
The University of Manchester Research

Efficient Pyramid Context Encoding and Feature
Embedding for Semantic Segmentation
DOI:
10.1016/j.imavis.2021.104195

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Liu, M., & Yin, H. (2021). Efficient Pyramid Context Encoding and Feature Embedding for Semantic Segmentation.
Image and Vision Computing, 111, [104195]. https://doi.org/10.1016/j.imavis.2021.104195

Published in:
Image and Vision Computing

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:09. Jun. 2022

https://doi.org/10.1016/j.imavis.2021.104195
https://www.research.manchester.ac.uk/portal/en/publications/efficient-pyramid-context-encoding-and-feature-embedding-for-semantic-segmentation(00d84ecd-3e17-4eba-9aef-97f4a22c52af).html
https://doi.org/10.1016/j.imavis.2021.104195


Efficient Pyramid Context Encoding and Feature Embedding
for Semantic Segmentation

Mengyu Liu, Hujun Yin∗

Department of Electrical and Electronic Engineering, The University of Manchester, Manchester, UK

Abstract

For reality applications of semantic segmentation, inference speed and memory usage are two important factors. To
address these challenges, we propose a lightweight feature pyramid encoding network (FPENet) for semantic segmentation
with a good trade-off between accuracy and speed. We use a series of feature pyramid encoding (FPE) blocks to encode
context at multiple scales in the encoder. Each FPE block consists of different depthwise dilated convolutions that
perform as a spatial pyramid to extract features and reduce computational costs. During training, a one-shot neural
architecture search algorithm is adopted to find the optimal structure for each FPE block from a large search space with
a small search cost. After the search for the encoder, a mutual embedding upsample module is introduced in the decoder,
consisting of two attention blocks. The encoder-decoder attention mechanism is used to help aggregate efficiently high-
level semantic features and low-level spatial details. The proposed network outperforms the existing real-time methods
with fewer parameters and improved inference speed on the Cityscapes and CamVid benchmark datasets. Specifically,
it achieved 72.3% mean IoU on the Cityscapes test set with only 0.4M parameters and 192.6 FPS speed on an Nvidia
Titan V100 GPU, and 73.4% mean IoU with 116.2 FPS when running on higher resolution images.

Keywords: Semantic segmentation, Convolutional neural networks, Pyramid context encoding, Real-time processing

1. Introduction

Semantic segmentation is a fundamental topic in com-
puter vision and is becoming increasingly important in
various applications such as autonomous systems, medi-
cal image diagnostics and video content annotation. It is
a process of assigning a category label to each pixel for
a given image with consideration of image context. With
the success of convolutional neural networks (CNNs) in im-
age classification [1, 2, 3, 4], many methods have achieved
impressive performances in semantic segmentation by uti-
lizing deep CNNs as end-to-end dense classifiers [5, 6, 7, 8].
Some methods further employ post-processing methods to
model pairwise distribution of pixel labels [9, 10] or refine
segmentation boundaries [11].

Most recent methods are based on the fully convolu-
tional network (FCN) [5]. Some [8, 9, 12] utilize differ-
ent dilated convolutions or pooling operations to encode
multi-scale features at the end of the base models, and
then multi-scale context information is aggregated by com-
bining these extracted features. Others [7, 13] adopt a
self-attention mechanism to capture long-range feature de-
pendencies in spatial and channel dimensions, respectively.
Besides, many semantic segmentation models adopt the U-
shape structure [14, 15, 16, 17] with an encoder to extract

∗Corresponding author
Email addresses: mengyu.liu@manchester.ac.uk (Mengyu

Liu), hujun.yin@manchester.ac.uk (Hujun Yin )

features and a decoder to fuse high-level features with low-
level features for final pixel-level classification. Methods in
[18, 19] adopted symmetric encoder-decoder structure to
preserve spatial information and refine boundaries.

Most high performing segmentation methods use deep
and wide architectures (e.g. ResNet101 [1], DenseNet [3])
and time consuming post-processing (e.g. CRFs, multi-
scale testing), while some [17, 18] employ complicated de-
coders. These models often have millions of parameters
and hence are computational expensive and require huge
memory storage. For instance, PSPNet [8] has 65.7 mil-
lion parameters and DeepLabV3+ [6] contains 54.6 million
parameters. These methods take a long time to process an
image even on a high-end GPU-based platform, impossi-
ble for real-time processing. For semantic segmentation
running on resource-constrained devices like autonomous
vehicles, there is a demand for low latency and low mem-
ory footprint without scarifying much in accuracy.

To address these challenge, several strategies, summa-
rized as follows, have been developed to trade off between
accuracy and speed for designing CNN architectures. (1)
Knowledge distillation [20] method uses output informa-
tion of a teacher network to teach a student network.
A compact network is trained using knowledge extracted
from a pre-trained cumbersome network [21, 22]. (2) Quan-
tization of weights is another strategy used to train net-
works with low precision weights [23, 24, 25, 26]. (3) Man-
ually designed lightweight architectures to improve effi-

Preprint submitted to Image and Vision Computing April 29, 2021



Figure 1: Architecture of the proposed network with an example
input image and its corresponding output.

ciency. Some methods take downsampled inputs and fuse
features at different levels to reduce computational com-
plexity [27, 28], while others prune redundant channels to
reduce parameters [29, 30]. These lightweight networks
have achieved faster inference at a cost of lower accuracy
on benchmarks [31, 32]. However, features extracted from
downsampled images lack spatial details, and pruned shal-
low networks are weak in encoding contextual information
with small receptive fields. Some U-shape structured mod-
els [33, 29] utilize light decoders, consisting of few convo-
lutional layers and bilinear upsampling to recover resolu-
tion. These simple decoders reduce number of parameters
and increase speed, but fine information is lost, leading to
coarse segmentation at boundaries.

More recently, with the development of neural archi-
tecture search (NAS) algorithms, automatically identified
networks have exceeded human-designed networks on im-
age recognition task [34, 35]. Researchers have explored
NAS for semantic segmentation and achieved state-of-the-
art results. Auto-DeepLab [36] jointly searches the archi-
tectures at network and cell levels. CAS [37] searches for
computational cells and multi-scale cells with constraints
for lightweight networks.

Based on these observations, we propose a lightweight
feature pyramid encoding network (FPENet) consisting of
an encoder and a decoder for real-time semantic segmen-
tation. Its architecture is shown in Figure 1. Unlike other
methods that place a spatial pyramid module at end of

the network, we build a spatial pyramid in each block to
capture spatial dependencies and to learn representations
from feature maps at various levels. In the encoder, a
sequence of feature pyramid encoding (FPE) blocks are
stacked, and in each FPE block, groups of depthwise di-
lated convolutions of different rates are employed to per-
form as a spatial pyramid and to reduce computational
complexity. The specific structures (i.e. number of fil-
ters, filter sizes and dilation rates) of each FPE block are
determined by NAS. For the decoder, in order to aggre-
gate features of different levels efficiently, we propose a
mutual embedding upsample (MEU) module based on the
encoder-decoder attention mechanism. It uses global con-
textual concepts from high-level features to guide low-level
features and embeds local spatial information from low-
level features into high-level features simultaneously.

This paper extends our preliminary work [38] in four
aspects: (1) redesign of a deeper but faster architecture to
further reduce inference latency, (2) extensive schemes of
FPE blocks explored by varying filter size and expansion
rate, together with additional analysis of FPE blocks, (3)
one-shot NAS algorithm adopted and threshoulding regu-
larizations proposed to search for optimal structure of FPE
blocks to improve performance; and (4) various attention
approaches compared and analysed in the MEU modules
with more experiments.

Main contributions of the work are summarized as,

(1) An efficient feature pyramid encoding scheme is pro-
posed to encode multi-scale features and to reduce
computational complexity with groups of depthwise
dilated convolutions.

(2) A mutual embedding upsample module is introduced
to aggregate high-level and low-level features.

(3) Significant improvements over the existing segmen-
tation methods are obtained on Cityscapes [31] and
CamVid [39] benchmarks, with much fewer parame-
ters but faster inference speed.

2. Related Work

We review recent developments in semantic segmenta-
tion especially those for real-time processing and various
studies exploring impact of encoding multi-level contextual
features. Methods that adopt NAS to explore network ar-
chitecture for specific tasks are also reviewed, followed by
summarizing recent research on feature aggregation.

Real-time Segmentation Algorithms. These methods often
require to make trade-off between accuracy and speed to
be lightweight. One method is to use a lightweight back-
bone with efficient context encoding operations [40]. In
SegNet [30], a light-weight encoder-decoder structure is
used to reduce computational complexity. While in ENet
[29], the last stage of the network is discarded and the
number of downsampling times is reduced to shrink the
model. Mehta et al. proposed ESPNet [41], to use efficient

2



pyramid modules to extract multi-scale features. Another
strategy is to use multi-path architecture. In ICNet [27]
and ContextNet [28], multi-scale images are employed as
inputs of cascaded networks to extract features. Down-
sampled images are applied to deep branches, while large
images are applied to shallow branches in these two mod-
els to reduce computation. BiSeNet [42] extracts high-level
semantic features and low-level spatial information inde-
pendently with two paths.

Multi-level Contextual Features. Encoding contextual fea-
tures at multiple levels helps achieve good results in se-
mantic segmentation due to multiple scales of objects and
spatial dependency. Zhao et al. showed the benefit of
global contextual features and proposed PSPNet [8] with a
multi-scale spatial pooling module at the end of the model
to exploit multi-level contextual features. In [9], an atrous
spatial pyramid pooling (ASPP) module was proposed to
model semantic contextual information. ASPP contains
several parallel atrous (dilated) convolutions of different
rates, so multi-level contextual features are encoded si-
multaneously. In the pyramid attention network (PAN)
[12], spatial pyramid pooling is adopted to extract differ-
ent scale information and generate precise pixel-level at-
tention for high-level contextual features. In Res2Net [43],
the 3× 3 convolution filters in residual block are replaced
with smaller groups of filters to extract contextual infor-
mation simultaneously.

Neural Architecture Search (NAS). NAS is an algorithm
to automatically find the best architecture for various deep
learning tasks within a search space. Most work on NAS
is based on reinforcement learning [44, 45, 46] to sample
candidate networks or evolutionary algorithms [34, 47, 48]
with a population of models repeatedly trained and mu-
tated until the best is found. Although these two kinds of
algorithms can achieve remarkable results, they are very
time-consuming and not suitable for reality applications
because thousands of models are required to be trained
from scratch during the search. To address this prob-
lem, some one-shot NAS algorithms have been proposed
to speed up the search process. In [49] a one-shot model
was trained with all the operations in the search space
and then child models were sampled by zeroing out other
operations for evaluation. DARTS [50] introduces a con-
tinuous relaxation for architecture distribution, leading to
a differentiable search space. Each operation in DARTS
is assigned a weight to be optimized; the operation with
largest weights is selected after training. In ProxylessNAS
[51], an over-parametrized model containing all candidate
blocks was trained, each block was assigned an architec-
tural weight and a binary gate to make the architecture
differentiable. In FBNet [52], a super net containing all
candidate blocks was trained. During inference, only one
candidate block was sampled by the Gumbel softmax func-
tion and the corresponding architecture was updated. For
semantic segmentation task, Auto-DeepLab [36] was used

to jointly search the downsampling strategy and cell level
architectures using the DARTS search scheme. CAS [37]
searches for computational cells and multi-scale cells sep-
arately with latency constraints. FasterSeg [53] combines
NAS with knowledge distillation to search a teacher and
a student networks simultaneously. In [54], a jagged path
pruning strategy was proposed to ignore invalid paths to
reduce the search cost.

Feature Aggregation. Because of repeated downsampling
layers in CNNs, directly upsampling the final score map
to the original resolution would lead to coarse results and
loss of fine details. FCN adopts skip connections which
combine coarse and fine predictions to reconstruct dense
feature maps. Ronneberger et al. proposed a U-shape
network [14] composed of an encoder and a symmetric de-
coder, and long skip connections were introduced to link
these two parts. Peng et al. [16] utilized boundary refine-
ment modules in the decoder to enhance feature aggrega-
tion ability. Li et al. [12] proposed a global attention up-
sampling module in the decoder to extract global context
of high-level features to guide low-level feature informa-
tion.

3. Methods

In this section, we first describe how to build the spa-
tial pyramid in the proposed feature pyramid encoding
(FPE) blocks and how to leverage NAS to search for spe-
cific structure of each block. Then we introduce the mutual
embedding upsample (MEU) module in detail. Finally, the
complete network architecture is presented.

3.1. Feature Pyramid Encoding

Encoding multi-scale features with different sizes of
receptive field has been shown helpful for semantic seg-
mentation. Many approaches [9, 8, 12] encode and aggre-
gate multi-scale features with a pyramid of different filters
or pooling modules at end of the model. While others
[41, 55, 33] adopt parallel dilated convolutions with differ-
ent rates in each block to combine local information with
surrounding context.

In semantic segmentation, dilated convolution is com-
monly used to enlarge receptive field by inserting zeros
between weights of convolutional kernels without increas-
ing parameters. However, using dilated convolution intro-
duces the “gridding” artifacts [56], as shown in Figure 2.
For a dilated convolution with kernel size k × k and dila-
tion rate r, the convolution region size is [r(k − 1) + 1] ×
[r(k − 1) + 1], but the actual number of pixels participate
in the computation from the convolution region is only
k × k. Figure 2(a) shows that, if k = 3 and r = 2, only 9
out of 25 pixels are used for convolution, and most infor-
mation (72%) is lost. When r becomes larger, the problem
become severer, indicating that although dilated convolu-
tion with large dilation rate can enlarge convolution kernel

3



(a) (b)

(c) (d)

Figure 2: An example of gridding artifact problem, pixels participate
in convolution are shown in blue. (a) A 3×3 dilated convolution with
rate 2. (b) Another 3 × 3 dilated convolution with rate 2 stacked on
top of (a). (c) A 3 × 3 dilated convolution with rate 1. (d) Another
3 × 3 dilated convolution with rate 2 stacked on top of (c).

to encode more contextual information, most local details
are lost. To address this problem, cascaded dilated con-
volutions with different rates are used to generate feature
maps. As shown in Figure 2(c) and Figure 2(d), pixels are
convoluted with two cascaded dilated convolution layers,
the second layer can access a broader region due to the
first layer. The receptive field is unchanged but all pixels
participate in the computation.

Figure 3 shows the structure of the proposed FPE block,
based on the mobile inverted bottleneck convolution (MB-
Conv) [57] and the Res2Net module [43]. It is composed
of a 1× 1 expansion convolution, a group of depthwise di-
lated convolutions (DDConvs) and a 1 × 1 linear squeeze
convolution, and residual connection is employed where
the number of input channels is equal to the number of
output channels.

For an input feature map of size H ×W ×C where H,
W are the spatial height and width of the feature map,
respectively, and C is the number of channels, the FPE
block first expands the number of channels from C to tC
using 1 × 1 convolution. The output feature map is split
into t subsets of C channels, denoted by fi, i ∈ {1, ..., t},
and each subset is processed by a group of depthwise di-
lated filters Di in parallel branches. The output of Di is
added to the following subset fi+1, and then processed by
Di+1. The outputs of these parallel branches are concate-
nated and then fused by the final 1× 1 linear convolution
to reduce to C channels.

Different from the Res2Net module, the input of paral-

Figure 3: Structure of FPE block (stride=1). Dashed lines and
blocks do not exist when stride=2. Expansion ratio is t, and dilation
rate of branch Di is 2i−1. DDConv: depthwise dilated convolution.
LConv: linear convolution. C: the number of input channels.

lel branches are different subsets of the output of preced-
ing 1× 1 convolution, and batch normalization and ReLU
non-linearity are only applied after the concatenation op-
eration. The pyramid encoding mechanism is performed
by these t parallel depthwise dilated convolutions, and the
dilation rate of Di is 2i−1. For branch i, the output oi can
be written as

oi =

{
D1 ∗ f1 i = 1;
Di ∗ (oi−1 + fi) 1 < i ≤ t, (1)

where ∗ refers to convolution operation. In branch i, the
DDConv filter Di processes all the outputs from the pre-
vious branches. Because of the distributive nature of con-
volution operations, Eqn. 1 can be rewritten as

oi = Di (Di−1 (. . . ) + fi)

= Di . . . D1f1 + · · ·+Difi

=

i∏
j=1

Djf1 + · · ·+
i∏
j=i

Djfi

=

i∑
k=1

i∏
j=k

Djfk,

(2)

where the convolution symbol is omitted for brevity.
Hence, in each branch i, according to Eqn. 2, the out-

put oi can be considered as result of fi being convolved
with cascaded DDConv filters. The dilation rate of Di in-
creases with the number of branches, and the number of

4



pixels participating in computation increases with the dila-
tion rate. In the early branches, a few convolutional filters
with small receptive fields are adopted to learn local fea-
tures. Meanwhile, in the late branches, more convolutional
filters with larger receptive fields are employed to capture
global context information and to address the “gridding”
artifacts caused by single dilated convolutional filter. Be-
sides, branch Di reuses all the features extracted from the
previous branches, and this can enhance the information
flow.

The FPE block can be considered as a spatial pyramid
encoding modules with t branches, where the dilation rate
increases one by one and contextual features are encoded
efficiently with just four scales. The final output of FPE
block is a feature map generated by multi-scale features,
carrying local and surrounding contextual information.

3.2. Neural Architecture Search

Previous work [44, 45, 34] on NAS sampled architec-
tures from a search space and trained them separately from
scratch. This is time-consuming and requires enormous re-
sources. One-shot approaches [49, 50, 58] addressed this
problem by weight sharing. In the one-shot approach,
given a super net A, which contains all the candidates in
the architecture search space, and the weight set WA of A,
the training cycle of one-shot approaches can be decoupled
into two steps:

Firstly, the weights of the super net are optimized as a
normal network by minimizing the training loss:

W ∗A = arg min
WA

Ltrain (N (A,WA)) . (3)

Secondly, the architecture is updated to minimize the
validation loss based on the trained super net:

A∗ = arg min
A

Lval (N (A,W ∗A)) . (4)

After each training cycle, the updated W ∗A and A∗ are
inherited directly as initialization for next training cycle.
This bilevel optimization cycle is repeated until conver-
gence, and the final optimal network architecture a ∈ A
with weights wa ∈WA is found to achieve the minimal loss
Lval (N (a,wa)). Hence, the super net A is only trained
once, and all individual architectures in the super net share
the same weights WA to reduce the search cost.

In the current work, we construct a layer-level search
space, and each layer is chosen from a set of candidate FPE
blocks O. The architecture of the super net is described
in Table 1. The outputs of different stages are fused to
generate the final segmentation results following the FCN
model. The first stage and the last layers are fixed, while
the remaining layers need to be searched. The super net
consists of three stages, and the number of channels in
each stage is 16, 32, 64, respectively, which were selected
empirically. In stages 2 and 3, we employ 3 and 9 layers
respectively, and the strides of DDConvs are set to 2 in the
first layers of each stage to downsample the feature maps.

Table 1: Architecture details of the super net. Input sizes is 3 ×
1536 × 768. t is the expansion ratio of FPE block. C is the number
of classes. “n” denotes the the number of repeated blocks and “s”
denotes the stride of DDConv in FPE block.

Stage Input shape Block Channel n s

stage1
1536× 768 3× 3 Conv 16 1 2
1024× 512 3× 3 Conv 16 1 2
512× 256 3× 3 Conv 16 1 1

stage2
512× 256 FPE 32 1 2
256× 128 FPE 32 2 1

stage3
256× 128 FPE 64 1 2
128× 64 FPE 64 8 1
128× 64 1× 1 Conv C 1 1

Table 2: Configurations of candidate FPE blocks in the search space.

Block name Kernel size Expansion rate

k3 e2 3 2
k3 e3 3 3
k3 e4 3 4
k5 e2 5 2
k5 e3 5 3
k5 e4 5 4

For each searchable layer in the super nets, we search
for the proper expansion ratio (i.e. number of branches)
and kernel size for the DDConv of the FPE block. Hence,
the search space contains 6 candidate blocks, and their
configurations are shown in Table 2. As the super net
contains 12 searchable layers, and each layer can be chosen
from 6 candidate blocks, the total number of architectures
that can be selected is 612.

In order to find the optimal architecture efficiently and
reduce search cost, we adopt a single path one-shot search
algorithm. Instead of optimizing all the weights of the
super net in Eqn. 3, only one candidate block is sampled
and updated at each layer with sampling probability,

Pl,i(bl = oi) =
exp(αl,i)∑6
j=1 exp(αl,j)

, (5)

where α ∈ R12×6 is the architecture parameters, αl,i rep-
resents the architecture parameter of candidate block i at
layer l, bl denotes the sampled block at layer l, and oi ∈ O
denotes candidate block i. Hence, Eqn. 3 can be rewritten
as

w∗a = arg min
wa

Ltrain (N (a,wa)) , (6)

where architecture a is composed of sampled blocks b.
This sampling strategy can save a large amount of memory
when optimizing the weights of the super net as only one
path is activated.

In the meantime, instead of searching in the architec-
ture space A to find the optimal architecture, we relax

5



the problem to optimizing the architecture parameters α
by minimizing the validation loss. Hence, Eqn. 4 can be
rewritten as

α∗ = arg min
α

Lval (N (A, w∗a)) . (7)

However, the loss in Eqn. 7 is not directly differentiable
to the architecture parameters α, because the sampling
probabilities generated by α are not directly involved in
the computation and cannot be optimized by the stochas-
tic gradient descent (SGD). To address this problem, we
adopt the binary gating method proposed in [51] to make
gradient w.r.t. sampling probabilities involved in the com-
putation graph. We select the candidate block with the
largest sampling probability at each layer to compose the
final searched architecture.

Although one-shot approach greatly improves search-
ing efficiency, there is still an issue to address. The weights
of different candidate blocks in the super net are deeply
coupled, one candidate block is optimized with different
combinations of other candidate blocks in different train-
ing cycles, and the weights are inherited after each cy-
cle. This may introduce bias in weights and make search
difficult. In experiments, we observed that some layers
converged very early with high largest sampling proba-
bilities (close to 0.9), while others converged slowly with
low largest sampling probabilities (lower than 0.3). To
address this issue, we formulate two thresholding regular-
izations for training: (1) When the sampling probability
of one candidate block is larger than a upper threshold,
this block is considered as a fixed layer in the future train-
ing and other blocks in the same layer are discarded. (2)
When the sampling probability of one candidate block is
smaller than a lower threshold, this block is removed from
the search space. We empirically set the upper and lower
thresholds to 0.85 and 0.05 respectively.

3.3. MEU Module

In the U-shape models for segmentation, the decoder
is usually designed to aggregate features extracted at dif-
ferent levels and to recover the resolution. Many meth-
ods [6, 8] use bilinear upsampling or several simple con-
volution layers as a naive decoder. These naive decoders
only consider semantic concepts from higher layers and
ignore low-level spatial details leading to coarse segmen-
tation. While other approaches [16, 17, 15] adopt com-
plicated structures to build decoders to aggregate features
from different stages and utilize low-level features to re-
fine boundaries. However, these well-designed decoders
are time-consuming.

Attention Mechanism. Instead of adopting self-attention
mechanism at the top of backbone, we consider using the
encoder-decoder attention mechanism where attention key
and query are from two different sets of features in the de-
coder of the U-shape model. In deep neural networks,

high-level features at higher layers contain contextual in-
formation while low-level features are rich in spatial de-
tails. This makes feature aggregation difficult. We con-
sider that low-level and high-level features can be used as
key features to provide spatial and contextual information
to each other mutually.

We propose an encoder-decoder attention framework
for aggregating features in the decoder of the U-shape
model. This attention mechanism at position i of z can be
defined as:

yi = F (zi,Wi

∑
j∈Ωi

θjxj), (8)

where
∑
j∈Ωi

θjxj denotes the attention map generation
within key region Ωi for query zi, which aggregates fea-
tures of all positions using weight θ to generate the global
context feature, then Wi transforms it to attention map
and obtain the global relationships of features, and F (·)
denotes the feature aggregation function to embed the at-
tention weights to z at each position to obtain attention
features y.

As shown in Figure 4, the MEU module consists of
two attention blocks, each being considered as an instance
of the encoder-decoder attention framework. In the MEU
module, first, two 1×1 convolutions with batch normaliza-
tion and ReLU are performed on the high-level and low-
level features to generate xH and xL, respectively.

Channel attention block. We generate a channel attention
map to exploit the global context information from the
high-level feature map xH . Because each channel in a
feature map contains a specific semantic concepts [59], to
capture these global concepts in each channel, we adopt
a global average pooling operation Favgpool and a 1 × 1
convolution δ like the squeeze-excitation (SE) block pro-
posed in [60] to squeeze and transform the high-level fea-
ture map. The obtained 1 × 1 vector is considered as the
channel attention map containing the global contextual in-
formation of each channel. Next, this vector is fused with
the low-level feature map xL using broadcast element-wise
multiplication to obtain the attention feature yL. The de-
tailed structure of channel attention block is depicted in
Figure 4(b) and can be formulated as

yL = xL × δ (Favgpool (xH)) . (9)

where Favgpool groups features at all positions together
to exploit the inter-channel relationships. δ transforms
the global context feature to the channel attention map.
Feature aggregation function is performed as an element-
wise multiplication.

Spatial attention block. We create a spatial attention map
to exploit the spatial information from low-level feature
map xL. Different from high-level features, low level fea-
tures contain more spatial details. To preserve such spatial
information at each position, we first squeeze xL using an
average pooling operation F ′avgpool along the channel axis.

6



(a)

(b)

(c)

Figure 4: (a) Structure of MEU module. SA: spatial attention block.
CA: channel attention block. (b) Spatial attention block. (c) Chan-
nel attention block.

Then, a single channel 1 × 1 convolution δ′ is applied to
generate a single channel spatial attention map that con-
tains local spatial information at each position. Finally,
this attention map is applied to fuse with high-level fea-
ture map xH using broadcast element-wise multiplication
to obtain attention feature yH . The detailed structure of
spatial attention block is depicted in Figure 4(c) and can
be formulated as

yH = xH × δ′
(
F ′avgpool (xL)

)
. (10)

where, F ′avgpool aggregates features at all channels to ex-
ploit the inter-spatial relationships. δ′ is a transformation
function to create the spatial attention map, and features
are finally aggregated by element-wise multiplication.

After attention blocks, these two attention features yL
and yH are fused by concatenation. The spatial atten-
tion map generated from the low-level features corresponds
to the importance of each pixel. It focuses on localizing
the objects and refining the boundaries with spatial de-
tails. While the squeezed channel attention map generated
from the high-level features reflects the importance of each
channel and focuses on the global context to provide con-
tent information. The MEU module extracts these two

Table 3: Architecture details of our network. Input size is 3×1536×
768, k is the expansion ratio of FPE block, and C is the number of
classes.

Name Operator Channel Output size

stage1
3× 3 Conv 16 1024× 512
3× 3 Conv 16 512× 256
3× 3 Conv 16 512× 256

stage2 FPE×3 32 256× 128
stage3 FPE×9 64 128× 64
decoder2 MEU 64 256× 128
decoder1 MEU 32 512× 256
final 1× 1 Conv C 512× 256

kinds of attention map and efficiently embeds semantic
concepts and spatial details into low-level and high-level
features.

3.4. Network Architecture

The entire network architecture is shown in Figure 1.
Based on the above discussion, we have designed this light-
weight encoder-decoder model with FPE blocks and MEU
modules. In order to preserve spatial information and re-
duce number of parameters, the total downsampling rate
is 16. Structural details of the proposed model are shown
in Table 3.

We employ FPE blocks in the encoder except for the
stage 1, which is consists of three 3× 3 convolutional lay-
ers, and the numbers of channels in each stage are 16, 32,
64, respectively. In stages 2 and 3, we employ 3 and 9
FPE blocks respectively, and stride of the depthwise di-
lated convolutions is set to 2 in the first blocks to down-
sample the feature maps. The specific structure of each
FPE block is searched by NAS. We add long skip con-
nections in stages 2 and 3, where the inputs of these two
stages are combined from the output of the first and last
blocks of their preceding stages. These skip connections
encourage signal propagation and perform as an implicit
deep supervision. Earlier layers can connect to the deepest
layer directly and receive supervision from different stages
of the decoder. For the decoder, two MEU modules are
used to aggregate features from each stage and recover the
resolution step by step. Finally, a 1×1 convolutional layer
is applied as the pixel-level classifier.

4. Experiments

4.1. Implementation Protocol

All the experiments were conducted using PyTorch [61].
Stochastic gradient descent algorithm with batch size 8
and weight decay 0.0001 were used to train the networks
from scratch without any pre-training on any dataset. The
“poly” learning rate policy [9] was employed:

lr = init lr × (1− iter

max iter
)power, (11)

7



where iter is the current iteration, power is 0.9, and ini-
tial learning rate was 0.05. We employed the zero-mean
normalization, random horizontal flip, random scaling be-
tween 0.5 and 1.75 for data augmentation. In the search
procedure, we used the same optimizer to train weight
parameters, and adopted another Adam optimizer with
fixed learning rate of 0.001 to update the architecture pa-
rameters. We searched for 200 epochs on the Cityscapes
dataset. Then the generated network was combined with
MEU modules and trained for 600 epochs on the Cityscapes
and 400 epochs on the CamVid to evaluate performance.
Accuracy was measured using the mean Intersection-over-
Union (mIoU) metric. The mean of cross-entropy error
over all pixels was applied as the loss.

4.2. Ablation Studies

The Cityscapes is an urban street scene dataset for
semantic understanding. It contains 5000 fine annotated
images, divided into three sets, 2975 for training, 500 for
validation and 1525 for test. Furthermore, 20000 coarsely
annotated images are also provided for training. All im-
ages are of resolution, 2048 × 1024, and all pixels are an-
notated to 19 classes. In our experiments, only the fine
annotated images were used for training.

In ablation studies, we evaluated only the encoder part
on the validation set of Cityscapes to investigate the effect
of each component and help hand-select configuration, and
the kernel size of DDConv in each FPE block was set to
3 × 3. Naive bilinear upsampling was employed as the
decoder in these networks. This section can be considered
as a preliminary study before searching for the optimal
architecture.

Ablation on pyramid encoding structure. We adopted four
schemes to evaluate the effect of pyramid encoding struc-
ture by setting the number of branches in the FPE block
to 1, 2, 4 or 6. Note, when the number is 1, the FPE block
is the same as the MBConv block. The expansion ratios
were the same in these schemes to keep number of param-
eters same, and the numbers of blocks in stages 2 and 3
were set to 3 and 9, respectively. Results are shown in Ta-
ble 4, indicating that the pyramid encoding structure gave
better results and three schemes improved the segmenta-
tion quality by 4.1%, 7.0% and 8.7% compared with MB-
Conv block. These statistically significant improvements
verify that the pyramid encoding structure is beneficial
for segmentation as multi-scale contextual features are en-
coded efficiently without introducing new parameters. Al-
though the 6-branch FPE block achieved the best result,
the branches in the encoder are cascaded connected and
cannot be computed in parallel, resulting higher compu-
tational complexity. Therefore we selected 4-branch FPE
block as the basic block as a trade-off between speed and
performance gain.

Ablation on dilation rates. We designed two kinds of 4-
branch FPE block with different combinations of dilation

Table 4: Results of FPE encoder with different number of branches
and dilation rates.

#Branches Dilation rates mIoU (%)

1 (MBConv block) 1 59.5
2 1, 2 63.6
4 1, 1, 1, 1 64.3
4 1, 2, 3, 4 65.6
4 1, 2, 4, 8 66.5
6 1, 2, 3, 4, 5, 6 68.2

Table 5: Results of FPE encoder with different settings.

Addition Long skip mIoU (%)

66.5√
66.9√ √
68.1

Table 6: Results of FPENet with different depths, number of param-
eters and FLOPS are estimated on 1536 × 768 input.

p q #Params FLOPs mIoU (%)

3 5 233K 3.77G 61.5
3 7 305K 4.37G 66.7
5 7 325K 5.04G 66.9
3 9 382K 3.22G 68.1
5 9 398K 5.64G 68.2
3 11 450K 5.58G 68.5

rates and used them to build the encoder, one with dila-
tion rates of 1, 2, 3, 4, while the other with 1, 2, 4, 8. The
kernel sizes of DDConvs were all 3 × 3. As shown in Ta-
ble 4, the models with larger dilation rates in FPE block
achieved better results. The range of receptive field of the
former FPE block was from 3× 3 to 9× 9, while the latter
3× 3 to 17× 17. We also tested the performance with all
the dilation rates set to 1, which was similar to the origi-
nal Res2Net module, and the result was worse than FPE
blocks with larger dilation rates. Larger receptive field can
encode more surrounding features and learn better multi-
scale representations.

Ablation on addition between branches. In the FPE blocks,
we added output of one branch to the input of follow-
ing branch. As shown in Table 5, the addition operations
between adjacent branches improved the accuracy from
66.5% to 66.9%. This improvement came from the ad-
dition operations that turned independent branches to a
cascaded pyramid module, so larger dilated convolutions
performed on the features extracted by smaller dilated con-
volutions to address the “gridding” artifacts. The number
of pixels convoluted by large kernels is also increased, sim-

8



ilar effect to the DenseASPP module in [62].

Ablation on long skip connection. Long skip connections
were employed in stages 2 and 3 in FPENet to combine
outputs of the first and final blocks. Accuracy was im-
proved by 1.2% as shown in Table 5. Intuitively, long skip
connections apply implicit supervision to earlier layers and
increase flow of information.

Ablation on encoder depth. We varied numbers of blocks
in stages 2 and 3 to change the depth of the encoder, de-
noted as p and q, respectively. The numbers of parame-
ters, FLOPs and accuracies of different configurations are
shown in Table 6. It can be seen that the value of q had
more impact on accuracy than p, indicating that stacking
more FPE blocks in stage 3 increases receptive field and
performance. However, raising q from 9 to 11, the im-
provement became minor, this may be due to that large
receptive field in stage 3 was beyond the size of feature
maps, and efficient features could not be extracted. There-
fore, for a trade-off between, we set p to 3 and q to 9 in
the final architecture.

4.3. Searching for Optimal Architecture

We conducted the search experiments on the Cityscapes
dataset. We randomly sampled 1000 images from the
training set as the validation set for architecture search,
and the remaining 1975 images were used for training with
batch size 4, and the thresholding regularizations intro-
duced in section 3.2 was applied. The search experiment
was run on one GPU, and from the experiments, training
one epoch took around 9 minutes, so the total search cost
was about 9/60× 200 = 30 GPU hours.

The architecture of our searched network is shown in
Figure 5, and Table 7 shows the results evaluated on the
Cityscapes validation set. For comparison, we also set up
a series of baselines: (a) select certain candidate blocks
for all layers; (b) randomly select several architectures
from the search space and evaluate the average result;
(c) search without regularization. The results in Table
7 show that our search algorithm can find better architec-
ture with comparable parameters and FLOPs, and the pro-
posed thresholding regularizations can further boost the
performance. This searched architecture was employed as
the encoder part of our network.

Besides, in the searched architecture blocks with smaller
filters and less branches were selected in stage 2, while
blocks with larger filters and more branches were selected
in stage 3. This indicates that smaller receptive field is re-
quired in low layers to preserve better spatial details while
larger receptive field is needed in high layers to encode
more context information.

4.4. MEU Modules

MEU modules are used to aggregate the features ex-
tracted by the PFE blocks to provide dense pixel-level pre-
diction. We first evaluated the MEU module with only

Table 7: Results of networks with different depths, number of pa-
rameters and FLOPS are estimated on 1536 × 768 input. ’Regs’
represents the thresholding regularizations.

Model #Params FLOPs mIoU (%)

all k3 e3 293K 2.58G 66.4
all k3 e4 382K 3.22G 68.1
all k5 e3 326K 2.79G 67.2
all k5 e4 425K 3.50G 68.8
5 random select 365K 3.34G 67.3
searched w/o regs 413K 3.23G 69.1
searched w regs 411K 3.29G 69.9

Table 8: Results of MEU module with different components.

MEU CA SA mIoU (%)

w/o — — 69.9
w

√
71.1

w
√ √

72.5

Table 9: Results of MEU module with different transformation and
aggregation methods.

Method mIoU (%)

Conv+add 70.9
Conv+Sigmoid+mul 71.2
Conv+ReLU+mul 72.5

channel attention block, then we used channel and spatial
attention together in the MEU module to test the per-
formance. As shown in Table 8, the channel and spatial
attention blocks both improved the accuracy, indicating
that embedding semantic concepts into low-level features
and spatial details into high-level features with the MEU
module can lead to better results.

Then we conducted experiments to explore different at-
tention map transformations and aggregation approaches
in the attention block. We tested linear (i.e. convolu-
tion only) and non-linear (i.e. convolution+ReLU, con-
volution+Sigmoid) transformations combined with differ-
ent aggregation approaches (i.e. element-wise addition,
element-wise multiplication). Results are shown in Table
9, indicating that multiplication aggregation performed
better than addition and non-linear transformation was
more efficient than linear transformation.

4.5. Cityscapes

Based on the ablation studies, we combined the FPE
blocks and MEU modules to build the complete network
and experimented it on the Cityscapes dataset. First, we
conducted experiments to estimate the inference speed at

9



Figure 5: Architecture of searched network. Note kx ey means a kernel size of x for its depthwise dilated convolution layer and an expansion
of y for its expansion layer.

Table 10: Speed and accuracy comparison of FPENet on Cityscapes
test set.

Method Resolution #Params FPS mIoU (%)

ENet [29] 1024 × 512 0.4M 78.4 58.3
ESPNet [41] 1024 × 512 0.4M 195.6 60.3
ESPNetv2 [55] 1024 × 512 0.7M 140.6 62.1
BiSeNet1 [42] 1536 × 768 5.8M 159.4 68.4
ICNet [27] 2048 × 1024 7.8M 69.6 69.5
FasterSeg [53] 2048 × 1024 4.4M 160.3 71.5
DeepLab [63] 1024 × 512 262.1M 0.3 63.1
PSPNet [8] 713 × 713 250.8M 0.8 78.4
HRNet [64] 2048 × 1024 70.3M 6.7 82.5
FPENet 1536 × 768 0.4M 192.6 72.3
FPENet 2048 × 1024 0.4M 116.2 73.4

different resolution. For fair comparison with other meth-
ods, we tested all the models on an Nvidia Titan V100
GPU, using PyTorch framework, the inference time is es-
timated by running the model for six seconds following
[53]. The results and corresponding input sizes are shown
in Table 10. Next, we trained our network with downsam-
pled fine annotated images of Cityscapes and evaluated
accuracies on the test set, as shown in Table 10. Note
that we did not employ multi-scale or multi-crop test.

From Table 10, the number of parameters of the pro-
posed FPENet is close to that of the ESPNet and the
ENet, but it achieves higher performance. While the model
size of FPENet is 19 and 11 times smaller than the IC-
Net and FasterSeg, but mIoU is 2.8% and 0.8% higher,
respectively. Besides, FPENet achieves 192.6 FPS speed
at 1536 × 768 input resolution, which significantly out-
performs all of the existing real-time methods with higher
accuracy. When the input resolution is 2048 × 1024, the
accuracy performance can be further improved, and the
network still maintains competitive speed. The results
demonstrate the effectiveness of the proposed search al-
gorithm and the encoder-decoder attention mechanism.
Examples of the segmentation results of FPENet are pre-
sented in Figure 6.

4.6. CamVid

The CamVid road scenes dataset has fully labelled im-
ages for semantic segmentation: 367 for training, 101 for
validation and 233 for test. Each image is of 960 × 720
pixels, labelled with 11 semantic classes. We used the
training and validation set to train our network searched

Table 11: Results on CamVid test set.

Method #Params mIoU (%)

ENet [29] 0.4M 51.3
FCN8 [5] 134.5M 52.0
Bayesian SegNet [65] 29.5M 63.1
BiSeNet1 [42] 5.8M 65.6
ICNet [27] 7.8M 67.1
FPENet 0.4M 69.4

on Cityscapes, and then tested on the test set. Results
and number of parameters are shown in Table 11. The
proposed FPENet outperforms all other deep models even
with much fewer parameters in most cases. These results
show the robustness as well as good generalization ability
of FPENet.

5. Conclusions

This paper presents a lightweight architecture for real-
time semantic segmentation. A feature pyramid encoding
(FPE) block is proposed and adopted in every stage of the
proposed network to encode multi-scale features using a
spatial pyramid of depthwise dilated convolutions. A one-
shot neural architecture search algorithm is used to search
optimal structure of each FPE block. Mutual embedding
upsample (MEU) modules are employed in the decoder to
aggregate features from different stages based on encoder-
decoder attention mechanism. The ablation experiments
show that FPE blocks significantly improve accuracy due
to their expanded receptive field and enhanced information
flow, and the MEU modules aggregate deep contextual fea-
tures and shallow spatial features efficiently. Experimen-
tal results on the Cityscapes and CamVid datasets demon-
strate marked improvements by the purposed FPENet over
other real-time methods even with fewer parameters and
faster inference speeds.

References

[1] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for
image recognition, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[2] S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, Aggregated residual
transformations for deep neural networks, in: Proceedings of the

10



(a) Image (b) Groundtruth (c) Prediction

Figure 6: Visualization results on the Cityscapes validation dataset.

IEEE conference on computer vision and pattern recognition,
2017, pp. 1492–1500.

[3] G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger,
Densely connected convolutional networks, in: Proceedings of
the IEEE conference on computer vision and pattern recogni-
tion, 2017, pp. 4700–4708.

[4] C. Szegedy, S. Ioffe, V. Vanhoucke, A. A. Alemi, Inception-
v4, inception-resnet and the impact of residual connections on
learning, in: Thirty-First AAAI Conference on Artificial Intel-
ligence, 2017.

[5] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks
for semantic segmentation, in: Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, 2015, pp.
3431–3440.

[6] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam,
Encoder-decoder with atrous separable convolution for semantic
image segmentation, in: Proceedings of the European Confer-
ence on Computer Vision, 2018, pp. 801–818.

[7] J. Fu, J. Liu, H. Tian, Z. Fang, H. Lu, Dual attention network
for scene segmentation, arXiv:1809.02983.

[8] H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing
network, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 2881–2890.

[9] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L.

11



Yuille, Deeplab: Semantic image segmentation with deep con-
volutional nets, atrous convolution, and fully connected crfs,
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 40 (4) (2018) 834–848.

[10] G. Lin, C. Shen, A. Van Den Hengel, I. Reid, Exploring context
with deep structured models for semantic segmentation, IEEE
transactions on pattern analysis and machine intelligence 40 (6)
(2017) 1352–1366.

[11] Z. Dong, J. Li, T. Fang, X. Shao, Lightweight boundary refine-
ment module based on point supervision for semantic segmen-
tation, Image and Vision Computing (2021) 104169.

[12] H. Li, P. Xiong, J. An, L. Wang, Pyramid attention network for
semantic segmentation, arXiv preprint arXiv:1805.10180.

[13] Y. Yuan, J. Wang, Ocnet: Object context network for scene
parsing, arXiv preprint arXiv:1809.00916.

[14] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional
networks for biomedical image segmentation, in: International
Conference on Medical Image Computing and Computer As-
sisted Intervention, 2015, pp. 234–241.

[15] G. Lin, A. Milan, C. Shen, I. Reid, Refinenet: Multi-path re-
finement networks for high-resolution semantic segmentation,
in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 1925–1934.

[16] C. Peng, X. Zhang, G. Yu, G. Luo, J. Sun, Large kernel matters–
improve semantic segmentation by global convolutional net-
work, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 4353–4361.

[17] Z. Zhang, X. Zhang, C. Peng, X. Xue, J. Sun, Exfuse: Enhanc-
ing feature fusion for semantic segmentation, in: Proceedings of
the European Conference on Computer Vision, 2018, pp. 269–
284.

[18] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, Y. Bengio, The
one hundred layers tiramisu: Fully convolutional densenets for
semantic segmentation, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2017,
pp. 11–19.

[19] A. Chaurasia, E. Culurciello, Linknet: Exploiting encoder rep-
resentations for efficient semantic segmentation, in: 2017 IEEE
Visual Communications and Image Processing (VCIP), IEEE,
2017, pp. 1–4.

[20] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a
neural network, arXiv preprint arXiv:1503.02531.

[21] Y. Liu, K. Chen, C. Liu, Z. Qin, Z. Luo, J. Wang, Structured
knowledge distillation for semantic segmentation, in: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 2604–2613.

[22] T. He, C. Shen, Z. Tian, D. Gong, C. Sun, Y. Yan, Knowledge
adaptation for efficient semantic segmentation, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2019, pp. 578–587.

[23] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard,
H. Adam, D. Kalenichenko, Quantization and training of neu-
ral networks for efficient integer-arithmetic-only inference, in:
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 2704–2713.

[24] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Ben-
gio, Quantized neural networks: Training neural networks with
low precision weights and activations, The Journal of Machine
Learning Research 18 (1) (2017) 6869–6898.

[25] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor-net:
Imagenet classification using binary convolutional neural net-
works, in: European Conference on Computer Vision, Springer,
2016, pp. 525–542.

[26] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, Y. Zou, Dorefa-net:
Training low bitwidth convolutional neural networks with low
bitwidth gradients, arXiv preprint arXiv:1606.06160.

[27] H. Zhao, X. Qi, X. Shen, J. Shi, J. Jia, Icnet for real-time
semantic segmentation on high-resolution images, in: Proceed-
ings of the European Conference on Computer Vision, 2018, pp.
405–420.

[28] R. P. Poudel, U. Bonde, S. Liwicki, C. Zach, Contextnet: Ex-

ploring context and detail for semantic segmentation in real-
time, arXiv preprint arXiv:1805.04554.

[29] A. Paszke, A. Chaurasia, S. Kim, E. Culurciello, Enet: A deep
neural network architecture for real-time semantic segmenta-
tion, arXiv preprint arXiv:1606.02147.

[30] V. Badrinarayanan, A. Kendall, R. Cipolla, Segnet: A deep
convolutional encoder-decoder architecture for image segmen-
tation, arXiv:1511.00561.

[31] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, B. Schiele, The cityscapes
dataset for semantic urban scene understanding, in: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 3213–3223.

[32] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, A. Zis-
serman, The pascal visual object classes (voc) challenge, Inter-
national Journal of Computer Vision 88 (2) (2010) 303–338.

[33] T. Wu, S. Tang, R. Zhang, Y. Zhang, Cgnet: A light-weight con-
text guided network for semantic segmentation, arXiv preprint
arXiv:1811.08201.

[34] E. Real, A. Aggarwal, Y. Huang, Q. V. Le, Regularized evolu-
tion for image classifier architecture search, in: Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 33, 2019,
pp. 4780–4789.

[35] M. Tan, Q. V. Le, Efficientnet: Rethinking model
scaling for convolutional neural networks, arXiv preprint
arXiv:1905.11946.

[36] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L.
Yuille, L. Fei-Fei, Auto-deeplab: Hierarchical neural architec-
ture search for semantic image segmentation, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2019, pp. 82–92.

[37] Y. Zhang, Z. Qiu, J. Liu, T. Yao, D. Liu, T. Mei, Customizable
architecture search for semantic segmentation, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2019, pp. 11641–11650.

[38] M. Liu, H. Yin, Feature pyramid encoding network for real-time
semantic segmentation, in: British Machine Vision Conference,
2019.

[39] G. J. Brostow, J. Shotton, J. Fauqueur, R. Cipolla, Segmenta-
tion and recognition using structure from motion point clouds,
in: Proceedings of the European Conference on Computer Vi-
sion, 2008, pp. 44–57.

[40] H. Li, P. Xiong, H. Fan, J. Sun, Dfanet: Deep feature aggrega-
tion for real-time semantic segmentation, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 9522–9531.

[41] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, H. Hajishirzi,
Espnet: Efficient spatial pyramid of dilated convolutions for
semantic segmentation, in: Proceedings of the European Con-
ference on Computer Vision, 2018, pp. 552–568.

[42] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, N. Sang, Bisenet: Bi-
lateral segmentation network for real-time semantic segmenta-
tion, in: Proceedings of the European Conference on Computer
Vision, 2018, pp. 325–341.

[43] S.-H. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang,
P. Torr, Res2net: A new multi-scale backbone architecture,
arXiv preprint arXiv:1904.01169.

[44] B. Zoph, Q. V. Le, Neural architecture search with reinforce-
ment learning, arXiv preprint arXiv:1611.01578.

[45] B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le, Learning transfer-
able architectures for scalable image recognition, in: Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 8697–8710.

[46] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, J. Dean, Efficient
neural architecture search via parameter sharing, arXiv preprint
arXiv:1802.03268.

[47] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan,
Q. V. Le, A. Kurakin, Large-scale evolution of image classi-
fiers, in: Proceedings of the 34th International Conference on
Machine Learning-Volume 70, JMLR. org, 2017, pp. 2902–2911.

[48] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, K. Kavukcuoglu,

12



Hierarchical representations for efficient architecture search,
arXiv preprint arXiv:1711.00436.

[49] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, Q. Le,
Understanding and simplifying one-shot architecture search, in:
International Conference on Machine Learning, 2018, pp. 549–
558.

[50] H. Liu, K. Simonyan, Y. Yang, Darts: Differentiable architec-
ture search, arXiv preprint arXiv:1806.09055.

[51] H. Cai, L. Zhu, S. Han, Proxylessnas: Direct neural archi-
tecture search on target task and hardware, arXiv preprint
arXiv:1812.00332.

[52] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian,
P. Vajda, Y. Jia, K. Keutzer, Fbnet: Hardware-aware efficient
convnet design via differentiable neural architecture search, in:
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 10734–10742.

[53] W. Chen, X. Gong, X. Liu, Q. Zhang, Y. Li, Z. Wang, Fasterseg:
Searching for faster real-time semantic segmentation, arXiv
preprint arXiv:1912.10917.

[54] W. Jing, J. Lin, H. Wang, Building nas: Automatic designa-
tion of efficient neural architectures for building extraction in
high-resolution aerial images, Image and Vision Computing 103
(2020) 104025.

[55] S. Mehta, M. Rastegari, L. Shapiro, H. Hajishirzi, Espnetv2:
A light-weight, power efficient, and general purpose convolu-
tional neural network, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 9190–
9200.

[56] P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, G. Cot-
trell, Understanding convolution for semantic segmentation, in:
2018 IEEE winter conference on applications of computer vision
(WACV), IEEE, 2018, pp. 1451–1460.

[57] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen,
Mobilenetv2: Inverted residuals and linear bottlenecks, in: Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 2018, pp. 4510–4520.

[58] X. Chen, L. Xie, J. Wu, Q. Tian, Progressive differentiable ar-
chitecture search: Bridging the depth gap between search and
evaluation, arXiv preprint arXiv:1904.12760.

[59] M. D. Zeiler, R. Fergus, Visualizing and understanding convo-
lutional networks, in: European conference on computer vision,
Springer, 2014, pp. 818–833.

[60] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in:
Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 7132–7141.

[61] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, A. Lerer, Automatic
differentiation in pytorch, in: Advances in Neural Information
Processing Systems Workshops, 2017.

[62] M. Yang, K. Yu, C. Zhang, Z. Li, K. Yang, Denseaspp for se-
mantic segmentation in street scenes, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 3684–3692.

[63] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. Yuille,
Semantic image segmentation with deep convolutional nets and
fully connected crfs, in: ICLR, 2015.

[64] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu,
Y. Mu, M. Tan, X. Wang, et al., Deep high-resolution repre-
sentation learning for visual recognition, IEEE transactions on
pattern analysis and machine intelligence.

[65] A. Kendall, V. Badrinarayanan, R. Cipolla, Bayesian seg-
net: Model uncertainty in deep convolutional encoder-
decoder architectures for scene understanding, arXiv preprint
arXiv:1511.02680.

13


	Introduction
	Related Work
	Methods
	Feature Pyramid Encoding
	Neural Architecture Search
	MEU Module
	Network Architecture

	Experiments
	Implementation Protocol
	Ablation Studies
	Searching for Optimal Architecture
	MEU Modules
	Cityscapes
	CamVid

	Conclusions

