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Abstract Dual frame surveys are a device to reduce the costs derived from data
collection in surveys and improve coverage for the whole target population. Since
their introduction, in the 1960’s, dual frame surveys have gained much attention
and several estimators have been formulated based on a number of different ap-
proaches. In this work, we propose new dual frame estimators based on the popula-
tion empirical likelihood method originally proposed by Chen and Kim (2014) and
using both the dual and the single frame approach. The extension of the proposed
methodology to more than two frame surveys is also sketched. The performance
of the proposed estimators in terms of relative bias and relative mean squared
error is tested through simulation experiments. These experiments indicate that
the proposed estimators yield better results than other likelihood-based estimators
proposed in the literature.
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1 Introduction

Classic sampling techniques are based on the concept of a single frame that includes
each and every unit of the population. That is, they assume the existence of
a complete sampling frame from which the sample is selected. However, in many
instances one frame is not enough to guarantee the complete coverage of the whole
population. In such cases, the samples drawn from that incomplete frame may
suffer from undercoverage, lack of representativeness and, therefore, results may
be biased.

Dual frame surveys (Hartley 1962) are a useful tool to face this issue. In a
dual frame survey, two sampling frames are available for sampling: each of these
frames may be incomplete, but it is assumed that their union covers the entire
target population. One independent sample from each frame is selected and, then,
data collected from the two samples are combined to produce estimates. Dual
frame surveys are useful for reducing cost for given precision constraints, improving
coverage and also dealing with elusive or rare populations when a direct sampling
frame is not available. When more than two frames are available, multiple frame
surveys can be used. Research on dual and multiple frame estimation has been
rich since the initial papers by Hartley, and several estimators have appeared in
the literature, each derived under a somewhat different approach to estimation.
For a good introductory account of dual frame surveys, see the review paper by
Lohr (2009); for multiple frame surveys, see Mecatti and Singh (2014).

The growing availability of information coming from census data, adminis-
trative registers, and big data provide a wide range of variables, concerning the
population of interest, that are eligible to be employed as auxiliary information to
increase the efficiency of the estimation procedure. Among these, calibration (Dev-
ille and Särndal 1992; Särndal 2007) and regression estimation (Isaki and Fuller
1982) are probably the most popular. Calibration for dual frame surveys has been
studied in Ranalli et al. (2016). Calibration and regression estimation have been
applied in multiple frame surveys for ordinal responses in Rueda et al. (2018) and
in dual frame surveys for categorical responses in Molina et al. (2015). Pseudo-
likelihood approaches have also been considered in the literature: Skinner and Rao
(1996) proposed a pseudo-maximum likelihood estimator that uses the frame sizes
in dual frame surveys to increase the precision of the estimates, while Rao and
Wu (2010) formulated a pseudo-empirical likelihood estimator that incorporates
auxiliary information in dual and in multiple frame surveys. Recently, Berger and
Kabzinska (2019) developed an empirical likelihood multiplicity adjusted estima-
tor that can also handle auxiliary information and that can be applied to a variety
of parameters of interest expressed as the unique solution to estimating equations.

Alternative likelihood techniques have been developed to formulate estimators
in the classical one frame setting, but they have not been extended to the dual
and multiple frame contexts. This is the case of the population empirical likelihood
(POEL) estimation approach proposed by Chen and Kim (2014): POEL considers
a single empirical likelihood function defined for the finite population. The auxil-
iary information and the sampling design can be incorporated into the estimation
procedure by means of several constraints. Chen and Kim (2014) prove the opti-
mality of this approach with respect to other likelihood-based methods under some
unequal sampling designs, such as Poisson sampling. To our knowledge, none of
the literature papers on multiple frames estimation addresses the use of POEL as
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estimation approach. It is therefore interesting to investigate how to extend this
approach to the case of dual and multiple frame surveys and to understand which
benefits, if any, it provides with respect to other likelihood approaches. This is the
focus of this paper.

The paper is organized as follows. First, we review the pseudo-empirical like-
lihood estimator of Rao and Wu (2010) to set the framework and the notation
(Section 2). Then, we present the proposed estimation approach for the popula-
tion mean in dual-frame surveys based on the POEL approach in Section 3: we
address both the dual and the single frame approach to inference, we discuss ex-
tension to other parameters of interest, and we investigate theoretical properties
and propose jackknife variance estimation (Sections 3.1–3.5). The extension of this
approach to multiple frame surveys is sketched in Section 4. Some simulation ex-
periments are carried out to check the finite size sample properties of the proposed
estimators in the dual and in the multiple frame setting (Section 5). Finally, we
highlight the most relevant findings and conclusions in Section 6.

2 Pseudo-empirical likelihood estimation in dual frame surveys

We first describe the approach proposed by Rao and Wu (2010). Let U be a finite
population composed of N units labeled from 1 to N , U = {1, ..., i, ..., N} and let A
and B be two overlapping sampling frames, both of them can be incomplete but it
is assumed that overall they cover the entire target population U . Let A and B be
the set of units included in frame A and frame B, respectively, with sizes NA and
NB . The population of interest may be divided, then, into three disjoint domains:
a = A ∩ Bc, b = Ac ∩ B and ab = A ∩ B, where c denotes the complementary of a
set. The size of domain a, b, and ab is denoted by Na, Nb, and Nab, respectively.

Assume we are interested in estimating the population mean of a response vari-
able y, Ȳ = 1

N

∑N
i=1 yi, where yi the value of y for the i-th unit of the population.

Such mean can be rewritten as

Ȳ =
Na
N
Ȳa +

Nab
N

Ȳab +
Nb
N
Ȳb, (1)

with Ȳa, Ȳab, and Ȳb the population means of the variable Y in domains a, ab, and
b, respectively.

Suppose that two samples, sA and sB , of sizes nA and nB are selected inde-
pendently from frame A and from frame B, respectively. Let πi(A) = P (i ∈ sA)
and πi(B) = P (i ∈ sB) be the first order inclusion probabilities for units in frame
A and in frame B, respectively, and by di(A) = 1/πi(A) and di(B) = 1/πi(B) the
corresponding basic design weights. The units in sA are such that sA = sa ∪ s′ab,
where sa = sA ∩ a and s′ab = sA ∩ ab. Similarly, the units in sB are such that
sB = sb ∪ s′′ab, where sb = sB ∩ b and s′′ab = sB ∩ ab. Both s′ab and s′′ab contain
units from the overlap domain ab but the first sample has been selected under the
sampling design considered in frame A and the second one is selected through the
sampling design considered in frame B.

Rao and Wu (2010) propose the following maximum pseudo-empirical likeli-
hood (PEL) estimator for the mean of a population:

ˆ̄YPEL = Wa
ˆ̄Ya +W ′ab(η) ˆ̄Y ′ab +W ′′ab(η) ˆ̄Y ′′ab +Wb

ˆ̄Yb,
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where Wa = Na/N,W
′
ab(η) = ηNab/N,W

′′
ab(η) = (1 − η)Nab/N,Wb = Nb/N , with

η ∈ (0, 1) fixed, and ˆ̄Ya =
∑
i∈sa p̂aiyi,

ˆ̄Y ′ab =
∑
i∈s′ab

p̂′abiyi,
ˆ̄Y ′′ab =

∑
i∈s′′ab

p̂′′abiyi and

ˆ̄Yb =
∑
i∈sb p̂biyi.

The four sets of weights p̂a, p̂
′
ab, p̂

′′
ab, and p̂b are such that they maximize the

following pseudo empirical likelihood function

lD(pa, p
′
ab, p

′′
ab, pb) = (nA + nB)

Wa

∑
i∈sa

d̃ai log(pai) +W ′ab(η)
∑
i∈s′ab

d̃′abi log(p′abi)

+W ′′ab(η)
∑
i∈s′′ab

d̃′′abi log(p′′abi) +Wb

∑
i∈sb

d̃bi log(pbi)

 ,

(2)

where d̃ai = di(A)/
∑
i∈sa di(A), d̃′abi = di(A)/

∑
i∈s′ab

di(A), d̃′′abi = di(B)/
∑
i∈s′′ab

di(B)

and, finally, d̃bi = di(B)/
∑
i∈sb di(B) subject to∑

i∈sa

pai =
∑
i∈s′ab

p′abi =
∑
i∈s′′ab

p′′abi =
∑
i∈sb

pbi = 1

and to ∑
i∈s′ab

p′abiyi =
∑
j∈s′′ab

p′′abjyi.

The PEL estimator is such that it can incorporate information about auxiliary
variables into the estimation process. Assume that a vector of auxiliary variables,
xA, is known for the units in the sample drawn from frame A, so that xAi

is
the value of xA for the i-th unit in the frame A. Moreover, the frame population
mean X̄A is also supposed to be known. This frame-specific information can be
incorporated through the constraint

Na
NA

∑
i∈sa

paixAi +
Nab
NA

∑
j∈s′ab

p′abjxAj = X̄A.

Similarly, a set of constraints can be defined if auxiliary information is known for
frame B.

3 Proposed estimators based on population empirical likelihood

Following the POEL approach proposed by Chen and Kim (2014), we can consider
the logarithm of the population level empirical likelihood as the objective function
for the maximization, instead of the sample level empirical likelihood used in equa-
tion (2). In a dual-frame context, the population empirical log-likelihood can be
defined as

l(ωa, ωab, ωb) =
Na
N

∑
i∈a

log(ωai) +
Nab
N

∑
i∈ab

log(ωabi) +
Nb
N

∑
i∈b

log(ωbi), (3)
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with ωai , ωabi , and ωbi such that∑
i∈a

ωai =
∑
i∈ab

ωabi =
∑
i∈b

ωbi = 1. (4)

Recall that we denote by πi(A) the first order inclusion probabilities for units
in frame A and by πi(B) the first order inclusion probabilities for units in frame
B. Let Ii(A) and Ii(B) be the sample selection indicators for frame A and B,
respectively. Ii(A) takes value one if unit i is selected in the sample from frame A
and takes value zero otherwise. Ii(B) can be defined in a similar way. In the rest
of section we assume, as in the case of the pseudo-empirical likelihood approach of
Rao and Wu (2010), that the domain sizes Na, Nab, and Nb are known. However,
this assumption can be relaxed as the proposed method can easily accommodate
this situation, as it will be shown in the following section.

3.1 POEL – Dual frame approach

Equation (1) can be rewritten as follows

Ȳ =
Na
N
Ȳa + η

Nab
N

Ȳab + (1− η)
Nab
N

Ȳab +
Nb
N
Ȳb,

with, again, η ∈ (0, 1) fixed. Similarly, the population level empirical log-likelihood
in (3) can be adapted as follows

l(ωa, ωab, ωb) =
Na
N

∑
i∈a

log(ωai) +
Nab
N

η
∑
i∈ab

log(ωabi)

+
Nab
N

(1− η)
∑
i∈ab

log(ωabi) +
Nb
N

∑
i∈b

log(ωbi),
(5)

and to constraints in (4) we can add∑
i∈a

ωai
Ii(A)

πi(A)
=
∑
i∈ab

ωabi
Ii(A)

πi(A)
=
∑
i∈ab

ωabi
Ii(B)

πi(B)
=
∑
i∈b

ωbi
Ii(B)

πi(B)
= 1,

to incorporate knowledge of population size of domains a, ab, and b. The previous
set of constraints can be rewritten as follows:∑
i∈a

ωai

(
Ii(A)

πi(A)
− 1

)
=
∑
i∈ab

ωabi

(
Ii(A)

πi(A)
− 1

)
=
∑
i∈ab

ωabi

(
Ii(B)

πi(B)
− 1

)
=
∑
i∈b

ωbi

(
Ii(B)

πi(B)
− 1

)
= 0.

(6)
Moreover, the following constraint∑

i∈ab
ωabi

Ii(A)

πi(A)
yi =

∑
i∈ab

ωabi
Ii(B)

πi(B)
yi

is imposed to assure that estimates for the domain mean of the response variable
in the overlap set coincide. Equivalently,∑

i∈ab
ωabi

(
Ii(A)

πi(A)
− Ii(B)

πi(B)

)
yi = 0. (7)
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Finally, assume that population level auxiliary information for frame A is also
available. We consider here the case of univariate auxiliary information just for ease
of notation. Extension to the multivariate case is straightforward. In particular, we
assume that the population mean in frame A of x, X̄A =

∑
i∈AxAi

/NA is available.
To take this additional information into account, the following constraint

Na
NA

∑
i∈a

ωai
Ii(A)

πi(A)
xAi

+
Nab
NA

∑
i∈ab

ωabi
Ii(A)

πi(A)
xAi

= X̄A (8)

is also considered.
We can use the Lagrange multiplier method to compute the three sets of

weights ωa, ωab, ωb that maximize (5) subject to (4), (6), (7), and (8). The re-
sulting weights can be expressed as

ω̂ai =
1

Na

1

1 + λ̂
T

gi

, ω̂abi =
1

Nab

1

1 + λ̂
T

gi

and ω̂bi =
1

Nb

1

1 + λ̂
T

gi

with

gi =

(
Ii(a)

(
Ii(A)

πi(A)
− 1

)
, Ii(ab)

(
Ii(A)

πi(A)
− 1

)
, Ii(ab)

(
Ii(B)

πi(B)
− 1

)
, Ii(b)

(
Ii(B)

πi(B)
− 1

)
,

Ii(ab)
Ii(A)

πi(A)
yi − Ii(ab)

Ii(B)

πi(B)
yi, (Ii(a) + Ii(ab)

)( Ii(A)

πi(A)
xAi
− X̄A

))T
where Ii(u) is the indicator variable defined as

Ii(u) =

{
1 if i ∈ u
0 otherwise

, (9)

and λ̂ is the solution to
1

N

N∑
i=1

gi

1 + λTgi
= 0.

After computing the three sets of weights, the estimator for the mean can be
computed in the following way

ˆ̄YPOEL−DF =
Na
N

ˆ̄Ya + η
Nab
N

ˆ̄Y ′ab + (1− η)
Nab
N

ˆ̄Y ′′ab +
Nb
N

ˆ̄Yb (10)

with ˆ̄Ya =
∑
i∈aω̂ai

Ii(A)
πi(A)yi,

ˆ̄Y ′ab =
∑
i∈abω̂abi

Ii(A)
πi(A)yi,

ˆ̄Y ′′ab =
∑
i∈abω̂abi

Ii(B)
πi(B)yi and

ˆ̄Yb =
∑
i∈bω̂bi

Ii(B)
πi(B)yi.

In the case in which Nab is not known, the abovementioned procedure can be
adapted as follows. Constraints in equation (6) should be replaced by

∑
i∈a

ωai
Ii(A)

πi(A)
+
∑
i∈ab

ωabi
Ii(A)

πi(A)
=
∑
i∈ab

ωabi
Ii(B)

πi(B)
+
∑
i∈b

ωbi
Ii(B)

πi(B)
= 1.

to reflect knowledge of NA and NB only, instead of Na, Nab, and Nb. In addition,
the constraint ∑

i∈ab
ωabi

(
Ii(A)

πi(A)
− Ii(B)

πi(B)

)
= 0,
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could be added to assure that estimates of the overlap domain size coincide. Then
the procedure is similar, but with variables gi replaced by

gi =

(
(Ii(a) + Ii(ab))

(
Ii(A)

πi(A)
− 1

)
, (Ii(ab) + Ii(b))

(
Ii(B)

πi(B)
− 1

)
, Ii(ab)

(
Ii(A)

πi(A)
− Ii(B)

πi(B)

)
,

Ii(ab)

(
Ii(A)

πi(A)
− Ii(B)

πi(B)

)
yi, (Ii(a) + Ii(ab)

)( Ii(A)

πi(A)
xAi
− X̄A

))
.

Then, the estimator is given as in (10) with Na, Nb, and Nab replaced by the
corresponding estimates obtained by the final set of weights.

3.2 POEL – Single Frame approach

Another estimator can be computed considering the single frame approach of
Bankier (1986) and of Kalton and Anderson (1986). In particular, define and the
following single frame inclusion probabilities:

π?i =


πi(A) i ∈ sa
πi(A) + πi(B) i ∈ s′ab ∪ s

′′
ab

πi(B) i ∈ sb
. (11)

In this case, the likelihood to maximize is

l =
N∑
i=1

log(ω?i ) (12)

subject to the following constraints:

N∑
i=1

ω?i = 1,
N∑
i=1

ω?i

(
Ici
π?i
− 1

)
= 0 and

N∑
i=1

ω?i
Ici
π?i
xi = X̄,

where Ici can be seen as a combined indicator which shows whether unit i has
been selected in any of the two samples and X̄ is the population mean of x. The
estimator is computed, then, as

ˆ̄YPOEL−SF =
1

N

N∑
i=1

ω̂?i
Ici
π?i
yi, (13)

where

ω̂?i =
1

N

1

1 + λ̂
T

gi

,

and, in this setting,

gi =

(
Ici
π?i
− 1,

Ici
π?i
xi − X̄

)
.

The SF estimator, differently from the proposed DF estimator, does not require
knowledge of Nab, but only of N . However, it requires full information (Singh and
Mecatti 2011) in order to be computed. That is, one needs identification of frame
membership for all units in the population and knowledge of the inclusion prob-
abilities for all the frames from which the unit can be sampled. Full information
can be unrealistic in many real surveys, such as those in which unequal probability
sampling designs are employed and hinders applicability of this type of estimator.
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3.3 Other parameters of interest

The approach has been developed here for estimation of the population mean.
However, it can be extended to other parameters of interest of the finite population
as long as they can be written as the solution to a set of estimating equations, such
as means, quantiles, ratios and generalized linear regression coefficients. That is,
consider a parameter θ0 that is defined by solving

∑N
i=1 U(xi, yi; θ) = 0 for θ. The

population mean is a particular case for which θ = Ȳ , with U(yi; Ȳ ) = (yi − Ȳ ).
To encompass this more general situation, we can extend the approach pro-

posed in the original paper by Chen and Kim (2014) to the Dual Frame setting.
In particular, we should add the following constraint to the maximization problem
described in Section 3.1,

Na
N

∑
i∈a

ωai
Ii(A)

πi(A)
Ui(θ) +

Nab
N

η
∑
i∈ab

ωabi
Ii(A)

πi(A)
Ui(θ)

+
Nab
N

(1− η)
∑
i∈ab

ωabi
Ii(B)

πi(B)
Ui(θ) +

Nb
N

∑
i∈b

ωbi
Ii(B)

πi(B)
Ui(θ) = 0

(14)

where Ui(θ) is a shorthand for U(xi, yi; θ). Then, to solve the complete optimization
problem by means of the Lagrange multiplier method, a two-step method is needed.
In the first step, the optimal set of weights that maximizes the population level
likelihood subject to the constraints discussed in Section 3.1 can be obtained and
then used in constraint (14). The same rationale can be applied to the Single
Frame setting described in Section 3.2. In this setting, the following constraint
should be considered

N∑
i=1

ω?i
Ici
π?i
Ui(θ) = 0.

3.4 Asymptotic properties

To show the asymptotic properties of the proposed estimators we adapt and
place ourselves in the asymptotic framework of Isaki and Fuller (1982), in which
the dual-frame finite population U and the sampling designs pA(·) and pB(·)
are embedded into a sequence of such populations and designs indexed by N ,
{UN , pAN

(·), pBN
(·)}, with N →∞. We will assume these regularity conditions:

1. NAN
and NBN

tend to infinity and that also nAN
and nBN

tend to infinity as
N →∞;

2. Na > 0 and Nb > 0;
3. nAN

/nN → c1 ∈ (0, 1), where nN = nAN
+nBN

,Na/NA → c2 ∈ (0, 1),Nb/NB →
c3 ∈ (0, 1) as N →∞.

This is the same asymptotic framework used in Ranalli et al. (2016) to prove
consistency of calibration estimators in dual frame surveys. Subscript N may be
dropped for ease of notation, although all limiting processes are understood as
N →∞. Stochastic orders Op(·) and op(·) are with respect to the aforementioned
sequence of designs.
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Theorem 1. Under the regularity conditions of Theorem 1 in Chen and Kim (2014)

changing πi by π
?
i the POEL estimator ˆ̄YPOEL−SF has the asymptotic expansion

ˆ̄YPOEL−SF−Ȳ =
1

N

N∑
i=1

Ici
π?i

(yi−Ȳ )−B?1(
1

N

N∑
i=1

Ici
π?i
−1)−B?2(

1

N

N∑
i=1

Ici
π?i

(xi−X̄))+op(n
−1/2)

where (B?1 , B
?
2) = Ω1Ω

−1
2 with

Ω1 = (
1

N2

N∑
i=1

(
1

π?i
− 1)(yi − Ȳ ),

1

N2

N∑
i=1

(yi − Ȳ )(xi − X̄))

Ω2 =

[
N−2∑N

i=1( 1
π?
i
− 1) N−2∑N

i=1( 1
π?
i
− 1)(xi − X̄)

N−2∑N
i=1( 1

π?
i
− 1)(xi − X̄) N−2∑N

i=1( 1
π?
i
− 1)(xi − X̄)2

]
and has the following asymptotic distribution

ˆ̄YPOEL−SF − Ȳ√
V∞

→ N(0, I),

being

V∞ = N−2V (
N∑
i=1

Ici
π?i

(yi − Ȳ )−B?1(
N∑
i=1

Ici
π?i
−N)−B?2(

N∑
i=1

Ici
π?i

(xi − X̄)))

Proof. The proof is similar to the proof of Theorem 1 in Chen and Kim (2014)
but changing Ui by (yi − Ȳ ), ηi by (1, xi − X̄), Ii by Ici and πi by π?i .

3.5 Variance estimation

By Theorem 1 we can obtain a consistent estimator for the variance of POEL-SF
estimators, but this estimator is based on asymptotic results. A simple alternative
is to use resampling methods. The jackknife approach is a common replication
method for variance estimation that can be used in complex surveys for different
types of estimators (see e.g. Wolter 2007, for an introduction to jackknife). For

the sake of brevity, in this section the proposed estimators are denoted by ˆ̄Ye,
e = POEL−DF,POEL− SF . In addition,

If we consider a non clustered and non stratified design, the Jackknife estimator

for the variance of ˆ̄Ye may be given by

vJ ( ˆ̄Ye) = V AJ +V BJ =
nA − 1

nA

∑
g∈sA

( ˆ̄Y Ae (g)−Ȳ Ae )2+
nB − 1

nB

∑
j∈sB

( ˆ̄Y Be (j)−Y Be )2 (15)

where ˆ̄Y Ae (g) is the value taken by estimator ˆ̄Ye after dropping unit g from sA and

Ȳ Ae is the average of ˆ̄Y Ae (g) values. Each value ˆ̄Y Ae (g) is computed by excluding

unit g from the sample. ˆ̄Y Be (j) and Ȳ Be are defined similarly. The variance estima-
tor in (15) relies on negligible sampling fractions and can be conservative in case
of unequal probability sampling designs such as πps (Wolter 2007).
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In the case of a stratified design in both frames, let frame A be divided into H
strata and let stratum h have NAh observation units of which nAh are sampled.
Similarly, frame B has L strata, stratum l has NBl observation units of which nBl
are sampled. Then, a jackknife variance estimator of ˆ̄Ye is given by

vstJ ( ˆ̄Ye) = V stAJ + V stBJ =

=
H∑
h=1

nAh − 1

nAh

∑
g∈sAh

( ˆ̄Y Ae (hg)− Ȳ Ahe )2 +
L∑
l=1

nBl − 1

nBl

∑
j∈sBl

( ˆ̄Y Be (lj)− Ȳ Ble )2, (16)

where ˆ̄Y Ae (hg) is the value taken by estimator ˆ̄Ye after dropping unit g of stra-

tum h from sample sAh, Ȳ Ahe is the average of these nAh values; ˆ̄Y Be (lj) and Ȳ Ble

are defined similarly. In case of a non stratified design in one frame and a strat-
ified design in the other one, previous methods can be combined to obtain the
corresponding jackknife estimator of the variance.

4 Extension to more than two frames

In recent years, many papers can be found in the literature that focus on the
estimation in cases in which three or more sampling frames are used. Iachan and
Dennis (1993) use a three frame survey to reach the homeless population of Wash-
ington D.C. metropolitan area. The Canadian Community Health Survey con-
ducted by Statistics Canada (2003) is based on an area frame, a list frame and an
RDD frame. Lohr and Rao (2006) formulate the multiple frame extension of some
of the estimators originally proposed for the dual frame case, as those proposed by
Hartley (1962) and by Fuller and Burmeister (1972). Although the optimal version
of these estimators is asymptotically efficient, it is not internally consistent since
a different set of weights is used for each response variable. Moreover, it is often
unstable in small or moderate samples with more than two frames because the
optimal estimated parameters involved in the computation of the estimators are
functions of large estimated covariances matrices.

Lohr and Rao (2006) propose a single frame estimator in a multiple frame con-
text. Mecatti (2007) introduces a new approach based on the multiplicity of each
unit (i.e. in the number of frames the unit is included in) to propose an estimator
which is easy to compute. Singh and Mecatti (2011) generalize this approach and
propose the class of Generalized Multiplicity adjusted Horvitz-Thompson design-
unbiased estimators. We will focus here on this approach to sketch the proposal
of an extension of the POEL approach to more than two frames.

Let A1, . . . , Aq, . . . , AQ be a collection of Q ≥ 2 overlapping frames of sizes
N1, . . . , Nq, . . . , NQ, all of them can be incomplete but it is assumed that they
cover the entire target population U . The population mean can be written as

Y =
1

N

Q∑
q=1

∑
i∈Aq

yi
mi

, (17)

where mi indicates the number of frames unit i belongs to, i.e. the multiplicity
of i. Let sq be a sample drawn from frame Aq under a particular sampling de-
sign and independently for q = 1, . . . , Q, and let πi(q) be the first order inclusion
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probabilities under this sampling design. Let nq be the size of sample sq and let
s = ∪qsq.

Mecatti (2007) considers a single frame approach and proposes the following
single frame multiplicity estimator

ˆ̄YM =
1

N

∑
i∈s

1

πi(q)mi
yi. (18)

The single frame multiplicity estimator only requires the knowledge of the multi-
plicity of each unit, i.e. the number of frames the unit is included, no matter which
these frames are. Singh and Mecatti (2011) extend this approach and propose a
generalized multiplicity-adjusted methodology for multiple frame estimation. Let
αi(q) be a general multiplicity-adjustment coefficient for every unit i in a given
frame Uq with

∑
q αi(q) = 1. A class of design-unbiased estimators is proposed and

named Generalized Multiplicity adjusted Horvitz-Thompson (GMHT) estimators:

ˆ̄YGMHT =
1

N

∑
i∈s

αi(q)

πi(q)
yi, (19)

where the coefficient αi(q) ensures that yi is counted once even if unit i is present
in more than one frame. The GMHT class encompasses many multiple frame
estimators available in the literature. The simple multiplicity-adjusted estimator as
given in (18) is the simplest GMHT estimator with the basic choice αi(q) = 1/mi.
The Hartley estimator and the Kalton and Anderson estimator are also GMHT
estimators, obtained by making different choices for the multiplicity-adjustment
α-coefficient in (19). See Singh and Mecatti (2011) for details on this.

Now we propose a POEL estimator for a collection of Q > 2 overlapping frames.
Again, for ease of notation, let us consider the case of having auxiliary information
on only one variable xq for each frame q. In particular, let us assume that we know
its population mean X̄q =

∑
i∈Aq

xqi/Nq, for q = 1, . . . , Q. Extension to more

auxiliary variables and/or particular cases in which no auxiliary variable is known
for some frames can be easily accommodated. In this setting, the population level
empirical log-likelihood to maximize can be written as

lGM =
Q∑
q=1

∑
i∈Aq

log(ωi(q)) (20)

subject to the following constraints:

∑
i∈Aq

ωi(q) = 1,
∑
i∈Aq

ωi(q)

(
Ii(q)

πi(q)
− 1

)
= 0, and

∑
i∈Aq

ωi(q)
Ii(q)

πi(q)
xqk = X̄q

for q = 1, . . . , Q, where Ii(q) is an indicator variable which shows whether unit
i has been selected in sample sq. The generalized POEL estimator for multiple
frames can then be computed as

ˆ̄YPOEL−GM =
1

N

Q∑
q=1

Nq
∑
i∈Aq

ω̂i(q)αi(q)
Ii(q)

πi(q)
yi, (21)
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where

ω̂i(q) =
1

Nq

1

1 + λ̂
T

gi

,

and, in this setting,

gi =

((
Ii(1)

πi(1)
− 1

)
, . . . ,

(
Ii(Q)

πi(Q)
− 1

)
,
Ii(1)

πi(1)
x1k − X̄1, . . . ,

Ii(Q)

πi(Q)
xQk − X̄Q

)T
.

The estimate for the set of Lagrange multipliers λ̂ can be found as the solution to

1

N

Q∑
q=1

∑
i∈Aq

αi(q)
gi

1 + λTgi
= 0.

5 Simulation experiments

A comprehensive simulation study has been carried out to check the performance
of the proposed estimators. In this study two different experiments are carried
out with populations built with two and three frames to compare the dual frame
estimators on the one hand, and the generalized estimator for the case Q = 3 on
the other.

5.1 Dual frame scenarios

An artificial population of size N = 10000 is considered. The units of the pop-
ulation have been randomly assigned to one of the three domains (“a”, “ab” or
“b”) with different predetermined domain sizes. We have considered a first sce-
nario with a small overlap domain size with Na=5000, Nb=4000 and, consequently,
Nab=1000. The second and the third scenarios have, respectively, large and medium

overlap domain size. The resulting domain sizes in the second scenario are given by
Na=3000, Nb=4000 and Nab=3000, while for the third scenario we have Na=3000,
Nb=2000 and Nab=5000.

Three different sampling designs are used for drawing the sample of each frame:
Poisson sampling, simple random sampling and stratified random sampling. Two
different combinations of average probabilities of selection (in the case of Poisson
sampling) or sample sizes (in the case of simple random sampling and stratified
random sampling) are considered. Therefore, the performance of the proposed dual
frame estimators has been checked in a total of 3× 3× 2 = 18 different scenarios.
We focus on checking the behavior of the proposed estimator for various types of
sampling designs, various overlap domain sizes and various sample sizes.

The main variable that we have considered is a numeric variable Y with mean
52.78 (sd=9.45). The auxiliary variable X is a numeric variable with mean 52.405
(sd=10.71). The correlation between the two variables is ρ = 0.60. Both variables
were generated using the mvrnorm function from the MASS R-package, (Venables
and Ripley 2002). For the Poisson sampling, we use πi = nzi/

∑
(zi) with zi =

xi − ai, ai ∼ N(0, 1).
We have computed the two proposed estimators together with the Hartley

(Hartley 1962) and the PEL (Rao and Wu 2010) estimators for the purpose of
comparison. For each estimator, we compute the percent relative bias RB% =
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EMC [ ˆ̄Y − Ȳ ]/Ȳ ∗ 100 and the percent relative mean squared error RMSE% =

EMC [( ˆ̄Y − Ȳ )2]/Ȳ 2 ∗ 100 based on 1000 Monte Carlo simulation runs. We show in
Table 1 our results. Relative biases are all negligible, by this providing evidence
of successful handling of the dual frame information in the overlap domain. As
expected, POEL-SF is always the most efficient estimator as it incorporates more
information than the other dual-frame type estimators. Similarly, the Hartley esti-
mator provides the worst performance as it does not include auxiliary information
in the estimation procedure. The performance of the proposed POEL-DF is always
in line with that of PEL and most of the times it is more efficient. This is partic-
ularly true for the stratified design and when the overlap domain size is relatively
larger.

5.2 Multiple frame scenarios

The performance of the proposed generalized POEL estimator has been also
checked in a multiple frame context. Similarly to the dual frame case, a fictitious
population of size N = 10000 has been created and its units have been randomly
assigned to one of the seven possible domains (“a”, “b”, “c”, “ab”, “ac”, “bc” or
“abc”) to simulate a three frame setup. Resulting domain sizes were Na=1500,
Nb=1500, Nc=1000, Nab=2000, Nac=1000, Nbc=2000 and, finally, Nabc=1000. A
different sampling design has been applied in each of the three frames. Then, Pois-
son sampling has been used to sample from frame A, simple random sampling
has been considered to draw samples from frame B, and stratified sampling has
been used to sample from frame C. Different combinations of sample sizes were
considered:

Sce1: nA = 0.030NA, nB = 180 and nC = (25, 30, 35);
Sce2: nA = 0.065NA, nB = 360 and nC = (50, 60, 75);
Sce3: nA = 0.130NA, nB = 720 and nC = (100, 120, 150).

We use the same y and x variables as in the dual frame simulation study, with
ρ = 0.60. In addition, we also generated two other pairs of x − y variables with
ρ = 0.70 and 0.80.

For each simulation study, we compute the single frame multiplicity estimator,
ˆ̄YM , as a benchmark, and compare it with the proposed estimator ˆ̄YPOEL−GM
and the multiple frame versions of the PEL estimator in Rao and Wu (2010). The
two latter estimators exploit the auxiliary information. Comparisons have been

carried out using the relative bias and the relative efficiency with respect to the ˆ̄YM
estimator, RE% = RMSE( ˆ̄YM )/RMSE( ˆ̄Y ) based on 1000 simulated Monte Carlo
replicates. Results for each correlation coefficient may be found in Table 2. Again,
relative bias is always negligible for all estimators, meaning that the proposed
procedures properly handle multiplicity. The likelihood based methods that use
auxiliary information provide much better performances than the basic multiplicity
adjusted estimator, and this is more evident as the sample sizes increase (scenarios
1 through 3). In particular, the gain in precision provided here by the proposed
estimator that uses a population level likelihood with respect to the PEL that uses
a sample level likelihood is more striking. The proposed POEL-GM estimator is
always more efficient and this is particularly true when the correlation between
the auxiliary variable and the response is stronger.



14 Maria del Mar Rueda et al.

Table 1 Percent relative mean squared error (RMSE%) and percent relative bias (RB%) of
compared estimators.

RB % RMSE %

Poisson nA = 0.0325 ·NA, nB = 0.075 ·NB

Small Medium Large Small Medium Large

ˆ̄YHar -0.005 0.032 0.000 0.396 0.370 0.523
ˆ̄YPEL -0.018 0.022 0.007 0.282 0.256 0.312
ˆ̄YPOEL−DF -0.008 0.020 0.017 0.325 0.253 0.300
ˆ̄YPOEL−SF -0.014 0.020 0.016 0.273 0.245 0.288

Poisson nA = 0.065 ·NA, nB = 0.150 ·NB

Small Medium Large Small Medium Large

ˆ̄YHar -0.005 0.023 -0.008 0.187 0.175 0.254
ˆ̄YPEL -0.002 0.020 -0.001 0.129 0.121 0.149
ˆ̄YPOEL−DF 0.000 0.019 0.001 0.128 0.120 0.140
ˆ̄YPOEL−SF 0.002 0.015 -0.008 0.125 0.116 0.141

Stratified nhA
= (150, 175), nhB

= (50, 60, 75)

Small Medium Large Small Medium Large

ˆ̄YHar -0.058 0.112 -0.137 0.662 0.786 0.882
ˆ̄YPEL -0.054 0.043 0.030 0.469 0.640 0.561
ˆ̄YPOEL−DF -0.072 0.033 0.017 0.444 0.607 0.528
ˆ̄YPOEL−SF -0.093 0.072 0.022 0.420 0.485 0.464

Stratified nhA
= (300, 350), nhB

= (100, 120, 150)

Small Medium Large Small Medium Large

ˆ̄YHar -0.045 0.077 -0.120 0.345 0.397 0.424
ˆ̄YPEL -0.043 -0.017 0.046 0.233 0.312 0.265
ˆ̄YPOEL−DF -0.064 -0.029 0.032 0.224 0.291 0.244
ˆ̄YPOEL−SF -0.085 0.022 0.031 0.217 0.225 0.215

SRS nA = 180, nB = 232

Small Medium Large Small Medium Large

ˆ̄YHar 0.034 -0.006 -0.012 0.811 0.822 1.015
ˆ̄YPEL 0.018 0.018 0.012 0.617 0.602 0.721
ˆ̄YPOEL−DF 0.018 0.017 0.013 0.619 0.601 0.718
ˆ̄YPOEL−SF 0.022 0.014 0.003 0.605 0.580 0.680

SRS nA = 360, nB = 464

Small Medium Large Small Medium Large

ˆ̄YHar -0.001 -0.039 -0.009 0.389 0.400 0.482
ˆ̄YPEL 0.007 -0.029 0.003 0.290 0.301 0.342
ˆ̄YPOEL−DF 0.006 -0.030 0.005 0.289 0.302 0.339
ˆ̄YPOEL−SF 0.003 -0.029 -0.003 0.284 0.294 0.318
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Table 2 Percent relative bias (RB%) and percent relative efficiency (RE%) respect to the M
estimator.

RB % RE %

Sce1 Sce2 Sce3 Sce1 Sce2 Sce3
ρ = 0.6

ˆ̄YM 0.016 0.033 0.037 100.000 100.000 100.000
ˆ̄YPEL 0.005 0.041 0.031 126.057 127.887 132.348
ˆ̄YPOEL−GM 0.040 0.063 0.061 143.373 142.751 151.281

ρ = 0.7

ˆ̄YM 0.013 0.028 0.036 100.000 100.000 100.000
ˆ̄YPEL 0.004 0.038 0.027 141.801 145.044 150.063
ˆ̄YPOEL−GM 0.036 0.059 0.056 163.208 162.446 172.044

ρ = 0.8

ˆ̄YM 0.013 0.024 0.034 100.000 100.000 100.000
ˆ̄YPEL 0.005 0.035 0.024 166.920 171.444 177.047
ˆ̄YPOEL−GM 0.033 0.054 0.050 194.280 192.824 203.693

6 Conclusions

In recent years, multiple-frame surveys have attracted significant attention in sur-
vey methodology and applications. The use of more than one frame helps statisti-
cians to obtain more reliable estimates for a finite population, as does the incorpo-
ration of available auxiliary population information at different levels. This paper
examines an extension of the population empirical likelihood framework proposed
by Chen and Kim (2014) to use in estimation from dual-frame surveys. The ob-
jective function for the maximization and benchmark constraints are defined and
discussed under the single and the dual-frame approaches. The extension of the
proposed approach to the multiple-frame setting is also discussed and evaluated
in a simulation study.

To define the proposed estimators in a dual frame setting, we have assumed
that population sizes Na, Nb and Nab of the domains are known, as in the case
considered for the PEL by Rao and Wu (2010). This situation is common in
practice, e.g. when the survey is done by combining landline and cellular phones.
However, we have also provided a discussion of how the proposed approach can be
adapted when only the frame sizes NA and NB are known.

The proposed approach has been applied mainly to the estimation of the pop-
ulation mean of a survey variable. However, it can be extended to a more general
class of parameters of interest – i.e. those defined as the solution to a set of estimat-
ing equations – as it was proposed in the original population empirical estimation
approach by Chen and Kim (2014).

A comprehensive simulation study has been carried out to check the perfor-
mance of the proposed dual-frame estimators under a number of scenarios with
varying sampling designs, sample size, and overlap domain size. Results show that
the bias of all proposed estimators is negligible in all scenarios. Additionally, the
two proposed dual-frame estimators perform better than the Hartley estimator
(that does not include auxiliary information) and the PEL estimator (that uses
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the same amount of auxiliary information) in terms of relative mean squared er-
ror. This is particularly true for the proposed estimator under the single frame
approach. The latter, however, requires full information, i. e., identification of all
frame memberships and the inclusion probabilities for each sampled unit for both
sampling designs. If samples from frame A and B are both self-weighted, the in-
clusion probabilities are known but this information is not always available. This
fact makes its use restricted in practical applications. An alternative approach in
this setting is screening in which units belonging to the overlap are removed from
one frame. Nonetheless, this approach can introduce a potential for bias due to
nonsampling errors (Kennedy 2007) and, in many cases, it may not be practical
or possible to remove list-frame units before sampling.

We have also introduced an extension to more than two frames based on the
idea of multiplicity due to Mecatti (2007) and further extended by Singh and
Mecatti (2011). The proposed approach allows for the use of frame-specific auxil-
iary information and is proved to be more efficient that the PEL estimator based
on the sample level empirical likelihood, by this providing evidence that the use
of the population level empirical likelihood provides better results and is worthy
further investigation, in particular in the multiple frame setting.
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