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On Semantic Similarity in Video Retrieval

Michael Wray Hazel Doughty* Dima Damen
Department of Computer Science, University of Bristol, UK

Abstract

Current video retrieval efforts all found their evaluation
on an instance-based assumption, that only a single caption
is relevant to a query video and vice versa. We demonstrate
that this assumption results in performance comparisons of-
ten not indicative of models’ retrieval capabilities. We pro-
pose a move to semantic similarity video retrieval, where
(i) multiple videos/captions can be deemed equally relevant,
and their relative ranking does not affect a method’s re-
ported performance and (ii) retrieved videos/captions are
ranked by their similarity to a query. We propose several
proxies to estimate semantic similarities in large-scale re-
trieval datasets, without additional annotations. Our anal-
ysis is performed on three commonly used video retrieval
datasets (MSR-VTT, YouCook2 and EPIC-KITCHENS).

1. Introduction

Video understanding approaches which incorporate lan-
guage have demonstrated success in multiple tasks includ-
ing captioning [61, 66], video question answering [68, 72]
and navigation [5, 28]. Using language to search for videos
has also become a popular research problem, known as
video retrieval. Methods learn an underlying multi-modal
embedding space to relate videos and captions. Along with
large-scale datasets [18, 41, 57, 64, 71], several video re-
trieval benchmarks and challenges [2, 70] compare state-
of-the-art, as methods inch to improve evaluation metrics
such as Recall@K and Median Rank.

In this paper, we question the base assumption in all
these datasets and benchmarks—that the only relevant
video to a caption is the one collected with that video. We
offer the first critical analysis of this assumption, propos-
ing semantic similarity relevance, for both evaluation and
training. Our effort is inspired by works that question as-
sumptions and biases in other research problems such as
VQA [27, 69], metric learning [46], moment retrieval [50],
action localisation [4] and action recognition [16, 34, 45].

As shown in Fig. 1, current approaches target instance-
based retrieval—that is, given a query caption such as “A
man doing an origami tutorial”, only one origami video is
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Figure 1: All current video retrieval works treat caption
collected for a certain video as relevant, even when other
videos are equally relevant to a query text. This makes the
evaluation of popular datasets ad hoc at times. We propose
to use continuous similarity, allowing multiple videos to be
treated as equally relevant. Ex. from MSR-VTT [64].

considered as the correct video to retrieve. In fact, many
videos within the dataset can be similar to the point of be-
ing identical. The order in which such videos are retrieved
should not affect the evaluation of a method. Instead, we
propose utilising semantic similarity between videos and
captions, where we assign a similarity score between items
of differing modalities. This allows multiple videos to be
considered relevant to a caption and provides a way of rank-
ing videos from most to least similar.

Our contributions can be summarised: (i) We expose the
shortcoming of instance retrieval in current video retrieval
benchmarks and evaluation protocols. (ii) We propose video
retrieval with semantic similarity, both for evaluation and
training, where videos are ranked by their similarity to a
caption, allowing multiple videos to be considered rele-
vant and vice-versa. (iii) Avoiding large annotation effort,
we propose several proxies to predict semantic similarities,
using caption-to-caption matching. (iv) We analyse three
benchmark datasets, using our semantic similarity proxies,
noting their impact on current baselines and evaluations.

2. Related Work

We review image retrieval works that use semantic knowl-
edge then discuss current approaches to video retrieval.

2.1. Semantic Image Retrieval

While most works focus on instance-based retrieval, a
few works have explored semantic-based image retrieval.

Early works attempted to manually annotate small-scale
datasets with semantic knowledge. Oliva et al. [48] defined



three axes of semantic relevance (e.g. artificial vs natural)
in order to relate images. Using categories instead, Ojala et
al. [47] asked annotators to split images within a dataset
into discrete categories. They then considered all images
within the same category as relevant.

In their investigative work, Enser et al. [23] show-
case that semantic relevance cannot be gleaned from im-
ages alone, as it requires the knowledge of places, societal
class etc. Barz and Denzler [9] draw a similar conclusion
that visual similarity does not imply semantic similarity and
so project images into a class embedding space learned from
WordNet [43]. Chen et al. [14] instead learn two spaces,
one for images and one for text, with the notion that fea-
tures in either space should be consistent if they are seman-
tically relevant. Gordo and Larlus [26] train their model for
image-to-image retrieval with the notion of semantic rel-
evance. By learning an embedding using semantic prox-
ies (METEOR [8], tf-idf and Word2Vec [42]) defined be-
tween image captions, they show that semantic knowledge
improves retrieval performance. Concurrent with out work,
Chun et al. [17] highlight the issue of instance based eval-
uation for cross-modal retrieval in images. They propose
using R-Precision as an evaluation metric incorporating fur-
ther plausible matches via class knowledge. However, all
these works still use binary relevance for training and eval-
uation, i.e. an image/caption is either relevant or not, ex-
cluding images which may be somewhat relevant.

Closest to our work, Kim et al. [30] explore non-binary
relevance in image retrieval. They propose a log-ratio loss
in order to learn a metric embedding space without requir-
ing binary relevance between items. Their work is primar-
ily focused on human pose, in which they use the distance
between joints to rank images. They also explore within-
modal image retrieval using word mover’s distance, as a
proxy for semantic similarity. Up to our knowledge, [30]
offers the only prior work, albeit in image retrieval, to inves-
tigate both training and evaluating relevance which extends
beyond both binary and instance-based relevance.

2.2. Video Retrieval

Early works in video retrieval simply extended image-
retrieval approaches by temporally aggregating frames for
each video [20, 51, 59, 65]. These works are attributed for
defining the cross-modal video retrieval problem and stan-
dard evaluation metrics. In qualitative results, they argue
models are superior if they retrieve multiple relevant videos,
despite the quantitative metrics only evaluating the corre-
sponding video.

With larger datasets becoming available [6, 31, 41, 49,
62, 64, 71], methods focused on using self-supervision [1,
58, 73], sentence disambiguation [14, 63], multi-level en-
codings [21, 67], mixing “expert” features from pre-trained
models [25, 36, 40, 44] and weakly-supervised learning

from massive datasets [39, 41, 53]. All these works train
and evaluate for instance-based video retrieval.

Two recent works explored using semantic similarity
during training [53, 63]. Our previous work [63] uses
class knowledge to cluster captions into relevance sets for
triplet sampling. Patrick et al. [53] propose a captioning
loss, where the embedding caption is re-constructed from
a support set of videos. This ensures shared semantics
are learned between different instances and gives large im-
provements when the support set does not include the corre-
sponding video—forcing the model to generalise. However,
this work is evaluated using instance-based retrieval.

This paper is the first to scrutinise current benchmarks
in video retrieval, which assume instance-based correspon-
dence. We propose semantic similarity video retrieval as an
alternative task, for both evaluation and training.

3. Shortcomings of Current Video Retrieval

Benchmarks

In this section, we formalise the current approaches to
video retrieval, and highlight the issues present with their
Instance-based Video Retrieval (IVR) assumption, which
impacts the evaluation of common benchmark datasets.

Formally, given a set of videos X and a corresponding
set of captions Y , current approaches define the similarity
SI between a video xi and a caption yj which captures this
one-to-one relationship. For each video/caption there is ex-
actly one relevant caption/video:

SI(xi, yj) =

(
1, if i == j

0, otherwise
(1)

Alternatively, if multiple captions are collected per video as
in [64], then we consider the caption yj,k as the kth caption
of the jth video. As in Eq. 1, this only considers captions
of the corresponding video to be relevant.

IVR relies on the correspondence between the video and
the caption captured during dataset collection. This is typ-
ically a caption provided by an annotator or transcribed
from the video’s narration. Importantly, the above formu-
lation makes the assumption that no two captions of differ-
ent videos are relevant-enough to impact the evaluation or
training of retrieval methods. We start by qualitatively ex-
amining this assumption for current benchmarks.
Datasets In Table 1 we show the statistics of datasets that
are actively being used as benchmarks for video retrieval.
We order these by the size of the test set, as a larger test set is
not only challenging in distinguishing between more exam-
ples, but importantly increases the chance of having other
relevant items, beside the corresponding video/caption.

Most datasets [13, 31, 64, 71] have been collected from
YouTube and annotated after the fact via crowd-sourcing.
Notably, MPII movie [57] instead used movie scripts as
captions for each of the video clips and EPIC-KITCHENS



Text Type # Captions Test Set Size # Scenario Source Eval. Metrics Semantic Info

MSVD [13] Caption *86k 670 Open YouTube Recall@k, Avg. Rank Multi-Lang.
MPII movie [57] Script 64k 1,000 Movie Scripts Movies Recall@k, Avg. Rank None
DiDeMo [6] Caption 40k 1,004 Open Flickr Recall@k None
MSR-VTT [64] Caption 200k 2,990 Open YouTube Recall@k, Avg. Rank Category
YouCook2 [71] Caption 15k 3,310 Cooking YouTube Recall@k, Avg. Rank None
QuerYD [49] Caption 31k 4,717 Open YouTube Recall@k, Avg. Rank Category
ActivityNet+Captions [31] Dense Captioning 100k 4,917 Daily Living YouTube Recall@k None
TVR [32] Video Subtitle 109k 5,445 TV Shows TV Recall@k TV Show
Condensed Movies [7] Caption 34k 6,581 Movies YouTube Recall@k, Avg. Rank Movie
VATEX [62] Caption *412k 8,920 Open YouTube Recall@k, Avg. Rank Multi-Lang.
EPIC-KITCHENS [18] Short Caption 77k 9,668 Kitchen Egocentric mAP,nDCG Action Class

Table 1: Details of popular Datasets in Video Retrieval, ordered by test set size. *Number of English captions.

Figure 2: Video examples from the test set of three datasets showcasing the corresponding caption (bold) used as ground-truth
along with highly relevant captions for other videos in the test set, considered irrelevant by IVR. In fact at times, such as the
top example from MSR-VTT, a caption deemed irrelevant by the benchmarks can be a more specific description of the video.

utilised transcribed audio narrations provided by the video
collectors. However, in all cases, the captions were col-
lected with the annotator observing a single video, thus a
caption’s relevance to other videos could not be considered.

MSR-VTT [64], MSVD [13] and VATEX [62] include
multiple captions per video, from multiple annotators, due
to the datasets being collected for captioning and para-
phrase evaluation. Nevertheless, during evaluation, prior
works [40, 44, 67] all use a test set that considers only one
caption per video. While some works [15, 25, 36, 40, 63]
utilise multiple captions during training, captions are only
relevant to the corresponding video and considered irrele-
vant to all other videos. The video pentathlon [3] recently
defined a retrieval challenge across five datasets [6, 13, 31,
64, 71]. This pentathlon similarly utilises IVR.

We focus our analysis on three datasets with a large test
set, MSR-VTT, YouCook2 and EPIC-KITCHENS. We con-
sider YouCook2 and EPIC-KITCHENS as these focus on
the single scenario of cooking, increasing the number of rel-
evant captions within the dataset.

Qualitative Analysis We start by highlighting stark qual-
itative examples, showcasing the shortcomings of the IVR
assumption, in Fig. 2. For each video, we show a key frame
along with five captions from the test set. We highlight the
corresponding caption according to the dataset annotations
in bold—which is used as ground-truth for evaluating and
ranking various methods. In each case, we show several in-

distinguishable captions that are all relevant in describing
the corresponding video. In fact, identifying which caption
is the ground truth would be challenging for a human. How-
ever, a method that potentially randomly gets the bold cap-
tions higher in the retrieval list would be considered state-
of-the-art, while another might be unfairly penalised. These
valid captions contain synonyms, a change in the sentence
structure or more/less details in describing the video.

Additionally, we find captions which are not inter-
changeable but are still somewhat relevant to the video. For
instance, the second example of EPIC-KITCHENS includes
captions of opening other bottles—e.g. sauce bottle vs the
vinegar/oil bottle. These captions should be ranked higher
than an irrelevant caption (e.g. “cutting a tomato”).
Conclusion While the concern with IVR is clarified in this
section, the task of manually annotating all relevant cap-
tions, as well as somewhat relevant captions, is unachiev-
able due to time and cost required. Instead, we propose sev-
eral proxy measures for semantic similarity between videos
and captions, which require no extra annotation effort and
use external corpora or knowledge bases.

4. Video Retrieval with Semantic Similarity

In this paper, we propose to move beyond Instance-based
Video Retrieval (IVR) towards video retrieval that uses se-
mantic similarity between videos and captions, for both
video-to-text and text-to-video retrieval. We first define Se-



mantic Similarity Video Retrieval (SVR), then propose an
evaluation protocol, as well as an approach to incorporate
semantic similarity during training. Finally, in Sec. 4.4 we
propose multiple approaches to estimate semantic similarity
from captions without the need for manual annotations.

4.1. Definition

Given the set of videos, X , and a corresponding set
of captions, Y . We define a semantic similarity function,
SS(xi, yj) ! [0, 1], which calculates a continuous score
that captures the similarity between any (video, caption)
pair. Similar to IVR, SS(xi, yj) = 0 if the caption is irrel-
evant to the video and 1 for maximally relevant. Different
from IVR, multiple captions can have a similarity of 1 to a
video, and analogously for videos. Additionally, the con-
tinuous value of SS can model varying levels of similarity.
If SS(xi, yj) > SS(xi, yk) then yj is a more relevant cap-
tion to the video xi than the caption yk. Consequently, if
SS(xi, yj) = SS(xi, yk) then both captions are considered
equally relevant and retrieving them in any order should not
be penalised by the evaluation metric.

4.2. Evaluation

To accommodate for cross-modal retrieval, i.e. both text-
to-video and video-to-text, we use the terms “item” and
“query” to refer to either a video or a caption. For a given
query, all items from the opposing modality are ranked ac-
cording to their distance from the query in the learnt em-
bedding space. Benchmarks in IVR use the following eval-
uation metrics: Recall@K, Geometric Mean1 and Average
Rank (median or mean) of the corresponding item.

In SVR, a different evaluation metric is needed due to
limitations of all current evaluation metrics used for IVR.
Firstly, Average Rank only allows for a single relevant item.
Whilst Recall@K can be used to evaluate queries with mul-
tiple items, a threshold on the continuous similarity is re-
quired. Additionally, choosing the value of K has to be con-
sidered carefully. If the value of K is less than the number
of relevant items for a given query, the metric would not
be suitable to assess a model’s true performance. This is a
concern for SVR where the number of relevant items will
vary per query, resulting in an unbalanced contribution of
different query items to the metric. Mean Average Preci-
sion (mAP) has also been used for retrieval baselines as it
allows for the full ranking to be evaluated. However, mAP
also requires binary relevance between query and items.

We seek an evaluation metric which is able to capture
multiple relevant items and take into account relative non-
binary similarity. We thus propose using normalised Dis-
counted Cumulative Gain (nDCG) [29]. nDCG has been

1Geometric Mean averages Recall@K over a range, typically
{1, 5, 10}, each giving the percentage of queries for which the correspond-
ing item was found within the top K results.

used previously for information retrieval [12, 55]. It re-
quires similarity scores between all items in the test set. We
calculate Discounted Cumulative Gain (DCG) for a query
qi and the set of items Z, ranked according to their distance
from qi in the learned embedding space:

DCG(qi) =

|Rqi |X

j=1

2SS(qi,zj) � 1

log(j + 1)
(2)

where Rqi is the set of all items of the oppos-
ing modality, excluding irrelevant items, for query
qi : Rqi = {zj |SS(qi, zj) > 0, 8zj 2 Z}2. Note that this
equation would give the same value when items of the same
similarity SS are retrieved in any order. It also captures dif-
fering levels of semantic similarity.

nDCG can then be calculated by normalising the
DCG score such that it lies in the range [0, 1]:
nDCG(qi) =

DCG(qi)
IDCG(qi)

where IDCG(qi) is calculated
from DCG and Z ordered by relevance to the query qi.

For overall evaluation, we consider both video-to-text
and text-to-video retrieval and evaluate a model’s nDCG as:

nDCG(X,Y ) = 1
2|X|

P
xi2X

nDCG(xi) +
1

2|Y |
P

yi2Y
nDCG(yi)

(3)
Note that Eq. 3 allows for a different number of videos and
captions in the test set.

4.3. Training

In addition to utilising semantic similarity for evaluation,
it can also be incorporated during training. A contrastive
objective can be defined to learn a multi-modal embedding
space, e.g. the triplet loss:

Lt(xi, yj , yk) = max (m+D(f(xi), g(yj))�D(f(xi), g(yk)), 0)

(4)
where D(·, ·) is a distance function, f(·) and g(·) are em-
bedding functions for video and text respectively, and m is
a constant margin. In IVR, the triplets xi, yj and yk are
sampled such that SI(xi, yj) = 1 and SI(xi, yk) = 0 (see
Eq. 1). In SVR, we use triplets such that SS(xi, yj) � T
and SS(xi, yk) < T where T is a chosen threshold.
Alternative Losses Other alternatives to the triplet loss can
be utilised, such as the approximate nDCG loss from [54],
log-ratio loss from [30], or losses approximating mAP [10,
11, 54, 56]. It is worth noting that some of these works
combine the proposed loss with the instance-based triplet
loss for best performance [10, 30]. Additionally, approxi-
mating mAP requires thresholding as mAP expects binary
relevance. Note that all these works, apart from [30], at-
tempt instance-based image retrieval. Experimentally, we
found the log-ratio loss to produce inferior results to thresh-
olding the triplet loss. Adapting these losses to the SVR
task is an exciting area for exploration in future work.

2Note that nDCG does not penalise the case when a large number of
low-relevant items are present. This can be alleviated by thresholding S.



4.4. Proxy Measures for Semantic Similarity

Collecting semantic similarity from human annotations,
for all but the smallest datasets, is costly, time consuming3

and potentially noisy. Previous work in image retrieval [26]
demonstrated that semantic similarities of captions can be
successfully utilised. We use the knowledge that each video
in the dataset was captured with a corresponding caption,
which offers a suitable description of the video, and thus
use the semantic similarity between captions instead, i.e.
we define SS(xi, yj) as

SS(xi, yj) =

(
1 i == j

S0(yi, yj) otherwise
(5)

where S0 is a semantic proxy function relating two captions.
We define four semantic similarity measures which we

use to compute S0(yi, yj)—based on bag of words, part-
of-speech knowledge, synset similarity and the METEOR
metric [8]. We choose these proxy measures such that they
should scale with the size of the dataset, not requiring any
extra annotation effort, but acknowledge that some datasets
may be better suited by one proxy over others. We investi-
gate this qualitatively and quantitatively in Sec. 5.1.
Bag-of-Words Semantic Similarity Naively, one could
consider the semantic similarity between captions as the
overlap of words between them. Accordingly, we define the
Bag-of-Words (BoW) similarity as the Intersection-over-
Union (IoU) between sets of words in each caption:

S0
BoW (yi, yj) =

|wi \ wj |
|wi [ wj |

(6)

where wi and wj represent the sets of words, excluding stop
words, corresponding to captions yi and yj .

This proxy is easy to calculate, however, as direct word
matching is used with no word context. This raises two
issues: firstly, synonyms for words are considered as irrele-
vant as antonyms, i.e. “put” and “place”. Secondly, words
are treated equally—regardless of their part-of-speech, role
in the caption, or how common they are. Word commonality
is partially resolved by removing stop words4. We address
the other concerns next.
Part-of-Speech Semantic Similarity Verbs and nouns, as
well as adjectives and adverbs, describe different aspects
of the video and as such words can be matched within
their part-of-speech. Matching words irrespective of part-
of-speech can result in incorrect semantic similarities. For
example, the captions “watch a play” and “play a board
game”. Alternatively, adverbs can be useful to determine
how-to similarities between captions [22]. By augmenting
the part-of-speech, we can ensure that the actions and ob-
jects between two videos are similar.

3Annotators would have to observe a video with two captions and indi-
cate their relative relevance. For n videos and m captions this is O(nm2).

4We find using tf-idf to remove/re-weight words comparable to remov-
ing stop words in the analysed datasets.

To calculate the Part-of-Speech (PoS) word matching,
captions are parsed, and we calculate the IoU between the
sets of words for each of the parts-of-speech and average
over all parts-of-speech considered.

S0
PoS(yi, yj) =

X

p2P

↵p
|wp

i \ wp
j |

|wp
i [ wp

j |
(7)

where p is a part-of-speech from the set P , wp
i is the set of

words from caption yi which have a part-of-speech p, and
↵p is the weight assigned to p such that

P
p2P ↵p = 1.

Synset-Aware Semantic Similarity So far, the prox-
ies above do not account for synonyms, e.g. “put” and
“place”, “hob” and “cooker”. We extend the part-of-
speech similarity detailed above using semantic relation-
ship information from synsets, i.e. grouped synonyms, from
WordNet [43] or other semantic knowledge bases. We mod-
ify the part-of-speech proxy,

S0
SY N (yi, yj) =

X

p2P

↵p
|Cp

i \ Cp
j |

|Cp
i [ Cp

j |
(8)

where Cp
i is the set of synsets within the part-of-speech p

for caption yi. Note that |Cp
i |  |wp

i | as multiple words are
assigned to the same synset due to the similar meanings.
METEOR Similarity The first three similarity functions
break the sentence into its individual words, with/without
parsing knowledge. Instead, captioning works have pro-
posed metrics that preserve the structure of the sentence,
comparing two captions accordingly. Multiple metrics
have been proposed (e.g. BLEU [52], ROUGE [35] or
CIDEr [60]) including METEOR [8]. Originally used for
machine translation and later image captioning, Gordo and
Larlus [26] proposed METEOR as one of their proxy mea-
sures for relating images via their captions.

METEOR calculates similarity both via matching, us-
ing synsets to take into account synonyms, and via sentence
structure, by ensuring that matched words appear in a sim-
ilar order. The proxy is then defined as: S0

MET (yi, yj) =
M(yi, yj), where M(·, ·) is the METEOR scoring function.
Other proxies Other similarity measures, including the use
of word/sentence embedding models such as BERT [19],
do not provide useful similarity scores on video retrieval
datasets. This is further discussed in supplementary.

5. Semantic Similarity Analysis

We evaluate baseline methods on the three datasets, with
the aim of answering the following questions: (i) How do
the different proxy measures compare to each other on the
three datasets? (ii) What is the impact of the noted short-
comings of IVR on methods’ performance? (iii) How do
current methods perform when using SVR evaluation for
the four proposed proxy measures? (iv) How does training
the models for SVR affect the results?



mix the ingredients in the pan together

cut the onions into small piecespour olive oil in pan

heat some oil in a deep pan and add
chopped onions and fry till they turn brown
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Figure 3: Examples of the proposed semantic similarity proxies (Sec 4.4). Captions are shown alongside the score S0
S(yi, yj)

when compared to the corresponding caption (bold). While scores differ, methods agree on highly-(ir)relevant captions.

Next, we present information on the datasets and base-
line methods along with their implementation details.
Datasets We continue exploring the three public datasets
from Sec. 3. These are: frequently-used MSR-VTT [64]
and YouCook2 [71], as well as recently released EPIC-
KITCHENS-100 [18]. The latter also has the benefit in that
it offers semantic annotations as we show next.
Baselines We train a simple embedding baseline with a
multi-layer perceptron for each modality which we name
as Multi-Modal Embedding or MME. We additionally con-
sider three publicly available baselines for the aforemen-
tioned datasets. We use the benchmark implementations
provided by the video pentathlon challenge [3] for MSR-
VTT and YouCook2: MoEE [40]: Multiple video fea-
tures are extracted from ‘video experts’ and an embedding
is learned for each. The final embedding is learned as a
weighted sum, determined by the caption. CE [36]: Video
expert features are passed through a paired collabora-
tive gating mechanism before the embedding and resulting
weighted sum. For EPIC-KITCHENS, we use the base-
line method JPoSE [63]: this trains separate embedding
spaces for each part-of-speech in the caption before being
combined into a retrieval embedding space. Implementa-
tion details match the publicly available code per baseline
as trained for IVR.
Parsing and Semantic Knowledge We parse the captions

using Spacy’s large web model [24]. We limit these to verbs
and nouns, setting ↵p = 0.5 for each in all experiments.
When computing the Synset-Aware Similarity, we use the
synsets released as part of [18] for both EPIC-KITCHENS
and YouCook2, as both share the domain of cooking. We
found that the synset information transfers well across both
datasets. Synset knowledge for MSR-VTT is found using
WordNet [43] and the Lesk algorithm [33]. MSR-VTT
includes multiple captions per video, therefore, for robust
word sets, we only include words which are present in 25%
or more of all of the captions for a given video (excluding
stop words). For METEOR, we use the NLTK implementa-
tion [37]. Additionally, to calculate SMET for MSR-VTT,
we use many-to-many matching with a non-Mercer match
kernel [38].

5.1. Proxy Measure Comparisons

We first clarify differences between the semantic similar-
ity proxies with qualitative examples. Fig. 3 shows exam-
ples from YouCook2, EPIC-KITCHENS and MSR-VTT.

BoW is the tightest proxy to IVR, only considering cap-
tions as equally relevant when the set of words match ex-
actly. The Synset proxy is the only one to consider the cap-
tions “stir food in the pan” and “mix the ingredients in the
pan together” equivalent. This is because it separately fo-
cuses on the verb and noun (similar to PoS) and is able to



Figure 4: Average number of relevant captions for a video with a given threshold over each dataset and proxy measure.

EPIC-KITCHENS-100MSR-VTTYouCook2

Figure 5: The min. and max. performance of baseline meth-
ods on the instance-based metric geometric mean when con-
sidering captions with S0

SY N (yi, yj) > 0.8 equivalent.

relate words such as “stir” and “mix”. While METEOR
also considers synonyms, it aims for a good alignment in
word order, therefore it gives all captions containing “in the
pan” a high score, even when the verb differs. This also ex-
plains the low score given to “add chopped onions to a pan
of oil” compared to PoS and SYN even though the caption
contains many of the same concepts.

For MSR-VTT, we show examples that demonstrate lim-
itations of semantic proxies. All proxies rank the caption “a
boy talking...” higher than “a contestant is judged...”. Sim-
ilarly, the relevance of the caption “a song plays” requires
access to the audio associated with the video and cannot be
predicted from the associated caption.

Having established an understanding of the proxies, we
now quantitatively assess them. In Fig. 4, we calculate the
similarity between a video and all captions in the dataset us-
ing Eq. 5. We then vary the threshold, T , for each proxy and
compute the number of captions where S(xi, yj) � T . We
plot the average number of ‘relevant’ captions as the thresh-
old increases. Note the y-axis is a log scale. In all cases,
we note that even at high thresholds the average number of
relevant captions is higher than 1. As expected, the synset
proxy, includes as many or more relevant captions than PoS,
due to it considering synonyms as equivalent. This is most
evident for EPIC-KITCHENS.

5.2. Shortcomings of IVR Evaluation

In Sec. 3, we analysed the shortcomings of the current
approach to video retrieval that only considers a single rel-
evant caption—the corresponding one. In this section, we
use the semantic proxies to quantify the impact of IVR on
the evaluation of video retrieval methods.

We consider the Geometric Mean metric, used as the
prime metric in the pentathlon [3]. For each method, we
showcase an upper/lower limit (as an error bar). To cal-

culate this we consider the retrieved captions and locate
the highest-retrieved caption that is above a tight thresh-
old S0

SY N (yi, yj) > 0.8, per video (see Fig. 3 for exam-
ples). We re-calculate the metrics, and show this as an up-
per limit for the method’s performance. Similarly, we locate
the lowest-retrieved caption above the same threshold. This
provides the lower limit. The figure shows the error in the
evaluation metric, for each baseline on all datasets.

From Fig. 5 we demonstrate a significant change in Geo-
metric Mean when using the Synset-Aware proxy (⇠30 ge-
ometric mean for EPIC-KITCHENS, ⇠6.0 for MSR-VTT
and ⇠5.0 for YouCook2). The gap between the reported
performance and the upper-bound indicates that these base-
lines are retrieving some highly similar captions as more
relevant than the ground-truth. Instance-based evaluation
metrics do not account for this. Without considering this
analysis on all relevant captions, we believe it is not possi-
ble to robustly rank methods on these benchmarks.

5.3. Using Semantic Proxies for Evaluation

We now evaluate SVR using nDCG (Eq. 3) with our pro-
posed semantic similarity proxies. Without re-training, we
evaluate nDCG on the test set, where the semantic similar-
ities are defined using one of the four proxies in Sec. 4.4.
We present the results in Fig. 7 on the three datasets.

Baselines significantly outperform Random as well as
the simple MME baseline on instance-based Geometric
Mean. However, when semantic similarity proxies are con-
sidered, this does not hold. For almost all cases, MoEE,
CE and JPoSE are comparable to MME. MME even outper-
forms more complex approaches (e.g. on YouCook2). This
is critical to demonstrate, as proposed methods can produce
competitive results on the problematic IVR setup, but may
not have the same advantage in SVR.

In Fig. 7 we can also see that the METEOR proxy leads
to high nDCG values even for the Random baseline on
MSR-VTT and YouCook2. This is due to high inter-caption
similarities on average. Differently, JPoSE outperforms
MME and Random on EPIC-KITCHENS for the METEOR
proxy. This suggests the hierarchy of embeddings in JPoSE
improves the sentence structure matches.

While the various proxies differ in the scores they as-
sign to captions, all four are suitable to showcase that tested
baselines do not improve over MME. This demonstrates
that, regardless of the semantic proxy, it is important to con-



Figure 6: Training CE with semantic knowledge compared to instance-only on (left) IVR using Geometric Mean and (right)
the four proposed semantic proxies using nDCG. Using semantic proxy in training improves performance in every case.

Figure 7: Evaluating the baseline methods on the proxy
measures for semantic similarity (Table in supplementary).

sider semantic similarity when assessing a method’s perfor-
mance, rather than using IVR.
Choice of Semantic Proxy We consider all four proposed
proxies to be valuable similarity metrics. One proxy can
be chosen over another for certain objectives/applications.
For example, to retrieve videos of the same recipe, BoW is
useful as only videos containing the same step and ingre-
dients are considered highly relevant. Conversely, PoS and
SYN are useful when focusing on actions as they increase
the importance of verbs. SYN is also particularly useful for
free form captions, where synonyms are plentiful. Multiple
proxies can be considered as multiple evaluation metrics for
increased robustness.

5.4. Training with Semantic Similarity

So far, the models have been trained solely using current
IVR losses. We now train with semantic knowledge using
the method from Sec. 4.3. We limit these experiments to
YouCook2, and the Collaborative Experts [36] (CE) base-
line due to the number of models required for training for
each proxy measure and threshold T . We use the following
labels to refer to models trained with the four proxy mea-
sures: CE-BoW, CE-PoS, CE-SYN and CE-MET respec-
tively. The original model trained using IVR, is designated
as CE-IVR. We vary the threshold T = {0.1, 0.2, ..., 1},
showing the results in Fig. 6 for both IVR (left) and SVR

(right). All plots compare to the CE-IVR (black line).
Fig. 6 (left) demonstrates that for all proxies, providing

semantic information during training can increase the per-
formance of IVR, however this does drop off as less similar
items are treated as relevant. As anticipated, the drop-off
threshold varies per semantic proxy.

Fig. 6 (right) shows that as T decreases, and more cap-
tions are considered relevant in training, significant im-
provement in nDCG can be observed compared to CE-IVR.
Note that the nDCG value cannot be compared across plots,
as these use different semantic proxies in the evaluation.
While the highest performance is reported when consid-
ering the same semantic proxy in both training and eval-
uation, training with any proxy improves results, although
they peak at different thresholds. From inspection, CE-SYN,
CE-MET and CE-PoS peak in performance around T = 0.4
whereas CE-BoW has a peak at T = 0.2. When training
with these specific thresholds, the models are able to best
learn a semantic embedding space, which we find is agnos-
tic of the proxy used in evaluation.

6. Conclusion

This paper highlights a critical issue in video retrieval
benchmarks, which only consider instance-based (IVR)
similarity between videos and captions. We have shown ex-
perimentally and through examples the failings of the as-
sumption used for IVR. Instead, we propose the task of
Semantic Similarity Video Retrieval (SVR), which allows
multiple captions to be relevant to a video and vice-versa,
and defines non-binary similarity between items.

To avoid the infeasible burden of annotating datasets for
the SVR task, we propose four proxies for semantic sim-
ilarity which require no additional annotation effort and
scale with dataset size. We evaluated the proxies on three
datasets, using proposed evaluation and training protocols.
We have shown that incorporating semantic knowledge dur-
ing training can greatly benefit model performance. We pro-
vide a public benchmark for evaluating retrieval models on
the SVR task for the three datasets used in this paper at:
https://github.com/mwray/Semantic-Video-Retrieval.
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On Semantic Similarity in Video Retrieval - Supplementary Material
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Here we provide a perceptual study that correlates the
proxy measures to human annotators in Section A. Next, we
provide information of the correlation between the semantic
proxies in Section B, then details on three other proxy mea-
sures showcasing their unsuitability to the three datasets in
Section C. Finally, we show a tabular version of Figure 7
from the main paper for numerical comparison in future
works in Section D.

A. Proxy Measures Human Agreement Study
One might wonder how do the proposed proxies in Sec-

tion 4.4 correlate to human annotators. To answer this ques-
tion, we conduct a small-scale human study.

Requesting a human to assign a score relating a video
and a caption is challenging and potentially subjective,
however, ranking a small number of captions for their rel-
evance to a given video can be achieved. We randomly se-
lect 100 videos from both the YouCook2 and MSR-VTT
datasets (we focus on these two datasets as they include the
most varied captions). For each proposed proxy, we rank the
corresponding captions by their similarity to a given video,
then select the most/least relevant captions as well as the
captions at the 1st, 2nd and 3rd quartiles. This gives us 5
captions that are semantically distinct for the video.

We then asked 3 annotators (out of 6 total annotators)
to order these 5 captions by their similarity to the given
video. We remove annotation noise by only considering
consistently ordered pairs of captions—that is when all 3
annotators agree that caption A is more relevant than B.
We then report the percentage of correctly ordered pairs
by the proxy, out of all consistently annotated pairs, as the
‘Human-to-Proxy’ agreement.

Table 1 shows the results of this human study. We note
the % of consistent pairs of captions in each case. Results
demonstrate that the four proxies correlate well with hu-
man rankings, with SYN and BoW giving the best Human-
to-Proxy agreement on YouCook2 and MSR-VTT respec-
tively. MET has lower agreements than the other proxy
measures due to it penalizing different word orders as dis-
cussed in Sec. 5.1 of the main paper.

⇤Now at University of Amsterdam.

BoW PoS SYN MET

% Consistent Pairs YouCook2 86.5 78.0 76.3 77.3
% Consistent Pairs MSR-VTT 73.1 78.8 75.6 69.2

Human Agreement YouCook2 91.2 88.8 92.1 85.6
Human Agreement MSR-VTT 93.7 84.8 89.7 87.5

Table 1. Human Study reporting % of caption pairs with agreement
between human and proxy on YouCook2 and MSR-VTT. Note:
chance is 50%.

B. Correlation Between Semantic Proxies
To determine how similar the four proposed semantic

proxies are, we calculate the Pearson correlation coeffi-
cient between pairs of semantic proxies for each video in
YouCook2, MSR-VTT and EPIC-KITCHENS.

Figure 1 shows this correlation averaged over the videos
within a dataset. All proposed semantic proxies have pos-
itive correlations, ranging between moderate (0.5-0.7) and
high (> 0.7) correlations. We find the agreement between
semantic proxies to be stronger at the lower end of the rank
with the different methods consistently agreeing on which
captions are irrelevant. At the higher end of the rank there
tends to be some disagreements between proxies, with SYN
and METEOR having the lowest correlation while BoW and
PoS having the highest correlation. Importantly, the trend is
consistent across the three datasets.

C. Proxies from Learnt Models
C.1. Definition

We compare our proposed proxies (Sec 4 in the main
paper) to three other proxies which use learnt features from
visual or textual models. Each proxy is defined as the cosine
similarity between two vectors:

S0(yi, yj) =
a(yi) · a(yj)

||a(yi)||⇥ ||a(yj)||
(1)

where a(·) is a trained model.

Textual Similarity We use two language models com-
mon in the literature to get representations: Word2Vec [3]
and BERT [1]. For Word2Vec, the word vectors are av-

1



Figure 1. The average Pearson’s correlation coefficient between pairs of proposed semantic proxies for YouCook2, MSR-VTT and EPIC-
KITCHENS.

Figure 2. Average number of relevant captions for a video with a given threshold over each dataset and proxy measure including the
Word2Vec (W2V), BERT and Visual (VIS).

eraged for a sentence-level representation1. When using
BERT, we extracted a sentence-level representation using
the DistilBERT model from [4].

Visual Similarity For the visual embedding proxy, we
use the video features extracted from the pre-trained model.
This changes Eq. 5 in the main paper to the following:

SS(xi, yj) =

(
1 i == j

S00(xi, xj) otherwise
(2)

Note that a video and a caption are related here purely on the
similarity between the video features, making the assump-
tion that the visual contents of video xj offer a sufficient
description of the caption yj , and that the pre-trained video
features offer sufficient discrimination between the videos.

C.2. Proxy Measure Comparisons
We show an extended version of Figure 4 from the main

paper, adding the three proxy measures from learnt mod-
els in Figure 2. We compare these for the three datasets
YouCook2, MSR-VTT and EPIC-KITCHENS.

We find the average number of relevant captions per
video from the three learned proxies is much higher than
the proposed proxies across almost all thresholds. With lots

1We also tried using the Word Mover’s Distance [2] but achieved
slightly worse results.

of captions being considered relevant, this has the effect of
inflating nDCG scores.

When analysing the visual proxy, we find that the simi-
larity is not semantic in nature. The visual proxy has high
similarities between segments from the same video, fur-
ther highlighting its unsuitability. Accordingly, using visual
similarity from pre-trained models is not suitable as a proxy
for semantic similarity.

The BERT and Word2Vec proxies similarly do not pro-
duce reasonable proxies of semantic similarities for these
three datasets. From Figure 2, both methods produce signif-
icantly more relevant captions than proposed metrics. When
analysing the results, we note that BERT and Word2Vec
relate captions via their context, because of their training
which relates words by the co-occurrence rather than their
semantic relevance. For example, ‘open’ and ‘close’ are
often used in the same context of objects, but represent op-
posite actions. Both Word2Vec and BERT would give much
higher similarity to these two, despite being antonyms.

D. Table of Figure 7

Table 2 shows the performance of the different baseline
models on all three datasets and proxy measures. See Sec-
tion 5.3 in the main paper for the discussion of results.
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Proxy Instance BoW PoS Syn Met
Metric GMR nDCG

Yo
uC

oo
k2 Random 0.1 23.1 22.1 27.7 66.2

MEE 7.5 42.1 40.3 45.3 73.3
MoEE 9.8 41.5 39.1 44.0 73.0

CE 9.7 41.8 39.3 44.1 73.0

M
SR

-V
TT Random 0.2 34.0 30.0 11.6 80.4

MEE 15.7 51.6 48.5 33.5 83.3
MoEE 22.7 53.9 50.8 36.8 83.9

CE 22.4 54.0 50.9 36.7 84.0

EP
IC

Random 0.0 11.7 4.5 10.7 13.0
MEE 18.8 39.3 29.2 41.8 41.0

JPoSE 9.4 39.5 30.2 49.0 44.5

Table 2. Tabular version of Figure 7 from the main paper. Results
of evaluating the baseline methods on the different proxy measures
for semantic similarity. (GMR=Geometric Mean Recall)
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