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“ The study of mental objects with reproducible properties is called mathematics.

”
The Mathematical Experience (Davis and Hersch, 1981)

“ The study of physical objects with reproducible properties is called science.

”
The dawning of the age of stochasticity, Mathematics: frontiers and perspectives

(Mumford, 2000)
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INTRODUCTION

Contents The thesis addresses nonparametric Bayesian methods in robotic vision.
Nonparametric Bayesian models can be simultaneously employed to per-
form inference over the number of entities observed and over the shape or
nature of these entities. This chapter introduces nonparametric Bayesian
models, the research methodology based on the Bayesian methodology,
the main contribution towards robotic vision, and the general organiza-
tion of the thesis.

Outline The scope of this thesis is to apply nonparametric Bayesian methods to
robotic vision (Section 1.1). Bayesian nonparametric models define en-
tities together with noise in such a way that inference can be performed
in an optimal manner (Section 1.2). Particular problems in robotic vision
that can benefit from Bayesian nonparametric methods are formulated
and detailed (Section 1.3). The research methodology is described (Sec-
tion 1.4). Our main contribution is to introduce nonparametric Bayesian
models in robotic vision (Section 1.5). At the end of this chapter the or-
ganization of the thesis is given (Section 1.6).

1.1 Scope of the Thesis

In the thesis, modern Bayesian nonparametric methods are used to answer long-standing
questions within computer and robotic vision. The following three challenging questions
are typical examples. Is there a Bayesian form of line detection rather than applying the
traditional Hough transform? Which of the nonparametric Bayesian priors can be used to
detect multiple features simultaneously? What are efficient inference methods for these
priors?

The scope of the thesis is the transfer of knowledge on Bayesian nonparametrics to well-
described application domains. It will not establish a new body of work around a new family
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2 Chapter 1. Introduction

of stochastic processes. The detailed application of complex models towards robotic vision
is expected to help and encourage people in entirely different application domains, such as
collaborative filtering, search engine optimization, and audio processing. All these different
applications do not always need dedicated algorithms, but do deserve and can exploit the
same optimal general inference techniques from Bayesian nonparametrics.

1.2 Bayesian Nonparametrics

In robotic vision (computer vision and depth perception) traditionally custom-made algo-
rithms have been developed for a given task. There are specific methods to detect corners
(e.g., Förstner and Gülch, 1987; Harris and Stephens, 1988; Shi and Tomasi, 1994), to de-
tect edges (e.g., Sobel, 1970; Canny, 1986), to detect features (e.g., Hough, 1962), and to
describe features (e.g., Lowe, 1999; Dalal and Triggs, 2005; Bay et al., 2006).

(a) The PointNet40 dataset (Wu et al., 2015)
has forty examples of common objects in the
house of which the toilet is an example (Garcia-
Garcia et al., 2016).

(b) The KITTI dataset (Geiger et al., 2012) has
point clouds made by the Velodyne lidar. It is
data that can be used on self-driving cars to be-
come more aware of their surroundings. This
example is from (Ioannou et al., 2012).

(c) Example of a point cloud generated by the
Kinect depth sensor. This type of sensor can be
used for applications indoors, e.g. autonomous
cleaning robots. This particular example is a test
on how a transparent sheet will show up on such
a structured light sensor.

Figure 1.1: Examples of point clouds.

On the one hand, it is desirable that such sophisticated methods are generalizable to other
application domains. On the other hand, it is important to take particular information about
an application domain into account. The methods described in the previous paragraph are
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limited to their specific task. An example of limited generalizability can be found in the
Hough transform. The Hough transform can be used to detect lines, but the way inference is
performed in the algorithm does limit its application to basic forms of object detection. An
example of limited specificity can be found in linear regression. Linear regression assumes
a linear relationship between input and output variables.

Both generalization and specificity are formalized by a Bayesian model. A Bayesian model is
general, because the problem modeled by it can be solved with general inference methods.
One of such general inference methods is a Markov-Chain Monte Carlo method. A Bayes-
ian model is also specific in that it can incorporate application-specific know-how by the
definition of priors. This power of Bayesian models can be seen in many disciplines, from
robotic localization (Blanco et al., 2010), and dynamical systems (Dubbeldam et al., 2011),
to forensic and legal arguments on evidence (Wieten et al., 2019).

Typical problems in robotic vision will be about the recognition of several objects, multiple
shapes, or objects that have multiple parts. Models that represent such objects do not have
knowledge about the number of such objects, shapes, or parts. To incorporate application-
specific know-how on the number of objects it is possible to define a prior that assigns a
probability to this quantity. The number of objects can even be potentially infinite. The
Bayesian models that define a prior on the number of objects, shapes, or parts are called
nonparametric Bayesian models. This means that in contrast with conventional methods
such as k-means clustering (Forgy, 1965; Lloyd, 1982) the number of objects does not need
to be predefined.

1.3 Problem Statement and Research Questions

Many methods in robotics - and in particular in robotic vision - have been developed in times
where computational resources were limited. Then, highly optimized algorithms have been
developed, leveraging pecularities of the application domain. Recent advances in Bayesian
methods, both with respect to concept development, as well as computational efficient solu-
tion strategies, now open up new ways to solve old problems (Seeger, 2000; Murphy, 2012;
Huszár and Duvenaud, 2012; Gal and Ghahramani, 2016; Mandt et al., 2017). However,
extending only the old methods themselves would lead to ad hoc solution strategies that will
miss benefits from potential optimal and more widely applicable algorithms.

This observation leads us to the formulation of our problem statement (PS).

PS: How can robotic vision problems effectively be generalized and their struc-
ture exploited in a wider Bayesian framework?

The problem statement is rather general. In our research, we focus on robotic vision, in the
form of point cloud recognition and depth perception. In particular, we look at objects, lines,
line segments, and more complex shapes.
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From this problem statement we derive three research questions (RQs).

RQ 1 How can we estimate the number of objects simultaneously with the
fitting of these objects?

RQ 2 How can we optimize inference over both the number of objects and
fitting of those objects in the robotic vision domain?

RQ 3 How can we recognize more general 3D objects?

1.4 Research Methodology

The research methodology advocated in the thesis follows the Bayesian methodology (cf.
Savage, 1972; Jaynes, 2003). So, our research methodology consists of two phases. In the
first phase a Bayesian model is defined. This model exists of (1) a definition of parameters
and relations between these parameters, (2) a definition of the noise, and (3) the data. In
the second phase, the Bayesian method dictates all remaining unknowns, from the number
of parameters to the values of the parameters. To perform Bayesian inference efficiently new
methods are required if the model is complex (as is the case with robotic vision).

The Bayesian methodology aims to establish the rationale for practical questions. The fol-
lowing two questions are clear examples.

◦ If we observe a single point in an image, can we expect it to be part of a line?

◦ If we have two lines and we live in a world with squares, what are we able to infer?

The two questions tap into our capabilities to define models that makes our prior knowledge
explicit. Moreover, if we are able to quickly assign (1) points to segments, (2) segments to
lines, and (3) objects to categories, we can enrich it with all corresponding group properties
without the need to have them observed for this individual.

In robotic vision we take as an example the task of line detection. Both the Hough trans-
form (Hough, 1962) and the RANSAC method (Bolles and Fischler, 1981) do detect lines,
but they do not explicitly take noise into account. We can apply a Bayesian methodology to
these tasks if we extend it to perform inference over a variable number of objects. This is
called nonparametric Bayesian inference (Ghosal and Van der Vaart, 2017) . The Bayesian
inference method is optimal in an information-theoretic sense (Zellner, 1988), Moreover,
nonparametric Bayesian models are consistent in the sense that they approach the underly-
ing true distribution (Wasserman, 1998).

Let us write this down informally in a straightforward manner. If we have formulated a prob-
lem in the Bayesian sense, there is no better way to solve it than using Bayesian inference.
Given a Bayesian model, there is no need to search for another method to infer lines in a
line detection task. No variant on Hough or RANSAC will outperform the Bayesian model.
If someone would find a method that seems to outperform a Bayesian method it is either (1)
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because the signal or noise has not been correctly modeled, or (2) because the method over-
fits with respect to the available data. Moreover, if approximations are used with respect
to optimal Bayesian inference (either variational approximations or Markov-Chain Monte
Carlo), there are theoretical guarantees on convergence (Andrieu et al., 2003). A Bayes-
ian model is recommended also in those cases, compared to models that do not have such
guarantees.

A well known problem with nonparametric Bayesian models is the curse of dimensionality.
Compared to maximum likelihood methods or other non-probabilistic methods that do not
take noise into account at all, the nonparametric Bayesian models require significant com-
putational resources. Our research methodology first establishes the correct models, even
if solving them seems computationally infeasible. Subsequently, our approach is to develop
approximations using more efficient samplers while theoretical guarantees on convergence
are preserved.

As described before, the Bayesian inference method is optimal in an information-theoretic
sense (Zellner, 1988). In this thesis we take the optimality of the Bayesian method as a
given. Our research methodology is to perform experiments to study the efficacy of inference
methods for the proposed models. We will restrict the scope of the thesis to the (subjective)
priors and noise models we propose for particular models. We will not study alternative
noise models and priors.

1.5 Main Contribution

Our contribution to robotic vision can be subdivided into three parts that correspond with
the three research questions.

The first part addresses the problem of inference about objects from a nonparametric Bayes-
ian perspective. Contemporary methods in robotic vision do not allow for astute statements
about their performance. In practice, this means that when using computer vision to detect
cells under a microscope, someone cannot be confident about the number of detected cells.
An autonomous cleaning robot in a supermarket cannot be confident about the aisle it is driv-
ing into. To be able to properly take into account models and uncertainty simultaneously,
Bayesian models have found mainstream adoption. State-of-the-art Bayesian methods that
reason about the number of objects alongside object models are a recent object of study (cf.
Ferguson, 1973; Hjort, 1990; Lijoi and Prünster, 2010; Joho et al., 2011). The thesis applies
such nonparametric Bayesian models towards the applications of robotic vision and depth
perception. Models such as the infinite line model and the infinite line segment model are
introduced.

The second part addresses the problem of high-dimensional data. To efficiently sample
more complex geometric structures, new MCMC (Markov-Chain Monte Carlo, Section 2.2.4)
methods are required. The thesis introduces such an MCMC sampler, namely a new Split-
Merge sampler, and applies it to complex geometric structures.
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The third part addresses more complex robotic vision problems, in the form of object recog-
nition of point clouds in 3D. It combines nonparametric Bayesian inference with models
from deep learning.

1.6 Organization of the Thesis

Chapter 1 (this chapter) introduces the problem of contemporary methods in computer
vision and depth perception. Due to the fact that these methods are not optimal
by construction, it is hard to articulate how they perform. The need for a Bayesian
methodology is sketched briefly. The problem statement and three research questions
are formulated. Moreover, the research methodology is described and the organization
of the thesis is outlined.

Chapter 2 describes (1) probability theory using measure theory, (2) random measures
known as random processes of which five are described as nonparametric Bayesian
models, and (3) six inference methods that infer model parameters of such nonpara-
metric Bayesian models given the data. It is followed by a discussion that indicates
which parts will be most useful for chapters 3 and 4.

Chapter 3 examines a first nonparametric Bayesian model, i.e., the infinite line model. The
infinite line model represents a countably infinite set of lines. Gibbs sampling is used
to perform simultaneous inference over (1) the number of lines and (2) line parameter
values such as slope and intercept.

Chapter 4 examines a second nonparametric Bayesian model, i.e., the infinite line segment
model. The infinite line segment model represents a countably infinite set of line
segments. A split-merge MCMC sampling method is used to perform simultaneous
inference over (1) the number of line segments and (2) line segment parameter values
such as slope, intercept, and segment size. Chapters 2 to 4 answer the first research
question.

Chapter 5 investigates a new MCMC method, the Triadic Split-Merge sampler. It is tailored
to clustering problems and accelerates inference of the models in Chapters 3 and 4.
This chapter answers the second research question.

Chapter 6 examines more complex objects, like cubes and multiple cubes in a 3D space. It
employs deep learning methods, in particular an autoencoder on point clouds, to per-
form inference on this type of data. This chapter answers the third research question.

Chapter 7 discusses the relevance of the developed models and inference methods. The
answers to the research questions are discussed. Then the problem statement is an-
swered and conclusions are formulated. Finally, recommendations are given and fu-
ture research is envisaged.
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Contents In robotics depth sensors generate point clouds. The tasks of robotic ob-
ject recognition, positioning, and navigation require models that repre-
sent such point clouds. It is unclear whether the current methods that
perform inference over point clouds are appropriate for these tasks. The
current models do not model uncertainty explicitly. This chapter presents
models that can be used for point cloud modeling and that represent un-
certainty. This (partially) answers research question RQ1. The chapter
concludes with recommendations for the development of point cloud in-
ference models. They will be implemented in a new model for line infer-
ence in Chapter 3 and line segment inference in Chapter 4.

Outline This chapter describes one particular nonparametric Bayesian model, the
Dirichlet process. The process is presented in four ways: (1) as a measure,
(2) with a sequential representation (using a restaurant metaphor), (3) as
a prior for a mixture, and (4) exhibiting a stick-breaking distribution for
cluster sizes (Section 2.1). Six inference methods are described: (1) in-
verse transform sampling, (2) rejection sampling, (3) approximate Bayes-
ian computation, (4) Gibbs sampling, (5) Metropolis-Hastings sampling,
and (6) Split-Merge Markov chain Monte Carlo sampling (Section 2.2).
Inference about point clouds in the chapters to follow will use adaptations
of the described models and inference methods for which some recom-
mendations are given (Sections 2.3 and 2.4) .

2.1 Dirichlet Process

The Dirichlet process is presented as a measure (Section 2.1.1), is shown to have a sequential
representation in the form of the Chinese restaurant process (Section 2.1.2), is used as a
prior for a mixture (Section 2.1.3), and a stick-breaking representation (Section 2.1.4). We

7
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compare the Dirichlet process, the Dirichlet process as prior for a mixture model, the Chinese
restaurant process and the stick-breaking representation in Figure 2.1 using plate notation
(cf. Fox et al., 2007).

Figure 2.1: From left to right. (1) The Dirichlet process G ∼ DP(α, H). (2) The Dirichlet
mixture model with G as a prior: θi |G ∼ G. The parameters θi generate observations wi
through p(wi |θi). (3) The Chinese restaurant process with G marginalized out. (4) The stick-
breaking process with a distribution over partition sizes π and indicator variables zi (cf. Fox
et al., 2007).

2.1.1 Dirichlet Process as a Measure

The Dirichlet process (DP) is a distribution over distributions (Ferguson, 1973).

È Definition 2.1 — Dirichlet process

A Dirichlet process DP over a set S can be used to draw sample paths G:

G ∼ DP(α, H)

with α the dispersion parameter and H a measure on S and for which any measurable
partition {B0, . . . , Bn−1} ∈ S is drawn from a Dirichlet distribution:

(G(B0), . . . , G(Bn−1))∼ Dirichlet(αH(B0), . . . ,αH(Bn−1))

The Lévy intensity of the Dirichlet process is complicated, because it is a so-called normalized
process, see Regazzini et al. (2003).
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2.1.2 Chinese Restaurant Process

De Finetti’s theorem (Definition A.45) can be used to establish the existence of an infinitely
exchangeable sequence. In the particular case of the Dirichlet process the sequence is an ex-
changeable distribution over partitions and is called the Chinese restaurant process (Aldous,
1985).

È Definition 2.2 — Chinese restaurant process

A Chinese restaurant process is a sequential process that is an exchangeable distribution
over partitions:

p(zi = k|z0, . . . , zi−1) =

� nk
α+i if k ≤ K+
α
α+i if k > K+

(2.1)

The conditional probability of a cluster assignment zi (for sample θi) given the cluster as-
signments z0, . . . , zi−1 is proportional to the number of samples nk assigned to an existing
cluster k, or proportional to α for a new cluster. The existing clusters are denoted by k ≤ K+
with K+ the number of clusters.

Instead of sampling cluster assignments, we can generate the samples {θ} from the base
distribution H directly:

θi+1|θ1, . . . ,θi ∼





δθ1
, with probability 1/(α+ i),

...
...

δθi
, with probability 1/(α+ i),

H, with probability α/(α+ i).

(2.2)

The random measure G is marginalized out (see also the plate notation in Figure 2.1). This
particular representation is especially convenient for Gibbs sampling about which we will
learn in Section 2.2.4. This can also written equivalently as:

θi+1 | θ1, . . . ,θi ∼
1
α+ i

 
αH +

i∑
j=1

δθ j

!
. (2.3)

The Chinese restaurant process is visualized in Figure 2.2. In a restaurant with K+ tables
there are i customers seated, {θ0, . . . ,θi−1}. The probability that a new customer, θi , will be
seated at an existing table depends on the number of customers, nk, already at the table.
The probability that the customer is assigned a new table is proportional to the dispersion
parameter α.
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Figure 2.2: The Chinese restaurant process with i customers, θ0, . . .θi−1, already sitting down.
A new customer θ7 arrives and gets assigned. The assignment variable is z7. The customer gets
assigned an existing table {1, 2,3} with a probability proportional to the number of customers
nk sitting at that table: nk/(α+ i). The customer gets assigned a new, empty table {4} with
probability α/(α+ i). In the visualized Chinese restaurant process the dispersion factor α is
equal to 1. Thus for the first table nk = 4 (four customers) and the probability the customer
will be assigned this table: P(z7 = 1|z0, . . . , z6) = nk/(α+ i) = 4/(1+ 7) = 4/8.

2.1.3 Dirichlet Process Mixture

The Dirichlet process can be used as a prior for an infinite mixture model (Definition A.42).
This is visualized in (Figure 2.3).

θ 0 θ 1 θ 2 θ 3 θ 4 θ 5 θ 6 θ 7 θ 8 θ 9 sum

data 0 0 0 1 0 0 0 0 0 0 ... 1

data 1 1 0 0 0 0 0 0 0 0 ... 1

data 2 1 0 0 0 0 0 0 0 0 ... 1

data 3 0 1 0 0 0 0 0 0 0 ... 1

data 4 1 0 0 0 0 0 0 0 0 ... 1

data 5 0 1 0 0 0 0 0 0 0 ... 1

data 6 0 0 0 0 1 0 0 0 0 ... 1

Figure 2.3: An infinite matrix representation of an infinite mixture model. At the horizontal
axis we see the latent variables. There are potentially an infinite number of latent variables.
At the vertical axis we see the data items. A data item is assigned to a single latent variable.
The rows sum up to one.

The representation as a distribution over infinite matrices can be found in the literature
(Ghahramani and Griffiths, 2005). We observe that a column has multiple nonzero values.
A parameter is not unique, it can be sampled multiple times. The Dirichlet process lends
itself as a prior for a mixture. First, the Dirichlet process exhibits this property of being al-
most surely discrete (Ferguson, 1973; Blackwell, 1973; Basu and Tiwari, 1982). If the base
measure H is atomless then with probability one the ith value θi drawn from the Chinese
restaurant process is distinct from the values θ1, . . . ,θi−1 if it is drawn from H. Informally,
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this can be seen as defining a prior over more than one column. Second, for a finite dis-
persion parameter α, the probability of sampling identical values (from

∑
j δθ j

) is nonzero.
Informally, this can be seen as a prior that allows for multiple nonzero values in a column.

2.1.4 Stick-breaking Representation of the Dirichlet process

The stick-breaking representation by Freedman and Diaconis (1983), also known as the resid-
ual allocation model (Sawyer and Hartl, 1985; Hoppe, 1986), represents a random process
through breaking sticks.1 A stick of unit length is broken in subsequently smaller pieces
with each piece broken off put aside. Here we introduce the stick-breaking representation
according to the exposition in Ishwaran and James (2001).

È Definition 2.3 — stick-breaking

An infinite sequence of random variables π = {π0,π1, . . .} has a stick-breaking repre-
sentation with parameters α and β denoted by π∼ GEM(α,β) with

wk
iid∼ Beta(1− β ,α+ kβ), k = 1, . . . , (2.4)

πk = wk

k−1∏
i=1

(1− wi). (2.5)

The random variables wk are drawn iid from a Beta distribution. The stick lengths are
represented by πk and when k →∞ the infinite dimensional prior is well defined under
some mild conditions (Ishwaran and James, 2001). An illustration of the stick-breaking
presentation can be found in Appendix A.8. The letters GEM stand for Griffiths, Engen, and
McCloskey as proposed - and considered appropriate as acronym because of its beautiful
properties - by Ewens (1990).

È Definition 2.4 — stick-breaking representation of the Dirichlet process

The stick-breaking representation of the Dirichlet process states that if

πk ∼ GEM(α, 0), k = 1, . . . ,∞, (2.6)

θk
iid∼ H, k = 1, . . . ,∞, (2.7)

G =
∞∑
k=1

πkδθk
, (2.8)

then G ∼ DP(α, H).

1Not using the stick analogy but preceding the work by Freedman and Diaconis (1983) and using the same
multiplicative representation is the study on how one pound of gold dust can be distributed among a countably
infinite number of beggars by Halmos (1944).
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The weights πk are sampled from the stick-breaking process GEM(α, 0). The parameter
values θk are independently sampled from the base measure H. To sample from the Dirichlet
process we sample the parameters θk with the weights πk.

The stick-breaking process can be used as a prior for a mixture. Sample the cluster assign-
ments zi according to the mixing proportions π and generate the observations from the
cluster parameters:

zi ∼ Mul t(π), (2.9)

wi ∼ F(θzi
) (2.10)

Here θk = θzi
for observation wi with index i and cluster assignment k: zi = k.

2.2 Inference

There will be six inference methods described, all sampling methods. Inverse transform sam-
pling is described in Section 2.2.1. Rejection sampling in Section 2.2.2. Approximate Bayes-
ian computation in Section 2.2.3. Gibbs sampling in Section 2.2.4. Metropolis-Hastings
sampling in Section 2.2.5. Split-Merge MCMC sampling in Section 2.2.6. We report for
every inference method the corresponding algorithm in pseudo code. We compare the in-
ference methods in Section 2.2.7.

2.2.1 Inverse Transform Sampling

Let p(x) be a discrete probability distribution with two possible values x = f and x = g.
The probability distribution sums up to one:

∑
v p(x = v) = 1. Sample from a uniform

distribution u ∼ U(0,1). If u < p(x = f ) generate f , else generate g. This procedure
samples f with probability p(x = f ) and g with probability p(x = g). It can be readily
generalized to more than two values by making use of the cumulative distribution function.
In Algorithm 1 we sample from f (x) by making use of the inverse cumulative distribution.

Algorithm 1 Inverse transform sampling for f (x)

1: procedure INVERSE TRANSFORM SAMPLING( f (x)) . Distribution to sample from.
2: F(x) =

∫ x
−∞ f (s)ds . Create cumulative distribution function F(x).

3: X = ∅
4: for t = 1→ T do
5: u∼ U(0, 1) . Sample from uniform distribution.
6: x ∼ F−1(u) . Sample x from (the inverse) F−1(x).
7: X = X ∪ x
8: end for
9: return X . X will have the distribution of f (x).

10: end procedure
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The term “inverse” stems from the fact that we return x (or f (x)) given u. Inverse trans-
form sampling is a common component in sampling methods. When one of the steps in
an algorithm samples from a uniform distribution, it is often an inverse transform sampling
step.

2.2.2 Rejection Sampling

Let f (x) be a complicated function from which it is hard to take samples. Let g(x) be a
simple function that is easy to sample from. Then we can sample from f (x) by making
sure M g(x) ≥ f (x). The function M g(x) is an envelope function. This sampling method S
generates the sample set X using f (x) and g(x).

X = S( f (x), g(x), M , T ) (2.11)

The rejection sampling method (Halperin and Burrows, 1960) for f (x) is described in Algo-
rithm 2.

Algorithm 2 Rejection sampling for f (x)

1: procedure REJECTION SAMPLING( f (x), g(x), M , T) . Target and proposal distribution
and scalars M and T.

2: X = ∅
3: for t = 1→ T do
4: x t ∼ g(x) . Generate x t from g(x)
5: u∼ U(0,1) . Inverse transform sampling
6: p0 = f (x)/(M g(x))
7: if u< p0 then
8: X = X ∪ x t . Accept
9: end if

10: end for
11: return X . S will have the distribution of f (x)
12: end procedure

We can use rejection sampling to sample from the posterior f (θ |x) given that (1) we know
the exact likelihood function and (2) we can sample from the prior. Here, we know that we
can sample from the posterior by sampling from p(θ )p(x |θ ). Moreover, we know that the
prior p(θ ) necessarily has to be larger than p(θ )p(x |θ ) for any observation, because p(x |θ )
is a probability density function, hence for each x and θ it is smaller than one. Therefore we
can use rejection sampling with M g(x)≥ f (x) with M = 1, p(θ ) = g(x) and p(x |θ = f (x).

We introduce the following notation. We make explicit that we need p(x |θ ) for each com-
bination of observations and parameters, but that we only need to sample2 from the prior,
which we indicate by a tilde, ∼ p(θ ).

2The notation ∼ p(θ ) means that we can sample from p(θ ) but that we do not have access to a closed-form
probability density function.
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Θ = S(∼ p(θ ), p(x |θ ), x , T ) (2.12)

Algorithm 3 Rejection sampling for f (θ |x)
1: procedure REJECTION SAMPLING(p(θ ), p(x |θ ), x) . Requires prior, likelihood and

observations.
2: Θ = ∅
3: for t = 1→ T do
4: θ t ∼ p(θ ) . Generate θ t from prior
5: u∼ U(0, 1) . Inverse transform sampling
6: p0 = p(x |θ )
7: if u< p0 then
8: Θ = Θ ∪ θ t . Accept
9: end if

10: end for
11: return Θ . Θ will have the distribution of f (θ |x)
12: end procedure

In Algorithm 3 the envelope distribution p(θ ) and the target distribution p(θ )p(x |θ ), cancel
in such way that only p(x |θ ) remains.

Most examples illustrate rejection sampling by estimating the area of a circle, but let us
visualize the method in the context of sampling (Figure 2.4).

Figure 2.4: A Gaussian is placed over the complex target probability density function. Sub-
sequently the samples that fall in between these two ‘envelopes’ are rejected. This results in a
sampling scheme that follows exactly the more complicated probability density function. Note
that if the function is scaled by a factor, the sampling scheme stays the same. Such a scaling
factor is only important if we want, for example, to know the area under the graph.
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2.2.3 Approximate Bayesian Computation

In approximate Bayesian computation (ABC) (Rubin, 1984) the likelihood function does not
need to be calculated3 (Sisson and Fan, 2011). In contrast, it is assumed that there is a model
available that simulates observations given the (searched for) parameters. In ABC for each
configuration of parameters a set of observations is generated.

Θ = S(∼ p(θ ), X ,∼ M(θ ), d(X t , X ),ε, T ) (2.13)

Approximate Bayesian computation uses many tuning parameters. Its most salient charac-
teristic though, is that it generates pseudo-observations through M(θ ) (see Algorithm 4).

Algorithm 4 Approximate Bayesian computation

1: procedure APPROXIMATE BAYESIAN COMPUTATION(p(θ ), X , M , d,ε) . Requires prior,
observations, model, distance function, and threshold.

2: Θ = ∅
3: for t = 1→ T do
4: θ t ∼ p(θ ) . Generate θ from prior
5: X t ∼ M(θ ) . Simulate observations X t from model M
6: ρ = d(X t , X ) . Calculate distance between simulated and actual observations
7: if ρ ≤ ε then
8: Θ = Θ ∪ θ t . Accept θ t if distance falls under threshold ε.
9: end if

10: end for
11: return Θ . Θ will have the distribution of f (θ |X )
12: end procedure

The term Bayesian reflects the fact that a prior is involved. The weight of this prior can be
manipulated by the threshold ε. If this threshold is set very low, the prior plays no role and
only observations are taken into account. If ε is set extremely high, all θ coming from the
prior will be accepted, and the actual observations are not used in the process. There are
several disadvantages to approximate Bayesian computation.

◦ A set of simulated observations has to be compared with the actual observations. This
becomes unwieldly if there are many observations.

◦ It is possible to use summary statistics rather than the observations themselves. If
these are sufficient statistics there will be no information loss. If not, there will be
information loss in practice.

◦ The distance function suffers from the curse of dimensionality. In the case that the
dimensionality of the individual observations becomes high, or the number of param-
eters becomes large, it gets increasingly difficult to come up with a distance function
which is efficient and accurate at the same time.

3ABC is also called likelihood-free computation
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2.2.4 Gibbs Sampling

Gibbs sampling (Geman and Geman, 1984) is similar to the coordinate descent optimization
algorithm (Wright, 2015). In coordinate descent a local minimum of a function is found by
iteratively performing a line search along one coordinate direction at a time. Gibbs sampling
generates posterior samples by sampling all conditional distributions p(θi |θ−i) iteratively.

Θ = S(∼ p(θi |θ−i),∼ p(θ ), B, T ). (2.14)

Sampling iteratively will give us the joint distribution p(θi ,θ−i). We can also sample condi-
tional on observations X to obtain p(θ |X ). We will describe Gibbs sampling in that context:

Θ = S(X ,∼ p(θi |θ−i , X ),∼ p(θ ), B, T ). (2.15)

We visualize Gibbs sampling to obtain conditional distributions as in Eq. 2.15 in Figure 2.5.

Figure 2.5: A block diagram to visualize Gibbs sampling. This representation makes the
inputs and outputs of the Gibbs sampling method explicit. The inputs are observations, X ,
a conditional distribution to sample from p(θi ,θ−i , X ), a prior distribution to sample prior
values p(θ ) and a burn-in period, B, and total number of steps, T . The ∼ symbol at an arrow
indicates sampling rather than access to a probability density function.

The Gibbs algorithm is given in Algorithm 5. Some explanation on the notation is as follows.
Here θ can be understood as the parameters of a multivariate probability distribution. The
individual parameters are denoted by θi . The set of all parameters except for parameter i is
denoted by θ−i .

θ t
i ∼ p(θ t

i |θ t−1
−i , X ). (2.16)

The sampling of θ t
i is here represented in a simplified manner. The actual4 implementation

samples a new parameter value using a combination of already updated, θ t , and old values,
θ t−1:

4Also this is simplified. There is a choice to shuffle θ t
i at each time step or to keep the same order θ t

1 , . . . ,θ t
k .
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θ t
i ∼ p(θ t

i |θ t
1 , . . . ,θ t

i−1,θ t−1
i+1 , . . . ,θ t−1

k , X ). (2.17)

If we sample a parameter we write θ t with t the iteration or sampling round. The array of
parameter samples has capital letter Θ.

Algorithm 5 Gibbs sampling

1: procedure GIBBS SAMPLING(p(θi |θ−i , X ), p(θ ), X , B) . Requires conditional and prior
distributions (to sample from), observations, and burn-in period.

2: Θ = []
3: θ0 ∼ p(θ ) . Set parameters to some initial value.
4: for t = 1→ T do
5: for i = 1→ k do
6: θ t

i ∼ p(θ t
i |θ t−1
−i , X ) . Generate θ t

i from Eq. 2.16, equivalently, Eq. 2.17.
7: end for
8: Θ[t] = θ t

9: end for
10: ΘB:T = Θ[B : T] . Get samples from burn-in B to end of run T .
11: Θ ∼ ΘB:T . Sample Θ from correlated ΘB:T .
12: return Θ
13: end procedure

Gibbs samples are Markovian. This means that the conditional probability only takes into
account values at the previous time step t −1. When running the Gibbs sampling algorithm
long enough, it will visit all possible states eventually. The Markovian property has an unde-
sired side effect. It makes subsequent steps correlated. Hence, when finally extracting the
parameter probabilities, it is important to skip multiple steps to remove the temporal cor-
relations. It is also important to run the algorithm for a while after its start. In that case it
does not suffer from a bad choice of initial parameter values. Disregarding the first samples
is called burn-in. In words, Gibbs sampling works by having the algorithm spend time in
parts of the space proportionally to the probability of getting into that part of the space.

2.2.5 Metropolis-Hastings Sampling

Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970) is one of the most well-known
Markov chain Monte Carlo (MCMC) algorithms. An MCMC algorithm uses a Markov chain
(see Gibbs sampling, Section 2.2.4) and combines this with a stochastic (Monte Carlo) com-
ponent. This sampling method can be used for high-dimensional distributions. Metropolis-
Hastings calculates an acceptance factor αwhich takes into account if a step should be taken
according to a predefined proposal distribution. In case this step is not accepted, the current
sample is resampled (see Algorithm 6).

Θ = S(X ,θ0,Q(θ t |θ t−1), f (θ ; X )) (2.18)
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Metropolis-Hastings can be described without reference to observations just as with Gibbs
sampling. However, Eq. 2.18 and Algorithm 6 is described including the observations (which
seems appropriate within the Bayesian context). We observe that in contrast to Gibbs sam-
pling, we need to be able to calculate Q(θ t |θ t−1), rather than only be able to sample from
p(θ t

i |θ t−1
−i ).

Algorithm 6 Metropolis-Hastings sampling

1: procedure METROPOLIS-HASTINGS SAMPLING(θ0, X ,Q, f ). Requires initial parameters,
observations, proposal distribution, and function proportional to desired distribution

2: Θ = []
3: for t = 1→ T do
4: θ t ∼Q(·|θ t−1) . Sample from proposal distribution Q

5: α= f (θ t ;X )Q(θ t |θ t−1)
f (θ t−1;X )Q(θ t−1|θ t )

. Calculate acceptance

6: u∼ U(0, 1) . Inverse transform sampling
7: if α < u then
8: θ t = θ t−1 . Reuse previous sample (note, different from rejection)
9: end if

10: Θ[t] = θ t . Always add θ t (accepted or repeated).
11: end for
12: return Θ . Θ will be samples from the distribution f (θ ; X )
13: end procedure

A particular choice of a Metropolis-Hastings step is that of a proposal distribution that does
not depend on the state of the chain. This is already suggested by Hastings and is called the
independence sampler (Hastings, 1970).

2.2.6 Split-Merge MCMC Sampling

When we study the model as described in Section 2.1.2 we see that samples can be modelled
as being clustered. The discussed sampling methods do not assume such kind of structure in
the model. This means that in hierarchical models sampling either occurs through updating
the to-be-estimated quantities by iterating over every single observation or over every single
parameter. This has a disadvantage, an algorithm in which a new cluster is formed by sam-
pling over individual data points can be quite slow. It would be more efficient if multiple
data points can be assigned at once to a new parameter. This corresponds to methods in
which we can split or merge clusters of data points.

Split-merge samplers are such methods that can update cluster assignments for multiple ob-
servations at once. These samples adjust the acceptance method in the Metropolis-Hastings
algorithm. Split-Merge sampling is described in Algorithm 7.
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Algorithm 7 Split-Merge MCMC sampling

1: procedure SPLIT-MERGE MCMC SAMPLING(θ0, X ,Q, f ) . Requires initial parameters,
observations, proposal distribution, and function proportional to desired distribution

2: Θ = []
3: for t = 1→ T do
4: i ∼ U({0, . . . , N − 1}) . Sample observation i discretely.
5: j ∼ U({0, . . . , N − 1} \ i) . Sample observation j discretely with j 6= i.
6: if ci == c j then . Let us consider a split of this cluster (ci = c j).
7: cold = ci

8: θ t
cnew
∼Q(θ t |θ t−1) . Sample from proposal distribution Q.

9: for k ∈ cold do
10: ck ∼ Cat(cold , cnew) . Assign to new cluster categorically.
11: end for
12: else . Let us consider a merge of these clusters (ci 6= c j).
13: cmer ge = ci

14: for k ∈ c j do
15: ck = cmer ge . Assign all observations to the first cluster.
16: end for
17: end if
18: α= f (θ t+1,X t+1)Q(θ t+1|θ t )

f (θ t ,X t )Q(θ t |θ t+1)
. Calculate acceptance.

19: u∼ U(0, 1) . Inverse transform sampling.
20: if α < u then
21: θ t = θ t−1 . Set current sample to previous sample.
22: end if
23: Θ[t] = θ t . Always add θ t (accepted or repeated).
24: end for
25: return Θ . Θ will be samples from the distribution f (θ |x).
26: end procedure

The exact acceptance probability depends on the model. For the mixture model with a
Dirichlet Process as prior, its performance is further improved by adjusting the assignment
process from random to observation-supported by introducing intermediate restricted Gibbs
sampling steps (Jain and Neal, 2004, 2007). Similarly, there are other variants that incor-
porate data fit to the splitting step. Labels can for example be calculated sequentially (Dahl,
2003) or methods can be used that postulate subcluster structure within clusters to optimize
inference over split and merge sets (Chang and Fisher III, 2013).

2.2.7 Comparison of the Six Inference Methods

In robotic vision the type of data we are obtaining from depth sensors are point clouds. To
perform inference over objects made out of point clouds, clustering algorithms benefit from
two sampling strategies. If conjugate probability densities are used, Gibbs sampling, or col-
lapsed Gibbs sampling can be used (Section 2.2.4). If the model consists of a nonconjugate



20 Chapter 2. Related Work

prior and likelihood function, Metropolis-Hastings sampling can be used (Section 2.2.5). If
the model becomes more complicated split-merge sampling might accelerate the inference
process (Section 2.2.6).

2.3 Chapter Conclusions

In this chapter we introduced the Dirichlet process in Section 2.1. The Dirichlet process is
described as a measure (Section 2.1.1), represented as a Chinese restaurant process (Sec-
tion 2.1.2), described as inducing a mixture (Section 2.1.3), and constructed through stick-
breaking (Section 2.1.4). The four expositions serve different purposes. The Dirichlet pro-
cess as a random measure puts on firm theoretic grounds. The Chinese restaurant process
representation lends itself to Gibbs-like sampling methods. The representation as a prior
over infinite matrices shows how the Dirichlet process can be used as a prior for a mixture
model. The stick-breaking construction shows how the cluster sizes are distributed rather
than the individual samples.

In Section 2.2 six inference methods are described. Inverse transform sampling, rejection
sampling, approximate Bayesian computation, Gibbs sampling, Metropolis-Hastings, and
Split-Merge Markov chain Monte Carlo. These methods use different types of information.
Inverse transform sampling requires the cumulative distribution function (or more specific
its inverse). Rejection sampling requires an envelope function that approximates the actual
distribution sufficiently well, such that not many samples will be rejected. If the likelihood
function is known, and samples can be drawn from the prior, the likelihood function can be
used to sample from the posterior. Approximate Bayesian computation does not require a
likelihood function, but manipulates the influence of the prior by a threshold and introduces
a distance function to define if simulated and actual observations are close. Gibbs sampling
does not use such artificial parameters, but requires a prior and likelihood that are conjugate.
It can be used for models where this is the case. Metropolis-Hastings sampling is an MCMC
sampling method that can be used for nonconjugate models. Its convergence rate depends
on the quality of a proposal distribution. To accelerate convergence, split-merge MCMC
sampling performs inference not just over individual data points, but over sets of data points
(e.g., splitting a cluster or merging two clusters of data).

2.4 A Coda

Below we provide a critical confrontation of our conclusions in relation with existing mathe-
matical theories. First of all, we would like to stress that this research work is of a technical
and applied nature as the title implies: Nonparametric Bayesian Methods in Robotic Vision.
Below we discuss some theoretical research directions that we have neither explored in this
chapter, nor in the following chapters.

Robustness is an important aspect of Bayesian methods (Ghosal and Van der Vaart, 2017).
The choice of prior should not influence the posterior distribution "too much". This is difficult



Chapter 2. Related Work 21

to study on its own, for which reason posterior consistency is studied instead. It loosely
means that the posterior probability is eventually concentrated in a small neighborhood of
the "actual value" of the parameter. The study of asymptotic properties, such as posterior
consistency, is more complex in the nonparametric case. An infinite amount of data might
not overcome the prior. In this thesis we rely on the use of a Dirichlet process prior for robotic
(depth) vision tasks. There will neither be an analysis on the consistency of the prior, nor
on the rate of contraction as advocated for by Ghosal and Van der Vaart (2017).

One of the reasons to introduce the class of Dirichlet priors is to ensure consistency in the
nonparametric Bayesian setting (Diaconis and Freedman, 1986). However, it is possible to
use them in such a way that they lead to inconsistent estimates. The authors describe a
Dirichlet prior with a Cauchy distribution as base measure crafted in such way that it does
not converge in the asymptotic case to the underlying true distribution that consists of two
point masses positioned at locations −a and a with respect to the origin. This means that
the posterior might converge to the wrong value or that the estimates will oscillate in the
asymptotic case. We will not explore possible inconsistent behavior of the base measures
that we introduce in the future chapters.

The robotic vision applications do have practical constraints which are apparent from the
domain. For example, in Chapter 4 the Pareto prior will not "wash out" if chosen too large.
The method will not find segments if they are much smaller than the experimenter expects.
There are also degenerate cases such as single outliers or line segments aligned head-to-tail
forming a larger, single line segment. Facing the existing literature we observe the following.

◦ Our practical application will be clustering. We assign points to geometric objects.
Lack in convergence towards object parameters does not imply an asymptotic error in
the assignment problem.

◦ In practical situations, there are degenerate cases, (1) outliers, (2) accidentally aligned
line segments, and (3) other types of errors such as perceptual resolution, that would
require our attention in improving our clustering results.

◦ Theoretically, even if we do not have the "correct model", we might still come close to
it in a precise sense (see Ghosal and Van der Vaart (2017) on Kullback-Leibler projec-
tions).

In the next chapters, we will refrain from going into theory. We will only apply existing
theory and implement methods to perform robotic (depth) vision in general and perform
inference on point clouds in particular.
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Contents In this chapter the nonparametric Bayesian models from the literature
(Chapter 2) are applied to perform inference over point clouds. The point
cloud under study will be a point cloud distributed over lines in a two-
dimensional space. Traditionally, RANSAC and the Hough transform have
been used to perform inference over such lines. We use a nonparametric
Bayesian model to perform inference over a countably infinite number
of lines. Given a prior with respect to the noise and the distribution of
points over the lines, Bayesian inference describes the optimal procedure
to perform line fitting.

Published in A.C. van Rossum, H.X. Lin, J. Dubbeldam, and H.J. van den Herik. Non-
parametric Bayesian Line Detection. International Conference on Pattern
Recognition and Methods, ICPRAM 2016, Rome, Italy, February 24-26,
2016. Best paper award in theory and methods track.
A.C. van Rossum, H.X. Lin, J. Dubbeldam, and H.J. van den Herik. Fun-
damentals of Nonparametric Bayesian Line Detection. Springer, 2017.

Outline The infinite line model describes a collection of lines with a Dirichlet pro-
cess as prior (Section 3.2). Inference in the infinite line model is per-
formed through Gibbs sampling (Section 3.3). As is known, Gibbs sam-
pling over parameters converges slowly, however it can be accelerated
through sampling over clusters (Section 3.4). The results by the infer-
ence method are assessed using clustering performance measures (Sec-
tion 3.5). The chapter summarizes the findings (Section 3.6) and intro-
duces extensions which will be handled in the next chapters.
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3.1 Four Problems with Line Detection

In computer vision and particularly in robotics, traditionally the task of line detection has
been performed through sophisticated, but ad-hoc methods. Here we mention two examples
of such methods, RANSAC and the Hough transform. RANSAC (Bolles and Fischler, 1981)
is a method that iteratively tests a hypothesis. A line is fitted through a subset of points.
Then other points that are in consensus with this line (according to a certain loss function)
are added to the subset. This procedure is repeated till a certain performance level is ob-
tained. The Hough transform (Hough, 1962) is a deterministic approach which maps points
in the image space to curves in the so-called Hough space of slopes and intercepts. A line is
extracted by getting the maximum in the Hough space.

There are four main problems with these methods. First, the extension of RANSAC or Hough
to the detection of multiple lines is nontrivial (Chen et al., 2001; Zhang and Kǒsecká, 2007;
Gallo et al., 2011). Second, the noise level is hard-coded into model parameters and it is not
possible to incorporate knowledge about the nature of the noise. Third, it is hard to extend
the model to hierarchical forms, for example, to lines that form more complicated structures
such as squares or volumetric forms. Fourth, there are no results known with respect to any
form of optimality of the mentioned algorithms.

In this chapter we postulate a method to perform inference over the number of lines and over
the fitting of points on that line using the nonparametric Bayesian methods from chapter 2.
The method aims at overcoming the four main problems mentioned above.

3.2 Infinite Line Model

The application we would like to address in this chapter is that of the detection of multiple
lines.

Figure 3.1: A mixture of lines. There are n points in 2D space, each point generated from a
line with parameters θk. The number of lines k is not known beforehand.

The Dirichlet process has been previously described as prior for a mixture distribution (in
Figure 2.2, see Section 2.1). It will be used in our model as a prior for the distribution of
points over a countably infinite set of lines. From now on we will refer to this model as the
infinite line model (ILM).
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wi θi G
DP

α

H
F(wi;θi)

N →∞

Figure 3.2: For the infinite line model we will use a Dirichlet process mixture. This visu-
alization uses a combination of a so-called factor graph with plate notation. Compare the
visualization with Eq. 3.1. The observations wi are generated by line parameters θi (which do
not have to be unique). The parameters θi are distributed according to G which is sampled
from a Dirichlet process with base measure H and dispersion parameter α.

The Dirichlet process mixture nature of the infinite line model is visualized in Figure 3.2
using plate notation (see Appendix A.5). The line parameters θi with i = 1,2, . . . are sam-
pled from a distribution G. This distribution is sampled from the base distribution H with
dispersion parameter α. The representation should not be seen as suggesting a form for
factorization. The Dirichlet process as a prior for a mixture model we summarize as follows
(compare with Figure 3.2):

G ∼ DP(α, H),

θi | G iid∼ G,

wi | θi
iid∼ F(wi;θi).

(3.1)

Eq. 3.1 represents a mixture model due to the fact that parameters {θi ,θ j} can be identical
for j 6= i. In that case yi and y j are considered to belong to the same cluster characterized
by parameter θi = θ j (see Section 2.1.3). Here X ∼ S means that X has the distribution S.
Independence properties, such as observation yi given parameter θi being independent of
other observations, are written down explicitly in Eq. 3.1. They might be silently assumed
further on.

We will consider models where G is integrated out, the details of which, will follow in this
chapter. We also introduce hyperparameters to the base distribution H.

wi θi

α

λ0

F(wi;θi)

N →∞

Figure 3.3: The Dirichlet process mixture with the realizations G integrated out and with a
hyperparameter λ0 for the base distribution H.

We will later on see that the base measure H will be the so-called Normal-Inverse-Gamma
(NIG) distribution with hyperparameters λ0. We will also create more detailed figures to
emphasize particular aspects of the model.

As mentioned before the parameters θi and θ j can be identical for i 6= j. We can equivalently
express the Dirichlet process mixture using only k clusters and running the index k over
unique clusters.
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wi

F(wi;θk)
θk

α

λ0

M

K

Figure 3.4: The Dirichlet process mixture over clusters with the index, k, ranging over the
number of clusters. Here there are Mk observations per cluster k.

In this chapter, both θi and θk will be used. If the parameter is written as θi the index i runs
over as many (non-unique) parameters as there are observations. If the parameter is written
as θk the index k runs over (unique) lines.

In Section 3.2.1 it is described how θi is sampled from H and α. In Section 3.2.2 it is
described how wi is sampled from θi . In Section 3.2.3 the prior H(λ0) for θi is described.
In Section 3.2.4 it is described how the hyperparameters λ0 can be updated given the data
wi to define the posterior predictive for the line parameters, θi .

3.2.1 Posterior Predictive for a Line given Other Lines

The Dirichlet process (DP) is described in Section 2.1. The Dirichlet process generates a dis-
tribution G ∼ DP(α, H) with H the so-called base distribution and α, a scalar, the dispersion
parameter.

wi θi
Eq. 4.3

θ j
H

α

λ0

N − 1

Figure 3.5: The Dirichlet process mixture highlighting the posterior predictive for the pa-
rameter θi given the other parameters θ−i . Resampling parameters θ−i is governed by Eq. 4.3.
The observations w j with j 6= i with respect to θ−i are not visualized.

The posterior for the Dirichlet process base distribution and dispersion parameter is a Dirich-
let process with adjusted parameters:

G | θ1, . . . ,θn ∼ DP

 
α+ n,

α

α+ n
H +

n
α+ n

∑n
j=1δθ j

n

!
. (3.2)

The posterior distribution G is a weighted average between the prior base distribution H and
the empirical distribution n−1∑n

j=1δθ j
with the weights respectively α and n (normalized).

The dispersion parameter α is updated to α+ n.
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The posterior predictive for a new parameter θn has the form (see Section 2.1):

θn | θ1, . . . ,θn−1 ∼
1

α+ n− 1

 
αH +

n−1∑
j=1

δθ j

!
. (3.3)

Due to the exchangeability property, any other parameter update can be written down equiv-
alently (Neal, 2000). The prior distribution of parameters θi takes the form of conditional
distributions:

θi | θ−i ∼
1

α+ n− 1

 
αH +

∑
j 6=i

δθ j

!
. (3.4)

The notation θ−i describes every other parameter than θi: the set of parameters, θ j , with
j 6= i. This representation with G marginalized has no independent draws anymore. The
draws θi depend on previous draws θ−i . This representation is known as the Pólya urn
scheme (Blackwell and MacQueen, 1973). It lends itself well to Gibbs sampling (Eq. 2.16)
as can be found in the literature (Escobar, 1994; Escobar and West, 1995).

3.2.2 Likelihood of Data given a Line

Each point in our point cloud wi = (x i , yi)we map into a intercept-slope representation using
X i = [1; x i]. A line k we model using ordinary linear regression with slope βk,0, intercept
βk,1, and standard deviation σk. Thus, the line is parametrized by θk = {βk,0,βk,1,σk} or,
equivalently, θk = {βk,σk}. The noise is normally distributed with the standard deviation
σk as in ordinary least squares.

wi θk

F(wi;θk)

Figure 3.6: This section describes the likelihood of an observation wi given line parameters
θk. The likelihood is as in ordinary least squares and can be found in Eq. 3.5.

yi
iid∼ N(X iβk,σ2

k). (3.5)

We can collect all data points wi = (x i , yi) on a line k, yi − X iβk for i = 1, . . . , n:

y − Xβk =




y1

y2
...
yn


−




1 x1

1 x2
...

...
1 xn



�
βk,0

βk,1

�
. (3.6)

This allows us to write down the likelihood function as:
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p(y | X ,βk,σk)∝ σ−n
k exp

�
− 1

2σ2
k

(y − Xβk)
T (y − Xβk)

�
. (3.7)

Or equivalently, given the points are drawn i.i.d. from the line parameters:

p(yi | X i ,βk,σk)∝ σ−n
k exp

�
− 1

2σ2
k

(yi − X iβk)
T (yi − X iβk)

�
. (3.8)

The likelihood of a data point wi = (x i , yi) given a line k with parameters θk is denoted
F(wi;θk) and is the ordinary linear regression model.

F(wi;θk) = p(yi | X i ,βk,σ2
k). (3.9)

We will draw the line parameters θk from a prior distribution. This makes this model a
Bayesian linear regression model as can be found in the literature for single lines (Box and
Tiao, 2011).

3.2.3 Conjugate Prior for a Line

We postulate the same prior as done before in the literature (Box and Tiao, 2011) for βk

and σk in Eq. 3.9. Those priors are defined on p(σ2
k) rather than p(σk) which are related

through a square root operation. First, we write out the joint probability as a product of the
conditional probability and the marginal probability as follows:

wi σk

α

βk

IG (Eq. 3.11)

N (Eq. 3.13)

b0

a0

µ0

Λ0

N →∞

Figure 3.7: The conjugate Normal (N) and Inverse-Gamma (IG) priors for the infinite line
model model. The parameter θk that parametrizes a line contains a slope βk and standard
deviation σk. The main text makes precise how σk or more specific, σ2

k, will be sampled.

p(βk,σ2
k) = p(βk | σ2

k)p(σ
2
k). (3.10)
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The standard deviation σk is sampled from an Inverse-Gamma (IG) distribution:

σ2
k ∼ IG(a0, b0). (3.11)

In particular, we sample from a distribution IG(a0, b0) with hyperparameters a0 = ν0/2 and
b0 = ν0s2

0/2, see e.g. Mariotto (1989):

p(σ2
k)∝ (σ2

k)
−(ν0/2+1) exp(− 1

2σ2
k

ν0s2
0). (3.12)

The conditional with respect to the line coefficients has a normal distribution as prior:

βk ∼ N(µ0,σ2
kΛ
−1
0 ). (3.13)

Written out:

p(βk | σk)∝ σ−n
k exp

�
− 1

2σ2
k

(βk −µ0)
TΛ0(βk −µ0)

�
. (3.14)

The NIG is a distribution that combines a Normal and an Inverse Gamma distribution and
can be used as a shorthand for the above exposition. Let us define λ0 = {Λ0,µ0, a0, b0} and
recall that θk = {βk,σk}, we have now a description for our base distribution H of which
we can sample θk:

H = N IG(λ0). (3.15)

Summarized, the standard deviation (or more precisely, the variance, σ2
k) is sampled from

the Inverse Gamma distribution and the line line coefficients, βk, are sampled from a Normal
distribution:

σ2
k ∼ IG(a0, b0),

βk ∼ N(µ0,σ2
kΛ
−1
0 ).

(3.16)

The hyperparameters are λ = {Λ0,µ0, a0, b0}. Given that we chose the NIG prior to be con-
jugate to the likelihood (Section 3.2.2), we can write down the prior predictive distribution:

p(wi) =

∫
F(wi;θk)p(θk)dθk,

p(yi) =

∫
p(yi |X i ,βk,σ2

k)p(βk,σ2
k)dβkdσ2

k,

=

∫
N(X iβk,σ2

k)N IG(Λ0,µ0, a0, b0)dβkdσ2
k.

(3.17)
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This can be written in closed form using a multivariate t-distribution (MVSt):

p(yi) = MVSt2a0
(X iµ0,

b0

a0
(I + X iΛ0X T

i )). (3.18)

A detailed derivation can be found in Banerjee (2008).

3.2.4 Posterior Predictive for a Line given Data

In Eq. 3.17 and Eq. 3.18 we find the probability of an observation given the prior on the
hyperparameters. Similarly, we want to have an expression for the probability of an ob-
servation wi given previous observations w j (with j 6= i) and the same hyperparameters
λ0:

p(wi |w j) =

∫
F(wi;θk)p(θk|w j)dθk (3.19)

We will see that we arrive at an expression similar to Eq. 3.18.

wi θi λ0

F(wi;θi)

N

Figure 3.8: The posterior predictive can be calculated by updating the sufficient statistics
λ0→ λn.

The NIG is a conjugate prior with respect to the normal distribution (with unknown mean
and variance). Hence, we have a simplified description for updating the hyperparameters,
given a set of observations. Recall, the observation wi = (x i , yi) can be equivalently de-
scribed as (X i , yi) or, generalized for more observations, (X , y). The hyperparameters are
updated1 according to (cf. Denison, 2002; Walter and Augustin, 2010):

Λn = Λ0 + X T X ,

µn = Λ
−1
n (Λ0µ0 + X T y),

an = a0 + n/2,

bn = b0 + 1/2(y T y +µT
0Λ0µ0 −µT

nΛnµn).

(3.20)

Let us define λ = {Λ0,µ0, a0, b0} and λ∗ = {Λn,µn, an, bn}. Denote a new observation by
wi , then the update for the hyperparameters λ→ λ∗ can be summarized as:

λ∗ = Uup(λ, wi). (3.21)

1In comparison with the notation of Denison (2002), we update Λ rather than V = Λ−1 and subsequently
use Λn at the right-hand side to simplify the notation for µn and bn.
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Removing observations does lead to similarly looking updates (which are at times called
“downdates”2 in the literature, see e.g. Wulsin (2013)) for the hyperparameters:

Λn = Λ0 − X T X ,

µn = Λ
−1
n (Λ0µ0 − X T y),

an = a0 − n/2,

bn = b0 − 1/2(y T y +µT
nΛnµn −µT

0Λ0µ0).

(3.22)

The downdate for the hyperparameters can then be summarized as:

λ∗ = Udown(λ, wi). (3.23)

Hence, we can sample from p(θk | λ0, wi) by sampling from a Normal-Inverse Gamma dis-
tribution with updated hyperparameters, N IG(λn). Sampling of N IG(λn) is as in Eq. 3.16,
but with λn rather than λ0:

σ2
k ∼ IG(an, bn),

µk ∼ N(µn,σ2Λ−1
n ).

(3.24)

The posterior predictive for observation wi given other observations w j and the line’s hyper-
parameters becomes:

p(wi |w j) =

∫
F(wi;θk)p(θk)dθk,

p(yi |y j , X j) =

∫
p(yi |X i ,βk,σ2

k)p(βk,σ2
k)dβkdσ2

k,

=

∫
N(X iβk,σ2

k)N IG(Λn,µn, an, bn)dβkdσ2
k.

(3.25)

This can be written in closed form using a multivariate t-distribution (MVSt):

p(yi |y j , X j) = MVSt2an
(X iµn,

bn

an
(I + X iΛnX T

i )). (3.26)

A detailed derivation can again be found in Banerjee (2008).

2The terminology might have originated from the literature on rank-one updates and downdates on the
Cholesky decomposition.
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3.3 Inference for the Infinite Line Model

The prior distribution of the parameters can be represented in terms of successive conditional
distributions as given in Eq. 4.3 is:

θi | θ−i ∼
1

α+ n− 1

 
αH +

∑
j 6=i

δθ j

!
. (3.27)

The conditional prior of θi given the parameters θ j with j 6= i and observation wi is described
by (Escobar, 1988; Escobar and West, 1995; MacEachern and Müller, 1998; Neal, 2000):

θi | θ−i , wi ∼ riHi +
∑
j 6=i

F(wi;θ j)δθ j
. (3.28)

We use mainly the notation by Neal (2000), also compare Theorem 5.3 in Ghosal and Van der
Vaart (2017). The α-weighted posterior ri defines the probability that a new cluster will be
sampled:

ri = α

∫
F(wi;θ )dH(θ ;λ0). (3.29)

In the case of the infinite line model the probability of an observation wi given the hyper-
parameter λ0 is given by Eqs. 3.17 and 3.18. In Eq. 3.29 we multiply the posterior with α
which will govern the probability of a new cluster being created.

The distribution Hi is the posterior distribution for the parameter θ given base distribution H
and a single observation wi . We do not need to have calculate the probability for particular
parameter values, we only have to sample them from this distribution. Sampling from Hi

must be feasible.
θi ∼ Hi . (3.30)

We can sample from Hi by performing a single update of the hyperparameters λ in Eq. 3.21
with observation wi (n= 1, an = a0 + 1/2, and so on) and then sampling from N IG(λn=1),
see Eq. 3.24.

The probability of sampling a new parameter is given by3:

p(θnew) =
ri

ri +
∑

j 6=i F(wi;θ j)
. (3.31)

This Gibbs algorithm4 has been described before in the context of a Dirichlet process mix-
ture, without particular likelihoods or priors in mind (see algorithm 1 in Neal, 2000). As
shown in Algorithm 8 after initialization5, we perform a loop in which for T iterations each

3This can be derived from Neal (2000) by
∑

i 6= j bF(yi ,θi)+ bα
∫

F(yi;θ j)dG0(θ ) = 1, which gives an expres-
sion for the normalization factor b, which can be found as denominator in Eq. 3.31.

4The implementation can be found at https://code.annevanrossum.nl/dpm in the folder inference (gibb-
sDPM_algo2), written such that it is compatible with octave.

5Initialization details can be found in Appendix B.
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Algorithm 8 Gibbs sampling over parameters θi

1: procedure GIBBS ALGORITHM 1(w,λ0,α) . Accepts points w, hyperparameters λ0,α and
returns k line coordinates

2: θi = GIBBS ALGORITHM 1 INITIALIZATION(w,λ0,α) . See Algorithm 15.
3: for all t = 1 : T do
4: for all i = 1 : N do
5: ri = α

∫
F(wi;θ )dH . Weighted posterior predictive of wi (Eq. 3.29)

6: for all j = 1 : N , j 6= i do
7: Li, j = F(wi;θ j) . Likelihood of a line given an observation (Eq. 3.9)
8: end for
9: p(θnew) =

ri

ri+
∑

j 6=i Li, j
. Probability of sampling a new parameter (Eq. 3.31)

10: u∼ U(0, 1)
11: if p(θnew)> u then . Sample with probability p(θnew)
12: λn = Uup(wi ,λ0) . Update hyperparameters with wi (Eq. 3.21)
13: θi ∼ N IG(λn) . Sample θi from NIG (Eq. 3.24)
14: else
15: i ∼ Mul t(N , p(θold)) . Sample i from existing parameters, θold
16: θi = θold=i . Pick θi given index i
17: end if
18: end for
19: end for
20: return summary on θk for k lines
21: end procedure

θi belonging to observation wi is updated in succession. The loop consists of four steps.
First, the posterior predictive for wi given the hyperparameters p(wi | λ0) is calculated. Sec-
ond, the likelihood F(wi;θ j) for all θ j given wi (with j 6= i) is calculated. Third, the fraction
with ri defines the probability for θi to be sampled from a new or existing cluster. Fourth,
depending on the probability u, (1) a new cluster is sampled, the hyperparameters are up-
dated with information on wi and thereafter θ is sampled from a Normal-Inverse-Gamma
distribution with the updated hyperparameters, or (2) an existing cluster is sampled.

3.4 Accelerating Inference for the Infinite Line Model

In the previous section we sampled over individual parameters. It is possible to iterate only
over the clusters. The derivation takes a few steps (Neal, 2000) but leads to a simple update
for the component indices that only depends on the number of data items per cluster, the
parameter α, and the available data.

The probability to sample from an existing cluster depends on the number of items in that
cluster (the current data item excluded). This is expressed in equation 3.32.

p(ci = c and ci = c j and i 6= j | c−i , wi ,α,θ )∝ nc,−i

α+ n− 1
F(wi;θi). (3.32)

The probability to sample a new cluster only depends on α and the total number of data
items. This is formally described in equation 3.33.
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Algorithm 9 Gibbs sampling over clusters ck

1: procedure GIBBS ALGORITHM 2(w,λ0,α) . Accepts points w and hyperparameters λ0 and α,
returns k line coordinates

2: θk,λc = GIBBS ALGORITHM 2 INITIALIZATION(w,λ0,α) . See Algorithm 16
3: for all t = 1 : T do
4: for all i = 1 : N do
5: c = cluster(wi) . Get cluster c currently assigned to observation wi
6: λc = Udown(wi ,λc) . Adjust cluster hyperparameters on removing wi (Eq. 3.23)
7: mc = mc − 1 . Adjust cluster size mc (and bookkeeping of K)
8: for all k = 1 : K do
9: Lk = mk F(wi;θk) . Likelihood for cluster k given wi (Eq. 3.34)

10: end for
11: ri = α

∫
F(wi;θ )dH . Weighted posterior predictive of wi (Eq. 3.29)

12: p(θnew) =
ri

ri+
∑

k Lk
. Calculate probability of a new parameter

13: u∼ U(0, 1)
14: if p(θnew)> u then . Sample with probability p(θnew)
15: k = K + 1 . New cluster index (and bookkeeping of K , K = K + 1)
16: λk = Uup(wi ,λ0) . Set hyperparameter λk with prior pred. given wi
17: θi ∼ N IG(λk) . Sample θi from NIG
18: else
19: k ∼ Mul t(K , Lk) . Sample k from existing clusters (weighed by mk)
20: λk = Uup(wi ,λk) . Update hyperparameter k with post. pred. given wi
21: end if
22: mk = mk + 1 . Increment cluster size mk
23: end for
24: for all k = 1 : K do
25: θk ∼ N IG(λk) . Sample θk from N IG with up to date λk
26: end for
27: end for
28: return summary on θk for k lines
29: end procedure

p(ci ∈ Ω(c) and ci 6= c j and i 6= j | c−i ,α)∝
α

α+ n− 1

∫
F(wi;θi)dH(θ ). (3.33)

Here Ω(c) denotes all admitted values for ci . The importance of conjugacy is obvious from
Eq. 3.33, it will lead to an analytic form of the integral. The inference method using Eqs. 3.32
and 3.33 is described in Section 3.2.

One benefit of iterating over clusters rather than non-unique parameters is that we can
calculate the likelihood by multiplying it with the number of observations at that cluster
(rather than per parameter). If we write the number of observations as nc,−i = mk, we can
update the likelihood on a cluster level like this:

Lk = mkF(wi;θk). (3.34)

Directly sampling over the clusters is described in its general form (see algorithm 2 in Neal,
2000). Rather than updating each θi per observation wi , an entire cluster θk is updated.
In Algorithm 8 the update of a cluster would require a first observation to generate a new
cluster at θ j and then moving all observations of the old cluster θi to θ j . In contrast, in
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Algorithm 9 when a data item either is added or deleted from a cluster, the cluster parameters
are updated for all data items in that cluster at once. For this algorithm this means that when
wi is excluded from calculating the likelihood we have to6 “downdate” the corresponding
hyperparameters (as described in Eq. 3.23). In Algorithm 9 after all observations have been
iterated over and assigned the corresponding cluster k, an outer loop iterates over all clusters
to obtain new parameters θ from the NIG prior.

3.5 Results

The infinite line model (see Section 3.2) is able to fit an infinite number of lines through a
point cloud in two dimensions. These lines are no line segments, but infinite lines. However,
to test the model a variable number of lines are generated of a length that is considerably
larger compared to the spread caused by the standard deviation of points from that line.

As described before, Gibbs sampling leads to correlated samples. Our choice is to get the
Maximum A Posterior estimates for the clusters by picking the median values for all the
parameters involved. In Section 3.5.1 we discuss the clustering performance, in Section 3.5.2
we compare with the Hough transform, in Section 3.5.3 we provide two clustering examples,
and in Section 3.5.4 we inspect visually if the model converges through trace plots.

3.5.1 Clustering Performance

The results of the clustering algorithms are measured using conventional metrics. Let us
first define the contingency table (see Table 3.1).

Table 3.1: Contingency table. The overlap between clusters X and Y is characterized by
the numbers ni j with each number denoting the number of objects common to X and Y :
ni j = |X i ∩ Yj |.

X�
Y Y1 Y2 . . . Ys Sums

X1 n11 n12 . . . n1s a1
X2 n21 n22 . . . n2s a2
...

...
...

. . .
...

...
X r nr1 nr2 . . . nrs ar

Sums b1 b2 . . . bs

(3.35)

6We don’t strictly have to “downdate”. However, this would become quickly computationally intensive. At
first sight, we might consider storing a tree of hyperparameters, with a branch for each sequence of observations
that we explore. Removal of an observation assigned to a particular cluster would then correspond to backtrack-
ing. We go up the the parent node in the tree and get its previously calculated λ value. However, on reaching
a leaf through adding observation wi , we might need to update the hyperparameters by removing observation
w j . This means we need to calculate updates for λn for all permutations of θi we encounter (permutations, not
sequences).
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There are basically four types of object pairs possible.

◦ A pair of points that are placed in the same class in X and in the same class in Y .

◦ A pair of points that are placed in a different class in X and in a different class in Y .

◦ A pair of points that are placed in a different class in X and in the same class in Y .

◦ A pair of points that are placed in the same class in X and in a different class in Y .

Here X can be considered the ground truth, Y the inferred cluster assignment. Note that
there is no mention of the indices of those classes (they are exchangeable). The first and
second type can be considered "agreements". The third and fourth type can be seen as
"disagreements". Let us define, the total number of distinct point pairs:

T =
�

n
2

�
= n(n− 1)/2. (3.36)

The agreements can be counted as (Brennan and Light, 1974):

A=
�

n
2

�
+

r∑
i=1

s∑
j=1

ni j −
1
2

 
r∑

i=1

a2
i +

s∑
j=1

b2
j

!
. (3.37)

We will use four performance metrics, the Rand Index, the Mirkin index, the Hubert index,
and the Adjusted Rand Index,

Let us first define the Rand Index. It describes the accuracy of cluster assignments (Rand,
1971) as a the ratio of agreements with respect to the total number of possible pairs.

È Definition 3.1 — Rand index

The Rand index RI is defined by:

RI =
A
T

. (3.38)

The Mirkin index (Mirkin and Cherny, 1970) is a metric for disagreement.

È Definition 3.2 — Mirkin index

The Mirkin index M I is defined by:

M I =
T − A

T
. (3.39)

The Hubert index (Hubert, 1977) is a metric takes into account the difference between
agreement and disagreement.
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È Definition 3.3 — Hubert index

The Hubert index HI is defined by:

HI =
A− (T − A)

T
. (3.40)

However, if we randomly assign points to clusters there is a chance that we assign some of
the points correctly. The adjusted Rand index (Hubert and Arabie, 1985) is a "corrected-
for-chance" version of the Rand index. The correction calculates the expected index given
that X and Y are chosen from a generalized hypergeometric contribution (given number of
classes and objects in each):

E =
n(n2 + 1)
2(n− 1)

− n+ 1
2(n− 1)

 
r∑

i=1

a2
i +

s∑
j=1

b2
j

!
+

2
2n(n− 1)

 
r∑

i=1

a2
i

s∑
j=1

b2
j

!
. (3.41)

We can then define the correction to the Rand index by making sure that A = E maps to 0
and that A= T maps to 1.

È Definition 3.4 — Adjusted Rand index

The Adjusted Rand index AR is defined by:

AR=
A− E
T − E

(3.42)

The clustering performance is quite different from the line estimation performance. If the
points are not properly assigned, the line will not be estimated correctly. Due to the fact
that line estimation has this secondary effect, line estimation performance is not taken into
account. Moreover, from lines that generated only a single, or very few points, we can ex-
tract point assignments, but line coefficients are impossible to derive. In fact, any derivation
would lead to introducing a threshold for the number of points per cluster. Then the perfor-
mance would need to be measured by weighting the fitting versus the assignment.

The performance of Algorithm 8 can be seen in Figure 3.9 and is rather disappointing. On
average the inference procedure agrees upon the ground truth for 75% of the cases consid-
ering the Rand Index. Even worse, if we adjust for chance as with the Adjusted Rand Index,
the performance would then drop to only having 25% correct cases!

Algorithm 9 leads to stellar performance measures (Figure 3.10). Apparently, updating en-
tire clusters at once with respect to their parameter values leads at times to perfect clustering,
bringing the performance metrics close to their optimal values (see also Van Rossum et al.,
2016b).

The lack of performance of Algorithm 8 is not only caused by slow mixing. Even when
allowing it ten times the number of iterations of Algorithm 8, it does not reach the same
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Figure 3.9: The performance of Algorithm 8 with respect to clustering is measured using the
Rand Index, the Adjusted Rand Index, the Mirkin metric, and the Hubert metric. A score of 1
means perfect clustering for all metrics, except Mirkin’s where 0 denotes perfect clustering.

Figure 3.10: The performance of Algorithm 9 with respect to clustering is measured using
the Rand Index, the Adjusted Rand Index, the Mirkin metric, and the Hubert metric. A score of
1 means perfect clustering for all metrics, except Mirkin’s where 0 denotes perfect clustering.

performance levels. A line seems to form local regions of high probability, making it difficult
for points to postulate slightly changed line coordinates.



Chapter 3. Nonparametric Bayesian Line Detection 39

3.5.2 Hough Transform

A full Bayesian method, in contrast to ad-hoc methods such as the Hough transform, means
optimal inference given the model and noise definition. In practice, the model might be
misspecified or the actual realization of lines might not have enough data points to benefit
from the Bayesian approach. Nevertheless, it is interesting to compare with the Hough
transform.

Figure 3.11: The results of the Hough transform on the same dataset. The performance of
the Hough transform is slightly worse than line estimation using Neal’s second MCMC sampler
(Figure 3.10).

The implementation details of the Hough transform are irrelevant to the thesis7. We briefly
summarize here the key points. The random Hough transform takes two points at random,
fits a line between those points, and establishes slope and intercept of this line. A discrete
object, the accumulator, exists of, in this case, 100 by 100 cells. Each cell represents an
interval of slope and intercept values. For each two points, the accumulator increments a
counter per cell. After running over (many or) all point pairs, those cells with large accumu-
lated values are considered to be the detected lines. What constitutes large is determined
by a threshold that is application specific.

3.5.3 Two Examples

First, we show two examples of line estimations as we would expect them (see Fig. 3.12).

In contrast to the pictures of Fig. 3.12, we show two examples with typical mistakes. These
examples can guide us to understand the inference process better. The first example in seen

7Implementation can be found at https://code.annevanrossum.nl/hough
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Figure 3.12: Examples of the line estimation process. Apart from slightly different angles
and perhaps a few misclassifications the assignments look good.

in Figure 3.13a. It shows the assignment of two lines to a series of points that originated
from a single line in the ground truth. Such an assignment can happen after a single Gibbs
step in Algorithm 8 or after a long run as final assignment if the system does not convergence
to underlying correct assignment.

There is a single line that is represented by two clusters. Algorithm 8 does not have merge
or split steps to perform inference about sets of data points, it thus has to move each data
point one by one. In passing we mention that there are split-merge algorithms that take
these more sophisticated Gibbs steps into account (Jain and Neal, 2004) and we will see
these in the following two chapters.

(a) This shows a mistake where a single line is fit-
ted by two separate lines. One of the lines, the
horizontal one in the center has been assigned to
multiple clusters.

(b) This shows that outliers are no problem for
this type of estimation. An outlier (see the purple
point), even if it is a single point, can be assigned
its own line.

Figure 3.13: Examples of incorrect assignments in line estimation.
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The second example (Figure 3.13b) shows that a single point as an outlier is not a problem
for our method. A single point might throw off Bayesian linear regression, but because
there are multiple lines to be estimated in our Infinite Line Mixture Model, this single point
is assigned its own line.

The extension to more points as outliers would, of course, require us to postulate a distri-
bution for these outlier points as well. For instance, a uniform distribution might be used in
tandem with the proposed model. However, this would lead to a non-conjugate model and
hence it would require different inference methods.

3.5.4 Trace Plots

To study the convergence of parameters in an MCMC model, one of the visual aids that is in
use, are so-called trace plots. A trace plot does plot values over the course of the simulation
run. If we study the trace plot of individual assignments of points over lines, they are not
assigned very often to other lines.

(a) This plot traces three points that are assigned
to clusters (limited to around 30). Two of the
points are assigned to one cluster. The other point
to the cluster at the bottom. The plot only shows
accepted assignments. The acceptance of a new
assignment takes rarely hold.

(b) This plot traces a line parameter βi belong-
ing to point wi . It exhibits exploratory behavior
around a particular value (in this case 1). So now
and then it shows other points (probably from wi
being assigned to a different line, compare with
the plot at the right).

Figure 3.14: Two examples of trace plots. Left: a trace plot of the assignment of points to
cluster (it changes not so often). Right: a trace plot of a parameter value βi assigned to wi .

In Figure 3.14 there are two trace plots. The first plot shows the trace plot of assignments
themselves. The MCMC chain steadily assigns the same parameter to the visualized observa-
tions. At the start there is a burn-in period visible in which the assignment is more variable.
After the burn-in period there are still reassignments, but they are rare. The second plot
shows the trace plot of a value of one of the parameters to which on observation has been
fitted.
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3.6 Chapter Conclusions

The infinite line model proposed in this chapter extends the familiar Bayesian linear regres-
sion model to an infinite number of lines using a Dirichlet Process as prior. The model is a
full Bayesian method to detect multiple lines. A full Bayesian method, in contrast to ad-hoc
methods such as RANSAC or the Hough transform, means optimal inference (Zellner, 1988)
given the model and noise definition.

Results in section 3.5 show high values for different performance metrics for clustering,
such as the Rand Index, the Adjusted Rand Index, and other metrics (Van Rossum et al.,
2016a,b). The Bayesian model is solved through two types of algorithms. Algorithm 8
iterates over all observations and suffers from slow mixing. The individual updates make
it hard to reassign a large number of points at the same time. Algorithm 9 iterates over
entire clusters. This allows updates for groups of points leading to much faster mixing. We
note that even optimal inference may occasionally result in misclassifications. The dataset
is generated by a random process. Hence, occasionally two lines are generated with almost
the same slope and intercept. Points on these lines are impossible to assign to the proper
line.

This chapter contributes to answering our first research question.

RQ 1 How can we estimate the number of objects simultaneously with the
fitting of these objects?

We use a Bayesian method that we demonstrate on line objects. Its nonparametric nature
allows for simultaneous establishing the number of lines as well as their fit.

The essential contribution of this chapter is the introduction of a fully Bayesian method to
infer lines. For such a model, it holds that there are two ways in which it can to be extended
for full-fledged inference in computer vision as required in robotics. First, the extension of
lines in 2D to planes in 3D. This is an extension that does not change anything of the model
except for the dimension of the data points. Second, somehow a prior needs to be incorpo-
rated to cut the lines (of infinite length) to line segments. It means that we need to restrict
the points on the line to a uniform distribution of points over a line segment. A symmetric
Pareto distribution can be used as prior for the end points of the line segment (see next
Chapter). Modeled in this manner, this would subsequently allow for a hierarchical model
in which the end points of the line segment are on their turn part of more complicated ob-
jects. Hence, the Infinite Line Mixture Model is an essential step towards the use of Bayesian
methods (and thus properly formulated priors) for robotic computer vision.
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Contents In this chapter, we introduce a Bayesian method to perform inference over
line segments. In this model, infinite segment model (ISM), the prior for
the location is given by a Normal distribution, the prior for the length
of the segment is given by a Pareto distribution. Due to the fact that the
prior and likelihood do not form a conjugate pair, a more general inference
method is used (than the inference methods for the conjugate model in
Chapter 3), namely Gibbs sampling with auxiliary variables.

Published in A.C. van Rossum, H.X. Lin, J. Dubbeldam, and H.J. van den Herik. Non-
parametric Segment Detection. Proceedings of the Eighth European Start-
ing AI Researcher Symposium, STAIRS 2016, the Hague, the Netherlands,
August 26-27, 2016.

Outline Our proposed model is using both a Normal-Inverse-Gamma distribution
and a Normal and Pareto distribution as priors for an individual line seg-
ment (Section 4.1). Inference over the infinite segment model is done
using Gibbs sampling over auxiliary variables (Section 4.2). The results
for inference over line segments are compared with those for lines (Sec-
tion 4.3). Finally, weak aspects of the current MCMC method are estab-
lished (Section 4.4). They will form the basis for new inference methods
in the next chapters.

4.1 Infinite Segment Model

The application we would like to address in this chapter is that of the detection of multiple
segments rather than lines. We will label the model is the infinite segment model. The term

43
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infinite relates to the use of a nonparametric Bayesian prior. The term does not reflect the
size of the segments.

Figure 4.1: A mixture of segments. The segments have two more parameters compared to
lines: the length of the segment and its center (or alternatively, the endpoints of the seg-
ment). Analogous to the line detection application, there are n points in 2D space, each point
generated from a segment with parameters θk. The number of segments, k, is not known
beforehand. Compare with Figure 3.1.

We will model the infinite segment model similar to the infinite line model, namely as a
Dirichlet process mixture:

G ∼ DP(α, H),

θi | G iid∼ G,

wi | θi
iid∼ F(wi;θi).

(4.1)

The likelihood function F describes the mapping from parameters θi to observations wi . In
the previous chapter this has been a likelihood function that describes points on lines. In
this chapter the likelihood function describes points on line segments.

Along the same lines as in Chapter 3 we have a base distribution H, a dispersion factor α,
and hyperparameters for the base distribution λ0.

wi θi

α

λ0

F(wi;θi)

N

Figure 4.2: The Dirichlet process mixture with hyperparameter λ0 for the base distribution
H.

For each point wi the segment parameters are given by θi . The parameters θi are not nec-
essarily unique (for i 6= j). When we iterate over unique segments we will use the subscript
k rather than i or we will mention this explicitly.



Chapter 4. Nonparametric Bayesian Segment Estimation 45

4.1.1 Posterior Predictive for a Segment given Other Segments

This follows exactly the same derivation as for the infinite line model in Section 3.2.1. The
posterior predictive is given by (Neal, 2000):

θn | θ1, . . . ,θn−1 ∼
1

α+ n− 1

 
αH +

n−1∑
j=1

δθ j

!
. (4.2)

The prior distribution of parameters θi takes the form of conditional distributions:

θi | θ−i ∼
1

α+ n− 1

 
αH +

∑
j 6=i

δθ j

!
. (4.3)

The notation θ−i describes every other parameter than θi: the set of parameters, θ j , with
j 6= i.

4.1.2 Likelihood of Data given Segment Parameters

The likelihood F(wi ,θi) describes the mapping from parameters θi to observations wi . We
create a likelihood function by the combination of two probability density functions. The
observation wi has x-coordinate x i and y-coordinate yi . We sample x i from a uniform dis-
tribution only giving it nonzero probability on a particular segment on the x-axis:

x i | c, d
iid∼ U(c − d, c + d). (4.4)

This defines a segment on the x-axis centered at c which extends in both directions with
size d. We will use an intercept-slope representation (Chapter 3). Let us define X i = [1, x i]
with x i distributed as in Eq. 4.4. The column vector β = [β0,β1] contains two parameters:
the y-intercept β0 and the slope parameter β1 (compare Section 3.2.2). And we assume a
normally distributed random variable across y−Xβ , the same as in the line model (Eq. 3.5):

yi
iid∼ N(X iβk,σ2

k). (4.5)

The combination of Eq. 4.4 and Eq. 4.5 generates points across a segment on a line.

4.1.3 Prior for a Segment

We postulate a prior that is a combination of Bayesian linear regression with restrictions on
the size of the line:
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wi F(wi;θk)

βk

σk

α

IG (Eq. 4.6)

a0

b0

N (Eq. 4.6)

µ0

Λ0

dk

ck

Par (Eq. 4.8)

L0

k0

N (Eq. 4.10)

µsh

σ2
sh

N

Figure 4.3: The segment parameters for segment k are θk = {σk,βk, dk, ck}. Here σk and
βk are sampled from the same distributions (an Inverse-Gamma, respectively, a Normal dis-
tribution) as in the infinite line model. The extend of the segment, dk, is defined by a Pareto
distribution and its center, ck, by a Normal distribution.

The slope and intercept parameters of the segment are sampled according to a Normal-
Inverse-Gamma distribution (compare Eq. 3.16 for line parameters):

σ2
k ∼ IG(a0, b0),

βk ∼ N(µ0,σ2
kΛ
−1
0 ).

(4.6)

Recall that the data on a line segment is distributed uniformly (Eq. 4.4). This is parametrized
through two parameters, the center of the segment, c, and its extent, d:

x | c, d ∼ U(c − d, c + d). (4.7)

We propose as a prior for the extend of the line segment d, a Pareto distribution (Par):

d | L0, k0 ∼ Par(L0, k0). (4.8)
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The Pareto distribution (Par) is given by:

p(d|L0, k0) =

(
k0 Lk0

0 d−k0−1 i f d ≥ L0,

0 otherwise.
(4.9)

The parameter L0 can be seen as a prior parameter that sets a minimal size to the line
segment. The parameter k0 is the shape parameter of the Pareto distribution.

The center of the segment is sampled from a Normal distribution:

c | µsh,σ2
sh ∼ N(µsh,σ2

sh). (4.10)

The subscript in µsh and σ2
sh stands for shifted. The center of the segment is shifted along

the line.

We will collect all priors and call it a Segment prior, abbreviated to Seg.

θk ∼ Seg(λ0) (4.11)

Writing out all parameters:

βk,σ2
k, dk, ck ∼ Seg(a0, b0,µ0,Λ0, L0, k0,µsh,σ2

sh). (4.12)

This corresponds to:
βk,σ2

k ∼ N IG(a0, b0,µ0,Λ0),

dk ∼ Par(L0, k0),

ck ∼ N(µsh,σ2
sh)

(4.13)

4.1.4 Sampling Segment Parameters given Data

In contrast to the infinite line model there is no conjugacy between prior and likelihood
in the infinite segment model. We have no closed-form updates for hyperparameters given
observed data. Hence, we have to resort to sampling parameters. The proposal distribution,
Q, with which we sample new parameters can be using the current state, θk, or it can sample
from the prior λ0, or a combination thereof:

θk ∼Q(θk,λ0) (4.14)

Observations are sampled independently from line parameters (Section 4.1.2), hence the
likelihood of a set of observations is described by the product.

Lk =
∏

i

p(θk|wi) (4.15)
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We can sample θnew from Seg(λ0 and then accept with probability Lnew/Lk. Alternatively
we can sample using an MCMC proposal distribution around θk:

θk ∼ N(θk,σ2
prop). (4.16)

Alternatively, we can sample in a way that reflects our priors. For example, taking turns
and sample first βk,σ2

k from a NIG distribution keeping dk, ck the same and the other way
around, sample dk, ck from a Pareto-Normal distribution and keep βk,σ2

k the same.

4.2 Inference for the Infinite Segment Model

Let us introduce Gibbs sampling with auxiliary variables (Neal, 2000), see Algorithm 10.

Algorithm 10 Gibbs sampling with auxiliary variables

1: procedure GIBBS ALGORITHM WITH AUXILIARY VARIABLES(w,λ0,α) . Accepts points
w and hyperparameters λ0 and α. Requires also the number of auxiliary variables V , a
proposal distribution Q. Returns k line coordinates.

2: for all t = 1 : T do
3: for all i = 1 : N do
4: for all v = 1 : V do
5: θv ∼ Seg(λ0) . Sample from Eq. 4.11.
6: mv = α/V
7: end for
8: c = cluster(wi) . Get cluster c currently assigned to observation wi .
9: mc = mc − 1 . Adjust cluster size mc (and bookkeeping of K).

10: for all k = 1 : K +m do
11: Lk = mkF(wi;θk) . Calculate likelihood for all θk.
12: end for
13: k ∼ Mul t(K +m, Lk) . Sample k from all clusters (weighed by mk cq mv).
14: θi = θk . Set θi to sampled cluster.
15: mk = mk + 1 . Increment mk (set to 1 for mv , and adjust K).
16: end for
17: for all k = 1 : K do
18: θprop ∼Q(θk,λ0) . Sample from proposal distribution (Eq. 4.14).
19: Lprop =

∏
i F(wi;θprop) . Likelihood for all i at θprop.

20: Lk =
∏

i F(wi;θk) . Likelihood for all i at θk.
21: u∼ U(0,1)
22: if (Lprop/Lk)> u then . Accept/reject.
23: θk = θprop
24: end if
25: end for
26: end for
27: return summary on θk for k line segments.
28: end procedure
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This Gibbs algorithm1 has been described before in the context of a Dirichlet process mix-
ture, without particular likelihoods or priors in mind (see algorithm 8 in Neal, 2000). The
sampling process proposes V new values for the parameters from the hyperparameters. The
V values are called auxiliary parameters. Now, to establish to which cluster a certain ob-
servation wi needs to be assigned, the likelihood of each existing and new clusters alike
are compared. The weight of an old cluster is defined through the number of data points
assigned to it. The weight of a new cluster is defined through α/V . After every data item
is assigned a cluster, the cluster parameters themselves are updated given the assigned data
items.

4.3 Results

We show a drop in performance for segment detection compared to line detection in Sec-
tion 4.3.1. Some examples of difficult to assign segments are given in Section 4.3.2. We
visualize (the lack of) convergence in Section 4.3.3.

4.3.1 Clustering Performance

The results over a larger dataset can be measured with clustering metrics as visualized in
Figure 4.4. The clustering performance of the segment detection algorithm, measured by
the clustering index, such as the Rand Index, the Adjusted Rand Index, and the Hubert
metric, show all reduced performance (see Figure 4.4) compared to line detection (without
constraints on segment size).

(a) Segment detection. (b) Line detection.

Figure 4.4: Segment detection performs worse than line detection across all three clustering
performance indicators. Perfect clustering is indicated by 1.0 for Rand Index, Adjusted Rand
Index, and Hubert.

1The implementation can be found at https://code.annevanrossum.nl/dpm in the folder inference (gibb-
sDPM_algo8), written such that it is compatible with octave.
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4.3.2 Examples

In Figure 4.5 we show four Bayesian point estimates of the sampling process. These are
examples that demonstrate the type of errors that are made in the inference process. In
example (a) the segments are correctly sampled. In (b) the type of error is that of recognizing
multiple segments where there is only one segment to the human observer. In (c) the error
is due to the fact that some segments contain very few points. In (d) the error stems from
line segments being chosen orthogonal to the actual segment.

(a) There is an outlier right of the center. Also, the
line segments that have fewer points, have end-
points that are recognized less "tight" (to be ex-
pected given the Pareto prior).

(b) The single line segment is incorrectly recog-
nized as multiple segments.

(c) The segments with fewer observations are rec-
ognized poorly.

(d) Line segments are (incorrectly) chosen to be
orthogonal to the lines.

Figure 4.5: Bayesian point estimates of the sampling process with varying types of sampling
errors. The descriptions indicate what type of sampling error is visualized per subfigure.
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4.3.3 Trace Plots

To study the convergence of parameters in the infinite segment model, we use trace plots.

(a) This plot traces three points that are assigned
to clusters (limited to around 30). Two of the
points are assigned to one cluster. The other point
to the cluster at the bottom. The plot only shows
accepted assignments. The acceptance of a new
assignment takes rarely hold.

(b) This plot traces a segment parameter belong-
ing to point wi . It exhibits exploratory behavior
around a particular value (in this case 0.5). Com-
pared to Figure 3.14 the variance is quite large.

Figure 4.6: Two examples of trace plots. Left: a trace plot of the assignment of points to
cluster (it changes not so often). Right: a trace plot of one of the parameter values assigned
to wi .

4.4 Chapter Conclusions

From Chapter 3 we know that segment estimation is a much harder problem than line es-
timation. In this chapter we used an advanced method, namely Gibbs sampling with auxil-
iary variables to perform inference over an infinite set of line segments (Van Rossum et al.,
2016c). The auxiliary variable Gibbs sampling method converges faster than the ordinary
Metropolis-Hastings sampling algorithm by postulating multiple segments rather than only
one.

This chapter contributes to answering our first research question.

RQ 1 How can we estimate the number of objects simultaneously with the
fitting of these objects?

To estimate the number of objects simultaneously with the fitting of those objects, we have
used a Bayesian method (as in the previous chapter). In this chapter, the prior and likeli-
hood for the line segment model does not form a conjugate pair. Hence, different sampling
methods had to be used to perform inference for the introduced Bayesian model.
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However, the segment estimation problem remains a challenge for the inference method
in this chapter. The target probability density has modes that each needs to be found and
tend to be separated by very low probability regions. In Chapter 5 we will introduce new
sampling methods that will cope with this challenge.
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TRIADIC SPLIT-MERGE SAMPLER

Contents This chapter introduces a new sampling method called the triadic split-
merge sampler. The reason is that naive implementations of MCMC meth-
ods suffer from slow convergence in machine vision due to the complex-
ity of the parameter space. Towards this blocked Gibbs and split-merge
samplers have been developed that assign multiple data points to clusters
at once. The triadic split-merge sampler improves on these samplers by
defining split and merge steps between two and three clusters. This has
two advantages. First, it reduces the asymmetry between the split and
merge steps. Second, it is able to propose a new cluster that is composed
out of data points from two different clusters. Both advantages speed up
the convergence of the sampler on a line estimation problem.

Published in A.C. van Rossum, H.X. Lin, J. Dubbeldam, and H.J. van den Herik. Triadic
Split-Merge Sampler. The 10th International Conference on Machine Vision,
ICMV 2017, Vienna, Austria, November 13-November 15, 2017.

Outline We introduce the class of split-merge samplers as part of the MCMC sam-
plers (Section 5.1). A conventional split-merge sampler, labeled the dyadic
split-merge sampler, is detailed (Section 5.2). A new split-merge sampler,
the triadic split-merge sampler is introduced (Section 5.3). The results for
inference over lines are compared between the conventional dyadic sam-
pler and the new triadic sampler (Section 5.4). Finally, we provide the
chapter conclusions and describe how we can further improve the infer-
ence procedure (Section 5.5). They will be the basis of the next chapter.

5.1 The Class of Split-Merge Samplers

In clustering models there is a hierarchical structure. At the lowest level there are individual
data points. At a higher level the points are grouped into clusters. Split-merge samplers are

53
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samplers that take into account such structure as already described in Section 2.2.6. Rather
than moving data points one by one from an old to a new cluster, split-merge samplers can
perform moves that operate on partitions of the dataset. For example, a cluster can be split
into two clusters in one single move or two clusters can be merged into once cluster in
another single move.

In Section 5.1.1 we describe split-merge samplers in a bit more detail than in Section 2.2.6.
In Section 5.1.2 the Dirichlet Process prior is introduced in the context of split-merge sam-
plers.

5.1.1 Split and Merge Moves

One of the first split-merge samplers has been defined for so-called point sources in nuclear
imaging (Stawinski et al., 1998). This split-merge sampler proposes split and merge moves
that are defined locally. For instance, two clusters that are close to each other are a candidate
for a merge step into one cluster. By defining pairs of split and merge steps with the right
probabilities, a properly balanced Metropolis-Hastings step an be performed (Section 2.2.6).

In the hierarchical models of lines and segments we have used a Dirichlet process as prior.
Split-merge samplers have been defined with a Dirichlet prior (Dahl, 2003; Jain and Neal,
2004). These split-merge samplers operate on one or two clusters and are defined in the
thesis as dyadic split-merge samplers (Section 5.2). The split step is different per sampler:
(1) the simple random split procedure does not take into account the data distribution,
(2) the sequentially allocated merge-split sequentially assigns data towards one of the two
clusters that is the better fit.

Other examples of split-merge samplers are a sampler that uses sub-cluster splits (Chang and
Fisher III, 2013) a sampler that uses data-driven jumps besides split-merge steps (Hughes
et al., 2012), a sampler that uses data-driven jumps, split-merge steps, and operates on
a hierarchical Dirichlet process (Bryant and Sudderth, 2012), and a sampler that general-
izes split-merge steps to birth-death steps (with multiple clusters generated simultaneously)
(Hughes and Sudderth, 2013). We will introduce a sampler that generalizes the dyadic
sampler to moves over two and three clusters (Section 5.3).

5.1.2 Dirichlet Process Prior

Let us first reiterate the Dirichlet process. We will consider a Dirichlet process as a prior on
the distribution over parameters G. The form of this model is:

yi |θi ∼ F(θi)

θi |G ∼ G

G ∼ DP(H,α)

(5.1)
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The split and merge steps dictate the simultaneous assignment of observations yi unto pa-
rameters θi . A split assigns a set of observations to a new parameter value. A merge combines
multiple sets of observations with different parameter values into one set of observations
with a single parameter value.

5.2 Conventional Split-Merge Sampler

The conventional split-merge sampler (see Jain and Neal, 2004) splits a single cluster into
two clusters, and merges two clusters into a single cluster. Hence, this split-merge sampler
operates on two clusters at each time step. Therefore we will call their algorithm a dyadic
split-merge sampler in contrast with our approach (Van Rossum et al., 2017). Below we
describe this dyadic split-merge sampler in pseudo-code (see Algorithm 11).

Algorithm 11 Dyadic split-merge sampler

1: procedure DYADIC SPLIT-MERGE SAMPLER(c) . Accepts cluster assignments
c of length N (besides Metropolis-Hastings acceptance factors a(c′, c) and a split procedure e.g.
SIMPLERANDOMSPLIT) and returns a (potentially) updated cluster assignment vector c′.

2: i ∼ U({1, . . . , N}) . Sample i discrete uniformly over cluster assignments.
3: j ∼ U({1, . . . , N} \ i) . Sample j from the discrete uniform distribution excluding i.
4: SR = {ci , c j} . Sampled clusters ci , c j .
5: SI = {cx} with cx ∈ SR for x ∈ {1, . . . , N} . All data in clusters ci , c j .
6: SE = S \ SR . All data in clusters ci , c j excluding SR.
7: NS = unique(SR)
8: if NS = 1 then . Case: i, j belong to the same cluster.
9: c(2)i = ck with ck /∈ {c1, . . . , cN} . Sample new cluster for c(2)i .

10: c(2)j = c(1)j . Keep c j the same.

11: c(2)e = SPLITPROCEDURE(SE , c(2)i , c(2)j ) . After c(2)i , c(2)j assign SE .
12: for all m /∈ SI do
13: c(2)m = c(1)m . Data points in clusters other than ci , c j are not adjusted.
14: end for
15: c′ = {c(2)i , c(2)j , c(2)e , c(2)m }
16: a = aspl i t(c

′, c) according to Eq. 5.3 . MH acceptance for a split.
17: else . Case: i, j belong to different clusters ci 6= c j (NS = 2).
18: for all q ∈ SI do
19: c(1)q = c(2)j . Assign all data points in ci and c j to c j .
20: end for
21: for all m /∈ SI do
22: c(1)m = c(2)m . Data points in clusters other than ci , c j are not adjusted.
23: end for
24: c′ = {c(1)q , c(1)m }
25: a = amer ge(c

′, c) according to Eq. 5.10 . MH acceptance for a merge.
26: end if
27: u∼ U(0, 1) . Sample u between 0 or 1 uniformly.
28: if a < u then
29: c′ = c . Reject c′ by setting it to c
30: end if
31: return c′, the (updated) cluster assignment vector: c→ c′.
32: end procedure
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In Algorithm 11 the notation c(2)i is used to signify that the cluster assignment ci has 2 clusters

under consideration. In the dyadic algorithm we could have used cmer ge
i and cspl i t

i , however
in the triadic algorithm (see Algorithm 14) with multiple split and merge operations the
latter notation would become confusing.

Algorithm 12 Simple random split

1: procedure SIMPLERANDOMSPLIT(S, c0, c1) . Accepts unassigned set S and cluster indices c0, c1,
returns cluster assignment c′m.

2: for all m ∈ S do
3: c′m ∼ Cat(c0, c1) with equiprobable p(c0) = p(c1) =

1
2 .

4: end for
5: return c′m, the cluster assignment for S.
6: end procedure

The dyadic split-merge sampler in Algorithm 11 samples two distinct data items. If the data
items belong to the same cluster a split step is attempted. If the data items belong to different
clusters a merge step is attempted. The split procedure itself is the so-called simple random
split (Algorithm 12) that assigns data items with the same probability to one of the parts of
the split cluster without any consideration for a proper data fit.

5.2.1 Acceptance for the Split Step

The acceptance ratio contains the Metropolis ratio to step from c to c′:

P(c′)L(c′|y)
P(c)L(c|y) . (5.2)

Additionally, the Hastings correction is applied because of the asymmetry of the proposal
distribution in the form of q(c|c′)/q(c′|c):

aspl i t(c
(2), c(1)) =min

�
1,

q(c(1)|c(2))
q(c(2)|c(1))

P(c(2))

P(c(1))

L(c(2)|y)
L(c(1)|y)

�
. (5.3)

The notation c(2) is used to indicate that the cluster index vector is referencing 2 unique
clusters (in this case after the split step).

The prior distribution is represented by a Chinese Restaurant Process with concentration
parameter α and no discount factor. Data not yet assigned is assigned (1) with probability
α/(n+α) to a new cluster and (2) with probability nc/(n+α) to an existing cluster c. Here
n is the total number of assigned data points, nc is the number of data points assigned to
cluster c. There are D clusters. Hence, the prior over clusters will be:

P(c) =
Γ (α)
Γ (α+ n)

αD
∏

cl

Γ (ncl
) = αD

∏
cl
(ncl
− 1)!

∏n
k=1(α+ k− 1)

. (5.4)

In the prior distribution ratio before and after the split step many of the factors drop out.
There is one factor α remaining and the number of data points in the split cluster is part
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of the equation. There is no dependency on other clusters or the total number of data
points. We can simplify the formula using the Beta function B(a, b) = Γ (a)Γ (b)/Γ (a + b)
with Γ (x) = (x − 1)! the Euler-Gamma function:

P(c(2))

P(c(1))
= α
(nc(2)i
− 1)!(nc(2)j

− 1)!

(nc(1)i
− 1)!

= αB(nc(2)i
, nc(2)j

). (5.5)

The likelihood can be written as a product over all observations yi or as a product over
clusters with each cluster a product over its observations yk:

L(c|y) =
D∏

c=1

∏
k:ck=c

p(yk|φ). (5.6)

Here we write p(yk|θk) rather than assuming conjugacy between the likelihood F(θk) and
the prior distribution H(θk) (see Dahl, 2005). In the case of conjugacy we can analytically
calculate

∫
F(θk)dH(θk) which speeds up inference, but which restricts our choice of likeli-

hoods and priors (see Chapter 3).

With the above formula for the likelihood, we can calculate the likelihood ratio of two clus-
ters versus a single cluster:

L(c(2)|y)
L(c(1)|y)

=

∏
k:c(2)k =c(2)i

p(yk|φ)
∏

k:c(2)k =c(2)j
p(yk|φ)

∏
k:c(1)k =c(1)i

p(yk|φ)
. (5.7)

The split step determines the probability of a particular split. Algorithm 11 commences with
picking two random points. These two points are henceforth are already assigned to distinct
clusters. Only the remaining points have to be assigned (see Figure 5.1).

Figure 5.1: A split step. Points i and j are already assigned to separate clusters ci and c j . Each
next point is assigned to one of the clusters with probability 1

2 , indicated by dotted arrows.

The remaining points are assigned with equal probability 1
2 to c(2)i and c(2)j :

q(c(2)|c(1)) =
�

1
2

�−2+n
c(2)i
+n

c(2)j =
�

1
2

�−2+n
c(1)i . (5.8)
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The notation nc(2)i
might seem complex, but it can be read as the number of points n in one

of the clusters after the split. The split results in two clusters, indicated by the subscript (2).
The cluster index is i. The probability of the reverse of the split operation is exactly 1. There
is only one way in which a single cluster can be the starting state for a split operation. It must
have had all points assigned to it. This means that the ratio with respect to the assignment
of points over clusters in the split step becomes:

q(c(1)|c(2))
q(c(2)|c(1))

=
1

�1
2

�n
c(2)i
+n

c(2)j
−2 = 2

−2+n
c(1)i . (5.9)

Only basic identities are used and the fact that the number of data items does not change
after a split, nc(2)i

+ nc(2)j
= nc(1)i

. Note that the reverse split transition looks like a ‘merging’

operation. The merge step, however, is defined independently and its description can be
found in the next section.

5.2.2 Acceptance for the Merge Step

Acceptance of a merge step consists of the same components as that of the split step.

amer ge(c
(1), c(2)) =min

�
1,

q(c(2)|c(1))
q(c(1)|c(2))

P(c(1))

P(c(2))

L(c(1)|y)
L(c(2)|y)

�
. (5.10)

P(c(1))

P(c(2))
= α−1

(nc(1)i
− 1)!

(nc(2)i
− 1)!(nc(2)i

− 1)!
=

1
αB(nc(2)i ,c(2)j

)
. (5.11)

L(c(1)|y)
L(c(2)|y)

=

∏
k:c(1)k =c(1)i

p(yk|φ)∏
k:c(2)k =c(2)i

p(yk|φ)
∏

k:c(2)k =c(2)j
p(yk|φ)

. (5.12)

q(c(2)|c(1))
q(c(1)|c(2))

=
�

1
2

�−2+n
c(1)i = 2

2−n
c(1)i . (5.13)

The ratios of the merge step are the inverse of the ratios of the split step. That is, Eq. 5.11 is
the inverse of Eq. 5.5, Eq. 5.12 is the inverse of Eq. 5.7, and Eq. 5.13 is the inverse of Eq. 5.9.

5.2.3 Sequentially-Allocated Merge-Split Sampler

A variant on the conventional split-merge sampler is the sequentially allocated merge-split
(SAMS) sampler1 (Dahl, 2003). The simple random split procedure of Algorithm 12 is re-
placed by a procedure that sequentially assigns observations to clusters rather than splitting
the data random uniformly over the split clusters.

1In the naming of split-merge or merge-split samplers, the order of merge split does not bear any significance.
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Algorithm 13 Sequentially Allocated Merge-Split

1: procedure SAMS(S, c0, c1) . Accepts unassigned set S, cluster indices ci , and p(yk|θci
) with

i = 0,1, returns cluster assignment c′m.
2: T = random_shuffle(S)
3: for all m ∈ T do
4: p(cm = c0|c0, c1,θc0

,θc1
) = N0 p(yk |θ0)

N0 p(yk |θ0)+N1 p(yk |θ1)
5: p(cm = c1|c0, c1,θc0

,θc1
) = 1− p(cm = c0|c0, c1,θc0

,θc1
)

6: c′m ∼ p(cm|c0, c1,θc0
,θc1
)

7: end for
8: return c′m, the cluster assignment for S.
9: end procedure

In contrast to the simple random split, observations yk are used in the SAMS to obtain cluster
assignments that correspond with the data rather than cluster assignments independent of
the data.

5.3 Triadic Split-Merge Sampler

The triadic split-merge sampler that we introduce (Van Rossum et al., 2017) uses up to three
clusters for a split or merge step (Fig. 5.2).

Figure 5.2: Right: dyadic MCMC picks two data items i, j random uniformly. If both are in the
same cluster a split towards two clusters is attempted. If both are in distinct clusters a merge
towards one cluster is attempted. Left: triadic MCMC picks three data items i, j, k random
uniformly. If all three are in the same cluster a split towards two clusters is attempted. If the
three items are in two clusters either a split into three (with probability 1−β) or a merge into
a single cluster (with probability β) is attempted. If the three data items are in three distinct
clusters a merge is attempted. There are no direct transitions from a single cluster to three
clusters or the other way around.

The intuition behind the triadic split-merge sampler is twofold:

◦ In the dyadic sampler there is a large asymmetry between split and merge steps. There
is only one way in which two clusters can be merged into one single cluster, while there
are many ways in which one single cluster can be split into two clusters. This asym-
metry is reduced by transitioning between two and three clusters. This is a straight-
forward improvement in balancing split and merge steps (for alternatives, see Wang
and Russell (2015)).
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◦ In practical optimization problems it might be useful to form a third cluster out of
subsets of two other clusters. The dyadic MCMC sampler requires intermediate steps
in which (1) one of these clusters is split into two, (2) the other is split into two, and
(3) the two new clusters are merged. This means that (a) mixing and hence conver-
gence will be slow and (b) the intermediate steps might have very low probability and
function as an unnecessary barrier between high probable states.

The algorithm is detailed in Algorithm 14. Compare with Algorithm 11. It starts with sam-
pling three distinct points i, j, and k. These points can originate from one, two, or three
distinct clusters with non-unique indices ci , c j , and ck. Depending on the number of distinct
clusters NS , either a dyadic or triadic step is performed. If all points belong to the same
cluster, NS = 1, a split step into two clusters is attempted. If the points belong to two clus-
ters NS = 2, with probability β a merge step into one cluster is tried, with probability 1− β
a triadic split into three clusters will be considered. If the points belong to three distinct
clusters, NS = 3, a triadic merge step into two clusters will be attempted. All steps will be
accepted or rejected according to the Metropolis-Hastings probability ratios in the following
section. Note that there are no steps with which a single cluster is immediately split into
three, nor is there is a step that merges three clusters into one.

Sampling random uniformly for three unique items is implemented through a random shuf-
fle algorithm, in particular the modern version of the Fisher-Yates shuffle introduced by
Durstenfeld (1964) and picking the first three items.

The Metropolis-Hastings probabilities for the triadic split and merge steps are calculated in
the following Sections 5.3.1 and 5.3.2.

5.3.1 Acceptance for the Split Step

In the triadic split-merge sampler there are two splitting steps. It is possible to split according
to the dyadic split-merge sampler. However, given two clusters there are (split) jumps to
three states as well as (merge) jumps to single states again. To account for this asymmetry
another Hastings correction is applied to establish detailed balance.

aspl i t(c
(2), c(1)) =min

�
1,

r(c(1)|c(2))
r(c(2)|c(1))

q(c(1)|c(2))
q(c(2)|c(1))

P(c(2))

P(c(1))

L(c(2)|y)
L(c(1)|y)

�
. (5.14)

Here we have one additional term compared to the split step from one cluster to two clusters:

r(c(1)|c(2))
r(c(2)|c(1))

=
β

1
. (5.15)

The parameter β is free to control, as long as 0 < β < 1 (to maintain ergodicity). The
transition from two states to three states is another split step:

aspl i t(c
(3), c(2)) =min

�
1,

r(c(2)|c(3))
r(c(3)|c(2))

q(c(2)|c(3))
q(c(3)|c(2))

P(c(3))

P(c(2))

L(c(3)|y)
L(c(2)|y)

�
. (5.16)
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Algorithm 14 Triadic split-merge sampler

1: procedure TRIADIC SPLIT-MERGE SAMPLER(c) . Accepts
cluster assignments c of length N (besides Metropolis-Hastings acceptance factors a(c′, c) and a
split procedure) and returns a (potentially) updated cluster assignment vector c′.

2: i ∼ U({1, . . . , N}) . Sample i discrete uniformly over cluster assignments.
3: j ∼ U({1, . . . , N} \ i) . Sample j from the discrete uniform distribution excluding i.
4: k ∼ U({1, . . . , N} \ {i, j}) . Sample k from the discrete uniform distribution excluding {i, j}.
5: SR = {ci , c j , ck} . Sampled clusters ci , c j , ck.
6: SI = {cx} with cx ∈ SR for x ∈ {1, . . . , N} . All data in clusters ci , c j , ck.
7: SE = SI \ SR . All data in clusters ci , c j , ck excluding SR.
8: NS = unique(SR)
9: u∼ U(0,1) . Sample u between 0 or 1 uniformly.

10: if NS = 1 then . Case: i, j, k belong to the same cluster.
11: return c′ = DYADIC SPLIT-MERGE SAMPER(c)
12: else if NS = 2 and u< β then . Case: a cluster with one item and one with two items and

u< β .
13: return c′ = DYADIC SPLIT-MERGE SAMPER(c)
14: else if NS = 2 and u≥ β then . Case: a cluster with one item and one with two items and

u≥ β .
15: c(3)i = ck with ck /∈ {c1, . . . , cN} . Sample new cluster for c(3)i .

16: c(3)j = c(2)j . Keep c j the same.

17: c(3)e = SPLITPROCEDURE(SE , c(3)i , c(3)j ) . After c(3)i , c(3)j assign SE .
18: for all m /∈ SI do
19: c(3)m = c(2)m . Data points in clusters other than ci , c j are not adjusted.
20: end for
21: c′ = {c(3)i , c(3)j , c(3)e , c(3)m }
22: a = aspl i t(c

′, c) according to Eq. 5.14 . MH acceptance for a split.
23: else . Case: i, j, k belong to thee different clusters ci 6= c j 6= ck (NS = 3).

24: SL = SI \ {c(3)i , c(3)j } . Data in clusters ci , c j , ck except for i and j itself.

25: {c(2)i , c(2)j }= SAMS(SL , c(3)i , c(3)j ) . Assign data points in ci , c j , ck to ci , c j .
26: for all m /∈ SL do
27: c(2)m = c(3)m . Data points in clusters other than SL are not adjusted.
28: end for
29: c′ = {c(2)i , c(2)j , c(2)m }
30: a = amer ge(c

′, c) according to Eq. 5.21 . MH acceptance for a merge.
31: end if
32: u∼ U(0, 1) . Sample u between 0 or 1 uniformly.
33: if a < u then
34: c′ = c . Reject c′ by setting it to c
35: end if
36: return c′, the (updated) cluster assignment vector: c→ c′.
37: end procedure

The fraction with r reads as follows:

r(c(2)|c(3))
r(c(3)|c(2))

=
1

1− β . (5.17)

The fraction with q uses the total number of data points nc in the clusters:

q(c(2)|c(3))
q(c(3)|c(2))

=

�1
2

�nc−2

�1
3

�nc−3 =
�
3nc−3� �22−nc

�
=
�

3
2

�nc 22

33 . (5.18)
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To move from 2 clusters to 3 clusters the probability is a 1/3 for each cluster index in vector
c (except for the three data items already selected randomly, hence nc − 3). To move back,
the probability is a 1/2 and there are only two data items randomly assigned beforehand.
The fraction with P uses the number of data points in each of the clusters before and after
the step:

P(c(3))

P(c(2))
= α
(nc(3)i
− 1)!(nc(3)j

− 1)!(nc(3)k
− 1)!

(nc(2)i
− 1)!(nc(2)j

− 1)!
= α

B(nc3
i
, nc3

j
, nc3

k
)

B(nc2
i
, nc2

j
)

. (5.19)

Here we introduced a generalized Beta function B(a, b, c) = Γ (a)Γ (b)Γ (c)/Γ (a+ b+ c) with
Γ (x) = (x − 1)! the Gamma function. The likelihood ratio becomes:

L(c(3)|y)
L(c(2)|y)

=

∏
m:c(3)m =c(3)i

p(ym|φ)
∏

m:c(3)m =c(3)j
p(ym|φ)

∏
m:c(3)m =c(3)k

p(ym|φ)
∏

m:c(2)m =c(2)i
p(ym|φ)

∏
m:c(2)m =c(2)j

p(ym|φ)
. (5.20)

5.3.2 Acceptance for the Merge Step

The merge step from two to one cluster is analogous to the split step:

amer ge(c
(1), c(2)) =min

�
1,

r(c(2)|c(1))
r(c(1)|c(2))

q(c(2)|c(1))
q(c(1)|c(2))

P(c(1))

P(c(2))

L(c(1)|y)
L(c(2)|y)

�
. (5.21)

The merge step from three clusters to two clusters is:

amer ge(c
(2), c(3)) =min

�
1,

r(c(3)|c(2))
r(c(2)|c(3))

q(c(3)|c(2))
q(c(2)|c(3))

P(c(2))

P(c(3))

L(c(2)|y)
L(c(3)|y)

�
. (5.22)

Note that all the fractions in Eq. 5.22 are the inverse of the fractions in Eq. 5.16. Inverting
Eq. 5.17–5.20 will be left to the reader.

One additional issue we have to consider. When merging three clusters into two we can (1)
distribute the data over all three clusters or (2) alternatively, keep the data in two clusters
assigned to these clusters and only distribute the data in the third cluster over the other two
clusters. The second and alternative option however would introduce unnecessary asymme-
try with the merge step. In other words, Eq. 5.23 is not the inverse of Eq. 5.18. In contrast,
the equation is similar to splitting one cluster across two as in Eq. 5.9:

qal t(c
(3)|c(2))

qal t(c
(2)|c(3))

= 2−2+nc . (5.23)

Hence the first option is entertained and the q-fraction is exactly the inverse of Eq. 5.18.

A second issue has to be considered, namely the inclusion or exclusion of direct operations
between a single cluster and three clusters. This is because factors such as

P(c(3))

P(c(1))
= α2

(nc(3)i
− 1)!(nc(3)j

− 1)!(nc(3)k
− 1)!

(nc(1)i
− 1)!

, (5.24)
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become very small and although compensated by a large q fraction, remain further away
from an acceptance factor of 1. Note that by the ability to split a single cluster into two and
then into three, there is no ergodic argument to introduce also the immediate step.

5.4 Results

The problem we use to test our sampler is a well-known problem in computer vision, namely
that of the inference of line parameters (slope and intercept) given data points. Rather than
ordinary linear regression, in computer vision there is a mixture of lines that have to be
estimated. Moreover, the number of lines is not known in advance. To solve this problem we
use the Dirichlet process mixture (Eq. 5.1) with a normal distribution N(0,σ2

0) to generate
the line parameters and a likelihood function that defines points to be uniformly distributed
across a line of length 20 and deviating from the line according to a normal distribution
N(0,σ2

1).

Figure 5.3: Two examples of fitting a mixture of lines to data items scattered over a two-
dimensional space. The lines drawn are inferred using the triadic sampler. The lines are not
the ground truth, but are meant to demonstrate the typical errors made by fitting methods.
Note, for example, that there are mistakes in both the assignment of points to lines as well as
the line parameters (slope and intercept). Left: In example 1 two lines with similar slope are
seen as the same line. Right: In example 2 points on one vertical line are assigned to multiple
lines. In example 1 and 2 slopes are not always through the points.

In Section 5.4.1 the triadic sampler’s implementation is discussed. In Section 5.4.2 the triadic
sampler is compared with the conventional Jain-Neal (dyadic) sampler and the auxiliary
variable sampler of the previous chapter.
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5.4.1 Implementation

The sampler is open-source2 and is implemented in C++ which means that (a) it is compu-
tationally fast, (b) it can be run on embedded devices (if a cross-compiler is available and
the Eigen3 library is ported). Note, that due to the fact that the simulator uses a lot of ran-
dom numbers the system should use a modern compiler (g++-6 or newer) and should have
enough entropy available3. Rather than a random scan, the implementation uses a fixed
scan as advocated in the literature (MacEachern, 2007).

To speed up the sampler most calculations are done in log-space. Consider v = u+ 1. The
ratio with probabilities (Eq. 5.5 and 5.19) becomes:

log
P(c(v))

P(c(u))
= log(α) +

∑
i

log Γ (nc(v)i
)−

∑
i

log Γ (nc(u)i
). (5.25)

The fraction with q(·) (Eq. 5.9 and 5.18) becomes:

log
q(c(v−1)|c(v))
q(c(v)|c(v−1))

= (v − nc − 1) log(v − 1)− (v − nc) log(v). (5.26)

The fraction with r becomes, for example, (Eq. 5.17):

log
r(c(2)|c(3))
r(c(3)|c(2))

= − log(1− β). (5.27)

The log-probability to calculate the likelihood given by a multivariate Normal distribution is
well-known.

5.4.2 Comparison

The Triadic sampler using SAMS is compared with the Jain-Neal Dyadic sampler using SAMS
and an auxiliary variable sampler with m= 3 (see algorithm 8 in Neal (2000)).

In Table 5.1 the line estimation problem is compared for the dyadic sampler, an auxiliary
variables sampler, and the proposed triadic sampler. The simulation is run with β = 0.1 so
that a significant number of steps are tried between two and three clusters (rather than only
between one and two clusters).

In Figures 5.4a to 5.4c the different metrics are visualized in the form of violin plots.

2Code can be found at https://code.annevanrossum.nl/noparama.
3On Linux this can be checked in /proc/sys/kernel/random/entropy_avail.
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Table 5.1: The purity, rand index, and adjusted rand index establishing the quality of the
clustering method. The closer the values to one, the better the method performed. The purity
metric assigns high values to clusters that do not have data points from other clusters (but does
not penalize the number of clusters). The rand index index computes similarity between clus-
ters taking false negatives and false positives into account. The adjusted rand index accounts
for chance. The adjusted rand index is most useful in our comparison.

Method Purity Rand Index Adjusted Rand Index

Dyadic sampler 0.80960 0.80580 0.56382

Auxiliary variables 0.87235 0.85879 0.68224

Triadic sampler 0.86405 0.87188 0.71067

(a) Line estimation with the dyadic split-merge
sampler.

(b) Line estimation with the auxiliary variable
sampler.

(c) Line estimation with the triadic split-merge
sampler (our inference method). The values are
all shifted up towards one.

Figure 5.4: The different inference methods for line estimation compared. The same results
as in Table 5.1, but visualized in a violin plot. The distribution over metric values are displayed
in a vertical fashion.
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The improvement in clustering is especially visible with the adjusted rand index.

5.5 Chapter Conclusions

A new split-merge sampler has been introduced, implemented, and applied to the computer
vision problem of line estimation. The sampler outperforms existing samplers, such as the
ordinary (dyadic) split-merge sampler (Jain and Neal, 2004) and auxiliary variable sampler
(Neal, 2000).

The triadic split-merge sampler has been used with likelihood functions that correspond to
line fitting. It therefore estimates the number of lines and simultanously performs line fitting.
Moreover, the sampler is optimized to reassign points from three lines to two lines and the
other way around. This means a hypothesized third line can be composed at once from two
existing lines. These triadic steps accelerate the inference process as shown in Section 5.4.

This chapter answers our second research question.

RQ 2 How can we optimize inference over both the number of objects and
fitting of those objects in the robotic vision domain?

The triadic sampler optimizes the inference process by using spatial properties inherent to
the robotic vision domain. To gain some intuition for this consider the following simplified
line recognition problem. There are three lines: two vertical and one horizontal line. The
horizontal line intersects both vertical lines. At some step in the inference process the vertical
lines have been assigned points. The horizontal line has not been recognized yet. Now it
would make sense to suggest a step where points currently assigned to both vertical lines
will be combined to propose a horizontal line. The triadic sampler uses such steps. This
benefits robotic vision problems where this spatial property of "object intersection" happens
regularly.

Although the proposed split-merge sampler is able to mix considerably faster through a mix-
ture model, it does not use global jumps directly based on the data. It is reasonable to suggest
that MCMC methods benefit from combining the local jumps with global jumps, for example
by a mixture of the local Metropolis-Hastings sampler with a Metropolized independence
sampler (Jampani et al., 2015).

However, if the data is used to introduce adaptations to the sampler in this way, there are
other data-driven methods that might improve performance considerably (Barbu and Zhu,
2005; Hughes et al., 2012). One of the data-driven methods that has caught considerable
attention in the literature is a part of machine learning now known as deep learning meth-
ods (LeCun et al., 2015; Schmidhuber, 2015). We will introduce such methods in chapter
Chapter 6.
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Contents In the preceding chapters we have used sampling (MCMC methods) to
perform inference. We extend here our point cloud datasets in 2D to much
larger point cloud datasets in 3D. This requires a speed up in our inference
methods.

Outline We introduce deep learning, and in particular variational autoencoders,
ordinary autoencoders, sparse autoencoders, and convolutional autoen-
coders (Section 6.2). We show how they perform well on the MNIST
dataset. We also show they do not perform well on the task of recon-
structing 2D lines. We then introduce an autoencoder based on a model
known in the literature as PointNet (Section 6.3). This autoencoder uses
earth mover’s distance (EMD) to reconstruct dense point clouds of single
objects. In contrast, our dataset contains multiple objects that are sparse,
such as squares and cubes. We show that the autoencoder does not learn
a proper latent representation for those objects. We introduce two new
metrics, the shifted earth mover’s distance (SEMD) and the partitioning
earth mover’s distance (PEMD), to be used for datasets with objects on
unknown positions or datasets with multiple objects in a single sample
(Section 6.4). We test the new EMD on our dataset with multiple 3D
cubes on different locations (Section 6.5). Finally, we provide the chapter
conclusions and we describe some ways to improve structured autoen-
coders (Section 6.6).

6.1 Data-driven Methods

The previous chapter concluded with a suggestion to look into data-driven methods to accel-
erate inference even further than with the models described until then. One particular way
in which we incorporate knowledge about the data we operate on, is by introducing nonlin-
ear functions before we perform inference. These nonlinear functions we adapt to the data

67
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by a learning process. A neural network can represent such a function. If a stack of neural
networks is used, this becomes the field of deep learning (LeCun et al., 2015; Schmidhuber,
2015).

An autoencoder consists of two of those deep neural networks that each contains multiple
layers. The encoder has layers of decreasing size and maps to the code, a layer of latent
variables. The decoder has layers of increasing size and maps from the code to the same
dimension as the input. A loss function can be used to quantity the difference between the
input of the autoencoder and its output. The calculated loss is used to adjust the weights in
the neural networks through error propagation.

Figure 6.1: Left: the data x is used to train a (semi)autoencoder. Middle: the results of
the autoencoder are used to create a data-driven prior for a Bayesian classifier. Right: the
performance is measured with performance metrics like purity, rand index, as in previous
chapters.

In Fig. 6.1 the autoencoder is embedded in a larger architecture The first block depicts an
autoencoder that can efficiently represent 3D point cloud data. The second gets information
from the autoencoder and uses this as a data-driven prior to perform classification. Typically,
it is a Bayesian classifier as encountered in the previous chapters. The third block defines
the performance of the autoencoder-classifier tandem.

In Section 6.2 we describe different types of autoencoders. In Section 6.3 we describe the
earth mover’s distance (EMD), a loss that can be used for the robotic vision domain of point
clouds. We show the results of using this loss on the robotic vision task of fitting 3D cubes.
We also visualize the latent representation of the autoencoder using this loss. In Section 6.4
we introduce a semi-autoencoder and introduce two generalizations of the EMD, the shifted
earth mover’s distance (SEMD) and the partitioning earth mover’s distance (PEMD). In Sec-
tion 6.5 we use the PEMD in combination with the triadic sampler of the previous chapter
to perform inference over point clouds consisting of 3D cubes. We provide the chapter con-
clusions in Section 6.6.

6.2 Autoencoders

We introduce four autoencoders: a variational autoencoder (Section 6.2.1), an ordinary
autoencoder (Section 6.2.2), a sparse autoencoder (Section 6.2.3), and a convolutional au-
toencoder (Section 6.2.4). We show how they perform on the MNIST dataset. We also show
how they perform on a second dataset used in the previous chapter with 2D lines made out
of 2D points. We will refer to the latter dataset as Lines100.
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6.2.1 Variational Autoencoder

Variational autoencoders (Kingma and Welling, 2014; Rezende et al., 2014) are ordinary
autoencoders with additional constraints on the latent variables. The latent variables in
autoencoder parlance are called the code. In a variational autoencoder the latent variables
are forced to approximately describe a standard Normal (or unit Gaussian) distribution. The
autoencoder is trained using a loss function that is composed out of (1) a generative loss,
a mean squared error that measures how accurately the network reconstructs its input, and
(2) a latent loss, a KL-divergence that measures how closely the latent variables match a
unit Gaussian. This loss is summed over all samples (and reconstructions), L =

∑
i li(F, G).

li(F, G) = −Eh∼qF (h|x i)
[log(pG(x i |h)] +KL(qF (h|x i)||p(h)) (6.1)

To optimize the KL divergence a reparameterization trick is applied. The encoder does not
generate a vector with real values, but generates a vector with means and standard devia-
tions instead.

Figure 6.2: Left: qF (h|x) maps the data x to (hidden) random variables h. Middle: pG(x |h)
maps the hidden random variables to reconstructed data x ′. Right: L(x , x ′) measures the
similarity between x and x ′.

The results are presented in the following manner. First, we visually inspect the reconstruc-
tion of the items in the dataset. Second, the test samples are encoded into the latent variable
representation. The latent variables are then presented in a 2D scatterplot. Third, there is a
sweep over the latent variable values to generate digits. The second and third presentations
are especially useful if the encoder has only two latent variables. In that case the presenta-
tion in a 2D scatterplot does not require a dimensionality reduction step. The sweep over
only two latent variables is also very easy to represent in 2D.

The MNIST digits are reconstructed by a variational autoencoder as shown in Fig. 6.3.
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Figure 6.3: Reconstruction of MNIST data by a variational autoencoder. Top: the input,
images with single hand-drawn digits. Bottom: the output, the images reconstructed by the
autoencoder. During the training process the network weights are adjusted precisely so that
the reconstruction loss between the output and the input is minimized. The variational au-
toencoder minimizes at the same time also the KL-divergence between the latent variables and
a prior.

The scatterplot of the latent variable representation of the test set. It can be seen that similar
digits are mapped to similar values in the latent space.

Figure 6.4: Scatterplot of latent variable representations of test samples in a variational
autoencoder. There are two latent variables. The values of one latent variable are on the
horizontal axis. The values of the other latent variables are on the vertical axis. The digits
of the MNIST task are plotted with different color shades. For example, the digit zero is
represented by values of around 0 of the "horizontal" latent variable and values around 3 of
the "vertical" latent variable. Those are the whitest dots. The variables do not necessarily have
(easily identifiable) semantics and are therefore not labeled.

Note that not every digit occupies the same amount of space in the latent variable layer. The
amount of space emerges from the learning process.
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Figure 6.5: Latent variable sweep of test samples in a variational autoencoder. The two latent
variables are both given values and the decoder calculates the output. This output is depicted
as an image (a reconstructed "digit"). Here you see 20x20 images reconstructed starting from
values at the top-left of around (0, 0) to the bottom-right of around (560,560). It is clearly
visible that if the values of the latent variables change only slightly, that the reconstruction is
also changed only slightly.

6.2.2 Ordinary Autoencoder

An "ordinary" autoencoder (Rumelhart et al., 1986) has been trained with a latent variable
layer of 32 nodes (rather than 2 as in the variational autoencoder above). It only minimize
the reconstruction error and has no constraints1 on the latent layers. We show the represen-
tation of the ordinary autoencoder after that of the variational autoencoder, so we can see
how the representation is less structured.

li(F, G) = −Eh∼qF (h|x i)
[log pG(x i |h)] (6.2)

The reconstruction is similar to that of the variational autoencoder if we just use visual
inspection (see Fig. 6.6). This means that the ordinary autoencoder learns to reconstruct
the digits just as the variational autoencoder.

1The size of the layer can be seen as a constraint, but it is not yet a regularization technique.
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Figure 6.6: Reconstruction of MNIST data by an ordinary autoencoder.

The difference between the ordinary and the variational autoencoder shows when we start
to study the latent representation. If we use a scatterplot for two of the latent variable nodes,
there is not much structure to observe (see Fig. 6.7).

Figure 6.7: Scatterplot of latent variable representations of test samples in a ordinary au-
toencoder. The two axes represent only two nodes of in total 32 nodes in the latent layer. In
contrast to the variational autoencoder (Fig. 6.4) there are no easily distinguishable clusters
representing particular digits.

We might perform dimensionality reduction and for example use t-SNE (Van Der Maaten
et al., 2009) to map to a 2D space. However, this is much more indirect than in the case that
there are only two latent variables. If there is still no structure observed, it might be just an
artifact of how t-SNE performs dimensionality reduction (not indicating the quality of the
latent variable representation).

Let us use the ordinary autoencoder to reconstruct point clouds. In this case the reconstruc-
tion of 2D lines.
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Figure 6.8: Top: the input, multiple lines per sample. Bottom: the output, the reconstructed
2D point cloud by the autoencoder. Clearly, the reconstruction fails for the ordinary autoen-
coder. In particular, the autoencoder seems not to be able to reconstruct the correlations
between the x and y coordinates.

In Fig. 6.8 the reconstruction of the 2D lines are shown. The ordinary autoencoder is not
able to reconstruct the lines.

6.2.3 Sparse Autoencoder

A sparse autoencoder (Hosseini-Asl et al., 2015) is similar to the ordinary autoencoder, but
enforces sparsity through an "activity regularizer":

li(F, G) = −Eh∼qF (h|x i)
[log pG(x i |h)] +KL

�
qF (h|x i)||p(h)

�
+ J(h). (6.3)

The activation in the hidden layer can be regularized by an L1 loss function, J(h) = λ
∑

j |h j |,
or by enforcing the average activation of a node to be close to zero (averaged over all m
training samples). This can be achieved for example by setting J(h) = β

∑
jKL(ρ||ρ̂ j) with

ρ̂ j =
1
m

∑m
r [h j(xr)]. The sharpness of the reconstructions can be tuned by the factors λ or

β or both if both regularizers are used at the same time.

The reconstruction of digits (see Fig. 6.9) by a sparse autoencoder is a bit less sharp than
reconstruction by an ordinary autoencoder (compare Fig. 6.6).

Figure 6.9: Reconstruction of MNIST data by a sparse autoencoder. The results are a bit less
sharp than that of the ordinary autoencoder.

The scatterplot in Fig. 6.10 shows that only a few of the latent variables have non-zero
values. The sparsity in the latent variables layer is achieved.
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Figure 6.10: Scatterplot of latent representations in a sparse autoencoder. The two axes
represent only two nodes in the latent layer. In contrast to the ordinary autoencoder (Fig. 6.7)
is clear that inputs are mostly represented by either one or the other latent variable with a value
that is nonnegative.

For most digits at least one of the first two nodes in the latent layer are zero (Fig. 6.10).
We do not show the reconstruction of lines. The sparse autoencoder is failing in a similar
manner as the ordinary autoencoder (Fig. 6.8).

6.2.4 Convolutional Autoencoder

The results for the dataset with multiple lines (Lines100) was shown for the ordinary autoen-
coder in Fig. 6.8. This dataset is also impossible to reconstruct for the variational and sparse
encoder (not shown). The likely reason for this is that 2D data is inherently correlated. The
(x , y) coordinates are dependent.

A convolutional autoencoder (Masci et al., 2011) is an autoencoder architecture that can
operate on this type of data. It differs in its connectivity between the nodes in the autoen-
coder rather than in the loss function. The nodes are subdivided into layers. The layers are
sparsely connected with each other, by convolutions. A stack of such layers has been given
the name "deep neural network".
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Figure 6.11: The reconstruction of lines (top row) starts to work for the convolutional au-
toencoder (results in bottom row). The reconstructions are blurry, but recognizable.

The convolutional autoencoder works on the 2D dataset if the lines are first mapped to a
2D grid. To use the same strategy in 3D, would mean that we have to create a voxel space.
Rather than points like (x , y, z) we need to create a matrix of Lx M xN , which becomes
really large for increasing granularity. Although, the convolutional autoencoder shows that
reconstructions are possible, we need something more sophisticated. In the next section we
introduce autoencoders that are dedicated to point clouds.

6.3 Autoencoders on Point Clouds

Point cloud data has only recently been directly fed into deep neural networks. PointNet (Qi
et al., 2017) is the first implementation of a deep network for segmentation and classifica-
tion that directly operates on point clouds. In (Section 6.3.1) we describe an autoencoder
from the literature which uses an architecture similar to PointNet as an encoder. The qual-
ity of this autoencoder will be assessed by visual inspection of the reconstruction quality
(Section 6.3.2) and by a latent variable sweep from one representation to another (Sec-
tion 6.3.3).

6.3.1 Earth Mover’s Distance

The autoencoder (Achlioptas et al., 2018) architecture builds on PointNet. We refer to (Qi
et al., 2017) for further details on PointNet. The autoencoder uses PointNet for the en-
coder. It accepts a point cloud with 2048 points (a 2048 x 3 matrix). It is constructed out
of convolutional layers. The layers have kernel size 1 and an increasing number of features
(representing the "neighborhood" of a point). The last layer is formed by a symmetric func-
tion, which is permutation invariant. The permutation invariance is required due to the
exchangeability of points.

In a bit more detail, there are five convolutional layers, each is followed by a rectified lin-
ear unit (Nair and Hinton, 2010) and a batch-norm layer (Ioffe and Szegedy, 2015). The
permutation invariant function takes a maximum (per feature) and forms a latent vector.

The decoder in this autoencoder is formed by three fully-connected layers with the first two
followed by a ReLU and as output a 2048 x 3 matrix, the reconstructed point cloud.

One of the permutation-invariant objectives employed is the so-called earth mover’s distance.
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The earth mover’s distance (EMD) is also known as the 1st Wasserstein distance. It can be
considered an optimal transport problem. The concept has been first introduced in the 18th
century (Monge, 1781). If there is an amount of sand and a pit where it has to go, how do
we optimal transport the sand to the pit? The quantity that has to be minimized for this is
called the earth mover’s distance.

È Definition 6.1 — earth mover’s distance

The earth mover’s distance (EMD) between S1, S2 ∈ R3 of equal size |S1|= |S2| is defined
as:

dEM D(S1, S2) = min
φ:S1→S2

∑
x∈S1

||x −φ(x)||2

with φ : S1→ S2 a bijection.

In the next section we apply this autoencoder using the earth mover’s distance on 3D point
clouds.

6.3.2 Reconstruction of 3D point clouds

The autoencoder properly reconstructs not just 2D lines, but complete point clouds. In Fig-
ure 6.12 the autoencoder uses the earth mover’s distance as loss function to reconstruct the
original cubes.
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Figure 6.12: Reconstruction of a point cloud consisting of multiple cubes. The autoencoder
uses the earth mover’s distance. Left: the original point cloud. Right: the reconstructed point
cloud. The reconstruction is not perfect. The cubes are recognizable though.



Chapter 6. Deep Learning of Point Clouds 77

6.3.3 Quality of Latent Representation

To assess the quality of the latent representation we interpolate linearly between two latent
variable representations that belong to two different cube configurations. Fig. 6.13 visualizes
reconstructions of latent representations using the earth mover’s distance. The results of the
Chamfer distance are similar (not shown here).
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(a) Reconstruction of latent
representation corresponding
to sample 1.
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(b) Reconstruction of the latent
representation linearly interpo-
lated between latent represen-
tations of sample 1 and 2.
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(c) Reconstruction of latent
representation corresponding
to sample 2.

Figure 6.13: Reconstruction of point clouds. This uses the earth mover’s distance as a re-
construction loss. The representation in the center is generated by interpolating between two
latent representations of actual samples. The reason that this is shown is to demonstrate that
this latent representation is not generating geometric objects that are cubes. In contrast, it is a
more general point cloud. This provides a hint that the autoencoder did not learn the concept
of a cube. If it would, the intermediate representation more likely would have represented
cubes at intermediate locations.

Remarkably, the objects at the interpolated steps do not resemble cubes 2. The interpolation
shows that the internal structure is not maintained. In between the two cube configurations,
there is an unstructured point cloud, like Gaussian distributed blobs.

6.4 Semi-Autoencoders on Point Clouds

This section will address the limitations by the autoencoders and distance measures of the
previous section. First we will explain limitation of the EMD with respect to uniformity (Sec-
tion 6.4.1). We describe a first generalization of EMD called shifted earth mover’s distance
which addresses uniformity (Section 6.4.2). This is not able to cope with multiple objects for
which we describe a second generalization called partitioning earth mover’s distance (Sec-
tion 6.4.3). This distance will then be used to create a semi-autoencoder (Section 6.4.4).

2A video can be seen at https://bit.ly/2G2gyE2
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6.4.1 Limitations of the Earth Mover’s Distance

The earth mover’s distance defines a transportation map. Although the name optimal trans-
port might suggest that there is a single optimal map, there are multiple maps possible.
Depending on the implementation a particular map can be found. For example, if single
grains of dirt are positioned at x = 0, x = 1 and need to be transported to x = 2, x = 3, it
is possible to move one grain from x = 0→ 2 and the other to x = 1→ 3 or to move one
grain from x = 0→ 3 and the other x = 1→ 2. The total distance traveled in both cases is
4. In the first case the moves are more uniform than in the second case.

Figure 6.14: This figure shows that EMD is not unique. There are multiple maps possible and
one map can be more "uniform" than another. Left: a map where each grain is moved with the
same distance (of two). This is "uniform". We can achieve this with a global coordinate frame
shift of two. Right: a map where one grain is moved over a larger distance (three versus one).
This is not "uniform". Important to note, the total distance for both maps sums to four. The
EMD can not distinguish between those cases!

The uniformity in a transportation map corresponds in the case of robotic vision with objects
that are spatially translated. The transportation map that is not uniform does not correspond
to a recognizable geometric operation.

In Fig. 6.15 we see at the left how we have the non-uniform transportation plan and on the
right a uniform transportation plan.
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(a) A non-uniform transportation plan. The
square at the top-right is transported to the one at
the origin. The points close to the origin are trans-
ported to the top-left of the square at the origin.
Only the largest transport values are shown.

(b) A uniform transportation plan. A uniform
transportation plan. The points in the square at
the top-right are transported to the square at the
origin in such a way that e.g. the points in a corner
of the right square map to the points in the "same"
corner of the other square. The map is uniform.

Figure 6.15: Earth mover’s distance implementations. Both figures show "before" and "after"
of the transportation map.

In Section 6.4.2 we describe an improvement on EMD which takes into account spatial trans-
lations. In Section 6.4.3 we describe a further generalization that takes into account multiple
objects.

6.4.2 Shifted Earth Mover’s Distance

The particular version of the earth mover’s distance that is implemented is a shifted version
of the EMD, the Shifted earth mover’s distance. Suppose, in analogy with the original pos-
tulation of the problem by Mongei, that there is a small landslide such that the center of the
source distribution becomes exactly on top of the center of the target distribution. The dirt
now only has to be moved on a smaller scale.

The SEMD is calculated by shifting both pointsets such that they are centered around the
origin. Note, that for datasets where the objects are already centered around the origin this
will not make any difference. However, our dataset is definitely not centered around the
origin, so this has a large effect (see again Fig. 6.15).

6.4.3 Partitioning Earth Mover’s Distance

The SEMD is an improvement on EMD for single objects. However, for multiple objects
the shift to the origin needs to be different for each object. PEMD partitions the space and
couples each subset with its own shift operator. We visualize such a map in Fig. 6.16.
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Figure 6.16: This figure demonstrates partitioning earth mover’s distance (PEMD) with an
example. Shown are two maps which are equivalent for EMD. Left: a possible SEMD map,
the grains are moved by {2, 1,1,−1,−1,−2} steps (sum of absolute values is 8). Right: the
PEMD map, the grains are moved by {2, 2,2,−2,−2,−2} steps (sum of absolute values is 12).
The PEMD preserves the "structure" of the three grains in a cluster. The PEMD is larger than
the SEMD.

For our robotic vision problems of identifying point clouds this can be visualized as well (see
Fig. 6.17). Note that the object is a square and that there are multiple identical objects are
to be recognized. This is the purpose of deploying the PEMD distance. It minimizes the
distance to a "prototypical" object. In our autoencoder application, the result will be such a
"prototype" object. The autoencoder will not reconstruct the complete input, it will construct
a single copy of multiple identical objects that are present in the input. This is the property
we use of this semi-autoencoder. We use the constructed output in Section 6.5 as input for
our sampler.

(a) Shifted earth mover’s distance visualization.
The objects at (−4,5) and (2, 2) are mapped to the
object in the center. The (uniform) mapping of
SEMD does not distinguish between the squares.
It is not preserving the structure of the individual
squares.

(b) Partitioning earth mover’s distance visualiza-
tion. The objects at (−4,5) and (2,2) are mapped
to the object in the center. The mapping maps both
squares on top of the center square. It preserves
the structure of the individual squares.

Figure 6.17: Earth mover’s distance implementation on three objects. Left: SEMD. Right:
PEMD.

The PEMD needs to find partitions. This is actually a clustering problem on its own. Given
a pointset and a repeated structure, can we divide this pointset into that structure and the
number of times this structure occurs?
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We solve this by the following optimization procedure. We search for local modes using a
conventional algorithm, in our case mean-shift. After we have found the local modes, we
use the means of the data points we found to translate the objects in both point clouds to
the origin. We then perform EMD on the entire (normalized) dataset.

In Fig. 6.17 the difference can be seen in the transportation plan between a global shift
(left) and shifts per partition (right). The shifts per partition shows a transportation map
that preserves the local structure.

6.4.4 Semi-autoencoder

There are examples of generalizations of an autoencoder where the dimensions of the input
and the output does not have to be identical (Zhang et al., 2017). However, the discrepancy
between input and output can purely rise from the distance function used as well. If the
distance function is truly translation invariant, the output gives rise to the object searched
for. It is not a matter of reconstructing one of the input objects. A proper autoencoder
would reconstruct a single object using information from all those duplicate objects in the
input. This map can be seen as a generalized reconstruction objective. Alternatively, it can
be seen as a general encoder-decoder network where we search for transformations of the
input rather than the identity operation (Worrall et al., 2017).

The semi-autoencoder can be seen as a system that separates the object’s shape (the "what")
from the object’s position (the "where") tailored to a situation where there are many identical
objects. Separation between object shape and position through separate pathways seems
ubiquitous in the (mammalian) brain (Ungerleider and Haxby, 1994; Rauschecker and Tian,
2000). Even more relevant to our architecture, there is brain-imaging evidence that the
pathways for object identity and numerosity (the number of objects) are separated (Izard
et al., 2008). Moreover, the ability to represent numerosity seems just as ubiquitous as the
what-where pathways and can for example be found in mosquitofish (Agrillo et al., 2011)
and honeybees (Bortot et al., 2019).

In this context, the semi-autoencoder fulfills the role of object identification. Given an object
there is another pathway that is able to reason with these objects. In our case we will use a
triadic sampler to perform class assignments. When points are assigned to multiple objects
we have indirectly also represented counting those objects. In other words we have a second
pipeline to establish numerosity. Note, that in contrast with subitizing autoencoders (Wever
and Runia, 2018; Pecyna et al., 2019) our objective is not counting itself but clustering: the
proper assignment of 3D points to multiple 3D objects.

6.5 Results

In Section 6.5.1 we describe a few implementation details for the autoencoder. In Sec-
tion 6.5.2 we analyze the performance of the classifier that uses the results of the autoen-
coder for the task of assigning points to cubes in point clouds.
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6.5.1 Implementation

The autoencoder using the partitioning earth mover’s distance3 is based on an autoencoder
implementation using PointNet (Achlioptas et al., 2018). It uses Tensorflow and the metrics
and their gradients have been implemented for the CPU (python3) and for the GPU (CUDA).
The implementation for the GPU aims to improve the speed of the operations.
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Figure 6.18: Left: the input, a sample with multiple 3D cube objects. Right: a reconstructed
cube. The autoencoder uses partitioning earth mover’s distance as a metric. The reconstruc-
tion creates a single object. Each cube in the original input contributes to the representation
in the output. The output reflects the invariance in number of objects and their locations.

In Fig. 6.18 one of the reconstructed samples is visualized. The input, the set of cubes, is at
the left. The output, the single cube at the origin, is at the right. This is a to be expected
result from the reconstruction process. The loss function does not take into account the
actual position of the cubes: it is on purpose invariant to these positions. This means that
the generation process yielding a unity cube will have a very low loss associated to it.

6.5.2 Clustering Performance

The reconstruction of the autoencoder is used as a reference object for a triadic MCMC
sampler (Chapter 5). The MCMC sampler compares the reference object with the current
sample. Each point is compared with its nearest neighbor in the reference set and its match
is defined through a normal distribution. The datasets are subsampled to 200 points.

More specific, it is common to compare two objects using pairwise Euclidean distances be-
tween (correspondence) points (Boutin and Kemper, 2004). We will use a Dirichlet Process
with a multivariate normal distribution as base distribution, H, centered at the origin and
with scalar noise (σ = 1). During the inference process the sampler will generate 3D lo-
cations, µi , for the hypothesized objects and we will calculate the difference between the

3Implementation at https://github.com/mrquincle/latent_3d_points.
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hypothesized object with the reference object using the Euclidean kernel. In our implemen-
tation the objects do not have to have the same number of points. We sum the distances of
the closest point (also with respect to the Euclidean distance). This means that the reference
object can be much denser than the hypothesized object.

We can describe the Dirichlet process in the usual manner:

G ∼ DP(α, H),

µi | G iid∼ G,

wi | µi , r ∼ F(w;µ, r).

(6.4)

The likelihood function has a bit of a complicated structure:

F(wi |µ, r) = D(wi , g(wi , f (r,µ))). (6.5)

The reference point cloud r is undergoing an operation through f (r,µ), in this case a simple
shift f (r j ,µ) = r j − µ for each j in the point cloud r. The function g is nonlinear and finds
the point closest to wi in r, which we define as r ′. Then the distance is calculated between
wi and r ′ through D, the Euclidean distance.

The results of the triadic sampler can be found in Table 6.1.

Table 6.1: The purity, rand index, and adjusted rand index establishing the quality of the
clustering method for line estimation (Chapter 5) and cube estimation (this chapter). The
more complex dataset results in to be expected lower performance levels, but a significant
number of assignments are correct. The results with the other types of samplers are not re-
peated for the cube dataset considering that they underperformed the triadic sampler already
in the line estimation task.

Dataset Purity Rand Index Adjusted Rand Index

Line estimation (Chapter 5) 0.86405 0.87188 0.71067

Cube estimation 0.8367 0.8359 0.6524

The spread over the samples is displayed in Figure 6.19 as a violin plot. Note that there
might be still room for improvement. For some data samples an adjusted rand index of 0
corresponds to chance. Yet, it does not necessarily mean that the sampler can be improved.
If there are two cubes generated at exactly the same location the "correct" cube becomes
unidentifiable.
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Figure 6.19: Performance of the triadic sampler on 3D cubes.

Figure 6.20 shows an assignment for a particular sample from the dataset. The cubes are
properly identified as separate entities. There are also a few points that are accidentally
assigned to those cubes as well.
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Figure 6.20: One of the samples as classified by the triadic sampler. The assignments of
points to cubes is indicated by colors. It is visualized how some of the points are misclassified.
In this case this happens mainly for cubes with only a few points.

6.6 Chapter Conclusions

The previous chapters went to great lengths to use Bayesian inference methods to given prior
and likelihood optimally infer lines, line segments, squares, and other primitive geometrical
objects. In this chapter we deployed deep learning methods to be able to reason about less
primitive objects: cubes. A naive application of state-of-the-art deep learning methods for
point clouds is not sufficient. Compared to dataset in the literature the objects in our dataset
are shifted, and importantly, there are multiple objects in a single frame. The neural network
needs to learn multiple objects at once.

The chapter introduced two new metrics for autoencoders based on earth mover’s distance
or Wasserstein. First, a SEMD or Shifted Wasserstein metric that can be used on dataset
where objects are not centered at the origin. Second, a PEMD or Partitioning Wasserstein
metric that can be used for datasets where individual frames do have multiple objects.
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The results show that it is indeed possible to create a variant of an autoencoder that learns
to reconstruct a particular object when there are multiple copies in its input. It is a semi-
autoencoder, not an exact autoencoder. The purpose is not to exactly regenerate the in-
put, but to represent the duplicate objects as one single object. It uses the same encoding-
decoding structure as an autoencoder.

The model in this chapter is able to:

◦ Perform inference on multiple objects by using a partitioning earth mover’s distance.
Inference over multiple objects simultaneously is not part of recent optimal transport
literature (Alvarez-Melis et al., 2018, 2019). The ability to perform inference over
multiple objects is neither part of translation-aware work such as transforming au-
toencoders (Hinton et al., 2011) and capsule networks (Hinton et al., 2018).

◦ Perform inference on multiple objects without defining the number beforehand. This
goes beyond e.g. the work on so-called barycenters (Forrow et al., 2018, 2019).

This chapter demonstrated how to perform inference on more complex volumetric objects.
It showed how naive application of autoencoders - even autoencoders especially designed
for point clouds - fails for inference of multiple objects.

New metrics and a new type of autoencoder is developed to take this type of structure into
account. Such an autoencoder can then be used for a prior for a Bayesian model. This model
can be sampled with the techniques of the previous chapters.

This chapter answers our third research question.

RQ 3 How can we recognize more general 3D objects?

First we use modern deep learning techniques to create data-driven priors. These priors can
be very complex, learned - over many iterations of the data - by an autoencoders with many
layers. Second, given these data-driven priors we perform inference using a nonparametric
Bayesian model to detect general 3D objects. This bridges the field of deep learning with
that of nonparametric Bayesian methods.
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DISCUSSION AND CONCLUSIONS

Autonomous systems, cars, robots, rely on depth information. Point clouds, points in a 3D
space, are data streams that these systems have to encode into objects, infer object type,
count, and in the end use to orient themselves in the world and act accordingly.

Bayesian methods have the advantage of - given a particular prior and likelihood - optimally
deduct the posterior. In computer vision the Hough transform and other traditional methods
have been used many times. Now, with the advent of more modern machines it becomes
possible to implement full Bayesian methods. The Bayesian methods deployed do not just
infer a particular type of line, but multiple of them. Moreover, the number of objects is not
known in advance.

7.1 Research Questions

Below we summarize the answer to the three research questions, (RQs). We use RA1 to
indicate the answer to RQ1. Let us start to reiterate the first research question.

RQ 1 How can we estimate the number of objects simultaneously with the
fitting of these objects?

We have introduced two nonparametric Bayesian models in Chapter 3 and Chapter 4.

RA 1 We can estimate the number of objects simultaneously with fitting the ob-
jects for lines as well as segments with nonparametric Bayesian methods.
For lines Gibbs sampling is sufficient. For line segments, due to noncon-
jugacy of prior and likelihood, Gibbs sampling with auxiliary variables
has to be used.
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This answers the first research question.

The second research question concerns optimization for the domain of robotic vision.

RQ 2 How can we optimize inference over both the number of objects and
fitting of those objects in the robotic vision domain?

The point clouds in the robotic vision domain have spatial properties. One of those properties
is that objects can intersect. In Chapter 5 we introduced a new MCMC method, the Triadic
Split-Merge sampler.

RA 2 Inference method in the robotic vision domain can be improved through
the use of a triadic split-merge sampler that takes into account object
intersection.

This answers the second research question.

The third research question asks about generalization.

RQ 3 How can we recognize more general 3D objects?

Generalization to 3D, as well as considering more complex objects than lines or line seg-
ments, requires a great deal of sampling time. By introducing data-driven priors, inference
can be accelerated, as shown in Chapter 6.

RA 3 More general 3D objects can be recognized by using data-driven priors.
These priors can be generated by deep learning methods. The use of
complex, data-driven priors allows us to to perform inference over more
general 3D objects such as cubes, compared to simple lines or line seg-
ments.

This answers the third research question.

7.2 Problem Statement

The research questions support the answer to the general problem statement.

PS: How can robotic vision problems effectively be generalized and their struc-
ture exploited in a wider Bayesian framework?
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The answer to the problem statement is a combination of general approaches, which have
been made possible to (1) advances in nonparametric Bayesian models as well as (2) ad-
vances in MCMC inference methods and (3) modern data-driven deep learning methods.

Answer: Robotic vision problems that concern the recognition of multiple ob-
jects of which the number is unknown in advance can be modeled
by nonparametric Bayesian models. The inference methods - even
though there is no conjugacy - can benefit from spatial characteris-
tics and can be further accelerated by using data-driven priors.

7.3 Limitations

Inference methods for nonparametric Bayesian models can converge quite slowly. The triadic
sampler as postulated in this thesis does accelerate inference for a particular type of robotic
vision problem, but it takes too much time for more complex data objects such as 3D cubes.
Standard reconstruction loss functions in deep learning methods such as autoencoders fail
to take into account properties of the robotic vision domain: e.g. translation invariance and
the occurrence of multiple objects. This can be mitigated by adjusted loss functions as pro-
posed in this thesis. For robotic vision problems with multiple types of complex 3D objects,
the current model is not sufficient. The autoencoder would represent multiple objects si-
multaneously. For a correct handling of this challenge, a more complex loss function has to
be imposed on the autoencoder.

7.4 Recommendations

We recommend an in-depth study of a variety of reconstruction loss functions for autoen-
coders on datasets that have the spatial properties inherent to the robotic vision domain.
The recommendation is to not only address spatial invariance or object copies as studied
in this thesis. There are other properties, such as rotation invariance, scale invariance, and
object overlap which would require our attention. There are also dynamic properties, such
as temporal occlusions, temporal consistency, light conditions, and gravitational constraints,
might will need to be captured by priors to perform Bayesian inference. Those priors (1)
can be postulated by the domain expert as is regularly done in the Bayesian methodology or
they (2) can be obtained in a data-driven manner as is done in the deep learning literature.





REFERENCES

P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas. Learning representations and generative
models for 3D point clouds. In Proceedings of the 35th International Conference on Machine Learning,
pages 40–49, 2018.

C. Agrillo, L. Piffer, and A. Bisazza. Number versus continuous quantity in numerosity judgments by
fish. Cognition, 119(2):281–287, 2011.

D. J. Aldous. Representations for partially exchangeable arrays of random variables. Journal of
Multivariate Analysis, 11(4):581–598, 1981.

D. J. Aldous. Exchangeability and related topics. In École d’Été de Probabilités de Saint-Flour
XIII—1983, pages 1–198. Springer, 1985.

J. Aldrich. R.A. Fisher and the making of maximum likelihood 1912-1922. Statistical Science, 12(3):
162–176, 1997.

D. Alvarez-Melis, T. Jaakkola, and S. Jegelka. Structured optimal transport. In International Confer-
ence on Artificial Intelligence and Statistics, pages 1771–1780, 2018.

D. Alvarez-Melis, S. Jegelka, and T. S. Jaakkola. Towards optimal transport with global invariances.
pages 1870–1879, 2019.

C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan. An introduction to MCMC for machine
learning. Machine learning, 50(1-2):5–43, 2003. doi: 10.1023/A:1020281327116.

S. Banach and A. Tarski. Sur la décomposition des ensembles de points en parties respectivement
congruentes. Fund. math, 6(1):924, 1924.

S. Banerjee. Bayesian linear model: Gory details. 2008. URL http://www.biostat.umn.edu/
~ph7440.

A. Barbu and S.-C. Zhu. Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8):1239–1253, 2005.

D. Basu and R. Tiwari. A note on the Dirichlet process. In P. R. Krishnaiah, G. Kallianpur, J. Ghosh,
and C. R. Rao, editors, Statistics and Probability: Essays in Honor of C.R. Rao, pages 355–369.
Springer, 1982.

L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state Markov chains.
The annals of mathematical statistics, 37(6):1554–1563, 1966.

H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust features. In European conference on
computer vision, pages 404–417. Springer, 2006.

D. Blackwell. Discreteness of Ferguson selections. The Annals of Statistics, 1(2):356–358, 1973.

91



92 References

D. Blackwell and J. B. MacQueen. Ferguson distributions via Pólya urn schemes. The annals of
statistics, pages 353–355, 1973.

J.-L. Blanco, J. González, and J.-A. Fernández-Madrigal. Optimal filtering for non-parametric ob-
servation models: applications to localization and SLAM. The International Journal of Robotics
Research, 29(14):1726–1742, 2010.

R. C. Bolles and M. A. Fischler. A RANSAC-based approach to model fitting and its application to
finding cylinders in range data. In IJCAI, volume 1981, pages 637–643, 1981.

M. Bortot, C. Agrillo, A. Avarguès-Weber, A. Bisazza, M. E. Miletto Petrazzini, and M. Giurfa. Hon-
eybees use absolute rather than relative numerosity in number discrimination. Biology Letters, 15
(6):20190138, 2019.

A. Bosch, A. Zisserman, and X. Muoz. Scene classification using a hybrid generative/discriminative
approach. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(4):712–727, 2008.

G. Bouchard and B. Triggs. The tradeoff between generative and discriminative classifiers. In 16th
IASC International Symposium on Computational Statistics (COMPSTAT’04), pages 721–728, 2004.

M. Boutin and G. Kemper. On reconstructing n-point configurations from the distribution of distances
or areas. Advances in Applied Mathematics, 32(4):709–735, 2004.

G. E. P. Box and G. C. Tiao. Bayesian inference in statistical analysis, volume 40. John Wiley and Sons,
New York, 2011.

R. L. Brennan and R. J. Light. Measuring agreement when two observers classify people into cate-
gories not defined in advance. British Journal of Mathematical and Statistical Psychology, 27(2):
154–163, 1974.

M. Bryant and E. B. Sudderth. Truly nonparametric online variational inference for hierarchical
Dirichlet processes. In Advances in Neural Information Processing Systems, pages 2699–2707, 2012.

H. Bühlmann. Austauschbare stochastische Variabeln und ihre Grenzwertsatze. PhD thesis, ETH Zürich,
1960.

W. L. Buntine. Operations for learning with graphical models. JAIR, 2:159–225, 1994.

J. Canny. A computational approach to edge detection. IEEE Transactions on pattern analysis and
machine intelligence, 8(6):679–698, 1986.

J. Chang and J. W. Fisher III. Parallel sampling of DP mixture models using sub-cluster splits. In
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 26, pages 620–628. Curran Associates, Inc., 2013.

H. Chen, P. Meer, and D. E. Tyler. Robust regression for data with multiple structures. In Computer
Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on, volume 1, pages I—-1069. IEEE, 2001.

D. L. Cohn. Measure theory. Springer, 2013.

D. B. Dahl. An improved merge-split sampler for conjugate Dirichlet process mixture models. Tech-
nical report, University of Wisconsin–Madison, Nov. 2003.

D. B. Dahl. Sequentially-allocated merge-split sampler for conjugate and nonconjugate Dirichlet
process mixture models. Technical report, Texas A&M University, Nov. 2005.

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 1, pages 886–
893. IEEE, 2005.

H. Daume. Fast search for Dirichlet process mixture models. In International Conference on Artificial
Intelligence and Statistics, pages 83–90, 2007.

D. G. Denison. Bayesian methods for nonlinear classification and regression, volume 386. John Wiley
and Sons, New York, 2002.

P. Diaconis and D. Freedman. de Finetti’s theorem for Markov chains. The Annals of Probability, pages
115–130, 1980.



References 93

P. Diaconis and D. Freedman. On the consistency of Bayes estimates. The Annals of Statistics, pages
1–26, 1986.

J. Dubbeldam, K. Green, and D. Lenstra. The Complexity of Dynamical Systems. Wiley Online Library,
2011.

D. B. Dunson, Y. Xue, and L. Carin. The matrix stick-breaking process. Journal of the American
Statistical Association, 2012.

R. Durstenfeld. Algorithm 235: Random permutation. Communications of the ACM, 7(7):420, July
1964. ISSN 0001-0782. doi: 10.1145/364520.364540.

M. D. Escobar. Estimating the means of several normal populations by nonparametric estimation of the
distribution of the means. PhD thesis, Yale University Unpublished dissertation, 1988.

M. D. Escobar. Estimating normal means with a Dirichlet process prior. Journal of the American
Statistical Association, 89(425):268–277, 1994.

M. D. Escobar and M. West. Bayesian density estimation and inference using mixtures. Journal of the
american statistical association, 90(430):577–588, 1995.

S. N. Ethier. The distribution of the frequencies of age-ordered alleles in a diffusion model. Advances
in Applied Probability, pages 519–532, 1990.

W. J. Ewens. Population genetics theory - the past and the future. In Mathematical and statistical
developments of evolutionary theory, pages 177–227. Springer, 1990.

S. Favaro, Y. W. Teh, et al. MCMC for normalized random measure mixture models. Statistical Science,
28(3):335–359, 2013.

W. Feller. An introduction to probability theory and its applications. Vol. I. John Wiley and Sons, New
York, 1950.

T. S. Ferguson. A Bayesian analysis of some nonparametric problems. The annals of statistics, pages
209–230, 1973.

T. S. Ferguson. Prior distributions on spaces of probability measures. The annals of statistics, pages
615–629, 1974.

S. E. Fienberg et al. When did Bayesian inference become “Bayesian”? Bayesian analysis, 1(1):1–40,
2006.

B. de Finetti. Funzione caratteristica di un fenomeno aleatorio. Atti Reale Accademia Nazionale dei
Lincei, VI:86–133, 1930.

B. de Finetti. La prévision: ses lois logiques, ses sources subjectives. In Annales de l’institut Henri
Poincaré, volume 7, pages 1–68, 1937.

E. Forgy. Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications. Bio-
metrics, 21:768–769, 1965.

A. Forrow, J.-C. Hütter, M. Nitzan, G. Schiebinger, P. Rigollet, and J. Weed. Statistical optimal transport
via geodesic hubs. arXiv preprint arXiv:1806.07348, 2018.

A. Forrow, J.-C. Hütter, M. Nitzan, P. Rigollet, G. Schiebinger, and J. Weed. Statistical optimal transport
via factored couplings. International Conference on Artificial Intelligence and Statistics, 2019.

W. Förstner and E. Gülch. A fast operator for detection and precise location of distinct points, corners
and centres of circular features. In Proc. ISPRS intercommission conference on fast processing of
photogrammetric data, pages 281–305, 1987.

E. B. Fox, E. B. Sudderth, and A. S. Willsky. Hierarchical Dirichlet processes for tracking maneuvering
targets. In 2007 10th international conference on information fusion, pages 1–8. IEEE, 2007.

D. Freedman and P. Diaconis. On inconsistent Bayes estimates in the discrete case. The Annals of
Statistics, pages 1109–1118, 1983.

D. H. Fremlin. Measure theory, volume 4. Torres Fremlin, 2000.

Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty
in deep learning. In international conference on machine learning, pages 1050–1059, 2016.



94 References

O. Gallo, R. Manduchi, and A. Rafii. CC-RANSAC: Fitting planes in the presence of multiple surfaces
in range data. Pattern Recognition Letters, 32(3):403–410, 2011.

A. Garcia-Garcia, F. Gomez-Donoso, J. Garcia-Rodriguez, S. Orts-Escolano, M. Cazorla, and J. Azorin-
Lopez. Pointnet: A 3D convolutional neural network for real-time object class recognition. In 2016
International Joint Conference on Neural Networks (IJCNN), pages 1578–1584. IEEE, 2016.

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the KITTI vision benchmark
suite. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 3354–3361. IEEE,
2012.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of
images. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(5-6):721–741, 1984.

Z. Ghahramani and T. L. Griffiths. Infinite latent feature models and the Indian buffet process. In
Advances in neural information processing systems, pages 475–482, 2005.

S. Ghosal and A. Van der Vaart. Fundamentals of nonparametric Bayesian inference, volume 44. Cam-
bridge University Press, 2017.

P. R. Halmos. Random alms. The Annals of Mathematical Statistics, 15(2):182–189, 1944.

P. R. Halmos. Measure theory, volume 18. Springer, 1974.

M. Halperin and G. L. Burrows. The effect of sequential batching for acceptance—rejection sampling
upon sample assurance of total product quality. Technometrics, 2(1):19–26, 1960.

C. Harris and M. Stephens. A combined corner and edge detector. In Alvey vision conference, vol-
ume 15, page 50. Citeseer, 1988.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57(1):97–109, 1970. ISSN 00063444. doi: 10.1093/biomet/57.1.97.

G. E. Hinton, A. Krizhevsky, and S. D. Wang. Transforming auto-encoders. In International Conference
on Artificial Neural Networks, pages 44–51. Springer, 2011.

G. E. Hinton, S. Sabour, and N. Frosst. Matrix capsules with EM routing. In 6th International Confer-
ence on Learning Representations, ICLR, 2018.

N. L. Hjort. Nonparametric Bayes estimators based on beta processes in models for life history data.
The Annals of Statistics, pages 1259–1294, 1990.

F. M. Hoppe. Size-biased filtering of Poisson-Dirichlet samples with an application to partition struc-
tures in genetics. Journal of Applied Probability, pages 1008–1012, 1986.

E. Hosseini-Asl, J. M. Zurada, and O. Nasraoui. Deep learning of part-based representation of data
using sparse autoencoders with nonnegativity constraints. IEEE transactions on neural networks
and learning systems, 27(12):2486–2498, 2015.

P. V. Hough. Method and means for recognizing complex patterns, Dec 1962. URL https://www.
google.com/patents/US3069654. Patent US 3069654 A.

L. Hubert. Nominal scale response agreement as a generalized correlation. British Journal of Mathe-
matical and Statistical Psychology, 30(1):98–103, 1977.

L. Hubert and P. Arabie. Comparing partitions. Journal of classification, 2(1):193–218, 1985.

M. C. Hughes and E. Sudderth. Memoized online variational inference for Dirichlet process mixture
models. In Advances in Neural Information Processing Systems, pages 1133–1141, 2013.

M. C. Hughes, E. Fox, and E. B. Sudderth. Effective split-merge Monte Carlo methods for nonpara-
metric models of sequential data. In Advances in neural information processing systems, pages
1295–1303, 2012.

F. Huszár and D. Duvenaud. Optimally-weighted herding is Bayesian quadrature. In Proceedings of
the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence, pages 377–386, 2012.

Y. Ioannou, B. Taati, R. Harrap, and M. Greenspan. Difference of normals as a multi-scale operator
in unorganized point clouds. In 2012 Second International Conference on 3D Imaging, Modeling,
Processing, Visualization & Transmission, pages 501–508. IEEE, 2012.



References 95

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. In International Conference on Machine Learning, pages 448–456, 2015.

H. Ishwaran and L. F. James. Gibbs sampling methods for stick-breaking priors. Journal of the Amer-
ican Statistical Association, 96(453):161–173, 2001.

V. Izard, G. Dehaene-Lambertz, and S. Dehaene. Distinct cerebral pathways for object identity and
number in human infants. PLoS biology, 6(2), 2008.

T. S. Jaakkola, D. Haussler, et al. Exploiting generative models in discriminative classifiers. Advances
in neural information processing systems, pages 487–493, 1999.

S. Jain and R. M. Neal. A split-merge Markov chain Monte Carlo procedure for the Dirichlet process
mixture model. Journal of Computational and Graphical Statistics, 13(1):158–182, 2004. ISSN
10618600. URL http://www.jstor.org/stable/1391150.

S. Jain and R. M. Neal. Splitting and merging components of a nonconjugate Dirichlet process mixture
model. Bayesian Analysis, 2(3):445–472, 2007.

V. Jampani, S. Nowozin, M. Loper, and P. V. Gehler. The informed sampler: A discriminative ap-
proach to Bayesian inference in generative computer vision models. Computer Vision and Image
Understanding, 136:32–44, 2015.

E. T. Jaynes. Probability theory: The logic of science. Cambridge university press, 2003.

D. Joho, G. D. Tipaldi, N. Engelhard, C. Stachniss, W. Burgard, M. Senk, F. Faber, M. Bennewitz,
C. Eppner, A. Görög, et al. Unsupervised Scene Analysis and Reconstruction Using Nonparametric
Bayesian Models. Robotics and Autonomous Systems (RAS), 59(5):319–328, 2011.

A. Jordan. On discriminative vs. generative classifiers: A comparison of logistic regression and naive
Bayes. Advances in neural information processing systems, 14:841, 2002.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In Proceedings of the 2nd International
Conference on Learning Representations (ICLR-2014), volume 1050, page 1, 2014.

J. F. C. Kingman. Some further analytical results in the theory of regenerative events. Journal of
Mathematical Analysis and Applications, 11:422–433, 1965.

J. F. C. Kingman. Completely random measures. Pacific Journal of Mathematics, 21(1):59–78, 1967.

J. F. C. Kingman. Random partitions in population genetics. In Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, volume 361, pages 1–20. The Royal
Society, 1978.

J. F. C. Kingman. Poisson processes, volume 3 of Oxford Studies in Probability. The Clarendon Press
Oxford University Press, New York, 1993. ISBN 0-19-853693-3.

D. Knowles, Z. Ghahramani, and K. Palla. A reversible infinite HMM using normalised random mea-
sures. In Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages
1998–2006, 2014.

D. Koller and N. Friedman. Probabilistic graphical models: Principles and techniques. MIT press, 2009.

A. Kolmogorov. Grundbegriffe der wahrscheinlichkeitsrechnung, volume 2 of Ergebnisse der Mathematik
und ihrer Grenzgebiete. Springer-Verlag, 1933.

K. Kurihara, M. Welling, and Y. W. Teh. Collapsed variational Dirichlet process mixture models. In
IJCAI, volume 7, pages 2796–2801, 2007.

P.-S. Laplace. Théorie analytique des probabilités. V. Courcier, 1820.

H. Lebesgue. Intégrale, longueur, aire. Annali di Matematica Pura ed Applicata (1898-1922), 7(1):
231–359, 1902.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.

A. Lijoi and I. Prünster. Models beyond the Dirichlet process. Bayesian nonparametrics, 28:80, 2010.

S. Lloyd. Least squares quantization in PCM. IEEE Trans. Inform. Theory, 28:129–137, 1982. Origi-
nally as an unpublished Bell laboratories Technical Note (1957).



96 References

D. G. Lowe. Object recognition from local scale-invariant features. In Computer vision, 1999. The
proceedings of the seventh IEEE international conference on, volume 2, pages 1150–1157. Ieee, 1999.

L. van der Maaten, E. Postma, and J. Van den Herik. Dimensionality reduction: a comparative. J
Mach Learn Res, 10(66-71):13, 2009.

S. N. MacEachern. Comment on “Splitting and merging components of a nonconjugate Dirichlet
process mixture model“ by jain and neal. Bayesian Analysis, 2(3):483–494, 2007.

S. N. MacEachern and P. Müller. Estimating mixture of Dirichlet process models. Journal of Compu-
tational and Graphical Statistics, 7(2):223–238, 1998.

S. Mandt, M. D. Hoffman, and D. M. Blei. Stochastic gradient descent as approximate Bayesian
inference. The Journal of Machine Learning Research, 18(1):4873–4907, 2017.

A. B. Mariotto. Empirical Bayes inference and the linear model. 1989.
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IX A
PROBABILISTIC CONCEPTS

Modern probability is based on measure theory (Appendix A.1). Measure theory will pro-
vide the means to formally describe random variables, random processes, and most gen-
erally, random measures. A model represented by random measures can be fitted to the
data using Bayesian inference (Appendix A.2). We give three typical examples of Bayesian
model compositions, among which an infinite mixture model (Appendix A.3). A number
of processes are described that can be used with (for example as prior distribution) infinite
mixture models (Appendix A.4). We introduce plate notation which visualizes infinite mod-
els particularly well (Appendix A.5). Then we investigate completely random measures and
Lévy measures (Appendix A.6), exchangebility (Appendix A.7), and stick-breaking processes
(Appendix A.8). For mathematically more thorough approaches we refer to the literature
(Halmos, 1974; Rosenthal, 2006; Cohn, 2013).

A.1 Measure Theory

A random variable is a function that assigns values to a set of possible outcomes. The for-
mal definition requires concepts such as “measurable function” and “probability space” from
measure theory (Feller, 1950). Measure theory is used to generalize the notion of a random
variable to that of a “random process”.

Informally, a measure generalizes the concepts of length, area, and volume of an Euclidean
object to a concept of size for sets and subsets. The definition of a measure is based on the
definition of a σ-algebra. A σ-algebra ascribes a value to a sum of individual disjoint sets,
even if they are infinite in number.

È Definition A.1 — σ-algebra

A σ-algebra is a subset Σ ∈ 2X , with X a set and 2X its powerset, with three requirements:

◦ Σ is non-empty: at least one A∈ X is in Σ;

99



100 Appendix A. Probabilistic Concepts

◦ Σ is closed under complementation: if A in Σ, so is its complement Ac;

◦ Σ is closed under countable unions: if A1, A2, . . . in Σ, so is A= A1 ∪ A2 ∪ . . ..

The members of a σ-algebra are called measurable sets. Let X = {1,2, 3,4} and let us define
aσ-algebraΣ = {∅, {1}, {4}, {2, 3}, {1, 4}, {1, 2,3}, {2, 3,4}, {1,2, 3,4}}. Here∅ denotes the
empty set. The complement of A is defined with respect to X : A∪ Ac = X . An example of
closure under complementation: let A1 = {1}, then Ac

1 = {2, 3, 4} and Ac
1 is indeed a member

of Σ: Ac
1 ∈ Σ. An example of closure under countable unions: let A1 = {1} and A2 = {2, 3},

then A1 ∪ A2 = {1, 2,3} and A1 ∪ A2 ∈ Σ.

The notion of a σ-algebra (Fremlin, 2000) can be applied to solve the so-called
Banach-Tarski paradox (Banach and Tarski, 1924). This paradox describes how a
unit-ball in R3 can be partitioned into a finite number of disjoint infinite sets (scat-
tering of points) and then can be reassembled into two unit-balls again. This violates
the intuitive notion of preservation of volume. If the measure µ of the union of two
disjoint sets is equal to the sum of the measures of the two sets, this is called finite
additivity: µ(

⋃N
i=1 Ai) =

∑N
i=1µ(Ai). In probability theory σ-additivity extends this

to infinite disjoint sets: µ(
⋃∞

i=1 Ai) =
∑∞

i=1µ(Ai). Measure theory solves the Banach-
Tarski paradox by only assigning a measure to subsets that are measurable sets (Tao,
2011).

A measure assigns values to measurable sets (as stated before, measurable sets are members
or subsets of Σ).

È Definition A.2 — measure

A measure µ is a function from Σ to [−∞,+∞], with three requirements:

◦ µ is non-negative: µ(A)≥ 0 for ∀A∈ Σ;

◦ µ has a null empty set: µ(∅) = 0;

◦ µ is σ-additive: µ(
⋃

i∈IΣ
Ai) =

∑
i∈IΣ
µ(Ai) for Ai disjoint.

The first statement defines that a measure µ only assigns non-negative values to sets in Σ.
The second statement equals the measure of the empty set ∅ to 0. The third statement
defines that σ-additivity is required. For any two sets in Σ the measure of the union of the
sets equals the sum of the measures of the individual sets. Here IΣ defines an index over
sets in Σ.
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Informally, a measure relates the concepts of sets and subsets to notions of size. A
measure can be seen as a monotonically increasing function. Let the set A in X be the
interval [0, 1), an uncountable (infinite) set of real numbers. Define the σ-algebra
{∅, A}. The empty set has measure 0, the set A has measure 1. Let us define the
σ-algebra {∅, A0,0.5, A0.5,1, A}. The set A0,0.5 corresponds to the interval [0, 0.5) and
A0.5,1 to [0.5, 1). Both sets are assigned measure 0.5 and their union has measure 1.
This examples shows that with σ-additive unions, measures can be assigned to sets
that are uncountable.

A measurable space (X ,Σ) is defined as a pair.

È Definition A.3 — measurable space

A measurable space (X ,Σ) is a pair with:

◦ X a set;

◦ Σ a σ-algebra over X .

A measure space (X ,Σ,µ) is defined as a triple.

È Definition A.4 — measure space

A measure space (X ,Σ,µ) is a triple with:

◦ X a set;

◦ Σ a σ-algebra over X ;

◦ µ a measure from Σ to [−∞,∞].

A finite measure µ assigns a finite real number to all A.

È Definition A.5 — finite measure

A finite measure µ is a measure from Σ to [0,∞):

◦ µ is non-negative: µ(A)≥ 0 for ∀A∈ Σ;

◦ µ has a null empty set: µ(∅) = 0;

◦ µ is σ-additive: µ(
⋃

i∈IΣ
Ai) =

∑
i∈IΣ
µ(Ai) for Ai disjoint;

◦ µ for the whole sample space, X , is finite: µ(X ) = N .

A σ-finite measure allows A to be a countable union of sets with finite measure.
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È Definition A.6 — σ-finite measure

A σ-finite measure µ is a finite measure with:

◦ X is a countable union of sets with finite measures.

We will now define five measures: (A.1.1) the probability measure (Definition A.7), (A.1.2)
the counting measure (Definition A.9), (A.1.3) the Borel measure (Definition A.11), (A.1.4)
the Lebesgue measure (Definition A.16), and (A.1.5) the random measure (Definition A.17).
These measures are important because they are fundamental to different branches of math-
ematics. In probability theory a σ-algebra is interpreted as a collection of events to which
probabilities are assigned. Counting measures play a fundamental role in discrete probabil-
ity distributions. In integration theory a σ-algebra corresponding to the Borel and Lebesgue
measures are relevant for integration in the Euclidean spaceRn. In statistics aσ-algebra for-
mally defines the concept of sufficient statistics and generalizes random variables to random
functions and measures.

A.1.1 Probability Measure

A probability measure, P, is a finite measure that assigns non-negative values P, called prob-
abilities, to sets A, called events (see Definition A.7).

È Definition A.7 — probability measure

A probability measure P is a measure µ with:

◦ P is non-negative: P(A)≥ 0 for ∀A∈ Σ;

◦ P has a null empty set: P(∅) = 0;

◦ P is σ-additive: P(
⋃

i∈IΣ
Ai) =

∑
i∈IΣ
µ(Ai) for Ai disjoint;

◦ P for the whole sample space, X , is unity: P(X ) = 1.

The four requirements are called the Kolmogorov axioms (Kolmogorov, 1933). The prob-
ability measure is an actual measure. It therefore obeys the three requirements: (1) non-
negativity for any set, (2) the existence of a null empty set, and (3) σ-additivity. Here we
note that a probability measure compared to a general measure obeys a fourth requirement,
namely the restriction of the measure for the whole space X to 1. This can be seen as some
kind of normalization. It influences how two probability measures have to be summed to
become again a probability measure.

In Figure A.1 the probability measure is visualized as a mapping from the probability space
to the unit interval [0, 1].
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Figure A.1: A probability measure P mapping the probability space for 3 events to the unit
interval. Left: a turning wheel representing three possible outcomes of which the third is
twice as likely as the other two outcomes. Right: a probability measure P assigned to each
outcome. The empty set, A= ∅, has probability measure 0. The set of encountering either 1
or 2, B = {1,2}, has probability measure 0.5. Taken from Wikipedia.

A probability space (X ,Σ,P) is a measure space (X ,Σ,µ) with the probability measure P as
its measure µ.

È Definition A.8 — probability space

A probability space (X ,Σ,P) is a triple with:

◦ X a set;

◦ Σ a σ-algebra over X ;

◦ P a probability measure from Σ to [0,1].

We will equivalently use the symbols (X ,Σ,P) or (Ω,F,P) for the probability space, also
called probability triple (Rosenthal, 2006). The space X is the event space Ω, the set of
elementary outcomes. The σ-algebra over subsets of Ω is denoted by F. The probability
measure P assigns a value on the unit interval [0, 1] to every event in F.

A.1.2 Counting Measure

The counting measure forms the basis for the definition of discrete probabilities (Schilling,
2005).

È Definition A.9 — counting measure

A counting measure ν on a space X is a measure µ with:

◦ ν is non-negative and integer-valued for ∀A∈ Σ;

◦ ν <∞ for ∀A∈ Σ if A bounded (of finite size);
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◦ ν=∞ if ∃A∈ Σ with A unbounded (infinite).

A counting measure is a measure that is integer-valued. Every set A has a measure that is
a positive integer or zero. The set A is unbounded if and only if its counting measure is
infinite.

A.1.3 Borel Measure

The Borel σ-algebra defines a σ-algebra for the real line R.

È Definition A.10 — Borel σ-algebra

A Borel σ-algebra Bσ on R is the smallest σ-algebra that contains all open subsets of R:

◦ B = Σ(U) with U = U ⊆ R: U is open.

The Borel σ-algebra contains all open subsets of R. The property of closure under comple-
mentation of a σ-algebra means that it also contains the closed subsets of R. If A= (0, 1),
then Ac = {[−∞, 0], [1,∞]}.

A Borel measure assigns values to subsets of Bσ.

È Definition A.11 — Borel measure

A Borel measure µ is a function from Σ = Bσ to [−∞,+∞], with the three measure
requirements:

◦ µ is non-negative: µ(A)≥ 0 for ∀A∈ Σ;

◦ µ has a null empty set: µ(∅) = 0;

◦ µ is σ-additive: µ(
⋃

i∈IΣ
Ai) =

∑
i∈IΣ
µ(Ai) for Ai disjoint.

The Borel space is a measureable space with a Borel σ-algebra rather than a general σ-
algebra.

È Definition A.12 — Borel space

A Borel space (X ,Bσ) is a pair with:

◦ X a set;

◦ Bσ a Borel σ-algebra over X .

A complete measure space is a measure space in which every subset of every null set is mea-
surable.
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È Definition A.13 — complete measure space

A complete measure space (X ,Σ,µ):

◦ S ⊆ N ∈ Σ and µ(N) = 0⇒ S ∈ Σ.

The Borel space is not a complete measure space. There are sets in the Borel σ-algebra that
are of measure zero and that contain subsets that are undefined.

A.1.4 Lebesgue Measure

The Lebesgue measure defines a size to subsets of Rn that completes the Borel measure
(Lebesgue, 1902). It makes use of the notion of an outer measure.

È Definition A.14 — outer measure

An outer measure φ on a space R is a measure µ with:

◦ φ is non-negative and real-valued for ∀A∈ Σ;

◦ φ has a null empty set: φ(∅) = 0;

◦ φ is σ-subadditive: φ(
⋃

i∈IΣ
Ai)<

∑
i∈IΣ
µ(Ai) for ∀Ai;

◦ φ is monotone: A⊆ B implies φ(A)≤ φ(B);
◦ φ is translation-invariant: φ(A+ x) = φ(A) for ∀A∈ Σ and ∀x ∈ R.

An outer measure relaxes σ-additivity of disjoint sets of X to σ-subadditivity for any se-
quence of sets. Intuitively, the outer measure of a set is an upper bound on the size of a
set.

È Definition A.15 — Lebesgue outer measure

A Lebesgue outer measure λ on a space Rn is an outer measure φ with:

◦ λ(A) = inf
�∑∞

k=1 l(Ik) : (Ik)k∈N is a sequence of open intervals with A⊆⋃∞k=1 Ik

	
.

Here A⊆ R is a subset of the real line. The Lebesgue outer measure λ is the infimum (greatest
lower bound) of the sum of the lengths l(I) = b− a of the intervals I = [a, b].

The Lebesgue measure is defined through the Lebesgue outer measure.

È Definition A.16 — Lebesgue measure

A Lebesgue measure m on a space Rn is a Lebesgue outer measure λ with:

◦ m(B) = λ(B ∪ A) +λ(B ∪ Ac).
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A.1.5 Random Measure and Random Process

A measurable function is defined between two measurable spaces.

È Definition A.17 — measurable function

A measurable function f : X → Y fulfills:

◦ f −1(E) ∈ Σ for ∀E ∈ T ,

with both (X ,Σ) and (Y, T ) measurable spaces.

A measurable function preserves the structure of the corresponding measurable spaces
(captured through the σ-algebras).

A random element or (X ,Σ)-valued random variable is a measurable function between two
measurable spaces, with as domain a measurable space that is a probability space.

È Definition A.18 — random element

A random element or (X,Σ)-valued random variable X is a measurable function from
probability space (Ω,F,P) to measurable space (X ,Σ).

An (X ,Σ)-valued random variable is visualized in Figure A.2.

Probability space

Ω

ΩO

X

X
O

X

Σ

0 1

Measurable space

0

μ

Figure A.2: An (X ,Σ)-valued random variable X is a measurable function from (Ω,F,P) (at
the left) to (X ,Σ) (at the right). The planes at the top depict the samples spaces Ω and X .
The planes in the middle depict the σ-algebras F and Σ. The planes at the bottom depict
measures: at the left P, and at the right an induced measure µ. The null set is of measure 0.
The set Ω is a of measure 1.
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For random variables for which we do not specify the codomain explicitly, the choice for the
codomain is the real line R and the corresponding Borel σ-algebra on the reals.

È Definition A.19 — random variable

A random variable X is a measurable function from probability space (Ω,F,P) to the real
line with the Borel σ-algebra (R,BR).

A (R,BR)-valued random variable is also called a real-valued random variable assuming a
natural choice for the σ-algebra, or called a random variable assuming the reals.

Random elements are a generalization of random variables. A complex-valued ran-
dom variable or complex random variable is a measurable function from Ω to C. An
elephant-valued random variable or random elephant is a measurable function from
Ω to a suitable space of elephants (Kingman, 1993).

This allows us to define a measure-valued random variable, a random measure.

È Definition A.20 — random measure

A random measure is a function ξ : Ω×X → [0,+∞] from probability space (Ω,F,P) to
measurable space (X ,Σ) such that ξ(·, X ) is a random variable on (Ω,F,P) and ξ(ω, ·) is
a measure on Σ.

We are now in the position to define a random process (the Dirichlet process in this thesis is
an example of such a process). A random process is an ordered set of random variables. The
set can be a sequence of random variables in a time series. It can be a series of steps in the
spatial domain, called a random field.

È Definition A.21 — random process

A random process X is a collection
�

X t : t ∈ T
	

with X t an (S,Σ)-valued random variable
on Ω and (Ω,F,P) a probability space, (S,Σ) a measurable space, and T a totally ordered
set.

A random process is a probability distribution with a domain that is a set of probability distri-
butions. A random process is a distribution over distributions, a hierarchy over distribution.

Before we close this section, we will introduce two more concepts. The distribution of a
random variable and the probability density function of a random variable.

We have encountered a random variable, and a probability measure P on the original prob-
ability space. Now, one might wonder whether there is a measure that is logically assigned
to elements on the measurable space that is the codomain of this random variable. Is there a
natural measure µ that can transform this measurable space into a measure space? It turns
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out there is. There is a measure induced on this space by the random variable.1 This measure
µ is known as the distribution or law of a random variable (Rosenthal, 2006):

È Definition A.22 — distribution of a random variable

Given a random variable X from (Ω,F,P) to (R,Bσ), the distribution µ of X is the induced
probability measure: µ(B) = P(X−1(B)) for all Borel sets B ∈ Bσ.

The distribution of X is the probability measure µ induced on (R,Bσ). This makes this space
a measurable space (R,Bσ,µ). We will write X as being distributed as µ in the following
shorthand notation:

X ∼ µ. (A.1)

A measure ν is absolutely continuous with respect to a measure λ if, for every set E, λ(E) = 0
implies ν(E) = 0. We also write this as ν� λ. The measure ν is dominated by λ. The Radon-
Nikodym theorem states that for two σ-finite measures one measure can be expressed as an
integral of the other.

È Definition A.23 — Radon-Nikodym theorem

The Radon-Nikodym theorem states that given a measurable space (X ,Σ) and two σ-
finite measures, ν, λ with ν � λ, that there exists a Σ-measurable function f : X →
[0,∞), such that for any measurable set A⊆ X ,

ν(A) =

∫

A
f dλ. (A.2)

This allows us to define the Radon-Nikodym derivative: f = dν
dλ . The probability density

function f of a random variable X is the Radon-Nikodym derivative of the induced measure
(with respect to some base measure, normally the Lebesgue measure).

È Definition A.24 — probability density function

The probability density function f of a random variable X is the Radon-Nikodym deriva-
tive of the induced measure µ on (R,Bσ) with respect to a base measure λ,

f =
dµ
dλ

. (A.3)

For a discrete random variable the counting measure can be used as a base measure. For
continuous random variables the Lebesgue measure is usually chosen as base measure.

1The measure induced on a measurable space by another measurable space by means of a measurable function
is also known as a push-forward measure.
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A.2 Bayesian Inference

Let x be a (S,ΣS ,µS)-valued random variable, y a (T,ΣT ,µT )-valued random variable, then
we can construct z, a (C ,ΣC ,µC)-valued random variable with the latter being a subset of
the product set of x and y: C ∈ S ⊗ T .

È Definition A.25 — product space

A product space (S ⊗ T,ΣS⊗T ) has σ-algebra ΣS⊗T = σ(F ⊗ G : F ∈ ΣS , G ∈ ΣT ) with
(S,ΣS ,µS) and (T,ΣT ,µT ) two σ-finite measure spaces.

È Definition A.26 — product measure

A product measure µS⊗T is a measure µS⊗T (F⊗G) = µS(F)⊗µT (G) with (S,ΣS ,µS) and
(T,ΣT ,µT ) two σ-finite measure spaces.

The joint probability distribution PC is a probability measure on the product σ-algebra ΣC

with C ∈ S⊗T . As function of the random variables x and y the joint probability distribution
is written as X ,Y (x , y), f (x , y), or p(x , y).

A σ-algebra is independent in the following sense.

È Definition A.27 — independent σ-algebra

Let (Ω,F, P) be a probability space and A and B be a sub-σ-algebras of F. A and B are
independent σ-algebras if:

◦ P(A∩ B) = P(A)P(B) ∀A∈ A and B ∈ B.

Two random variables x and y are independent if and only if the σ-algebras that they gen-
erate are independent.

È Definition A.28 — conditional probability distribution

Let (Ω,F, P) be a probability space, G ⊆ F a sub-σ-algebra of F, and X : Ω → R a real-
valued random variable (F-measurable with respect to the Borel σ-algebra Bσ on R).
There exists a function µ : Bσ ×Ω→ R such that µ(·,ω) is a probability measure on Bσ
for each ω ∈ Ω and µ(H, ·) = P(X ∈ H|G) (almost surely) for every H ∈ Bσ. For any
ω ∈ Ω, the function µ(·,ω) : Bσ → R is called a conditional probability distribution of
X given G.
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Informally2, a conditional probability is described with a sub-σ-algebra which only presents
part of the structure of the full σ-algebra. As function of the random variables x and y the
conditional probability distribution of y given x is written as fY |X (y |x), f (y|x), or p(y|x).

A typical conditional probability distribution is that of the data given parameters. Another
often used conditional probability distribution is that of the data given a statistic (summary)
of that data. This statistic can be a so-called sufficient statistic.

È Definition A.29 — sufficient statistic

A conditional probability distribution of the data X given a sufficient statistic t = T (X )
does not depend on parameter θ :

◦ P(x |t,θ ) = P(x |t)

Random variables, or more generally, random elements x and θ define a Bayesian3 model
with observations x and parameters θ .

È Definition A.30 — Bayesian model

A Bayesian model f (x ,θ ) defines a function, a joint probability distribution, over obser-
vations x and parameters θ with both x and θ random elements.

In a supervised learning task both x and θ are known. In an unsupervised learning task
x is known, but θ is unknown. The random variable θ is called a hidden or latent variable.
The random variable θ can be any random element: a random vector, a random matrix, a
random process.

Let the observations x be a sequence x0, x1, . . ., then the observations x i can be independent
and identically distributed.

È Definition A.31 — independent and identically distributed

A collection of random variables x = {x0, x1, . . .} is independent and identically dis-
tributed (i.i.d.) if:

◦ the probability distribution p(x i) is the same for ∀x i ∈ x

◦ each x i is independent with respect to x j with i 6= j.

In other words, random variables having the same distribution are said to be identically
distributed.

2Even more informally, in "254A, Notes 0: A review of probability theory" Tao describes how conditioning
can be seen as removing a partial amount of randomness consistent with the probabilistic way of thinking. By
conditioning a random variable to be fixed, one can turn that random variable into a deterministic one, while
preserving the random nature of other variables.

3A historic perspective on the term Bayesian can be found in (Fienberg et al., 2006).
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The observations x i can be distributed in an exchangeable sequence in which any order is
equally likely.

È Definition A.32 — exchangeable

A sequence of random variables x = {x0, x1, . . .} is exchangeable if for any finite permu-
tation ρ of the indices 0, 1, . . .:

◦ the joint probability distribution of the permuted sequence p(xρ(0), xρ(1), . . .) equals
that of the original sequence p(x0, x1, . . .).

The joint probability distribution of i.i.d. observations given parameters can be written as a
product:

p(x0, . . . , xk−1|θ ) =
k−1∏
i=0

p(x i |θ ). (A.4)

È Definition A.33 — likelihood function

The likelihood function is defined as:

L(θ ; x) = p(x = X |θ ). (A.5)

The likelihood indicates the probability that a particular value x = X is observed when the
parameter is considered to be θ .

The likelihood function allows us to find an optimal set of parameter values given the ob-
servations. We can find those parameters that maximize the likelihood, L(θ ), given the ob-
servations, X , see Aldrich (1997). This maximization method is called maximum likelihood
estimation (MLE).

È Definition A.34 — maximum likelihood estimation

Maximum likelihood estimation is defined as the method optimizing:

θ ∗ ∈ argmax
θ

L(θ ; x). (A.6)

The maximum likelihood method finds the maximum of p(x |θ ) for all possible parameter
values θ . The maximum in maximum likelihood estimation does not need to be unique
(Steel, 1994). The notation makes this explicit by writing θ ∗ as a member (denoted by the
∈ symbol) of the outcomes of the argmax operation (and does not use the equal sign).

In the case we have information about the parameters θ we can model this with a probability
distribution.
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È Definition A.35 — prior probability distribution

A prior probability distribution defines a probability distribution p(θ ) over parameters
θ without a dependency on the observations x .

Given the definition of a prior probability distribution, we can define maximum a posteriori
estimation.

È Definition A.36 — maximum a posteriori

Maximum a posteriori estimation is defined as:

θ ∗ ∈ argmax
θ

k−1∑
i=0

log p(x i |θ ) + log p(θ ). (A.7)

If we are not only interested in the parameter θ ∗ that maximizes p(x |θ ) and p(θ ), but in
the complete distribution for p(θ ) we need Bayes’ theorem described by Laplace (1820).

È Definition A.37 — Bayesian inference

Bayesian inference using Bayes’ theorem is defined as:

p(θ |x) =

likelihood︷ ︸︸ ︷
p(x |θ )

prior︷︸︸︷
p(θ )

p(x)︸︷︷︸
normalization constant

=
p(x |θ )p(θ )∫
p(x |θ )p(θ )dθ . (A.8)

Bayes’ theorem describes the posterior probability p(θ |x) as the likelihood times the prior
probability distribution divided by a normalization constant, also called the evidence. The
normalization constant is not a function of the parameters θ . If a function is known except
for the normalization constant, it is indicated by the “proportional to” symbol∝.

f (θ |x)∝ p(x |θ )p(θ ) (A.9)

In Bayesian inference p(θ |x) is calculated. In contrast, in maximum likelihood and maxi-
mum a posteriori only parts of Eq. A.8 are calculated, respectively p(x |θ ) and p(x |θ )p(θ ).
In Section 2.2 inference methods will be described that approximate Bayesian inference.
Approximation is required in the case closed-form expressions are not available. If the in-
ference task only requires maximum a posteriori, approximation methods are also available
(Daume, 2007), but this is outside of the scope of the current thesis.

It is important to note that Bayes’ rule does not always apply. Recall the definition of the
probability density function (Definition A.24) in Appendix A.1.5 for which we needed the
notion of absolutely continuity. The posterior is not always absolutely continuous with re-
spect to the prior. In particular for nonparametric Bayesian models this is not necessarily
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the case. For example, the Dirichlet process as a prior has a posterior that is typically or-
thogonal to the prior. However, using appropriate care it is still the case that the posterior is
well-defined and one can perform Bayesian inference without using Bayes’ theorem. To read
more on the exact conditions under which this is possible, we refer the reader to (Ghosal
and Van der Vaart, 2017).

There are two supervised learning models, a generative model and a discriminative model.
Below we provide their definitions and in Figure A.3 we give three examples for each model.

È Definition A.38 — generative model

A generative model defines the joint probability distribution p(x ,θ ).

È Definition A.39 — discriminative model

A discriminative model defines the conditional probability distribution p(θ |x) directly.

Figure A.3 shows three generative and three discriminative models. They are chosen for their
structure. From left to right, the structure between the random variables gets enriched. The
first column shows no particular structure. The second column shows a sequence structure.
The third column shows a graph structure. Figure A.3 visualizes three generative models:
(1) the Naive Bayes Model (Russell et al., 1995), (2) the Hidden Markov Model (Baum and
Petrie, 1966), and (3) the Directional Model (Koller and Friedman, 2009). It shows also
three discriminative models: (1) Logistic Regression, (2) Linear-chain Conditional Random
Fields, and (3) general Conditional Random Fields.
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Figure A.3: Generative models: Naive Bayes Model, Hidden Markov Model, and Directional
Model. Discriminative models: Logistic Regression, Linear-chain Conditional Random Fields,
and general Conditional Random Fields. Figure adapted from Sutton and McCallum (2011).

There is no definitive reason to use a generative model rather than a discriminative model or
vice-versa. Here we confine ourselves to two remarks. First, a discriminative model seems
to have a lower asymptotic error, but a generative model seems to approaches its (higher)
asymptotic error faster. This has been studied using a Naive Bayes classifier versus Logistic
Regression (Jordan, 2002). This would mean that a discriminative model would be better for
large datasets, while a generative model would be better for small datasets. However, Xue
and Titterington (2008) doubt the existence of such precisely defined regimes depending
on dataset size. According to them the behaviour seems to stem from the correctness of
the conditional or the joint model specification. Second, the prior p(θ ) in the generative
model provides a principled way to handle missing information, while the direct modeling
of decision boundaries in a discriminative model often leads to better performance in a
classification task (Jaakkola et al., 1999). Apart from generative models and discriminative
models, there are also hybrid models (Bouchard and Triggs, 2004; Raina et al., 2003; Bosch
et al., 2008). In the thesis we will restrict ourselves to generative models.

A.3 Model Composition

A model can be composed out of a set of probability distibutions. We list three of such pos-
sible compositions. The Naive Bayes model is a product of probability distributions with a
prior distribution (Definition A.40). The finite mixture model is a sum over a finite number
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of probability distributions where each one is weighted (Definition A.41). The infinite mix-
ture model is a sum over an infinite number of probability distributions where each one is
weighted (Definition A.42).

È Definition A.40 — naive Bayes model

The naive Bayes model is a product over a finite number k 6=∞ of probability distribu-
tions p(x i |θ ) multiplied by the prior distribution p(θ ):

p(θ |x)∝ p(θ )
k−1∏
i=0

p(x i |θ ). (A.10)

A finite mixture model is a sum over a finite number of probability distributions.

È Definition A.41 — finite mixture model

A finite mixture model is a sum over a finite number k 6=∞ of probability distributions
p(x i), with each distribution weighted by a factor wi with

∑
i wi = 1.

p(x) =
k−1∑
i=0

wi p(x i). (A.11)

The mixture model is finite in the sense that there are only k 6=∞ distributions summed
up. The weights of the individual distributions p(x i) are normalized (sum up to one) such
that the weighted sum over the probability distributions is itself a probability distribution.

An infinite mixture model is a sum over an infinite number of probability distributions.

È Definition A.42 — infinite mixture model

A infinite mixture model is a sum over an infinite number of probability distributions
p(x i), with each distribution weighted by a factor wi with

∑
i wi = 1.

p(x) =
∞∑
i=0

wi p(x i). (A.12)

The infinite mixture model is a sum over an infinite number of probability distributions with
weights that sum up to one. In this way it assigns a finite value to a countably infinite set of
functions.

If the number of probability distributions is uncountable infinite, we speak about a com-
pound distribution.
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È Definition A.43 — compound probability distribution

A compound probability distribution for a probability density function p(θ ) (nonnega-
tive and integrating to 1) is given by

p(x) =

∫

Ω

p(θ )p(x |θ )dθ . (A.13)

Informally, p(θ ) has the same function as the weight in a mixture model. From this presen-
tation it is also clear that a compound distribution is a special case of a marginal distribution.
The joint distribution p(x ,θ ) = p(θ )p(x |θ ). The compound distribution is obtained through
its marginal distribution:

∫
p(x ,θ )dθ . In the thesis we will encounter infinite mixture mod-

els or compound probability distributions in Chapters 3 and 4.

A.4 General Random Elements

In section A.1 random elements were described in general. Random elements can vary from
random vectors, random distributions, random clusters (partitions), to random trees. Ta-
ble A.1 describes the random elements and the corresponding examples of random processes
in the literature. Below we mention them with the appropriate references.

Table A.1: A list of seven mathematical structures and for each of these structures one or more
random processes that can generate the structure. For example, a distribution on distributions
can be generated by a Beta Process, Gamma Process, Dirichlet Process, or a Polya Tree.

Structure Example

Distribution on functions Gaussian Process

Distribution on distributions

Beta Process
Gamma Process
Dirichlet Process
Polya Tree

Distribution on partition assignments
Chinese Restaurant Process
Pitman-Yor Process

Distribution on partition sizes Stick-breaking Process

Distribution on hierarchical partitions
Dirichlet Diffusion Tree
Kingman’s coalescence

Distribution on sparse binary matrices Indian Buffet Process
Distribution on integer-valued matrices Gamma-Poisson Process
Distribution on kd-trees Mondrian Process

The Gaussian Process (Rasmussen and Williams, 2006) describes a distribution on functions.
The Beta Process (Hjort, 1990), the Gamma Process (Ferguson, 1974), the Dirichlet Process
and the Polya Tree (Ferguson, 1973) describe a distribution on distributions. The Chinese
Restaurant Process (Aldous, 1985) and Pitman-Yor Process (Pitman and Yor, 1997) describe
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a distribution on partitions (in the form of cluster assignments). The Stick-breaking Process
describes a distribution on partition sizes (with no information on assignments themselves).
The Dirichlet Diffusion Tree (Neal, 2001) and Kingman’s coalescence (Kingman, 1965) de-
scribe a distribution on hierarchical partitions. The Indian Buffet Process (Ghahramani and
Griffiths, 2005) describes a distribution over sparse binary matrices. The Gamma-Poisson
Process (Titsias, 2008) describes a distribution over integer-valued matrices. The Mondrian
Process (Roy and Teh, 2009) describes a distribution over kd-trees.

A.5 Plate Notation

Random processes and mixture models are visually represented by a method called plate
notation (cf. Buntine, 1994; Koller and Friedman, 2009). Sets of variables are represented
in a plate, a rectangular region (see Figure A.4).

Figure A.4: Top: graphical model of a Naive Bayes, hidden Markov model, and Gaussian
process. Bottom: corresponding plate notation of the Naive Bayes, hidden Markov model,
and Gaussian process. Observed variables are denoted by a circle that is shaded.

Plate notation is a representation that does not preserve all dependencies between vari-
ables. For example, the dependencies between the states in the Hidden Markov Model (e.g.,
between θ0 and θ1) are not represented. The Gaussian process has a potentially infinite
number of parameters. The use of plate notation for nonparametric models can be found in
(Fox et al., 2007).
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A.6 Completely Random Measure and Lévy Measure

Some random process are mathematically represented by a completely random measure
(Kingman, 1967), which is defined as follows.

È Definition A.44 — completely random measure

A completely random measure is a random measure µ : Ω× X → [0,+∞] from proba-
bility space (Ω,F,P) to measurable space (X ,Σ) with

◦ for any collection of disjoint sets A1, . . . , Ak ∈ Σ and Ai ∩ A j = ; for i 6= j a mutual
independency between µ(A1), . . . ,µ(Ak).

Kingman (1967) shows that a completely random measure can be decomposed into three
components:

1. a deterministic function;

2. a countable set of non-negative random masses at deterministic locations;

3. a countable set of non-negative random masses at random locations.

The first component is a deterministic function. The second component has non-negative
random masses, also called atoms, on deterministic locations. The third component is the
one of interest. It has a set of random masses (atoms) that can be represented as a Poisson
random measure on R+ ⊗ X with mean measure ν which is known as the Lévy intensity
measure (Favaro et al., 2013).

Table A.2: Lévy measure of the Beta Process (Wang and Carin, 2012), Gamma Process
(Knowles et al., 2014), the Dirichlet Process (Lijoi and Prünster, 2010) (indirectly through
F = 1− e−ν) .

Random Process Lévy measure

Beta Process ν(da, dw) = H(da)αw−1(1− w)α−1dw
Gamma Process ν(da, dw) = H(da)w−1e−αwdw
Dirichlet Process ν(da, dw) = H(da)e−wα(x ,∞)(1− e−w)−1dw

For Lévy measure decompositions of other processes such as the Indian buffet process, we
refer to Wang and Carin (2012).

A.7 Exchangeability

Here we recall Definition A.32 for exchangeable sequences. De Finetti’s theorem states that
there is parameter θ such that the data x i is conditionally independent given this parameter
for exchangeable sequences (cf. De Finetti, 1937).
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È Definition A.45 — De Finetti’s theorem

A sequence {x0, x1, . . .} of (X ,ΣX )-valued random variables is an infinitely exchangeable
sequence if and only if there exist a measure µ(dθ ) on θ such that

p(x0, . . . , xk−1) =

∫

Ω

k−1∏
i=0

p(x i |θ )µ(dθ ) ∀k ≥ 1. (A.14)

In words, de Finetti’s theorem states that if we have exchangeable data, we have a param-
eter θ , a likelihood p(x |θ ), and some measure µ on θ , such that the data (x0, . . . , xk−1)
is conditionally independent. Hence, although the data is not i.i.d., there are underlying,
unobservable, quantities that are i.i.d. and exchangeable sequences are mixtures of these
quantities. The theorem proofs that if the observations are exchangeable, they must be a
random sample from some model and there must exist a prior probability distribution over
the parameters of that model, hence requiring a Bayesian approach.

The theorem is not limited to exchangeable sequences. In contrast, there are similar theorems
for other exchangeable objects (Orbanz and Roy, 2015). Five examples (see Table A.3) of
exchangeable structures have a theorem describing an underlying measure that can be sam-
pled i.i.d. are: (1) exchangeable sequences (De Finetti, 1930), (2) increments (Bühlmann,
1960), (3) partitions (Kingman, 1978), (4) arrays (Aldous, 1981), and (5) Markov chains
(Diaconis and Freedman, 1980).

Table A.3: Five exchangeable structures and their theorems.

Mathematical Object Theorem

Exchangeable Sequence de Finetti

Exchangeable Increment Bühlmann

Exchangeable Partition Kingman

Exchangeable Array Aldous-Hoover

Exchangeable Markov Chain Diaconis-Freedman

A.8 Stick-breaking Representation

Below we introduce the stick-breaking representation by Freedman and Diaconis (1983), also
known as the residual allocation model (Sawyer and Hartl, 1985; Hoppe, 1986).
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È Definition A.46 — stick-breaking

An infinite sequence of random variables φ = {φ0,φ1, . . .} has a stick-breaking repre-
sentation with parameters α and β denoted by φ ∼ GEM(α,β).

wk
iid∼ Beta(1− β ,α+ kβ) k = 1, . . . , K (A.15)

φk = wk

k−1∏
i=1

(1− wi) (A.16)

The stick-breaking process samples repeatedly from a Beta(1−β ,α+ kβ) distribution. The
result of the process is a vector of k weights φk. The abbrevation GEM stands for Griffiths,
Engen, and McCloskey (Ewens, 1990; Ethier, 1990). There is also a variant of GEM with
a single parameter α which can be obtained by setting β = 0. In that case wk are drawn
from a Beta(1,α) distribution. Note that although wk are sampled i.i.d., the resulting stick
sizes φk are not independent. Stick size φk depends not only on wk, but also on the weights
w1, . . . wk−1 drawn previously.

Figure A.5: The stick-breaking representation. Left: at the first row, the stick is broken at
x0, at the next rows the remaining part of the stick is broken x i with i > 0. Only six iterations
are shown. Right: samples of a stick-breaking process. The first row shows the stick ratios
from the stick-breaking representation at the left. The next rows show other samples from the
same process.

Figure A.5 visualizes the stick-breaking process. A stick of fixed length 1 gets broken at a
position w0 sampled from a Beta distribution. The remainder of the stick is broken again
at position w1(1 − w0). This process continues for an infinite number of times. A stick-
breaking process generates in this manner a sequence of non-negative values that sum up to
one. The stick-breaking representation can on itself give rise to more sophisticated stochastic
processes (Dunson et al., 2012). Computationally it can also fulfill a useful role. Namely, it is
possible to approximate a distribution over partitions by truncating a stick-breaking process.
The stick-breaking procedure is then only performed a limited number of times (Kurihara
et al., 2007).

In Section 2.1 the relevance of the stick-breaking process for the Dirichlet process will be
shown. In that case the values generated by the stick-breaking process represent the weights
of the partitions induced by the Dirichlet Process.
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IX B
IMPLEMENTATION

We describe two initialization algorithms. The first algorithm initializes Gibbs sampling over
parameters. The second algorithm initializes Gibbs sampling over clusters.

B.1 Initialization of Gibbs Sampling over Parameters

Algorithm 8 as shown in Section 3.3 does not describe how the parameters are initialized.
The algorithm to initialize the parameters θi is given in Algorithm 15.

Algorithm 15 Gibbs sampling over parameters. The initialization of θi .

1: procedure GIBBS ALGORITHM 1 INITIALIZATION(w,λ0,α) . Accepts points w, hyperparameters
λ0,α and returns k initial line coordinates

2: λ1 = Uup(w1,λ0) . Update hyperparameter with w1 (Eq. 3.21)
3: θ1 ∼ N IG(λ1) . Sample θ1 from NIG (Eq. 3.24)
4: for all i = 2 : N do
5: M = i − 1 . Let M define the number of parameters assigned up to now
6: ri = α

∫
F(wi;θ )dH . Weighted posterior predictive of wi (Eq. 3.29)

7: for all j = 1 : M do
8: Li, j = F(wi;θ j) . Likelihood of a line given an observation (Eq. 3.9)
9: end for

10: p(θnew) =
ri

ri+
∑

i Li, j
. Probability of sampling a new parameter (Eq. 3.31)

11: u∼ U(0,1)
12: if p(θnew)> u then . Sample with probability p(θnew)
13: λn = Uup(wi ,λ0) . Update hyperparameters with wi (Eq. 3.21)
14: θi ∼ N IG(λn) . Sample θi from NIG (Eq. 3.24)
15: else
16: i ∼ Mul t(M , p(θold)) . Sample i from existing parameters, θold
17: θi = θold=i . Pick θi given index i
18: end if
19: end for
20: return initialized θk for k lines
21: end procedure

121
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Let us recall the posterior predictive Eq. 3.28:

θi | θ−i , wi ∼ riHi +
∑
j 6=i

F(wi;θ j)δθ j
. (B.1)

We initialize through:

θ1 | w1 ∼ H1

θi | θ1, . . .θi−1, wi ∼ riHi +
i−1∑
j=1

F(wi;θ j)δθ j
.

(B.2)

Given that j runs up to i − 1, we do not have to specify i 6= j in different lines of the
algorithm (compare with Algorithm 8). The initialization algorithm is so similar from the
Gibbs sampling algorithm itself, that it is recommended to write the implementation in such
a way that the same function can be used.

B.2 Initialization of Gibbs Sampling over Clusters

Algorithm 9 as shown in Section 3.4 requires initialization of the hyperparameters λk per
cluster k. In contrast to Algorithm 15 we need to initialize not just θk, but also the hyperpa-
rameters per cluster. This can be done by calling Eq. 3.21 successively by each observation
wi assigned to cluster k. We also require θk themselves to calculate F(wi;θ j) for j 6= i in
Eq. 3.9 and p(θ−i), or more specific, p(θold).

Algorithm 16 Gibbs sampling over clusters. The initialization of θk and λk.

1: procedure GIBBS ALGORITHM 2 INITIALIZATION(w,λ0,α) . Accepts points w and
hyperparameters λ0 and α, returns k hyperparameters λk and initial parameters θk

2: for all k = 1 : K do
3: mk = 0 . Set number of data points per cluster to 0
4: end for
5: for all i = 1 : N do
6: k = U({1, . . . , K}) . Sample k from discrete uniform distribution
7: cluster(wi) = k . Assign cluster index k to observation wi
8: if mk = 0 then
9: λk = Uup(wi ,λ0) . Set hyperparameter λk with prior pred. given wi

10: else
11: λk = Uup(wi ,λk) . Update hyperparameter λk with posterior pred. given wi
12: end if
13: mk = mk + 1
14: end for
15: for all k = 1 : K do
16: θk ∼ N IG(λk) . Sample θk from N IG with up to date λk
17: end for
18: return initialized parameters θk and hyperparameters λk for k lines
19: end procedure
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SUMMARY

In this dissertation non-parametric Bayesian methods are used in the application of robotic
vision. Robots make use of depth sensors that represent their environment using point
clouds. Non-parametric Bayesian methods can (1) determine how good an object is rec-
ognized, and (2) determine how many objects a particular scene contains. When there is a
model available for the object to be recognized and the nature of perceptual error is known,
a Bayesian method will act optimally.

In this dissertation Bayesian models are developed to represent geometric objects such as
lines and line segments (consisting out of points). The infinite line model and the infinite
line segment model use a non-parametric Bayesian model, to be precise, a Dirichlet process,
to represent the number of objects. The line or the line segment is represented by a proba-
bility distribution. The lines can be represented by conjugate distributions and then Gibbs
sampling can be used. The line segments are not represened by conjugate distributions and
therefore a split-merge sampler is used.

A split-merge sampler fits line segments by assigning points to a hypothetical line segment.
Then it proposes splits of a single line segment or merges of two line segments. A new
sampler, the triadic split-merge sampler, introduces steps that involve three line segments. In
this dissertation, the new sampler is compared to a conventional split-merge sampler. The
triadic sampler can be applied to other problems as well, i.e., not only problems in robotic
perception.

The models for objects can also be learned. In the disseration this is done for more complex
objects, such as cubes, built up out of hundreds of points. An auto-encoder then learns to
generate a representative object given the data. The auto-encoder uses a newly defined
reconstruction distance, called the partitioning earth mover’s distance. The object that is
learned by the auto-encoder is used in a triadic sampler to (1) identify the point cloud objects
and to (2) establish multiple occurances of those objects in the point cloud.
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SAMENVATTING

In deze studie worden niet-parametrische Bayesian methoden toegepast in visuele robot-
perceptie. Robots maken gebruik van dieptesensoren die de omgeving representeren met
behulp van puntenwolken. Niet-parametrische Bayesian methoden zijn heel goed in staat
om te bepalen (1) hoe goed een object wordt herkend, en (2) hoeveel objecten een scene be-
vat. Als er een model voor het te herkennen object bestaat en de aard van de te verwachten
perceptuele fout is bekend, dan is een Bayesian methode optimaal.

In deze studie worden Bayesian modellen ontwikkeld om geometrische objecten zoals lij-
nen en lijnsegmenten (opgebouwd uit punten) te representeren. Het infinite line model en
het infinite line segment model gebruiken een niet-parametrisch Bayesian model, om pre-
cies te zijn, een Dirichlet process, om het aantal objecten te representeren. De lijn of het
lijnsegment wordt gerepresenteerd door een probability distribution. Lijnen kunnen worden
gerepresenteerd door conjugate distributions en dan kan Gibbs sampling worden gebruikt. De
lijnsegmenten kunnen niet gerepresenteerd worden door conjugate distributions en daarom
wordt er een split-merge sampler gebruikt.

Een split-merge sampler zoekt naar lijnsegmenten door punten toe te kennen aan een hy-
pothetisch lijnsegment en twee lijnsegmenten samen te voegen of een enkel segment te
splitsen. De triadic split-merge sampler stelt ook stappen voor waar drie lijnsegmenten bij
zijn betrokken. In deze studie, wordt deze nieuwe sampler vergeleken met een gewone split-
merge sampler. De triadic sampler kan nuttig zijn bij veel meer applicaties dan alleen dat van
robotperceptie.

De modellen voor de objecten kunnen ook worden geleerd. In deze studie wordt dit gedaan
voor complexere objecten zoals kubussen bestaand uit honderden punten. Om precies te
zijn, er wordt een auto-encoder gebruikt welke aan de hand van data een representief object
leert te genereren. De auto-encoder gebruikt een nieuw gedefinieerde reconstructie afstand,
de partitioning earth mover’s distance. Het object dat geleerd is door de auto-encoder, wordt
gebruikt in een triadic sampler om in een puntenwolk objecten te identificeren en tegelijker-
tijd het aantal objecten te bepalen.
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Risk Assessment of Socio-Technical Systems

7 Jieting Luo (UU) A formal account of opportunism
in multi-agent systems

8 Rick Smetsers (RUN) Advances in Model Learning
for Software Systems

9 Xu Xie (TUD) Data Assimilation in Discrete Event
Simulations
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10 Julienka Mollee (VUA) Moving forward: support-
ing physical activity behavior change through intel-
ligent technology

11 Mahdi Sargolzaei (UvA) Enabling Framework for
Service-oriented Collaborative Networks

12 Xixi Lu (TUE) Using behavioral context in process
mining

13 Seyed Amin Tabatabaei (VUA) Using behavioral
context in process mining: Exploring the added value
of computational models for increasing the use of re-
newable energy in the residential sector

14 Bart Joosten (UvT) Detecting Social Signals with
Spatiotemporal Gabor Filters

15 Naser Davarzani (UM) Biomarker discovery in
heart failure

16 Jaebok Kim (UT) Automatic recognition of engage-
ment and emotion in a group of children

17 Jianpeng Zhang (TUE) On Graph Sample Cluster-
ing

18 Henriette Nakad (UL) De Notaris en Private Recht-
spraak

19 Minh Duc Pham (VUA) Emergent relational
schemas for RDF

20 Manxia Liu (RUN) Time and Bayesian Networks
21 Aad Slootmaker (OUN) EMERGO: a generic plat-

form for authoring and playing scenario-based seri-
ous games

22 Eric Fernandes de Mello Araújo (VUA) Contagious:
Modeling the Spread of Behaviours, Perceptions and
Emotions in Social Networks

23 Kim Schouten (EUR) Semantics-driven Aspect-
Based Sentiment Analysis

24 Jered Vroon (UT) Responsive Social Positioning Be-
haviour for Semi-Autonomous Telepresence Robots

25 Riste Gligorov (VUA) Serious Games in Audio-
Visual Collections

26 Roelof de Vries (UT) Theory-Based And Tailor-
Made: Motivational Messages for Behavior Change
Technology

27 Maikel Leemans (TUE) Hierarchical Process Min-
ing for Scalable Software Analysis

28 Christian Willemse (UT) Social Touch Technologies:
How they feel and how they make you feel

29 Yu Gu (UvT) Emotion Recognition from Mandarin
Speech

30 Wouter Beek (VU) The "K" in "semantic web" stands
for "knowledge": scaling semantics to the web

2019

1 Rob van Eijk (UL) Web privacy measurement in
real-time bidding systems. A graph-based approach
to RTB system classification

2 Emmanuelle Beauxis- Aussalet (CWI, UU) Statis-
tics and Visualizations for Assessing Class Size Un-
certainty

3 Eduardo Gonzalez Lopez de Murillas (TUE) Pro-
cess Mining on Databases: Extracting Event Data
from Real Life Data

4 Ridho Rahmadi (RUN) Finding stable causal struc-
tures from clinical data

5 Sebastiaan van Zelst (TUE) Process Mining with
Streaming Data

6 Chris Dijkshoorn (VU) Nichesourcing for Improving
Access to Linked Cultural Heritage Datasets

7 Soude Fazeli (TUD) Recommender Systems in So-
cial Learning Platforms

8 Frits de Nijs (TUD) Resource-constrained Multi-
agent Markov Decision Processes

9 Fahimeh Alizadeh Moghaddam (UvA) Self-
adaptation for energy efficiency in software systems

10 Qing Chuan Ye (EUR) Multi-objective Optimization
Methods for Allocation and Prediction

11 Yue Zhao (TUD) Learning Analytics Technology
to Understand Learner Behavioral Engagement in
MOOCs

12 Jacqueline Heinerman (VU) Better Together
13 Guanliang Chen (TUD) MOOC Analytics: Learner

Modeling and Content Generation
14 Daniel Davis (TUD) Large-Scale Learning Analyt-

ics: Modeling Learner Behavior & Improving Learn-
ing Outcomes in Massive Open Online Courses

15 Erwin Walraven (TUD) Planning under Uncertainty
in Constrained and Partially Observable Environ-
ments

16 Guangming Li (TUE) Process Mining based on
Object-Centric Behavioral Constraint (OCBC) Mod-
els

17 Ali Hurriyetoglu (RUN) Extracting actionable in-
formation from microtexts

18 Gerard Wagenaar (UU) Artefacts in Agile Team
Communication

19 Vincent Koeman (TUD) Tools for Developing Cog-
nitive Agents

20 Chide Groenouwe (UU) Fostering technically aug-
mented human collective intelligence

21 Cong Liu (TUE) Software Data Analytics: Architec-
tural Model Discovery and Design Pattern Detection

22 Martin van den Berg (VU) Improving IT Decisions
with Enterprise Architecture

23 Qin Liu (TUD) Intelligent Control Systems: Learn-
ing, Interpreting, Verification

24 Anca Dumitrache (VU) Truth in Disagreement-
Crowdsourcing Labeled Data for Natural Language
Processing

25 Emiel van Miltenburg (UvT) Pragmatic factors in
(automatic) image description

26 Prince Singh (UT) An Integration Platform for Syn-
chromodal Transport

27 Alessandra Antonaci (OUN) The Gamification
Design Process applied to (Massive) Open Online
Courses
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28 Esther Kuindersma (UL) Cleared for take-off:
Game-based learning to prepare airline pilots for
critical situations

29 Daniel Formolo (VU) Using virtual agents for sim-
ulation and training of social skills in safety-critical
circumstances

30 Vahid Yazdanpanah (UT) Multiagent Industrial
Symbiosis Systems

31 Milan Jelisavcic (VUA) Alive and Kicking: Baby
Steps in Robotics

32 Chiara Sironi (UM) Monte-Carlo Tree Search for
Artificial General Intelligence in Games

33 Anil Yaman (TUE) Evolution of Biologically Inspired
Learning in Artificial Neural Networks

34 Negar Ahmadi (TUE) EEG Microstate and Func-
tional Brain Network Features for Classification of
Epilepsy and PNES

35 Lisa Facey-Shaw (OUN) Gamification with digital
badges in learning programming

36 Kevin Ackermans (OUN) Designing Video-
Enhanced Rubrics to Master Complex Skills

37 Jian Fang (TUD) Database Acceleration on FPGAs
38 Akos Kadar (OUN) Learning visually grounded and

multilingual representations

2020

1 Armon Toubman (UL) Calculated Moves: Generat-
ing Air Combat Behaviour

2 Marcos de Paula Bueno (UL) Unraveling Temporal
Processes using Probabilistic Graphical Models

3 Mostafa Deghani (UvA) Learning with Imperfect
Supervision for Language Understanding

4 Maarten van Gompel (RUN) Context as Linguistic
Bridges

5 Yulong Pei (TUE) On local and global structure
mining

6 Preethu Rose Anish (UT) Stimulation Architectural
Thinking during Requirements Elicitation - An Ap-
proach and Tool Support

7 Wim van der Vegt (OUN) Towards a software ar-
chitecture for reusable game components

8 Ali Mirsoleimani (UL) Structured Parallel Program-
ming for Monte Carlo Tree Search

9 Myriam Traub (UU) Measuring Tool Bias and Im-
proving Data Quality for Digital Humanities Re-
search

10 Alifah Syamsiyah (TUE) In-database Preprocessing
for Process Mining

11 Sepideh Mesbah (TUD) Semantic-Enhanced Train-
ing Data AugmentationMethods for Long-Tail Entity
Recognition Models

12 Ward van Breda (VU) Predictive Modeling in E-
Mental Health: Exploring Applicability in Person-
alised Depression Treatment

13 Marco Virgolin (CWI) Design and Application of
Gene-pool Optimal Mixing Evolutionary Algorithms
for Genetic Programming

14 Mark Raasveldt (CWI/UL) Integrating Analytics
with Relational Databases

15 Konstantinos Georgiadis (OUN) Smart CAT: Ma-
chine Learning for Configurable Assessments in Seri-
ous Games

16 Ilona Wilmont (RUN) Cognitive Aspects of Concep-
tual Modelling

17 Daniele Di Mitri (OUN) The Multimodal Tutor:
Adaptive Feedback from Multimodal Experiences

18 Georgios Methenitis (TUD) Agent Interactions &
Mechanisms in Markets with Uncertainties: Electric-
ity Markets in Renewable Energy Systems

19 Guido van Capelleveen (UT) Industrial Symbiosis
Recommender Systems

20 Albert Hankel (VU) Embedding Green ICT Maturity
in Organisations

21 Karine da Silva Miras de Araujo (VU) Where is the
robot?: Life as it could be

22 Maryam Masoud Khamis (RUN) Understanding
complex systems implementation through a model-
ing approach: the case of e-government in Zanzibar

23 Rianne Conijn (UT) The Keys to Writing: A writ-
ing analytics approach to studying writing processes
using keystroke logging

24 Lenin da Nobrega Medeiros (VUA/RUN) How are
you feeling, human? Towards emotionally support-
ive chatbots

25 Xin Du (TUE) The Uncertainty in Exceptional Model
Mining

26 Krzysztof Leszek Sadowski (UU) GAMBIT: Genetic
Algorithm for Model-Based mixed-Integer opTimiza-
tion

27 Ekaterina Muravyeva (TUD) Personal data and in-
formed consent in an educational context

28 Bibeg Limbu (TUD) Multimodal interaction for de-
liberate practice: Training complex skills with aug-
mented reality

29 Ioan Gabriel Bucur (RUN) Being Bayesian about
Causal Inference

30 Bob Zadok Blok (UL) Creatief, Creatieve, Creatiefst
31 Gongjin Lan (VU) Learning better – From Baby to

Better
32 Jason Rhuggenaath (TUE) Revenue management

in online markets: pricing and online advertising
33 Rick Gilsing (TUE) Supporting service-dominant

business model evaluation in the context of business
model innovation

34 Anna Bon (MU) Intervention or Collaboration?
Redesigning Information and Communication Tech-
nologies for Development

35 Siamak Farshidi (UU) Multi-Criteria Decision-
Making in Software Production

2021

1 Francisco Xavier Dos Santos Fonseca (TUD)
Location-based Games for Social Interaction in Pub-
lic Space
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2 Rijk Mercuur (TUD) Simulating Human Rou-
tines:Integrating Social Practice Theory in Agent-
Based Models

3 Seyyed Hadi Hashemi (UvA) Modeling Users Inter-
acting with Smart Devices

4 Ioana Jivet (OU) The Dashboard That Loved
Me: Designing adaptive learning analytics for self-
regulated learning

5 Davide Dell’Anna (UU) Data-Driven Supervision of
Autonomous Systems

6 Daniel Davison (UT) "Hey robot, what do you
think?" How children learn with a social robot

7 Armel Lefebvre (UU) Research data management
for open science

8 Nardie Fanchamps (OU) The Influence of Sense-
Reason-Act Programming on Computational Think-
ing

9 Cristina Zaga (UT) The Design of Robothings. Non-
Anthropomorphic and Non-Verbal Robots to Promote
Childrenś Collaboration Through Play

10 Quinten Meertens (UvA) Misclassification Bias in
Statistical Learning

11 Anne van Rossum (UL) Nonparametric Bayesian
Methods in Robotic Vision
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