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Abstract—To support the emerging 5G applications and the
5G bearer networks, optical networks, as the critical infras-
tructure, are continuously evolving to be more dynamic and
automatic. The vision of future autonomous networks with
low link margins requires precise estimation/prediction of the
quality of transmission (QoT) of optical links. Machine learning
(ML) technologies provide promising solutions to predict QoT
of unestablished links. In this paper, we investigated hybrid
modelling and transfer learning to address the key issues for
deployment of ML applications in optical networks. The proposed
approach for multiple-channel prediction reduces the training
data requirement by 80% while obtaining the same MSE of
0.267dB compared with the model without transfer learning.
The approach facilitates a streamlined ML life-cycle for data
collection, training, and deployment.

Index Terms—Transfer learning, optical networks, Quality of
Transmission estimation.

I. INTRODUCTION

THe emerging 5G networks that were designed to support
high-capacity network applications will bring an unprece-

dented amount of dynamic traffic to the underlying optical
network infrastructures [1]. Future optical networks will need
to be evolved to be more dynamic, with the ability to establish
network connections with reduced margins to improve hard-
ware utilisation [2]. Consequently, precise information about
the quality of transmission (QoT) of the unestablished light
paths as well as the impact of newly established light paths
on the previous channels is of vital importance to operating
low-margin optical networks efficiently.

With the unparalleled combination of high accuracy and
low computational complexity in inference, Machine Learn-
ing (ML) based approaches have been explored to provide
promising solutions in QoT estimation with either synthetic
data [3] or pre-collected network operation data [4]. A quality
of transmission (QoT) estimator based on support vector
machines (SVM) reduced the essential computing time to
evaluate the QoT of an established lightpath [5]. Multi-channel
Q-factor prediction based on artificial neural networks (ANN)
is investigated with real-time network operation and config-
uration information and the proposed ANN-based regression
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model shows an accurate prediction of the Q-factor in both
new unseen channels and existing channels [4]. The Reservoir
Computing (RC)-based QoT prediction method can achieve
an acceptable accuracy faster than ANN and SVM [6]. These
solutions based on ML face big challenges in scalability as
training and inferencing of ML models are carried out on the
same network.

Recently, transfer learning (TL) [7] has been used to solve
the scalability of the ANN-based QoT prediction [8], [9] in
optical networks. Transfer learning allows retraining the pre-
trained model with less data, which avoids comprehensive data
collection in the deployed environment and can be combined
with other ML algorithms, such as ANN and SVM. In [8],
the proposed approach achieves Q-factor prediction accuracies
with 0.42dB, 0.37dB and 0.67dB respectively, over three op-
tical systems with a small number of training samples. CNN-
based multi-impairment diagnosis technique with deep transfer
learning has been proposed [10] and the presented deep TL-
based method decreases the training time by more than 95%
without sacrifice of the accuracy of 99.88%. In addition, deep
neural networks (DNN) combined with transfer learning [11]
is used to make quality of transmission (QoT) prediction
in multi-domain optical networks to realize resource-efficient
service supplying. Evaluation with experimental data demon-
strates that the proposed approach can dramatically reduce
the amount of required training data for new tasks with the
same estimation accuracy. The above work proves that the
combination of transfer learning and supervised learning is an
effective method, which can save training time using only a
few samples without sacrifice of the accuracy.

However, there are still several challenges that need to
be addressed before their widespread deployment becomes
realities. The large amounts of data that are required for ML
model training are not yet available, particularly during the
early phase of the fibre life-cycle when network monitoring
data is lacking. Additionally, ML models must be responsive
to system changes caused by component wear and ageing,
and constantly evaluate their own efficacy so as to prevent
inadequate quality of service. A coherent life-cycle for ML
models is required to formalise the process of designing,
testing, and deploying ML models in optical networks. To
address this issue, reliable simulated datasets collected from
the validated Gaussian noise model can be used on the initial
model for pre-training and then the model can be retrained
with far less practical data, which can achieve a extremely
high precision.

In this letter, we propose a streamlined ML life-cycle for
optical networks which utilises TL to combine synthetic data
and practical data observed from a field-trial testbed. The work
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Fig. 1: Hybrid model life-cycle management for machine learning algorithms in optical networks

extended our work [12], by adding literature review of the
management platform for machine learning model deployment
and extra information about the experiments. Synthetic data
gathered through coarse analytical modelling is used to obtain
a QoT-prediction model with acceptable precision in the
absence of practical network data. The QoT prediction model
is then retrained and fine-tuned to achieve high precision
prediction with practical data. The performance of the TL
assisted ANN is evaluated by comparing it to a baseline ANN
trained from scratch. The TL-assisted ANN achieves an MSE
of 0.267 dB, equal to that of the baseline ANN, despite being
trained on only 20% (200 samples) of the practical data used
to train the baseline model. The training time is reduced
for the TL assisted ANN, taking 6.67s in comparison to
19.47s for the baseline ANN. Our proposed approach reduces
the volume of practical data required to train an ANN for
QoT prediction, and facilitates rapid training and deployment
of these predictors in future commercial optical networks.
The streamlined ML lifecycle creates connections between
synthetical data and practical data, and therefore, provides a
possible approach for furture deployment of machine learning
models.

II. ML LIFE-CYCLE TOWARD DEPLOYMENTS IN OPTICAL
NETWORKS

Our proposed four-phase approach for the ML life-cycle
is outlined in Figure 1. Generally the process of ML has
four parts, which are data collection, data transform, (re)
training model and deployment. Transfer learning is used
to connect available knowledge and practical network sta-
tus. Firstly, a source learner is trained on synthetic data
gathered offline through available modelling or simulation
tools. The design phase consists of model selection, training,
and optimisation. Initial values for hyper-parameters are set
arbitrarily and optimised by performing a Grid Search across
many hyper-parameter combinations. Then, the parameters of
the trained source learner are transferred to the target (TL
assisted) learner, which is fine-tuned with practical monitoring

data from the optical network. In our work, the time series
database InfluxDB is used to store our data, which can have
an organised management of time series data. This approach
achieves convergence faster than training from scratch while
reducing the required amount of training and validation data.
The third phase is model validation, which aims to evaluate
the model’s ability to generalise for new, unseen network
operations data. The results of this stage determine margins
that must be utilised during deployment to ensure adequate
quality of service. Successful models can be integrated into the
software-defined networking (SDN) controller for autonomous
and dynamic lightpath allocation. A remodelling algorithm
accounting for all potential sources of system changes (e.g.,
component wear and ageing) can be implemented with practi-
cal network validation. With the proposed ML model manage-
ment, network operation scenarios with complex topology and
dynamic channel configurations can be offered ML models for
QoT predictions.

The ML life cycle requires complex model management
with a deep understanding of ML algorithms and models and
expert knowledge in the application areas [13]. In this work,the
ML model management platform Weights& Biases [14]is
explored to manage the ML model as it has a clear view of the
training results and shows the utilization information of CPU,
system memory and detailed parameters about model structure.
As for model deployment, the concept of MLaas (Machine
Learning as a service) intends to provide an automatic or
semi-automatic cloud platform with integrated basic func-
tions of Machine Learning implementation, such as data pre-
processing, model training, model assessment and prediction.
Amazon Machine Learning Services (AWS), Microsoft Azure
Machine Learning, and Google Cloud AI are three of the
leading Cloud MLaas services that allow rapid model training
and deployment with little or no data science expertise. We had
a first attempt on Microsoft Azure ML, which only required to
upload our corresponding datasets and choose the model we
want to use. Microsoft Azure ML provides relatively complete
tools for data pre-processing and other basic ML models,
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Fig. 2: Experimental setup and results

and we can upload our models written in R or Python to
execute. However, extra knowledge about the application area
is required for the practical deployment.

In the following section, we demonstrate the first three
phases for ML model provision.

III. TRANSFER LEARNING BASED QOT ESTIMATOR

We utilise TL to reduce the required training data and
increase speed of convergence for our ANN model. A source
domain, DS , and source task, TS are defined. DS is comprised
of the feature space XS and a marginal probability distribution
PS(x). TS is comprised of the target space, YS and the
predictive function f(·). Similarly, a target domain, DT , and
target task, TT are also defined. For our purposes, DS is
the synthetic data set and DT is the practical network data
set. TL aims to improve the learning of the target predictive
function f(·) in DT using the knowledge in DS and TS , where
DS 6= DT but TS = TT (both tasks are OSNR estimation). We
utilise parameter transfer [9], and transfer a certain amount of
parameters (weights, biases etc.) from the source learner to
the target learner. This can be explained mathematically by:

wS = w0 + vS and wT = w0 + vT (1)

where wS and wT are parameters of the ANNs used for the
source task and the target task respectively. w0 is the set of
parameters shared between both tasks, while vS and vT are
task-specific parameters. The cost function for the target model
can then be written:

MSE =
1

n

n∑
i=1

(yi − f(xi;w0, vT ))
2 (2)

Where yi is the actual output for the ith data point and f(xi)
is the output predicted by the target learner. Hence, parameter
transfer induces faster training of the target model by making
w0 known. The two step process therefore is comprised of the

initial training of the source learner ANN on synthetic data,
followed by the transferring of parameter knowledge to the
target learner which is fine-tuned to practical network data.

Synthetic data was gathered on a simulated version of
the national dark fibre facility (NDFF) network using an
open-source simulation software GNPy [15], which is im-
plemented based on the Gaussian noise (GN) analytical
model [16]. GNPy is an open source application for phys-
ical layer aware open optical networks defined by the
Open Optical Packet Transport–Physical Simulation Environ-
ment (OOPT–PSE) group within the Telecom Infra Project
(TIP) [17]. It provides a reliable software for the abstraction
of data transport in optical networks and has been validated
with a satisfactory accuracy in the experiments [18]. We use
the optical network topology depicted in Figure 2a to provide
GNPy with the input and network elements. 16 external cavity
lasers (ECLs) are combined together to generate 32 Gbaud
PM-QPSK signals. 8 testing channels are generated by eight
real-time PM-16QAM transponders. The NDFF link from
Bristol to London is comprised of five nodes with the loop-
back configuration at the Telehouse node. Each node deploys
two EDFAs with constant gain to compensate for the loss
of the bidirectional link, and the generated optical signals
are transmitted in a 563.4 km loop back field-trial link. The
training data-set was comprised of 9000 synthetic data points
generated by GNPy, whilst the test data-set consisted of 1000
real data points gathered from a field-trial testbed.

Then, we built on our previous work in [4] and used the
ANN architecture as a starting point for the source learner. The
feature space was comprised of launch power, EDFA input/
output power pairs for every node, and the channel coding
vector, resulting in a 43 dimensional feature space. There are
8 outputs corresponding to the total OSNR for each of the
channels at the end of the link. Channel coding is achieved

through hot coding, where a vector of [1 1 0 0 1 0 0 0]
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TABLE I: The summary of ANN model

Layer Shape Activation Function Parameters
Input 43 - -
Hidden 1 40 ReLU 1760
Hidden 2 20 ReLU 820
Output 8 Sigmoid 168

represents channel 1,2 and 5 being switched on. The ANN
can thus infer the significance of a 0 in the channel vector,
and predict a 0 for the OSNR of that channel. Similarly, the
EDFA input/ output powers behave as a hot coded route vector
by the inclusion of 0 values for all EDFAs that were not
crossed on a given path, allowing the ANN to make inferences
based on the route taken. We used a rectified linear unit
(ReLU) function f(x) = max(0, x) as the activation for all
neurons except those in the output layer, where the sigmoid
function was used. An Adaptive Moment Estimation (Adam)
was chosen as a stochastic gradient descent algorithm. The
architecture of the ANN with two hidden layers shown in Table
1 was [43,40,20,8]. Batch size and number of epochs were 16
and 150 respectively. The hyper-parameters and architecture
of the source learner are transferred to the target learner,
which is re-trained on 200 random samples of practical data.
After testing multiple parameter transfer schemes, fine-tuning
(all parameters transferred) was chosen as the best approach,
indicating a heavy correlation between TS and TT .

IV. RESULTS AND DISCUSSION

The performance of the target learner was evaluated against
a baseline model trained from scratch with 500% more prac-
tical data (1000 samples). The training curves for the target
learner and baseline model can be seen in Figure 2b. The target
learner obtained convergence quicker than the baseline model,
requiring only 2 epochs as opposed to 24. Training time was
also reduced from 19.47s for the baseline model to 6.67s for
the target on a personal computer (i7-10850H, 2.70GHz, 16GB
RAM). Both models achieved an MSE of 0.27dB across 100
test data points and a 90th percentile accuracy of 0.704dB. The
values of R2 score are 0.9963 for the target learner and 0.9957
for the baseline model respectively, which means that both of
them have accurate estimations. The performance of the target
learner for 3 test cases is shown in Figure 2c, and a plot
of the cumulative distribution function (CDF) can be seen in
Figure 2d. Our results indicate that robust QoT predictors can
be trained with far less practical data than previously thought
necessary. The current model is designed for a single link.
The proposed ML lifecycle management supports the synthetic
data generation, model pre-training, practical data collection,
and model training. The work can be scaled up to the whole
networks by preparing a multi-channel QoT prediction model
for each link. A streamlined ML lifecycle management will
be critical for training and deployment of ML based QoT
predictors in dynamic optical networks.

V. CONCLUSION

In this paper, a streamlined ML life-cycle is presented
toward future deployment in commercial optical networks.
Based on the life-cycle, a TL-based QoT estimation is im-
plemented with reduced training data requirements and faster

training times. Our approach paves the way for large-scale,
rapid deployment of QoT predictors with complex network
operation scenarios, to fully support dynamic optical networks
during the 5G era.
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