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ABSTRACT Complex engineering systems include several subsystems that interact in a stochastic and
multifacetedmanner withmultiple failure modes (FMs). The dynamic nature of FMs introduces uncertainties
that negatively impact the reliability, risk, and maintenance of complex systems. Traditional approaches of
adopting standalone techniques for managing FMs independently at various stages of the asset life cycle
pose challenges related to utilisation, costs, availability, and in some cases, accidents. Therefore, this paper
proposes a composite hybrid framework comprising four independent hybrid models for comprehensive
through-life failure management and optimisation. The first hybrid model entails failure mode, effects, and
criticality analysis (FMECA) and fault tree analysis (FTA) to identify critical FMs and overall subsystem
failure rates. The second hybrid model analyses FMs caused by multiple subsystems using hybrid dynamic
Bayesian discretisation. The third hybrid model adopts a hybrid Gaussian process regression machine
learning technique to evaluate wear loss. The fourth hybrid model evaluates the overall risk using a Bayesian
factorisation and eliminationmethod based onmultiple failure causes. Finally, a decision-making step is used
to evaluate the results of the previous four steps to decide an appropriate maintenance strategy. The proposed
method is verified through a case study of a UK-based train operator’s pantograph system. The results show
that the maintenance inspection intervals and strategy obtained using the proposed framework strike a good
balance between safety and fleet availability.

INDEX TERMS Multiple failure modes, reliability, risk, maintenance, hybrid framework.

I. INTRODUCTION
The transportation industry is experiencing a surge in the
demand for faster movement of goods and people. At the
same time, the engineering systems within such transport
systems are becoming increasingly complex. Therefore, crit-
ical subsystems must have improved reliability to ensure that
they continue to perform as designed. Various techniques
can be implemented to reliably verify the performance of an
asset across different life cycle phases. For example, in the
railway industry, rapid expansion, innovations, upgrades and
rising passenger numbers have led to increased technical
failures and accident risks [1]. A 22-year analysis of causal
factors of rail derailment in the US revealed that technical
failures caused 18.2% of derailments with multiple casual-
ties and 4.3% of train collisions [2]. Furthermore, an anal-
ysis of the causes of train derailments from the US Federal
rail transportation database indicated that equipment-related
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failures contributed to 40.8% of derailment accidents [3].
A systematic analysis of the Edge Hill railway accident of
May 1999 and the Paddington railway accident of October
1999 in the UK revealed that failure of the train’s automatic
warning system in addition to lack of effective maintenance
strategies played critical roles in both accidents. These find-
ings suggest that in complex engineering systems, a degree
of correlation often exists between equipment failure man-
agement and accidents [4], [5].

Given the criticality of complex engineering systems such
as rolling stock and the causal factors that can lead to catas-
trophic accidents, several studies [6]–[9] have investigated
various decision-making techniques related to reliability, risk,
and maintenance to support engineering asset management
and failure analysis. These techniques can be useful in asset
management decision-making. However, they suffer from
several limitations especially chronic failures, unavailability,
and excessive cost [10]– [12]. Fortunately, these limitations
can be overcome by using hybrid models that enable the
strength(s) of one or more techniques to compensate for
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TABLE 1. Summary of failure classification and their corresponding analysis techniques.

the limitation(s) of others [13]–[17]. Two significant failures
can affect railway rolling stock subsystems: systematic and
random failures [18]. Random failures are hardware failures
represented by statistical distributions, whereas systematic
failures are attributed to errors in system life activities that
cause the product to fail deterministically under a series of
inputs or conditions. Thus, random failures can be tracked
statistically, and their probability can be estimated. Random
failures associated with a single subsystem occurrence are
called single-event random failures, while those associated
with multiple subsystem occurrences are called multiple
events random failures. These random failures cannot be
eliminated, and therefore, there is a need to focus on detecting
and managing random failures [18]–[22]. Systematic failures
are caused by incidents for which statistical data are rarely
available, which makes it impossible to estimate their likeli-
hood. Systematic failures can be repeated if a set of events that
trigger these failures can be replicated exactly. Consequently,
systematic failures can be further categorised into systematic
failures with underlying temporal random (hardware event)
behaviour and those triggered by environmental and external
factors (e.g., human error, electromagnetic interference, tem-
perature, and weather conditions). Furthermore, systematic
errors can be minimised by implementing a continuous and
robust process improvement programme [18]–[22]. Major
railway rolling stock failures can be classified into random
failures with a single cause event, random failures with mul-
tiple cause events, systemic failures with a temporal random
cause event, and systematic failures with external and envi-
ronmental causes. Table 1 lists the four most common classes
of railway rolling stock failures and their corresponding
failure analysis methods.

FMECA and FTA are the most common railway rolling
stock subsystem techniques used for random failures with
a single cause event [23], [24]. FMECA is suitable for
bottom-up analysis, while FTA is commonly used for

top-down events, revealing the logical relationship between
a single event and its component events. Both methods
are compact and yield computational complexities with risk
factors of different weights and time dependencies, which
can lead to challenges and inaccurate results for random
events caused by multiple subsystems and systematic fail-
ures [10], [23], [25]. The Bayesian network (BN) and
Dynamic Bayesian discretisation (DBD) allow for all discrete
and ordinal continuous data analysis for all qualitative and
quantitative failure analysis. Furthermore, BN and DBD are
suitable for handling multiple sequential and time-dependent
subsystems with efficient computational time and accuracy.
The BN and DBD can adequately handle prior information
to allow for evidence-based propagation [26]–[28]. While
BN and DBD address random failures with multiple ran-
dom events, they also have some drawbacks. For example,
BN and DBD require that many states be developed for
each scenario, which increases computational challenges and
impacts accuracy [26], [27]. Furthermore, for systematic fail-
ures, each specific scenario must be replicated, and the BN
must be developed separately, which can be time consuming
and challenging [41]. Moreover, stochastic Petri nets, Monte
Carlo simulation, and Markov chains can be used for random
failures with multiple caused events analysis with a varying
degree of accuracy, data handling capabilities, and computa-
tion time [42], [43].

ML techniques and algorithms incorporate embedded tech-
niques for diagnosing non-linear and irregular systematic
failures with random cause failure events such as irregular
wear loss, fatigue, cracks, and others [32]–[35]. ML tech-
niques (e.g., supervised regression with kernel functions and
unsupervised artificial neural networks) can adapt rapidly,
compared to BN and DBD when predicting the integrity loss
of critical railway rolling stock subsystems subjected to sys-
tematic failures with temporal random events [35], [44]–[48].
However, ML sometimes suffers from lack of accuracy,
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inconsistency, and discrepancies when multiple sources and
different weights are considered simultaneously [29]–[31].
Systematic failures with external and environmental causes
often lead to human error, technical defects, and biases,
which in turn increase the probability of accidents such as
derailments, collisions, and fires [40]. While these failures
can sometimes be addressed individually via ML techniques,
their combined effects can be better analysed using risk
aggregation techniques such as Bayesian factorisation and
elimination (BFE) with n-fold convolution method, as this
offers better levels of accuracy [36], [37]. BFE with n-fold
convolution can evaluate the combined effects of the multiple
frequencies of failures and consequences to enable overall
risk prediction associated with systematic failures with exter-
nal and environmental influences [38], [39]. Therefore, there
is a need to address these four major classes of failures com-
prehensively. A holistic approach that integrates the various
techniques can serve as the basis for comprehensive asset
management decision-making.

A. REVISITING HYBRID SYSTEMS FOR FAILURE
MANAGEMENT
Hybrid systems are classified into two main groups: hybrid
models that produce their own outputs and hybrid modelling
that integrates the outputs obtained from several different
models [49]. The present study focuses on the use of hybrid
modelling to support asset management decision-making in
engineering systems. Studies [16], [49]–[51] highlighted that
hybrid models are also used for asset management failure
analysis and operational decision-making for complex engi-
neering systems. Assuming that the synthesis of industrial
system failures and the selection of cost-effective mainte-
nance techniques account for a considerable part of the total
downtime [42], [51], [52], our objective is to propose a
hybrid framework that seamlessly integrates and optimises
different established hybrid models to exploit their strengths.
Yunusa-Kaltungo et al. [53], Morgan et al. [54], recently
postulated that when many hybrid models are integrated,
owing to their intrinsic dynamism, uncertainty, and multi-
dimensionality, they can provide sufficiently representative
solutions to real-life industrial problems. Morgan et al. [55]
considered a realistic case study and investigated the benefits
of integrating two or three hybrid methods. Howick et al. [56]
established a hybrid system focussed on the construction sec-
tor’s poor global safety record to reveal design vulnerabilities
and predict possible injuries.

To improve the reliability, availability, and safety of engi-
neering systems, studies have investigated dynamic machine
learning (ML) techniques for early fault detection and diag-
nosis in asset-intensive industries such as the railway, oil
and gas, power generation, and process industries [42], [57],
[58]. Dynamic probabilistic models such as Bayesian net-
works (BNs), stochastic Petri nets, and Markov analysis
have also been implemented in hybrid forms that consist
of at most two techniques for the dynamic failure analysis
of complex systems. However, the availability of composite

hybrid approaches that consist of more than two models,
particularly in reliability engineering and asset management,
remain limited [42], [59], [60]. In a complex engineering
system such as the railway rolling stock, the complexities of
some failure modes (FMs) such as wear loss, fatigue, cracks,
human error, and severe environmental conditions can occur
independently or simultaneously in a non-linear manner,
making failure diagnosis challenging for most existing two-
or three-technique hybrid models. This is perhaps why some
recent research developments in hybrid ML and statistics
have focussed on enabling offline and online failure diagnosis
for wear loss in complex components. The application of
ML techniques such as Gaussian mixture regression (GMR)
support vector machines (SVMs), whereas multiple linear
regression (MLR), Gaussian process regression (GPR), and
artificial neural networks (ANNs) [31], [34], 46], offer rea-
sonable classification and separation of individual oper-
ating conditions during faults diagnosis; however, they
have also been criticised for providing limited informa-
tion about the physics of FMs, which may hinder their
ability to achieve comprehensive asset management deci-
sions [58], [61]. Specifically, both GMR and GPR require
a large number of datasets and incur high computational
costs for accurate and routine failure diagnosis; MLR lacks
the consistency to always connect causal inputs to failure
outputs [62]; ANN suffers from inconsistent neural network
weight allocation values, which in turn produces inconsis-
tent outputs [63]; and SVM uses data subsets (i.e., smaller
datasets) that may lead to inaccuracies [64].

Given the complexities of failure analysis and asset man-
agement decision-making for different life cycle stages,
this study proposes a novel composite hybrid framework
that integrates four independent hybrid models with a
decision-making step for application in various life cycle
stages. The proposed framework contributes to existing lit-
erature in two distinct ways: (1) it allows for comprehensive
reliability analysis irrespective of the life cycle stage and
FMs, and (2) it ensures holistic and well-informed decision-
making for the maintenance strategy in consideration of the
asset performance in any life cycle stage. The remainder
of this paper is organised as follows: Section 2 presents
the proposed composite hybrid framework. Section 3 dis-
cusses the case study used to test its applicability in real-
life scenarios, including the analysis of core findings. Finally,
Section 4 concludes the study and offers highlights of future
research directions.

II. PROPOSED COMPOSITE HYBRID FRAMEWORK
The proposed composite hybrid framework comprises four
independent hybrid models and an asset maintenance
decision-making step that originates from the outputs of the
four individual hybrid models, as shown in Fig. 1. The first
hybrid model entails the failure mode, effects, and criticality
analysis (FMECA) and fault tree analysis (FTA) techniques.
FMECA highlights all potential FMs associated with the sub-
system under study and the corresponding criticality based
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FIGURE 1. Composite hybrid framework for optimising and improving asset management.

on the risk priority number (RPN). FTA estimates the sub-
system’s overall steady-state failure rate and illustrates the
logical relationship between the top subsystem failure events
and the corresponding component FMs. After the FMs are
identified, the second hybrid model uses the hybrid inference
obtained with the dynamic Bayesian discretisation (DBD)
technique to analyse FMs related to multiple components,
interfaces, and external effects in the subsystem under study.
TheDBD technique enables qualitative and quantitative (both
discrete and continuous data) evaluations of the FMs in the
subsystem under study to ascertain their overall effects. The
third hybrid model applies the GPR ML technique to subsys-
tem components subjected to FMs such as wear loss, fatigue,
and cracks to predict the wear loss of critical components
subjected to non-linear factors such as irregular weather pat-
terns and foreign object debris including dust and leaves.
In this study, the FMs were investigated because of their large
contributions to railway systems components failures and
service disruptions [65]. The fourth hybrid model uses BFE
with n-fold convolutions to predict the risk in terms of the
overall potential loss arising from multiple sources (internal
and external), including the expected changes in frequency
and severity of failures owing to changes in asset life cycle.
Finally, the decision-making step determines an appropriate
overall maintenance strategy as well as the interval for the
subsystem and its components, based on the outputs of previ-
ous steps. To foster practicality, the decision-making stage of

the composite hybrid framework allocates its recommended
maintenance decisions based on considerations of safety and
organisational resource constraints.

A. THEORETICAL BACKGROUND OF THE PROPOSED
COMPOSITE HYBRID FRAMEWORK
The implementation of the proposed composite hybrid frame-
work is systematically achieved through the following steps:

1) STEP 1: HYBRID MODEL FOR FMECA AND FTA
The first step involves determining and evaluating the func-
tions, functional failures, and FMs of the critical components
in the subsystem under study. The RPN is used to define and
rank critical FMs based on three parameters: severity (S),
probability (P), and detection (D). For a subsystem with FMs
represented by FMhv, the RPN is calculated using S, P, and
D as in [9], [66]:

RPN hv = Shv × Phv × Dhv,

h = 1, . . . ,m; v = 1, . . . , n (1)

where h represents FMs and v represents subsystems. Each
RPN parameter (S, P, and D) is ranked from 1 (lowest)
to 10 (highest). The RPN does not play an important role
when choosing an action against FMs; however, it may help
in obtaining the threshold values for deciding the areas to
focus on [9], [66], [67]. Then, the FTA is applied to estimate
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the overall failure rate using common FTA symbols such as
basic events, AND-gate, OR-gate, and top or intermediate
events [23], [68]. Assuming that all basic events are statis-
tically independent and identically distributed (IID) random
variables, the probability of the top failure rate events (PTE )
for a subsystem connected by both OR-gates and AND-gates
is calculated as depicted in (2) - (3) [69]:

PTE = 1−
∏n

i=1
(1− Pi) (2)

PTE =
∏n

i=1
Pi, i = 1, . . . , n (3)

2) STEP 2: HYBRID DBD MODEL FOR MULTIPLE
SUBSYSTEMS AND RELATED FMS
A BN is agnostic to the location of dependent variables with
prior probability from the cause and effect of the original
FMs. Thus, regardless of the origin and structure of the FMs
and related subsystems, BN can predict the joint distribution
of a random vector as the product of the conditional proba-
bility density (CPD) as follows [70]:

P (X1, . . . ,Xn) =
∏

P(Xi|pa (Xi) , (4)

where P(Xi|pa(Xi) is the CPD of variable X1 to Xn given its
parent pa(Xi). When the learnt structure of the BN between
the multiple FMs is known, the discretised CPD function
for each FM can be estimated via the hybrid inference BN
and the junction tree technique using the Kullback–Leibler
(KL) measure to establish the convergence rule for the DBD
function as in [42], [71]–[73]:

D (f ‖ g) =
∫
s
f (x) log

f (x)
g (x)

(5)

where KL is a distance measure between two density func-
tions f and g, and D is the approximate error of the true and
approximate functions f (x) and g(x). The final CPD failure
rate between two or more subsystems and interfaces can
be predicted regardless of the form, data types, and causal
relationships among these subsystems via the convergence
iteration technique and stable-entropy-error and low-entropy-
error convergence stop rules [42], [71]–[73]:

SEE =

1− α ≤ S
(
l-k

)
X

S(l−k+1)X

≤ 1+ α∀ k = 1, 2, 3;

l = 1, . . . , n

 (6)

LEE =
{
SXi < β

}
(7)

where n is the maximum number of iterations and
S(l)X =

∑
Wj
Ej is the approximate relative entropy error.

3) STEP 3: GPR HYBRID MODEL FOR A CRITICAL
COMPONENT SUBJECTED TO NON-LINEAR FAILURE SUCH
AS WEAR LOSS
GPR is used to analyse the FMs of components subjected to
random and non-linear failure such as wear loss variations,

due to its ability to offer improved accuracy and predictions
through the use of all data points. This is in contrast with
other well-establishedML approaches such as SVM that only
use subsets of data points or MLR that lacks consistency or
GMR that generates new sets of data points that can impact
accuracy [62], [63]. The input wear values c for a non-linear
component with noise variance can be expressed in a linear
form as [74]–[77]:

y = dT c+ N (0, σ 2) (8)

where N (0, σ 2) is the additive Gaussian noise whose values
are independent across the observations c. By combining all
y values into a vector, (9) can be expressed as the distribution
of y conditioned on the function dT c as in [74]–[77]:

p (y | c,C, y) = N
(

1
σ 2 c

TA−1Cy, cTA−1c
)

(9)

where A = 1
σ 2
CCT

+ 6−1d . Because this is Gaussian noise,
a non-linear transformation function φ(c) can be introduced
into (9) as follows:

p (y | c,C, y) = N
(

1
σ 2φ (c)

TA−18(C)y, φ(c)TA−1φ(c)
)

(10)

where A = σ−28(C)8(C)T + 6−1d . Given that (10) is also
Gaussian, the GPR predictive model for the prior function
dT c can be expressed as follows:

y = E {y | c,C, y} =
∑L

i=1
αik(c, ci) (11)

where α = [K (C,C)+ σ 2I ]
−1y can be defined by the

kernel function k (c, c,) = φ (c)T6dφ(c,) and variance
var (x) = (k

(
c, ci

)
− kT (c))(K (C,C)+ σ 2I )

−1k(c). The
square exponential (SE) function is selected as the covariance
function to estimate the hyperparameters of the Gaussian
kernel as [74]–[77]:

k (c, c,) = e−
‖c−c,‖

l (12)

where l is the kernel width.
The prediction performance obtained with (11) can be

evaluated using the root mean square error (RMSE) andmean
absolute error (MAE) as follows:

RMSE =

√∑N
i=1

(
ći − ci

)2
N

(13)

MAE =

∑N
i=1

(
´|ci − ci|

)
N

(14)

where ći is a set of n expected target values and ci is a set of
n prediction test data.
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4) STEP 4: HYBRID MODEL FOR QUANTITATIVELY
EVALUATING OVERALL RISK
The overall risk to the subsystem from multiple sources is
quantitatively evaluated using the BFE ML method with the
n-fold convolution theory. The overall risk model R can be
obtained using the general risk estimation formula for n fixed
structures as [39], [78]–[80]:

R = D0 + D1 + D2 + . . .+ Dn (15)

where Di is the sum of failure consequences or severities
for i = 0, . . . , n that represents IID severity distribution.
Assuming thatDi is a derivative of the continuous distribution
function gx , it can be considered a distribution form gx such
that (D ∼ gx), thereby allowing (15) to be evaluated as an
n-fold convolution function ga as follows [39], [78]–[80]:

ga =
∑∞

j=0
g∗k (x)P(M = n) (16)

where g∗k (x) =
∞∫
0
g∗(k−1) (x-z) f (dz) is a recursive n-fold

convolution on the consequence D. Thus, assuming that the
frequency of occurrence of a hazard from multiple sources is
f and the associated severity or consequence D are mutually
exclusive variables, the overall risk aggregation distribution
function R can be expressed as follows [39], [78]–[80]:

P (R) = f0P (R0)+ f1P (R1)+ . . .+ fLP (RL) (17)

where R0 = D0, R1 = D0+D1,. . . , RL = D0+D1+. . .+DL ,
and each Rj is a constant n-fold convolution.

5) STEP 5: IMPLICATION OF RESULTS AND MAINTENANCE
DECISION-MAKING
By using the outputs from all four hybrid models, as well
as considering their implications, an appropriate maintenance
strategy and the associated frequency can be selected to man-
age individual components and the overall subsystem at any
stage in the asset life cycle. Planned preventive, corrective,
predictive, or risk-based inspection approaches can be used
for failure and maintenance management [6], [81], [82].

III. CASE STUDY, DATA COLLECTION, AND ANALYSIS OF
FINDINGS
This section discusses the application of the proposed com-
posite hybrid framework. To maintain confidentiality of the
train operator considered in the case study and to simplify
the discussion, we only present those results that are essen-
tial for demonstrating the proposed framework; for example,
the scope of FMECA was limited to only critical items and
one associated FM. The case study was conducted in collab-
oration with a UK-based train operator using a four-car EMU
vehicle (specifically, four-car EMU × 48 fleets = 192 cars)
to support strategic planning and decision-making for asset
management in view of a proposed increase in operating time
from 14 to 18 h per day. The proposed framework was applied
to the pantograph subsystem only. The pantograph head
assembly comprises carbon strips (current conductors) and

TABLE 2. Sample data for train travel distance, carbon strip training and
test wear data, and coupling rod MTTF.

a carbon carrier (bracket) that conducts electricity from the
overhead line. Frames comprising lower, upper, and control
rods enable the pantograph head to move vertically and sup-
port the weight of the pantograph assembly. Air equipment
supplies the required air pressure to enable the lifting device
to pneumatically lift the pantograph. The air feed insulates
the car from an accidental live electric supply owing to arcing,
flashover, or fire. The control assembly allows the pantograph
to be controlled by the driver as well as the maintenance
team, as shown in Figs. 2(a)-(c). Magnified views of the
pantograph head, crack defects of the carbon strip, the space
between the carbon carrier, and the carbon strips are shown in
Figs. 3(a)-(c), respectively.

A. CONTEXT
The train operator proposed a mission profile in which trains
will run for 18 h per day (compared to the current 14 h
per day). Accordingly, the operator aims to propose that the
mean time between maintenance (MTBM) of the pantograph
should be a minimum of 504 h. The proposed composite
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FIGURE 2. (a) Layout of pantograph subsystem [83]; (b) Schematic layout of pantograph and other interface subsystems [84]; and
(c) Four-car EMU with pantograph fitted to trailer open saloon.

FIGURE 3. (a) Pantograph carbon strip assembly; (b) Example of cracked carbon strip; and (c) Pantograph carbon
strip showing usable and wear limits.

hybrid framework was applied to analyse and verify the
feasibility and safety of these changes. Table 2 shows some
sample data, including:
• operation records from 32 trains over 27 months,

• measurements of 32 carbon strip wear data from five
trains using ‘go/no go’ gauges,

• measurements of 15 carbon strip test wear data from two
other train periods.

VOLUME 9, 2021 71511
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FIGURE 4. Coupling rod failure rate prediction.

TABLE 3. Pantograph subsystem FMECA.

The total carbon strip height is 20 mm, of which 16 mm is
usable wear and the remaining 4 mm is the legal disposable
wear limit. The failure rates for the overhead line (OHL) and
main reservoir (MR) were estimated as 2.28× 10−4 per hour

(equivalent to two incidents per year) and 5.7 × 10−5 per
hour, respectively. The maintenance error probability for
experienced and inexperienced pantograph technicians was
considered 74.5% and 25.5%, respectively.MATLABversion
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FIGURE 5. FTA of pantograph subsystem.

R2020a, AgenaRisk [85], and Isograph reliability workbench
version 15 software were used for the analyses.

B. ANALYSES, DISCUSSIONS, AND IMPLICATION OF
RESULTS
This section discusses the results of the proposed composite
hybrid framework. Specifically, it highlights the FMECA
and FTA analyses (Section 3.2.1), impact of multiple inter-
face subsystem failures (OHL and main air reservoir) and
their impacts on the pantograph subsystem (Section 3.2.2),
carbon strip wear analysis (Section 3.2.3), quantitative risk
evaluation (Section 3.2.4), and implication of the results for
maintenance decision-making (Section 3.2.5).

1) FMECA AND FTA ANALYSES
First, FMECA was applied to critical components of the
pantograph to establish the function, FMs, effects on the train,
number of parts, part failure rate, RPNs and to highlight
the current controls. Part failure rates were estimated using
the recorded mean time-to-failure (MTTF). For example,
Fig. 4 shows the coupling rod failure rate predictions
(λ = 3.82 × 10−9 per hour) obtained using the MTTF data
in Table 2. The same approach was used to obtain part failure
rate predictions from the data in Table 3. By using (1)-(3) for
the nine critical FMs considered in this study, the carbon strip
showed the highest RPN of 90, followed by air feed insulators
with an RPN of 64, while the control panel showed the lowest
RPN score of 8. FMECA based on Table 3 is limited to only

TABLE 4. Prior NPT data for DBD computations.

key components of the pantograph that are most relevant to
the analysis performed here. FMECA also listed the currently
established maintenance controls to handle the potential FMs

VOLUME 9, 2021 71513
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FIGURE 6. DBD structure and simulated results for probability of failure of pantograph.

TABLE 5. Prediction performance of GPR relative to that of other ML
techniques.

that were identified. Second, FTA was performed to establish
the pantograph subsystem’s overall failure rate as well as
to identify the logical connection between the top failure
event (pantograph fault) and basic events (associated FMs).
In Table 3, basic symbols indicate the link to the correspond-
ing basic events. The number of parts refers to the number
of components installed in the pantograph subsystems con-
nected in series, which are connected by an OR-gate to the
top failure event. The part failure rates for FMs related to
the same component are the same. Based on the FTA shown
in Fig. 5, the overall pantograph subsystem failure rate was
estimated as 7.91× 10−8 per hour (equivalent to 12.6 failures
per million hours).

TABLE 6. Estimated carbon strip wear loss with MTBM of 504 h.

2) IMPACT OF MULTIPLE INTERFACE SUBSYSTEM FAILURES
(OHL AND MR) ON PANTOGRAPH SUBSYSTEM
Although the FTA shown in Fig. 5 predicted a steady-state
failure rate of 12.6 failures per million hours for the pan-
tograph, it did not include the interface effects of other
pantograph subsystems. For example, the primary reservoir
can cause pantograph failure through lack of pneumatic air
supply. Moreover, the OHL can cause pantograph failure
through excessive current supply, owing to excessive vibra-
tions, arcing, or flashovers. Therefore, for effective decision-
making regarding an appropriate maintenance strategy and
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FIGURE 7. Carbon strip wear prediction training model.

frequency of implementation, the probability of failure owing
to the effects of multiple interface subsystems on the panto-
graphmust be determined. Considering the operator’s desired
MTBM of 504 h, prior node probability tables (NPT), includ-
ing the node types, were defined as shown in Table 4. There
were three continuous nodes, all of which are expressed
as exponential distribution functions. The continuous nodes
were the overall predicted failure rates from the FTA, MR,
and overhead line. In addition, two synthetic nodes were
introduced to support the simulation - discrete TTF node,
a Boolean based on the impact of the failure of either the
MR or the OHL, and the predicted probability of failure or
success of the pantograph in the expected MTBM of 504 h.
Fig. 6 shows the layout of the BN structure to support the
DBD analysis. Each node contains an NPT, as specified
in Table 4. By using (4)-(7) with 50 iterations, the probability
of success was estimated as 88.572%, while the probability of
failure of the pantograph owing to multiple interface subsys-
tems (MR and OHL) was predicted as 11.428%. Therefore,
considering the predicted probability of failure of 11.428%,
we can expect at least 14.1 failures per million hours com-
pared to the initial FTA steady-state prediction of 12.6 failures
per million hours as noted in Section 3.2.1.

3) CARBON STRIP WEAR LOSS PREDICTION USING GPR
To predict the carbon strip wear loss, the GPR model with
the SE function kernel given by (11) was used to build a

predictive training model using the carbon strip training wear
data from Table 2. To prevent overfitting and improve the
prediction accuracy, five-fold cross-validationwas performed
using the training data. Fig. 7 shows the output of the car-
bon strip prediction model. It is anticipated that the irregu-
lar wear patterns may correlate to non-linear environmental
conditions, including the vibration of the OHL, wheel and
track alignment, and weather patterns. The performance of
the prediction training model was validated in comparison
with that of other ML techniques using (13)-(14), as shown
in Table 5. The GPR model had smaller RMSE and MAE
values than those achieved with GPR and MLR models. The
prediction model shown in Fig. 7 was used to predict the
maximum carbon strip wear loss using the test data shown
in Table 2. The carbon strip wear loss prediction results indi-
cated a maximumwear loss of∼9.68 mm in height, as shown
in Fig. 8. The predicted results indicated that the pantograph
carbon strip could be expected to experience a wear loss of
∼6.80 mm during the operator’s proposed MTBM of 504 h,
as shown in Table 6, under the assumption of no premature
failures owing to fractures and cracks. Based on the predicted
wear rate, the pantograph can be expected to last nomore than
two 504-h inspection periods (MTBM) with 6.4 mm of the
carbon strip remaining. In other words, ∼2.4 mm of useful
carbon strip may be wasted if it were to be replaced during
this period. However, it provides an additional safety margin
(buffer) from the legal disposable wear limit of 4 mm.
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FIGURE 8. Carbon strip wear prediction using test data.

TABLE 7. Prior NPTS for quantitative analysis.

4) OVERALL QUANTITATIVE RISK (LOSS OF FLEET
AVAILABILITY) OWING TO PROPOSED INCREASE IN
OPERATION PERIOD
To propose an appropriate maintenance strategy, it is impera-
tive to understand the overall impact of pantograph subsystem
failure on fleet availability (overall risk) during the proposed
increase in operation period. The overall risk was evalu-
ated quantitatively from four failure sources: maintenance
error, pantograph, OHL, and MR (air tank) failure rates. Two
severities in terms of penalty charges as uniform distribution
functions were considered (up to five and more than five).

The NPTs for the maintenance error, pantograph, OHL, and
MR were estimated as shown in Table 7 by assuming an
exponential function for the probability of failures and IID
(i.e., probability of success Ps = e−λt and probability of
failure Pf = 1 − e−λt with MTBM of 504 h). Four new
synthetic nodes—combined failure frequency NPT, overall
severity NPT, pantograph status NPT, and combined unavail-
ability NPT—were introduced as part of the BFE modelling,
as shown in Fig. 9. By using (17) with 50 iterations, the
marginal probability distribution for the combined unavail-
ability of the train owing to events and failures other than
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FIGURE 9. Overall loss of availability owing to proposed increase in operation hours.

TABLE 8. Results of expected overall risk (fleet unavailability) owing to
pantograph subsystem failure.

pantograph failures are shown in Table 7 and Fig. 10 for
three scenarios: (1) primary reservoir failure, (2) OHL failure,
and (3) inexperienced maintenance error. Table 8 indicates
that the maintenance error probability had the highest like-
lihood of fleet unavailability of ∼7, followed by the MR
with 6 and OHL with ∼5. Table 8 shows the corresponding
99th percentile interval.

5) IMPLICATION OF RESULTS ON MAINTENANCE
INSPECTION AND DECISION-MAKING
The FMECA analysis identified the carbon strip as a crit-
ical component of the pantograph due to its combination
of high RPN and low maintenance interval (3,000 km),

thereby indicating that it would need regular interventions
to prevent failure. FTA predicted a low overall failure rate
of 12.6 failures per million hours for the pantograph; how-
ever, the multiple failures caused by other external interface
subsystems (OHL andMR) significantly increased the failure
rate by 11.48%, which then corresponds to 14.1 failures per
million hours. A further analysis of the carbon strip, a criti-
cal component, indicated that it could last two maintenance
inspection periods (with a travel distance of 7,840 km) with
a residual length of 2.4 mm in addition to the legal wear limit
of 4 mm. Despite the predicted low failure rate and estimated
wear loss, the proposed increase in the mission profile could
affect the fleet unavailability because ofmultiple risk sources:
maintenance errors, MR, and OHL failures. The carbon strip
can last for the proposed mission profile of 504 hours even
under the impact of multiple external and interface subsystem
failures.

Owing to the impact of multiple interface issues and wear
loss, there is a high probability that the intended extension
from 14 h to 18 h can lead to unnecessary fleet unavailability
of at least six fleets. The results of the present study indicate
that to avoid this problem, the mission profile would be most
realistic if a 2 h increase (i.e., from 14 h to 16 h) was imple-
mented instead, equivalent to a travel distance of 4,480 km
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and a corresponding MTBM of 448 h. The proposed MTBM
can lead to a more balanced and aligned maintenance strategy
for all remaining components (also offering a good balance
between safety and fleet availability), including the panto-
graph subsystems, as shown in Table 3.

IV. CONCLUSION
This study proposes a novel composite hybrid framework that
seamlessly combines several independent hybrid models for
performing a comprehensive through-life dependability anal-
ysis of complex engineering systems in consideration of their
failures, reliability, maintenance, and risk. The first hybrid
model (consisting of FMECA and FTA) can be applied at
any stage of the asset life cycle, including design, operation,
and overhaul, for conducting detailed steady-state subsystem
analyses. The second hybrid model uses DBD for failure
analysis of complex systems, consisting of multiple inter-
dependent subsystems that share a common interface via
direct or indirect functional and physical interactions. It can
be applied at any stage of the asset life cycle, owing to its
ability to combine qualitative and quantitative failure data to
determine the probability of failure between inter-dependent
subsystems. The third hybrid model uses GPR with a SE
kernel for analysing the components of complex systems that
are subjected to wear loss, fatigue, and cracks. It establishes
the maximum wear loss, particularly during the operation,
maintenance, and overhaul phases of the asset life cycle.
The fourth hybrid model uses BFE with a Bayesian ML
technique and n-fold convolutions to quantitatively determine
the overall risk of the complex system. It determines the
overall marginal probability of risk posed by the many inter-
actions from external and internal factors that can lead to the
subsystem’s failure that in turn might lead to unavailability
and accidents.

The aggregated risk allows for a measured approach
in strategic decision-making related to the risk of sub-
system failure for operational effectiveness. The output
of this composite hybrid framework can support effective
decision-making for complex engineering systems across
multiple life cycle stages. The proposed model was validated
through a case study of a train operator, and the results were
used to recommend an alternative operating period of 16 h
instead of the operator’s proposed period of 18 h. Owing
to the effect of multiple interactions and dependencies that
are often embedded within complex engineering systems,
the proposed composite hybrid framework can be a useful
tool for failure and dependability analysis. Although this
framework is practical and efficient for failure analysis and
decision-making, it could be improved in the future via
automation to enhance the data processing and computation
of discrete and continuous variables.
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