“spikes” in the traffic to find the communication relationship between users. Fu et al.

[15] propose “flow marking” in a wireless setting, where periodic interference patterns

are generated, which in turn are visible along the path of the affected connection. A

similar mechanism has been proposed by Wang et al. [16] to trace VOIP calls. At

the sender a slight adjustment is done to the timing of the VOIP packets by delaying

packets of different VOIP calls according to different patterns. The authors claim

that the disturbance is sufficiently small so as to not be noticed by the end users.

At the same time, the timing mark can still be recovered near the receiver so as to

identify the originator.

6

CHAPTER III

MOTIVATION

Traffic Analysis in VOIP is greatly helped by silence suppression. Silence suppression

in VOIP aims to save network bandwidth by not transmitting packets when either

parties of a VOIP conversation are silent. In order to be widely and scalably deployed,

VOIP requires both low bandwidth voice compression and silence suppression. In

constraint bandwidth environments, the need for bandwidth conservation is critical.

In less constraint environments, the need to be a “good citizen” requires the VOIP

to conserve bandwidth as well. For example, Skype relies on relays to route some of

its traffic. Since these relays are Skype user nodes, they have to co-habit well with

the rest of the applications and traffic at their site. Otherwise, they may attract the

attention of system administrators and be shut down. A brief description of silence

suppression in some of the widely used VOIPs follows. In the rest of the thesis, we

describe how we take advantage of silence suppression to violate VOIP confidentiality.

A. Silence Suppression in VOIP

Each VOIP software uses its own voice codec to code and packetize the voice signals.

To conserve the bandwidth used, voice activation detection scheme is used to reduce

(e.g. in Skype or GTalk) or suppress (e.g. in SpeakFreely) the sending of packets

during silence periods of the conversation. GTalk uses voice activity detection and

sends “comfort noise” packets during silence periods and at a slower rate compared

to that of during the speech periods.

Skype [18] sends UDP packets at a rate of one every 60 ms during the voice active

periods, i.e. when the sender is speaking. Each such packet contains two frames of

30 ms iLBC (Internet Low Bit-rate Codec) [1] compressed speech. During a silence

7

period, the sender generates UDP packets of 25 bytes each every 100 ms.

Table I. Silence suppression in GTalk

Packet Delta(ms) Jitter(ms) Status

31 0 0 comfort noise (PT=13

33 96.43 40.46 Comfort noise (PT=13

35 104.48 43.84 Comfort noise (PT=13

38 97.99 47.48 Comfort noise (PT=13

41 96.58 50.97 Comfort noise (PT=13

68 61.21 253831.93 [Ok]

72 62.68 297963.02 [Ok]

75 59.88 339336.9 [Ok]

77 58.62 378124.93 [Ok]

83 61.02 414488.12 [Ok]

GoogleTalk [18] also uses voice activity detection and sends “comfort noise”

packets during silence periods and at a slower rate compared to that of during the

speech periods to save bandwidth. Google Talk uses packetization intervals that

are similar to Skype, that is, 60 ms during talk spurts and 100 ms during silence

periods. But Google Talk can use a number of codecs and in most of the cases,

it uses a variable bit-rate PCM codec that results in speech-dependent packet sizes

that are between 120 and 200 bytes. Table I shows the GTalk conversation packet

trace as captured by the Wireshark [19] network monitor. The trace indicates a talk

spurt followed by a silence period. Wireshark correctly labels the packets sent during

the silence period with a “comfort noise” tag in the plain text trace. Talk spurts

can also be distinguished from silence periods by monitoring the inter-packet times

(marked “Delta” in the table): At the beginning of the talk spurt, the inter-packet

8

time drops to approximately 60 ms and when the silence period starts, it returns to

approximately 100 ms.

Table II. Silence suppression in SpeakFreely

Packet Delta(ms) Jitter(ms) Status

16 79.99 0.95 [Ok]

17 79.98 0.89 [Ok]

18 79.99 0.84 [Ok]

19 80.00 0.79 [Ok]

21 559.94 30.73 [Ok]

22 79.99 28.31 [Ok]

SpeakFreely [20] is a freeware VOIP that supports a variety of codecs, such as

GSM and adaptive differential PCM (ADPCM). GSM, for example, operates at 13

kbit/sec and uses a 80 ms packet period. SpeakFreely uses silence suppression instead

of silence detection i.e. it does not send any packets during silence periods, making

the silence detection by timing-based traffic analysis very simple. Table II shows the

trace of a SpeakFreely voice conversation as captured by wireshark. The data shows

a talk spurt (packets 1 to 4) followed by a silence period of 560 ms (packet 5), which

in turn is followed by another talk spurt (starting at packet 5).

B. Problem Statement

Although silence suppression can significantly save bandwidth, it can disclose the end

users’ conversation behavior. In fact, when only the encrypted packet flow is available,

talk spurts and other characteristics can be estimated from the packet timings. Due

to the encryption of the VOIP flow, we assume that content or size of VOIP packets

9

is of no relevance. From the packet timestamps, the attacker reconstructs the inter-

packet delays and packet rates. In this data, she applies the thresholding to detect

voice activity and so is able to construct a series of estimates of the talk spurt lengths

in the VOIP conversation. The attacker tries to map these talk spurt lengths of words

back to the original words spoken.

The objective of this research is to study the effectiveness of the speech recovery

by the attacker. This study comprises the description of attack methodology, which

involves talk spurt estimation based on packet timings and the speech recovery, and

then the evaluation of the effectiveness of the attack followed by the usage of acoustic

measures for performance improvement.

Throughout this thesis, we assume that the attacker uses an automated system

for data collection and for classification. We assume that a human operator processes

the results provided by the classification algorithms (for example by listening to the

recovered conversations) and intelligently filters and edits the classification results.

In this way, we expect that less than perfect classifiers can still be effective as long as

they allow the psycho-receptive mechanism of the human operator to complete the

recovery of the conversation.

10

CHAPTER IV

SYSTEM MODEL AND IMPLEMENTATION

A. System Model

We consider a VOIP communication between a single sender and a receiver. The

communication is modeled as a sequence of symbols s0, s1, . . . , si, . . . (each symbol is

a spoken word in our case) that are sent over the VOIP connection. The sequence of

symbols is presented as input to the VOIP system in form of a continuous voice signal.

Let li be the length of the voice signal of symbol si (the accurate talk spurt length).

The accurate talk spurt lengths li of the symbols si are calculated by detecting the

start and the end of the voice spurt in the voice signal using the audio editor software,

audacity [21]. In the VOIP conversation, the packets are encrypted and likely padded

to a fixed size. Hence, in this thesis, we assume that packet sizes are of no use to the

observer.

The attacker is assumed to have access to the VOIP conversation link. She “lis-

tens” to the VOIP conversation by establishing a wiretap and collecting the times-

tamps of the packets. Inter-packet delays are calculated by the attacker from the

packet timestamps, and a simple thresholding is applied on this data to detect voice

activity, and the attacker will be able to construct a series of estimates l′0, l
′
1, . . . , l

′
i

of the original spurt lengths l0, l1, . . . , li of the symbols. Now that the attacker has

collected the estimated spurt lengths, her objective is to reconstruct the original se-

quence of symbols.

11

B. Methodology

A set of voice signals, each representing a symbol, is selected from a plain text data by

the attacker for training. An important assumption is that the sentences are spoken

slowly during training, i.e. there is a minimal silence period between each word in

a sentence. For each talk spurt in the sequence, she computes, over all the symbols,

the probability distribution P (si|l′j) of a talk spurt being classified as a particular

symbol. For each symbol, the attacker is assumed to have access to a sufficient

number of occurrences of each symbol. As a result, each symbol si has a sufficiently

large number of samples s1
i , . . . , s

k
i , . . . , s

n
i . The talk spurt length distribution of each

symbol thus approximates to a Gaussian distribution. Once the spurt lengths are

measured, and the gaussian distributions are estimated, the attacker performs two

types of training, which we call context unaware and context aware.

1. Context-Unaware Training

By “Context unaware” we mean that each symbol in the sequence of words is con-

sidered individually and the grammar of the sentence is not considered. The talk

spurt lengths l
(k)
i of sample s

(k)
i , both of the direct voice signal and of the voice sig-

nal that is sent over the VOIP conversation link, are determined, and the likelihood

probability distribution P (li = l|si) for each talk spurt length l over all the symbols

si is calculated. A classifier based on Bayesian analysis [22] is used by the attacker

to reconstruct the symbol distributions from the collected estimated spurt lengths.

In general, Bayes’ theorem [22] is used to compute the probability of an event,

given the observation. Given the observation B, the probability of event A is calcu-

lated as

12

P (A|B) =
P (B|A)P (A)

P (B)
(4.1)

Here P (B|A) is called the likelihood probability and P (A|B) is called the posterior

probability.

Using the Bayes’ theorem , we calculate the posterior probabilities for each sym-

bol si, given the talk spurt length li. We classify the observed talk spurt length l as

the symbol s∗ having the largest posterior value P (si|l), where

s∗ = argmaxSi
P (si|l) =

P (l|si)P (si)

P (l)
(4.2)

The classification based on Equation (4.2) is context unaware because P (si|l)

depends on the likelihood distribution for si only.

2. Context-Aware Training

The encrypted transmission of symbols over a VOIP channel can be represented as

a discrete-time Markov-Modulated Process, where each state (representing the trans-

mission of a symbol) triggers the (observable) emission of a spurt of length l. The

a priori probability of sequences of symbols to appear in a text can be captured in

form of transition probabilities between states in the Markov model. Since only the

sequence of talk spurt lengths l1, l2, . . . is observable, while the sequence of transmit-

ted symbols remains hidden, we call such a Markov model a Hidden Markov Model

(HMM).

More formally for our problem, the HMM is formulated as follows:

• Let S be a set of states that emit output symbols in R.

• Let A = ak,i be a |S| × |S| matrix of state transition probabilities.

• Finally, let O = {Ok} be a set of continuous random variables, one for each

13

state in S.

Sending encrypted symbols over a VOIP channel then corresponds to the following

HMM:

• S = {S1, S2, . . . , SN}, corresponding to the set of symbols.

• A, corresponding to the a priori sequences of words in the underlying language

of communication over the VOIP channel.

• O = {O1, O2, . . . , ON}, where Oi corresponds to the length distribution of talk

spurts for symbol Si.

A path π = π1 · · · πn in the HMM is a sequence of states and represents a sentence

transmitted over the VOIP channel. The attacker observes the sequence o = o1 · · · on.

Given that the sequence π is hidden from the attacker, the latter faces a Decoding

Problem, that is, she has to find an optimal path π∗ = argmaxπP (o|π) for o such

that P (o|π) is maximized.

In this training step the transition matrixA is constructed based on the sequences

of symbols (words) in the training sentences, and the random variables in O are

borrowed from the previous, context-unaware training step.

During the attack, the observer uses dynamic programming, for example the

Viterbi algorithm [24], to estimate an optimal path based on the observed spurt

lengths. In this way she reconstructs the sequence of words transmitted over the

VOIP channel.

In summary, the attacker does not rely on packet content, or packet sizes in

her attempt to reconstruct the sequence of words transmitted. Instead, she relies on

packet timing information only, in order to identify talk spurt boundaries.

14

CHAPTER V

EXPERIMENTAL RESULTS

To evaluate the effectiveness of the attack described in the previous chapter, we con-

ducted a sequence of experiments both for the (admittedly unrealistic) case where

accurate talk spurt lengths (measured length of voice signals in units of time) are

available and for the case where the talk spurt lengths have been estimated from

analysis of packet timings. The ability to map the talk spurt lengths back to the

original symbols (words) is considered as the measure of performance. The perfor-

mance measures are calculated for both the cases- Context-unaware case that uses a

Bayesian classifier to estimate the symbols and Context-aware case that uses a HMM

based classifier on training sentences.

We used the following rhymes for our experiments. For simplicity, all the words

are treated separately i.e. there is a silence period after each word in the sentence.

Rhyme 1: “Betty bought some batter butter. But she found the butter

bitter. So she bought some better butter to make the bitter batter better.”

Rhyme 2: “Popeye the sailor man, lived in a garbage can, Ate all the

worms and spat out the germs; the best a man can.”

Rhyme 3: “My older brother is a pest, He loves to sit in the west, He

gets no rest, but pins his chest, to the lap top vest.”

New sentences are formed from the words in these rhymes and the corresponding

sequence of talk spurt lengths are fed to the classifiers, which will emit the output

sequence of symbols. Rhyme 1 allows us to separately evaluate the effectiveness of

context free symbol classification (e.g. the ability to separate “but” from “butter”

purely based on the spurt length) and the improvement we get after adding context

15

awareness (e.g. the ability to separate similar sounding words like “better”or “bitter”

from “butter” or “batter”, which cannot be separated based on talk spurt length

only). Rhyme 2 and Rhyme 3 combined as a single database of sentences are used

to verify the correctness of results obtained with the Rhyme 1 i.e. whether we get

similar results with a different set of sentences.

Each rhyme is repeatedly spoken, 25 times to calculate the gaussian distributions

of the talk spurt lengths for each symbol (word) in the database. The transition

probabilities required for the context-aware classifier are calculated from a set of

newly formed sentences (a total of 16 such sentences) from the words of Rhyme 1

above. Examples of such formed sentences are “Betty bought the bitter butter”,

“She bought the bitter butter”, “Make the bitter butter better” etc. Similarly, 25

new sentences are generated from the words of Rhyme 2 and Rhyme 3.

A. Talk Spurt Analysis with Accurate Talk Spurt Lengths

As a base line we assume that the attacker has access to the accurate lengths of talk

spurts. For this, during the context-unaware portion of the training we use accurate

spurt lengths that have been determined by detecting the start and the end of the

voice spurt in the (non-packetized) voice signal.

Figure 1 shows the spurt length distribution of 50 samples each of the words

“bought”, “some”, and “batter”. From this figure we can clearly see that some

symbols (for example “bought” and “batter”) can be clearly separated based on the

spurt length, while others (for example “bought” and “some”) have similar spurt

lengths and their talk spurt length distributions overlap.

We calculated confusion matrices using talk spurt length distributions from 25

samples for each symbol for random guess classifier, Bayesian classifier and HMM

16

Fig. 1. Accurate spurt lengths of voice signals

based classifier. In the confusion matrix, an entry, for example ci,j signifies the prob-

ability that Symbol Si is classified as Symbol Sj. If the classifier is perfect, then

C would be an identity matrix. For this, we randomly feed one of the 16 training

sentences to the classifier and calculate the corresponding confusion matrix based on

the input and the output sequences. For the HMM classifier, we use the remaining

15 sentences for training. All the 16 sentences are either 4 words or 5 words long and

there are totally 14 words in the Rhyme 1. For example, to get an classification error

of 0.2, the random guessing should guess 4 words wrongly in a sentence of 5 words

long. The corresponding probability is C5,4 ∗ (13/14)4 ∗ (1/14). The performance of

random classifier suffers badly as the total number of words increase. We obtained a

corresponding confusion coefficient by adding all the elements ci,j except the diago-

nal ones (ci,i), for each of the confusion matrices from the 3 classifiers. The less the

confusion coefficient, the better the performance of the classifier. Figure 2 shows the

comparison of the confusion coefficients for the random, Bayesian and HMM based

classifiers. Confusion coefficient is less for the HMM classifier which makes the HMM

17

classifier better than the Bayesian and random classifiers.

confusion coefficients of accurate talk spurts

0

2

4

6

8

10

12

14

random Bayesian HMM

Accurate Talkspurts

Fig. 2. Comparing confusion coefficients of random, Bayesian and HMM(15) classifiers

on sentences using accurate spurt lengths of Rhyme 1

Histogram of classification errors on sentences using
accurate spurt lengths

0

20
40

60
80

100

120
140

160

0 0.17 0.2 0.25 0.33 0.4 0.5 0.6 0.67 0.75 0.8 0.83 1

Bayesian

HMM

random

Fig. 3. Histogram of classification errors using random, Bayesian and HMM(15) clas-

sifiers on sentences using accurate spurt lengths of Rhyme 1

Figure 3 compares the effectiveness of the Bayesian Classifier against the HMM

classifier with 15 training sentences in correctly recognizing a spoken sentence. For

this, we randomly feed one of the 16 training sentences to the classifier and record the

percentage of erroneously classified words. Performance of random guessing, which

is obviously poor, is also included for comparison. The histograms clearly illustrate

the benefits of context-aware training using HMM. HMM classifier worked far better

than the Bayesian classifier and there are also instances in which all the words are

18

detected correctly in a sentence (zero error rate case).

Accurate talk spurt length distributions for words from Rhyme 2 and Rhyme 3,

and classifiers’ performance comparison results obtained with the sentences formed

from the combination of these words, can be found in appendix A. We got similar re-

sults for this case as well. The Matlab code used for HMM and Bayesian classification

can be found in Appendix B.

B. Talk Spurt Analysis on Packetized Voice Signal

When only the encrypted packet flow is available, the talk spurt lengths must be

estimated from the packet timing. In these experiments we focused on GTalk. First

we establish a VOIP connection between two GTalk users. Then the sender starts

speaking the preselected sentences with gaps between words over the VOIP connec-

tion. She repeats the sentences several times to have a Gaussian distribution for the

estimated talk spurt lengths of each symbol, which is essential for the classification of

talk spurt lengths as symbols. For simplicity, we use Wireshark [19] at the receiver to

capture packets from the sender, and we use the timestamp information to identify

talk spurts. Figure 4 illustrates the procedure in which we estimate the talk spurt

lengths.

A description of trace of GTalk conversation is given in Chapter III, with Table

I as reference. Delta column shows the relative timings when the packets are sent.

We use the values in the interval 95-105ms for the delta column as a threshold to

mark the start time of silence and finish time of talk spurt. Similarly, we use the

values in the interval 55-65ms as a threshold to mark the start time of the talk spurt

and finish time of silence. Then we calculate the talk spurt lengths by finding the

difference between the corresponding sum of timings (in the delta column) until the

19

Sender Receiver

Spoken Sentences

Collect
Packet timestamps

Thresholding
On

Time stamps

Talk spurt Lengths

Fig. 4. Talk spurt length estimation procedure

talk spurt finish time and the sum of timings until the talk spurt start time.

We repeat the same series of experiments as for the case of accurate spurt length

measurement i.e. measuring the effectiveness of classifiers in detecting the sentence

correctly.

Fig. 5. Estimated spurt lengths based on packet timing in GTalk

Figure 5 illustrates how packet-timing based voice activity detection is a very

20

noisy estimator for spurt lengths, to a level where simple Bayesian classifier becomes

difficult to apply. We see how symbols with some overlap in their talk spurt dis-

tributions at voice signal level (for example “bought” and “some”) become nearly

impossible to distinguish at packet-timing level. Symbols that have no overlap at

voice-signal level (for example “bought” and “batter”) now become more difficult to

distinguish at packet-timing level.

Histogram of classification errors on sentences using
estimated spurt lengths

0

20
40

60

80

100
120

140

160

0 0.2 0.4 0.5 0.6 0.667 0.75 0.8 0.833 1

Bayesian

HMM

random

Fig. 6. Histogram of classification errors using random, Bayesian and HMM(15) clas-

sifiers on sentences using estimated spurt lengths of Rhyme 1

Figure 6 illustrates the poor performance of the classification with estimated

spurt length data. In this experiment, the HMM based classifier performs somewhat

better than the ones based on Bayesian classifier and random guessing.

Estimated talk spurt length distributions for words from Rhyme 2 and Rhyme 3,

and classifiers’ performance comparison results obtained with the sentences formed

from the combination of these words can be found in Appendix A.

Two factors that are inherent to the silence detectors applied in the VOIP system

contribute to the poor performance of spurt length estimation: First, a silence thresh-

old level is used in the silence detector to determine voice activity. If the strength of

a speech signal is below the threshold, the speaker is regarded as being silent. Obvi-

ously if the threshold is too low or too high, the accuracy of the talk spurt estimator

21

suffers. This effect is illustrated by the outliers in the histograms in Figure 5, which

were caused by extraneous noise, i.e. the acoustic noise around the microphone, in

the experiment. Second, the hang-over time of the silence detector in the sender

negatively affects the accuracy of our estimator. Hang-over time is the duration by

which a silence detector delays its final decision to terminate the talk spurt, and its

main purpose is to avoid end clipping of speech. Similar to the silence threshold,

hang-over time affects both accuracy of our estimator and bandwidth saving. These

effects are particularly strong in these experiments because of the short spurt lengths

(i.e. multiples of few packet intervals). We expect that these effects are not as strong

in longer bursts. In such cases, however, the set of symbols will be very large, thus

rendering the classification more difficult.

C. Improvement with n-Viterbi

The talk spurt length distributions for many word pairs are naturally overlapping, and

this is particularly the case when the lengths are estimated from the packet timings,

which can be clearly seen in Figure 5. This affects the performance of the Bayesian

classifier and HMM based classifier as well.

Fortunately in our case, a human operator operates the classification results

and filters out erroneous classifications. Classification errors are frequently easily de-

tectable by the human operator, since the resulting sentence makes little or no sense.

Therefore it is sufficient for a classifier to generate a small set of “candidate” classifi-

cations, from which the presumably intelligent operator picks the most appropriate.

In these experiments we make use of the n-Viterbi algorithm, an extension to the

1-Viterbi that simultaneously generates a selection of solutions rather than a single

one. For a given value for n, n-Viterbi returns n solutions, from which the human

22

operator picks the most appropriate one. The value of n is 4 in our case. From the

4 output sequences, the sequence with the maximum number of correctly classified

words is selected for measuring the performance.

performance comparison of 1-Viterbi & 4-Viterbi (histogram
for estimated talk spurts)

0

20

40

60

80

100

120

140

0 0.2 0.4 0.5 0.6 0.667 0.75 0.8 0.833 1

1-viterbi

4-viterbi

random

performance comparison of 1-Viterbi & 4-Viterbi (histogram
for estimated talk spurts)

0

50

100

150

200

0 0.2 0.25 0.33 0.4 0.5 0.6 0.63 0.67 0.71 0.75 0.8 0.83 1

1-Viterbi

4-Viterbi

random

Fig. 7. Comparing performance of 1-Viterbi and 4-Viterbi on sentences using estimated

spurt lengths from Rhyme 1 and combination of Rhyme 2 and Rhyme 3

Figure 7 shows the improvement in the performance with n-Viterbi compared

to that of 1-Viterbi. The histogram on the left shows the performance from the

sentences using Rhyme 1 and the histogram on the right shows that of the sentences

from the combination of Rhyme 2 and Rhyme 3. There are no instances in which

all the words are classified incorrectly with 4-Viterbi in the case of Rhyme 1 and the

number drastically reduced in the second case, which is a major improvement over

1-Viterbi. The significant improvement in the second case can be attributed to the

condition that words are less similar to each other compared to that of first case and

hence resulting in talk spurt length distributions less overlapping.

23

CHAPTER VI

IMPROVEMENT OF RESULTS USING ACOUSTIC FEATURES

A. Acoustic Features

The experiments in Chapter V measure the performance of the classifiers in terms

of their effectiveness to correctly classify symbols. The error rates in Figure 6 and

Figure 7, for example, are calculated as follows:

• Compare the test sentence and the output from the classifier word by word

• For each word, if the classifier detects the word correctly, then the error is zero,

otherwise, the error is one.

While this measure is appropriate for speech recognition applications where the

symbols must be correctly identified by an automated system, it is much less so for

our setting, where a human operator observes and filters the results generated by the

classifier. In our case, the operator naturally ignores minor errors in the classification,

for example errors between acoustically similar words such as “butter” for “batter”.

As a result, the problem at hand is less a speech recognition problem rather than an

audio query problem: The classifier returns a list of likely sentences that correspond

to the input spurt lengths. If the result is returned in acoustic form, the operator will

be able to identify the original sentence easily if it is offered, and can ignore minor

errors in the classification.

Simply counting classification errors in such a setting does not provide a mea-

sure for the “usefulness” of the classifiers to the operator. More appropriately, any

effectiveness measure must penalize errors according to their effect on the ability of

the operator to reconstruct the original sequence of symbols.

24

In the following, we will be using acoustic similarity as a heuristic measure for the

ability of the operator to naturally correct classification errors. The rationale is that

the operator can more easily correct errors when the symbols sound similar (such

as “butter” instead of “better”), than when the symbols sound distinctly different

(such as “better” and “the”). Similarity measure is the indication of closeness of the

audio signals being compared. We considered the dominant feature vectors based

similarity measure [25] used for calculating similarity measure between words and

Bhattacharyya distance [26] used for calculating distances between classes. A brief

explanation of both the similarity measures is given in the following two subsections.

1. Dominant Feature Vector Based Similarity Measure

We first extract the features from the words and then the similarity measure is calcu-

lated between the words using the dominant features. Audio features that are consid-

ered are 13 Mel Frequency Cepstral Coefficients (MFCCs) [27], short time energy [28]

and zero cross rate [28]. MFCCs represent the spectral envelope of an audio signal.

The zero-crossing rate is the rate at which the signal changes from positive to nega-

tive or vice-versa. Short-Time energy is a simple short-time speech measurement that

can in a way distinguish between voiced (voice active period) and unvoiced (silence

period) speech segments, since unvoiced speech has significantly smaller short-time

energy. Each audio clip is divided into N audio frames. An n-dimensional feature

vector is extracted from each frame and normalized to zero mean and unit variance.

Thus, the audio clip is represented as a n × N matrix [25]. Dominant features are

obtained by computing the Eigen decomposition on the covariance of frame based

feature vector.The reason for doing Eigen-decomposition is to find the vectors that

describe the characteristics of audio clip in the best possible manner. Eigen vectors

associated with large Eigen values represent most of the information, and hence they

25

can be considered as dominant feature vectors.

plot of sorted Eigen values

0

1

2

3

4

5

6

0 5 10 15

sorted Eigen values

Fig. 8. Plot of sorted Eigen values

Figure 8 shows the plot of sorted Eigen values for a sample audio clip. From

the figure, we can be sure that the top 8 Eigen vectors contribute most to the audio

clip. The number of Eigen vectors over the entire set of words in our experiments are

selected by observing the Eigen values and the value is selected as 8. The equation

below is used to calculate the similarity measure between audio clips (words in our

case).

S =
n1∑
i=1

n2∑
j=1

wi,jsi,j, where (6.1)

wi,j =
pi√
n1∑
i=1

p2
i

qi√
n2∑
i=1

q2
i

, and (6.2)

si,j =
||XT

i Yj||2

||Xi||2||Yj||2
. (6.3)

The values pi and qj are the Eigen values of the ith and jth. Xi and Yj are the

corresponding Eigen vectors. The similarity measure is calculated by giving more

weight to the Eigen vectors with large Eigen values. The weighted sum is designed

such that if the two audio clips are the same, then the weighted sum should be equal

26

to one. The similarity measure value will be between zero and one. The higher the

similarity between the audio clips, the closer the value will be to one. The Matlab

code for the computation of similarity measure can be found in Appendix B.

The phonetics involved in any word can be known easily using a dictionary. We

can use Acoustic-Phonetic Continuous Speech Corpus like TIMIT [29] to compare

phonemes of words and compute the distance between the words. This can serve as

an alternative to similarity measure.

2. Bhattacharyya Distance

The Bhattacharyya distance [26] is a theoretical distance measure between two Gaus-

sian distributions. It is computationally simple and can be used to derive an upper

bound on the optimal Bayesian classification error probability between two classes.

The Bhattacharyya distance Dbhat is defined as follows

Dbhat =
1

8
(M2 −M1)

T [

∑
1 +

∑
2

2
]−1(M2 −M1) +

1

2
ln

|
∑

1 +
∑

2

2
|√

|
∑

1 ||
∑

2 |
. (6.4)

Mis and
∑

is are the means and covariance matrices of the two Gaussian distribu-

tions. Optimal Bayesian classification error between two classes with equal a priori

probability is bounded by the expression εbhat = 0.5 ∗ exp(−Dbhat).

The optimal Bayesian classification error can be used to gauge how inherently dif-

ficult the classification problem is. We will use these similarity measures to determine

the penalties associated with the classification errors.

27

B. Experiments

1. Dominant Feature Vector Based Similarity Measure

We have done the similar experiments that we have done in the previous chapter.

The difference here is the error measurement method. similarity measure si,j is an

indication of closeness of the audio clips and the value of similarity measure always

varies between zero and one. Hence distancei,j = 1−si,j can be considered as penalty

of classification error between the audio clips.

Fig. 9. Dendrogram of distancei,j between symbols of Rhyme 1

Figure 9 shows the dendrogram for the distancei,j between words of Rhyme 1.

Clear observation is that similar words like “butter”, “better” and “batter” are very

near to each other. We considered random, Bayesian, HMM (1-Viterbi), HMM (4-

Viterbi) and optimal classifiers to show the improvement in performance. Optimal

means the classifier detects all the symbols in the sentence correctly and it is the

maximum performance we can obtain using similarity measure based performance

evaluation. We aforetime store the acoustic representations of all the utterances of

28

all the symbols. For each symbol, we elect the centroid sample as the representative

signal from the collection of the sample signals. We measure the optimal performance

by calculating the average of the similarity measures between the representative voice

signals of the output sequence of symbols and the corresponding voice signals of the

test sequence. Random classifier classifies the symbols on a random basis out of the

words in the Rhyme 1 and the average distancei,j is calculated between the input and

the output sequence of symbols. In the similar way, we measure the performance for

the Bayesian, 1-Viterbi and 4-Viterbi cases.

performance comparison with and without similarity measure
for accurate talk spurts (average error rate)

0

0.2

0.4

0.6

0.8

1

random bayesian 1-Viterbi 4-Viterbi optimal

without similarity measure

with similarity measure

performance comparison with and without similarity measure
for estimated talk spurts (average error rate)

0

0.2

0.4

0.6

0.8

1

1.2

random bayesian 1-Viterbi 4-Viterbi Optimal

without similarity measure

with similarity measure

Fig. 10. Similarity measure improvements for symbols of Rhyme 1 with accurate and

estimated talk spurts

Figure 10 shows the improvement of the results with similarity measures for

performance evaluation for the estimated talk spurts of Rhyme1. Ideally, the optimal

performance value should be equal to zero. But it in reality, the similarity measure

will not equal zero between different pronunciations of the same word and hence there

is a lower threshold the performance can reach. But an intelligent human operator

can easily differentiate between different pronunciations of the same word easily and

this is not a major issue.

29

2. Bhattacharyya Distance

From the distributions of symbols (words) that we have already used in the ex-

periments in the previous chapter, we calculated the pairwise Bhattacharyya dis-

tances between the symbol (words) distributions and calculated the respective optimal

Bayesian classification errors between classes.

Fig. 11. Dendrograms for Bhattacharyya distances and error rates for symbols of

Rhyme 1

Figure 11 shows the dendrograms of the Bhattacharyya distances between sym-

bols and the corresponding classification errors from the Rhyme 1. It can be clearly

seen that the similar words like “butter”, “better” and “batter” have small pairwise

distances and large Bayesian classification errors. Similar is the case with the symbols

from Rhyme 2 and Rhyme 3.

We selected three classifiers namely random, Bayesian and HMM classifiers to

show the improvement of the results with errors based on Bhattacharyya distance.

Random classifier classifies the symbols in the sequence (sentence) randomly, which

is the worst case behavior. We calculated confusion matrices for each of the cases

and obtained a corresponding confusion coefficient by adding all the elements ci,j

30

except the diagonal ones (ci,i). In random classification, ci,j = 1/n, where n is the

total number of symbols. Thus, the confusion coefficient in random case would be

n(1-(1/n)) = n-1.

performance comparison with and without Bhattacharyya for
accurate talk spurts (confusion coefficient)

0

2

4

6

8

10

12

14

random bayesian hmm

without Bhattacharyya

with Bhattacharyya

performance comparison with and without Bhattacharyya for
estimated talk spurts (confusion coefficient)

0

2

4

6

8

10

12

14

random bayesian hmm

without Bhattacharyya

with Bhattacharyya

Fig. 12. Bhattacharyya improvements for symbols of Rhyme 1 with accurate and es-

timated talk spurts

Figure 12 shows the improvement with errors, calculated from Bhattacharyya

distance data from symbols of Rhyme 1. In the without Bhattacharyya case, we

add all the elements except the diagonal ones in the confusion matrix to get the

confusion coefficient and in the with Bhattacharyya case (using Bhattacharyya data),

each element, except the diagonal elements, ci,j is multiplied with the corresponding

probability of classifying symbol i as j, 1− εbhati,j and the products are added to get

the confusion coefficient.

Then we weighed the errors obtained with the absolute calculation in previous

Chapter V with the errors obtained from the Bhattacharyya distances between sym-

bols. Figure 13 shows the phenomena of weighing. There is a clear improvement in

the performance of all the classifiers, including random guess classifier, with Bhat-

tacharyya distance based evaluation. HMM based classifier clearly dominated other

classifiers.

31

weighing with errors based on Bhattacharyya distance

0

20

40

60

80

100

120

140

160

0.4 0.5 0.6 0.67 0.75 0.8 0.83 0.83 0.92 1

Bayesian

Bhattacharyya_Bayesian

HMM

Bhattacharyya_HMM

Random

Bhattacharyya_random

Fig. 13. Weighing the originally obtained errors with Bhattacharyya distance based

errors

32

CHAPTER VII

CONCLUSION AND FUTURE WORK

On one hand, encryption of VOIP traffic is critical for the security and privacy of the

service participants. On the other, silence suppression is important for the deploya-

bility of VOIP services.

In this thesis, we investigated the effectiveness of the encryption in presence of si-

lence suppression. We presented a model in which attacker uses just the packet timing

information of the VOIP conversation to reconstruct the communication content. The

first observation is that with accurate talk spurt lengths, the performance of the model

is good in constructing the sentences spoken both by using context-unaware Bayesian

classifier and context-aware HMM based classifier, HMM obviously dominating the

Bayesian classifier. However, with the estimated talk spurt lengths, the performance

suffered badly with both Bayesian and HMM based classifiers. The major reason for

performance loss can be attributed to too much overlapping of estimated talk spurt

lengths of the symbols. In our case, a human operator filters out the erroneous clas-

sifications and hence we used n-Viterbi algorithm instead of 1-Viterbi algorithm in

HMM and we found a significant amount of improvement in the performance.

The problem we are dealing with is not a speech recognition problem and is

more similar to an audio query problem. If the result is returned in acoustic form,

the operator will be able to identify the original sentence easily if it is offered, and

can ignore minor errors in the classification. Hence, we resorted to acoustic measures

for our performance evaluation. We used dominant feature vector based similarity

measure between words and Bhattacharyya distance between word distributions as a

measure for performance evaluation instead of using the absolute method of one in

case of successful detection of word or zero in case of error. The reason is simple. We

33

are dealing with a similar problem like audio querying and getting similar results is

considered a success. For example, if the word “batter” getting detected as “better”,

the human operator is assumed to presumably intelligent to correctly identify the

word in the output sequence. There is a considerable improvement in the results with

the acoustic measures.

We are dealing with sentences with gaps between words, i.e. there is a small

silence gap between every word in the sentences spoken. The extension of this work

should be to check the effectiveness of the attack with sentences spoken without any

gaps between words. Also the use of other information like packet sizes, Jitter etc

and whether there will be any impact of these on the estimation of talk spurt lengths

need to be investigated.

34

REFERENCES

[1] S. Anderson, A. Duric, Telio, H. Astrom, R. Hagen et al., “Internet low bit rate

codec (iLBC),” Available: http://www.ietf.org/rfc/rfc3951.txt, December 2004.

[2] P. Zimmermann, A. Johnston, and J. Callas, “Zrtp: media path key agreement

for secure RTP,” Available: http://www.ietf.org/ietf/1id-abstracts.txt, March

2007.

[3] “The Zfone Project,” Available: http://zfoneproject.com/, March 2007.

[4] D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes and timing

attacks on SSH,” in Proc. 10th Conference on USENIX Security Symposium

(SSYM’01), August 2001, pp.25-25.

[5] Q. Sun, D. Simon, Y. Wang, W. Russell, N. Padmanabhan, and L. Qiu, “Statis-

tical identification of encrypted web browsing traffic,” in Proc. IEEE Symposium

on Security and Privacy, 2002, pp.19-30.

[6] A. Hintz, “Fingerprinting websites using traffic analysis,” Available:

http://guh.nu/projects/ta/safeweb/safeweb.html, 2002

[7] “Tor: Anonymity Online,” Available: http://www.torproject.org/, 2004

[8] D. Chaum, “Untraceable electronic mail, return addresses, and digital

pseudonyms,” in Communications of the ACM, vol. 4, no. 2, pp.84-90, February

1981.

[9] A. Serjantov and P. Sewell, “Passive attack analysis for connection-based

anonymity systems,” in Proc. European Symposium on Research in Computer

Security (ESORICS), 2003, pp.116-131.

35

[10] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao, “On flow correlation attacks

and countermeasures in mix networks,” in Proc. Workshop on Privacy Enhancing

Technologies (PET2004), 2004, pp.207-225.

[11] B. N. Levine, K. Reiter, C. Wang, and M. Wright, “Timing attacks in low-latency

mix-based systems,” in Proc. Financial Cryptography, 2004, pp.251-265.

[12] G. Danezis, “The traffic analysis of continuous-time mixes,” in Proc. Privacy

Enhancing Technologies workshop (PET 2004), May 2004, pp.35-50.

[13] Y. Zhu and R. Bettati, “Unmixing mix traffic,” in 5th Workshop on Privacy-

Enhancing Technologies, Cavtat, Croatia, May 2005, pp.110-127.

[14] C. Jutten and J. Herault, “Blind separation of sources, Part 1: An adaptive

algorithm based on neuromimetic architecture,” in Signal Process., vol. 24, no.

1, pp.1-10, July 1991.

[15] X. Fu, Y. Zhu, B. Graham, R. Bettati, and Zhao, “On flow marking attacks in

wireless anonymous communication networks,” in IEEE International Conf. Dis-

tributed Computing Systems (ICDCS- 2005), Columbus, OH, June 2005, pp.493-

503.

[16] X. Wang, S. Chen, and S. Jajodia, “Tracking anonymous peer-to-peer voip calls

on the internet,” in Proc. 12th ACM Conference on Computer and communica-

tions security (CCS 05), New York, 2005, pp.81-91.

[17] Y. Guan, X. Fu, R. Bettati, and W. Zhao, “Netcamo: Camouflaging network

traffic for QoS guaranteed mission critical applications,” IEEE Trans. Systems,

Man and Cybernetics, vol. 31, no. 4, pp.253-265, July 2001.

36

[18] B. Sat and B. W. Wah, “Analysis and Evaluation of the Skype and Google-

Talk VOIP Systems,” in IEEE International Conf. Multimedia and Expo, 2006,

Toronto, ON, Canada, July 2006, pp.2153-2156.

[19] “Wireshark frequently asked questions,” Available: http://www.wireshark.org/,

2006.

[20] “SpeakFreely for Windows,” Available: http://www.speakfreely.org/, February

2002.

[21] “Audacity documentation and support,” Available:

http://audacity.sourceforge.net/help/, 2007.

[22] “Statement of Bayes’ theorem,” Available: http://en.wikipedia.org/wiki

/Bayes´ theorem/, March 2008.

[23] “Matlab tutorial,” Available: http://www.mathworks.com/academia/student

center/tutorials/launchpad.html, October 2006.

[24] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications

in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 267-296, February 1989.

[25] J. Gu, L. Lu, R. Cai, H. J. Zhang, and J. Yang, “Dominant feature vectors

based audio similarity measure,” in Fifth IEEE Pacific-Rim Conf. Multimedia

(PCM’04), Tokyo Waterfront City, Japan, December 2004, pp. 890-897.

[26] B. Mak and E. Barnard, “Phone clustering using the Bhattacharyya distance,”

in Fourth International Conf. Spoken Language, Philadelphia, PA, June 1987,

pp.2005-2008.

37

[27] “PLP and RASTA (and MFCC, and inversion) in Matlab using melfcc.m and in-

vmelfcc.m,” Available: http://labrosa.ee.columbia.edu/matlab/rastamat/, July

2006.

[28] M. Greenwood and A. Kinghorn, “Suving: Automatic silence/unvoiced/voiced

classification of speech,” Department of Computer Science, The University of

Sheffield, UK, 1999.

[29] “TIMIT acoustic-phonetic continuous speech corpus,” Available:

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1,

2006.

[30] T. Lella and R. Bettati, “Privacy of encrypted voice-Over-IP,” in IEEE Inter-

national conf. Systems, Man and Cybernetics (SMC 2007), Montreal, Canada,

October 2007, pp.3063-3068.

38

APPENDIX A

DATA AND EXPERIMENTAL RESULTS FROM WORDS OF SECOND AND

THIRD RHYMES

The spurt length distribution data, and performance comparison of Bayesian and

HMM classifiers followed by the improved results using acoustic features of words for

accurate talk spurt sengths as well as estimated talk spurt lengths of words from

second and third rhymes are presented here.

Fig. 14. Accurate spurt lengths of voice signals of symbols from Rhyme 2 and Rhyme

3

In Figure 18, the number 22 signifies the bin which contains all the similar

sounding words like ‘pest’, ‘vest’, ‘chest’. It is obvious as the value of distancei,j is

less between similar words.

In Figure 20, the number 22 on the left part signifies the bin which contains

all the similar sounding words like ‘pest’, ‘vest’, ‘chest’. This result is obvious as the

value of Bhattacharyya distance is less between similar words.

39

Histogram of classification errors on sentences using
accurate spurt lengths

0

50

100

150

200

0 0.2 0.25 0.4 0.5 0.6 0.63 0.67 0.75 0.8 0.83 1

Bayesian

HMM

random

Fig. 15. Comparing Bayesian and HMM(24) classifiers on sentences using accurate

spurt lengths of symbols from Rhyme 2 and Rhyme 3

Fig. 16. Estimated spurt lengths of symbols from Rhyme 2 and Rhyme 3 based on

packet timing in GTalk

40

Histogram of classification errors on sentences using
estimated spurt lengths

0

50

100

150

200

0 0.2 0.25 0.4 0.33 0.5 0.6 0.67 0.71 0.75 0.8 0.83 1

Bayesian

HMM

random

Fig. 17. Comparing Bayesian and HMM(24) classifiers on sentences using estimated

spurt lengths of symbols from Rhyme 2 and Rhyme 3

Fig. 18. Dendrogram of distancei,j between symbols of Rhyme 2 and Rhyme 3

41

performance comparison with and without similarity measure
for accurate talk spurts (average error rate)

0

0.2

0.4

0.6

0.8

1

1.2

random bayesian 1-viterbi 4-viterbi optimal

without similarity measure

with similarity measure

performance comparison with and without similarity measure
for estimated talk spurts (average error rate)

0

0.2

0.4

0.6

0.8

1

1.2

random bayesian 1-viterbi 4-viterbi optimal

without similarity measure

with similarity measure

Fig. 19. Similarity measure improvements for symbols with accurate and estimated

talk spurts of symbols from Rhyme 2 and Rhyme 3

Fig. 20. Dendrograms for Bhattacharyya distances and error rates for symbols of

Rhyme 2 and Rhyme 3

performance comparison with and without Bhattacharyya for
accurate talk spurts (confusion coefficient)

0
5

10
15
20

25
30

35
40

random bayesian hmm

without Bhattacharyya

with Bhattacharyya

performance comparison with and without Bhattacharyya for
estimated talk spurts (confusion coefficient)

0
5

10
15
20

25
30

35
40

random bayesian hmm

without Bhattacharyya

with Bhattacharyya

Fig. 21. Bhattacharyya improvements for symbols with accurate and estimated talk

spurts of symbols from Rhyme 2 and Rhyme 3

42

weighing with errors based on Bhattacharyya distance

0
20
40
60
80

100
120
140
160
180
200

0
0.

25 0.
5

0.
66

67
0.

75

0.
83

33
0.

87
5

Bayesian

Bhattacharyya_Bayesian

HMM

Bhattacharyya_HMM

Random

Bhattacharyya_random

Fig. 22. Weighing the originally obtained errors with Bhattacharyya distance based

errors

43

APPENDIX B

MATLAB CODE

The code structure used for HMM and Bayesian classification is provided here for

reference.

%%%%%%HMM and Bayesian classifier code in the same file%%%%

for num_tests=1:1

warning off;

test_talklengths=xlsread(’testing_talkspurts.xls’);

%%%%%loading pre-calculated gaussian distributions

%%%%%for the symbols of Rhyme 1

load Rhyme1_accurate_mean_std_talklengths.mat

%%%test sequences formed from symbols of Rhyme 1

testinstances=xlsread(’testcases.xls’);

%%%%%%corresponding talk spurt lengths of the

%%%%%test sequences above

%number of symbols

num_words=size(meanWords,2);

num_testinstances=num_tests;

num_testcases=size(testinstances,1);

for num_loops=1:200

%randomly picking instances for testing

randorder=randperm(num_testcases);

var=length(randorder);

training=testinstances(randorder

44

(1:var-num_testinstances),:);

testsequence=testinstances(randorder

(var-num_testinstances+1:var),:);

testing=test_talklengths(randorder

(var-num_testinstances+1:var),:);

%%%transition probabilities from training sentences

paircounts(1:num_words,1:num_words)=0;

x=training;

j=1;

for i=1:size(training,1)

while(j<=size(training,2))

if(j==size(training,2))

break;

end

if((x(i,j)=0)&(x(i,j+1)=0))

paircounts(x(i,j),x(i,j+1))

=paircounts(x(i,j),x(i,j+1))+1;

end

j=j+1;

end

j=1;

end

prob_transition=[];

for i=1:num_words

for j=1:num_words

prob_transition(i,j)

45

=paircounts(i,j)/sum(paircounts(i,:));

end

end

%calculating word counts

wordcounts(1:num_words,1)=0;

x=training;

for i=1:size(training,1)

for j=1:size(training,2)

if(x(i,j)=0)

wordcounts(x(i,j))=wordcounts(x(i,j))+1;

end

end

end

%prior probabilities of states(words)

for i=1:num_words

prob_states(i,1)=wordcounts(i,1)/sum(wordcounts);

end

%%%%%HMM and Bayesian classification

for k=1:num_testinstances

testData=testing(k,find(testing(k,:)=0));

testseq=testsequence(k,find(testsequence(k,:)=0));

sequence_length=length(testData);

for i=1:sequence_length

for j=1:num_words

B(i,j)=(1/(stdWords(1,j)*sqrt(2*pi)))*

exp(-((testData(i)-meanWords(1,j))^2)/

46

(2*stdWords(1,j)*stdWords(1,j)));

end

end

if (num_tests==1)

posteriors=[];

result=[];

for len=1:sequence_length

for nw=1:num_words

posteriors(nw)=B(len,nw)*prob_states(nw);

end

[value index]=max(posteriors);

result=[result index]

end

bayesian_errors(num_loops)=

length(find(result=testseq))/length(path);

end

vit4_paths=

nviterbi_path(prob_states’,prob_transition,B’);

for z=1:size(vit4_paths,1)

temp_vit4_err(z)=

length(find(vit4_paths(z,:)=testseq))

/length(path);

end

vit4_err(num_loops,k)=min(temp_vit4_err);

clear B;

vit1_errors(num_loops,k)=temp_vit4_err(1);

47

end

end

end

Dominant feature vectors based Similarity measure is calculated using the fol-

lowing code.

function sim=similarity_measure(signal1,signal2,fs)

%% number of eigens considered

num_eigens=8;

winlen=30/1000*fs %%%%%30ms long window

winoverlap=ceil(winlen/2);%%50% over lap

%% computing features

mfcc1=melfcc2(signal1,fs,’wintime’, 0.03, ’hoptime’,0.015);

ste1=short_time_energy(signal1,winlen,winoverlap);

zcr1=zero_cross_rate(signal1,winlen,winoverlap);

mfcc2=melfcc2(signal2,fs,’wintime’, 0.03, ’hoptime’,0.015);

ste2=short_time_energy(signal2,winlen,winoverlap);

zcr2=zero_cross_rate(signal2,winlen,winoverlap);

features1=[mfcc1;ste1;zcr1];

features2=[mfcc2;ste2;zcr2];

%%%%normalizing the features

features=[features1,features2];

48

[norm_features,xmean,xstd]=myMapStd(features’);

temp1=myMapStd(features1’,xmean,xstd);

features1=temp1’;

temp2=myMapStd(features2’,xmean,xstd);

features2=temp2’;

%%%% eigen decomposition

covariance1=cov(features1’);

[eigen_vectors1,eigen_values1]=eigs(covariance1,num_eigens);

eigen_values1 = diag(eigen_values1);

covariance2=cov(features2’);

[eigen_vectors2,eigen_values2]=eigs(covariance2,num_eigens);

eigen_values2 = diag(eigen_values2);

%% weights

weights1=zeros(num_eigens,1); weights2=zeros(num_eigens,1);

for i=1:num_eigens

weights1(i,1)=eigen_values1(i,1)/sqrt(sum(eigen_values1.*eigen_values1));

weights2(i,1)=eigen_values2(i,1)/sqrt(sum(eigen_values2.*eigen_values2));

end

weights=weights1*weights2’;

%% similarity between individual features

s=zeros(num_eigens,num_eigens);

49

for i=1:num_eigens

for j=1:num_eigens

temp=eigen_vectors1(:,i)’*eigen_vectors2(:,j);

s(i,j)=(temp)^2;

end

end

%%%similarity measure

sim=0; for i=1:num_eigens

for j=1:num_eigens

sim=sim+s(i,j)*weights(i,j);

end

end

50

VITA

Tuneesh Kumar Lella received his Bachelor of Engineering in Computer Science

and Master of Science in Mathematics from Birla Institute of Technology and Science,

Pilani, India in June 2006. He entered the Computer Science program at Texas A

& M University in August 2006, and since then, he has been pursuing his Master

of Science degree receiving it in August 2008. He will begin work as a software

engineer for Citrix Systems in Santa Clara, CA in August 2008. His e-mail address

is saituneesh@tamu.edu.

The typist for this thesis was Tuneesh Kumar Lella.

