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Abstract: Intrusion detection of IoT-based data is a hot topic and has received a lot of interests
from researchers and practitioners since the security of IoT networks is crucial. Both supervised
and unsupervised learning methods are used for intrusion detection of IoT networks. This paper
proposes an approach of three stages considering a clustering with reduction stage, an oversampling
stage, and a classification by a Single Hidden Layer Feed-Forward Neural Network (SLFN) stage.
The novelty of the paper resides in the technique of data reduction and data oversampling for
generating useful and balanced training data and the hybrid consideration of the unsupervised
and supervised methods for detecting the intrusion activities. The experiments were evaluated in
terms of accuracy, precision, recall, and G-mean and divided into four steps: measuring the effect
of the data reduction with clustering, the evaluation of the framework with basic classifiers, the
effect of the oversampling technique, and a comparison with basic classifiers. The results show that
SLFN classification technique and the choice of Support Vector Machine and Synthetic Minority
Oversampling Technique (SVM-SMOTE) with a ratio of 0.9 and the k value of 3 for k-means++
clustering technique give better results than other values and other classification techniques.

Keywords: intrusion detection; IoT; internet of things; imbalanced; oversampling; IoTID20; clustering

1. Introduction

The Internet of Things (IoT) can be defined as connected objects (electronic-based)
linked through a network to communicate with each other [1]. The concept of IoT is not
new; on the contrary, it comes from the late 1990s, when Kevin Ashton, the co-founder of
Auto-ID Center at MIT, referred to it in order to describe computers connected to individual
objects [2]. These objects mostly consist of computing devices, digital and mechanical
machines, or microchips implanted in living creatures that own unique identifiers (UIDs) [1].
However, the actual implementation of IoT took place between 2008 and 2009 according to
Cisco Systems [3]. Since then, IoT has been improved and applied in a different number
of applications, including motion detection [4], smart home [5], farming [6,7], cities [8,9],
connected cars [10], wearable health monitors [11], biometric cybersecurity scanners [12],
and logistics tracking [13].

In view of the rapid speed of evolving and existence of IoT devices, it becomes
challenging to prevent all security attacks [14]. This occurs due to the fact that IoT devices
are created without considering the security and privacy factors [15]. Therefore, such
measures cause many vulnerabilities and threats for these devices; for example, in 2019,
a team from Cable News Network (CNN) managed to access various types of camera
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feeds [16]. They did this using the IoT devices search engine (Shodan), in which several
feeds were revealed. One of these feeds showed the daily routine of an Australian family,
a man in Moscow getting ready for sleep, and a cat been feeding by her owner in Japan.
Furthermore, all cameras did not have any security checks and could be accessed by
anyone according to CNN. Another situation happened in 2017, where the US FDA stated
that St. Jude Medical’s implantable cardiac devices could possibly be hacked [17]. These
devices are responsible for monitoring patients’ heartbeat and checking for heart attacks.
Consequently, hackers could control device functions such as drain the battery, incorrect
pacing, and shocks.

The huge data (big data) generated from IoT devices made the detection of such attacks
nearly impossible without proper mechanisms. One of these mechanisms is the Intrusion
Detection System (IDS), which is a defense system that is responsible for monitoring the
activities of the network in IoT devices [18].

There are several intrusion detection approaches, such as preemptive blocking, signature-
based, and anomaly detection. In recent years, anomaly-based intrusion detection has shown
superior performance over the other approaches, especially using machine learning techniques
[19]. The main idea of machine learning-based detection is to train a trustworthy activity
model and compare it against the new behavior. Machine learning is known to have better
generalization properties than other conventional methods, given the potential to train hardware
and application configurations.

Due to the big data generated from IoT devices, machine learning algorithms consider
the optimal approach to deal with such data using their ability to deliver meaningful inter-
pretations and predictions as well as deep analysis of the data patterns [20]. The authors
of [21] stated that, to develop a computational approach that can detect different types of
cyber-attacks, an intelligent data-driven intrusion detection system is required, by means of
machine learning technique. Mishra et al. [22] reported that it can be simple to bypass the
signature-based intrusion detection system if the the attack is modified slightly, whereas
machine learning-based methods can detect these variations as a result of the learning
characteristics of the activity of the traffic flow. Further, it can capture the complicated
properties of such attacks through learning their behavior and improve the speed as well
as the detection performance better than the traditional intrusion detection system.

Well-known datasets have been presented for intrusion detection, namely CICIDS2017 [23],
UNSWNB15 [24], and ISCX2012 [25]. However, none of these datasets are collected from an
IoT environment. Several works from previous years have started to consider intrusion de-
tection datasets in the IoT environment, such as BoT-IoT [26] and DS20S [27]. Nevertheless,
with the growth of IoT devices and novel attack techniques in recent years, it has become a
necessity to update and upgrade the datasets to reflect such techniques. Besides, available
IoT intrusion datasets lack a large number of features. Thus, recent datasets are introduced
such as LITNET-2020 [28] and IoTID20 [29]. The LITNET-2020 dataset was collected from
the KTU LITNET network to present the normal and attack network traffic, while the data
gathered for IoTID20 were generated from various sources such as smartphones, laptops,
tablets, and smart home devices. The IoTID20 focuses more on the daily home usage
devices, while the LITNET-2020 concentrates on the academic network traffic. Therefore,
in this study, we considered the IoTID20 dataset to investigate the IoT intrusion detection
for in-home environments.

Machine learning methods are generally split into two types; supervised and unsuper-
vised learning. The first type is the common one, which is also referred to as classification,
where the algorithm learns from the dataset labels; in other words, it has the answer keys
of the attack types to evaluate the detection accuracy of the training data. Several works
adopted the supervised learning method [30,31]. For example, Alharbi et al. [32] proposed
a malware cyberattacks detection system in the IoT environment. Their approach consists
of several components, including a traffic analysis unit using the supervised learning
method. They applied the decision tree classification algorithm to detect suspicious traffic
flow. The proposed approach shows effective detection of malicious attacks with little



Appl. Sci. 2021, 11, 3022 3 of 19

bandwidth consumption and a low response time. Verma and Ranga [33] applied the
supervised learning method to investigate the detection of DoS attacks in IoT devices.
They employed three well-known datasets to evaluate the classification model: NSL-KDD,
CIDDS-001, and UNSWNB15. The outcome of the approach showed better performance
than the other methods. Supervised learning is useful when attacks are known; however,
with the evolution of the attacking techniques alongside emerging new (unknown) ones, it
becomes more difficult to detect them.

Another interesting work investigates the webshell detection in IoT environment using
the ensemble methods [34]. The authors applied three types of ensemble techniques to en-
hance the machine learning model’s performance: voting, extremely randomized trees (ET),
and random forest (RF). Moreover, their outcome of the study is that RF and ET are better
for lightweight IoT scenarios, while the voting method was better heavyweight scenarios.

Furthermore, previous works lack two main aspects: the novelty of the IoT intrusion
detection datasets and the testing the combined approaches of the learning criteria, super-
vised and unsupervised. Thus, our approach fills the gap and studies the novelty of the
dataset and the use of a combined learning approaches. Unsupervised learning, which
is also referred to as clustering, can work alongside with the supervised techniques to
handle these unknown novel attacks [22]. Unsupervised learning can be described as a
method that extracts and finds hidden patterns of an unlabeled dataset [35]. Consequently,
it identifies similar characteristics of current and new IoT attacks and divides them into
groups using the clustering machine learning method.

The main contribution of this paper can be summarized as follows:

• We propose a multi-stage approach for classifying the intrusion and normal activities
by applying clustering, reduction, oversampling, and classification techniques.

• A unique reduction with clustering technique is applied on the IoT training data to
undersample the data while maintaining a representative dataset for training.

• Oversampling the dataset is used to solve the issue of imbalance distribution of the
classes in the data.

The remainder of this paper is organized as follows. Section 2 shows recent studies
on intrusion detection and recent datasets found in related works. Section 3 discusses the
k-means clustering technique, the SLFN, and the oversampling techniques, which are used in
the proposed approach. The IoTID20 dataset used in the experiments is presented in Section 4.
Section 5 discusses in detail the three main stages of the approach, namely data reduction
with clustering, oversampling, and classification with SLFN stages. The experiments and
results are presented and discussed in Section 6. Finally, Section 7 concludes the work.

2. Related Works

In the past few years, IoT has been utilized in different and essential fields, including
healthcare, industry, education, smart cities, agriculture, and retail. Numerous capabilities
have led IoT to be applied in various applications [36]. Besides, IoT can help users select the
best possible opportunity in any scenario, e.g., cloud resources, management, and decision
making [37], thus gaining more attention in academia and industry. For instance, Iqbal
et al. [38] proposed an IoT wearable sensor-based device to monitor human health. They used
several objects: wearable sensors, activity recognition, and smartphones. Zielonka et al. [39]
presented an IoT convection system for small houses. Their approach, which is a remote
platform control system, is responsible for collecting sensor readings all over the house from
users and optimizing its parameters using computational intelligence to enhance the IoT
convection system to improve family comfort. Further, Kamble et al. adopted IoT to recognize
the barriers in the retail supply chain for food in India [40]. Abdel-Basset et al. investigated
the smart education environment through IoT [41]. Ahmed et al. [42] proposed network
architecture for controlling the agricultural places in rural areas.

This increase in IoT utilization and employment makes it hard to control the safety
and privacy of connected devices. Thus, the intrusion detection in IoT becomes more
crucial. Da Costa et al. [43] suggested that network security is essential due to the high
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access to critical information that may cause substantial business losses. Thus, upgrading
the field of intrusion detection in IoT is a real necessity [43].

Fu et al. [44] presented an intrusion detection technique in the IoT environment.
The approach is used to detect and report different types of attacks, namely reply-attack,
jam-attack, and false-attack. Further, they developed experiments to validate the proposed
approach against the RADIUS application. Loulianou et al. [45] implemented an intrusion
detection system for IoT network protection. The work adopted the signature-based
intrusion detection method as well as distributed and centralized modules. Additionally,
they designed a DoS scenario using the Cooja simulator and proved that these types of
attacks might affect the availability of IoT devices.

On the other hand, applying machine learning for intrusion detection has shown,
in many applications, better performance than other approaches. da Costa et al. [43]
presented a review of machine learning intrusion detection based in the IoT environment.
They surveyed more than 95 papers in the literature that applied machine learning to deal
with the issue of IoT intrusion detection. Another recent review presents and analyzes
different machine learning and deep learning-based methods in order to identify the
intrusion activities of IoT applications [46]. Both reviews emphasize the advantage of
machine learning techniques against other approaches in intrusion detection problems.

Most of the works in the literature that employs the machine learning techniques are
divided into two groups, namely supervised and unsupervised learning. For example,
Smys et al. introduced the supervised learning hybrid convolutional neural networks
model for intrusion detection in IoT networks [47]. Their model achieved better results
when compared against deep learning and conventional machine learning models. The
proposed approach proved that it is sensitive to the detection of IoT attacks. Another
supervised learning work developed an attack detection system using the Support Vector
Machine (SVM) as a classification model to detect any injected data in the IoT network [48].
The classification model achieved satisfactory results in terms of accuracy. Additionally,
Almomani and Alenezi [49] applied eight different data mining techniques to detect and
classify different types of DoS (Denial of Service) attacks in the context of sensor-based IoT
networks. The dataset used was created by Almomani et al. [50] and includes five types of
DoS attacks including flooding, TDMA, grayhole, and blackholes attacks. Although the
feature selection algorithm reduced 53% of the overall features, their intrusion detection
system attained high accuracy that reached 98%.

On the other hand, the detection of unknown new attacks is better performed by
unsupervised learning than supervised learning, because of its ability to group and sort
new attacks with similar characteristics. Choudhary and Kesswani [51] presented a cluster-
based intrusion detection algorithm for IoT. Their model consists of hybrid intrusion
detection for detecting sinkhole and forwarding attacks. The model obtained 96.3% true
positive rate and 6.1% false positive rate. Bostani and Sheikhan [52] proposed an un-
supervised optimum-path forest algorithm for intrusion detection in IoT. The proposed
approach contains two intrusion detection methods, which are specification-based and
anomaly-based. The specification-based method analyzes the host nodes and transfers
their results to the root node, whereas the anomaly-based method applies the clustering
models using the transfer data. Further, through a voting mechanism, the hybrid proposed
model identifies the suspicious behavior. The results show that the proposed method
acquired 76.19% and 5.92% true positive and false positive rates, respectively.

Notwithstanding, most of the IoT datasets in intrusion detection suffer from the class-
imbalance issue that causes poor performance of traditional machine learning approaches.
Consequently, some researchers have tried to solve this problem. Telikani and Gandomi
suggested a cost-sensitive stacked auto-encoder (CSSAE) approach to handle the imbalance
problem in IoT intrusion detection systems [53]. CSSAE produced a cost for each class
that depends on the distribution of the classes. Then, an auto-encoder with a two-layer
stack was applied to learn the differences between majority and minority classes. Their
approach can be employed in both the binary and multi-class data. CSSAE achieved
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better results when compared with other intrusion detection systems against KDD CUP
99 and NSL-KDD datasets. Ullah and Mahmoud [54] investigated intrusion detection
in IoT networks using the two-level hybrid model to identify the irregular activity. The
model utilizes the Synthetic Minority Oversampling Technique (SMOTE) to apply the
oversampling technique on CICIDS2017 and UNSW-15 datasets. The experiment results
obtained by the model are competitive with 100% for CICIDS2017 and 99% for UNSW-15
in terms of precision, recall, and F-score. Shahriar et al. [55] also addressed the imbalanced
issue in IoT intrusion detection systems. They used a generative adversarial network
(GAN) as a model to solve the difficulties of imbalanced classes. They argued that their
approach performs better in detecting attacks than the standalone intrusion detection
systems. Moreover, IoTID20 dataset was tested by Maniriho et al. [56] by classifying three
different subsets: normal traffic and DoS attack, normal traffic and MITM, and normal
traffic and Scan attack. They did not test the dataset with the classification of normal
activities and all the categories of intrusion activities (including Mirai, DoS, MITM, and
scan attacks) at once, which is considered in our work.

Therefore, due to the scarcity of research on this matter, we combine both supervised
and unsupervised learning methods on the recently published IoTID20 dataset. We solve
the imbalanced data issue by the reduction and oversampling techniques, which ensures
an expressive and balanced training data, by minifying the training data at one stage using
a reduction technique and enlarging it at another stage using oversampling.

3. Preliminaries

This section discusses the introductory information needed for understanding the
main components of the proposed approach. It includes a discussion of the k-means
clustering algorithm, the SLFN algorithm, and the oversampling technique.

3.1. K-Means++ Clustering

K-means++ algorithm, as any other clustering algorithm, finds the relationships
between the instances and groups similar ones into the same groups [57]. The k-means++
algorithm is one of the popular variations of the k-means algorithm, which has a different
process for initializing the cluster centers. For the first iteration, the k-means++ algorithm
chooses the first center randomly but chooses the remaining centers using a weighted
probability distribution of the closest centers. Then, the algorithm assigns every other point
to the cluster with the closest center to the point. For later iterations, the center of each
cluster is calculated and the points are reassigned to the cluster of the closest center. The
algorithm stops when the centers are the same for two successive iterations or a predefined
number of iterations is reached, which results in k clusters of points [58]. The aim is to
minimize the sum of distances between every instance xj of a cluster si and the center ci for
a total of k clusters, which can be represented by the following equation:

argmin
s

k

∑
i=1

∑
xj∈si

||xj − ci||2 (1)

3.2. Oversampling Techniques

The problem of imbalanced datasets resides in the lack of minority class instances
compared to those in the majority class. This problem results in wrong classification of the
minority class instances to majority class instances having many false positives [59].

Oversampling techniques can solve this problem by increasing the number of instances
for the minority class. Figure 1 shows that the minority class (Class-2) can be enlarged by
the oversampling technique to produce a class with a number of instances similar to the
other class (Class-1). Oversampling can be done in many ways: randomly copying the
minority class instances, synthetically creating new instances of the minority class based



Appl. Sci. 2021, 11, 3022 6 of 19

on the features of the instances, or creating new instances of the minority class from the
instances that are harder to learn.

Class-1 Class-2 Class-2 Class-1

Oversampled DatasetOriginal Dataset

Figure 1. Oversampling technique of the two classes to enlarge the minority class.

3.3. Single Hidden Layer Feed-Forward Neural Network (SLFN)

Figure 2 illustrates the topology of SLFN. The network consists of an input layer which
has the values of the features. A hidden layer has neurons with values calculated by an
activation function based on the weights between the neurons and the input layer. Finally,
the predicted outputs are calculated by the output layer. The aim is to generate a model
with output values closer to the target values, which is done by adjusting the weights based
on the error value between the output values and the target values.

.

.

.

SLF
N

.

.

.

SLFN

.

.

.

Intrusion

Normal

F1

F2

F3

Fn

Figure 2. Single Hidden Layer Feed-Forward Neural Network (SLFN).

The task of training the neural network aims at giving high-quality classification
results by finding the relationships between the inputs and the outputs because the actual
relationship in most cases cannot be recognized by traditional techniques [60]. This is done
by tuning the weights and biases of the neural network to give better mapping, and thus
increasing the accuracy of the predicted labels, which is measured by a cost function.

For each neuron in the hidden layer, a weighted sum is calculated as the sum of the
product between the input values and the corresponding values of the weights, which can
be observed by the following equation:

WSj =
N

∑
i=1

wijFi + bJ (2)
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where WSj is the weighted sum for a neuron j, N is the number of input nodes, Fi is the
value of an input node i, wij is the weight connecting input node i with hidden neuron j,
and bJ is the bias of the hidden layer J.

The value of the neuron j is the value of activating the weighted sum WSj. This value
is then considered as input value for the output layer. The weighted sum is then applied
on the output layer to generate the predicted value for each neuron in the output layer. The
predicted value is then compared to the expected value to find the error generated by the
network for each label.

4. IoT Imbalanced Dataset

The IoTID20 dataset [29] contains intrusion and normal activities generated from
laptops, tablets, and smartphone devices in a smart home IoT network with a Wi-Fi router
connected to SKT NGU device and EZVIZ camera. The dataset includes 80 features
and 625,783 instances. The dataset has three labels, the intrusion identification label, the
category label, and the sub category label.

The detailed distribution of dataset records among the normal and intrusion activities
is shown in Table 1. IoT systems have enlarged the attacks surface by introducing more
destructive threats. The main malicious behaviors that were injected and monitored to
generate the dataset include Denial of service (DoS), Distributed DoS (DDoS), Man-in-the-
Middle (MITM), and active scanning.

Table 1. Dataset records distribution per category/subcategory.

Number of Records per Category and Sub-Category

Attacks Surface Normal

DoS Mirai MITM Scan

40,073
Synflooding Ackflooding Hostbruteforceg HTTP Flooding UDP Flooding ARP Spoofing Hostport OS Port

59,391 55,124 599,925 55,818 183,554 35,377 22,192 53,073

Tot: 59,391 Tot: 415,677 Tot: 35,377 Tot: 75,265

The type of DoS attack considered is the one that usually targets the TCP-based
connections (Transmission Control Protocol-based connections) by flooding synchronized
(SYN) packets. SYN packets are usually used to build TCP connections between the
communicating parties by reserving resources, mainly ports and buffers at both sides.
It can be utilized to attack the availability of the server and/or the victim machines.
Moreover, DDoS attacks in the context of IoT Mirai were implemented through flooding
acknowledgment, HyperText Transfer Protocol (HTTP), and User Datagram Protocol (UDP)
packets. In addition, brute force attack was executed to break the encrypted data and
expose its secrecy.

MITM was also performed to poison the Address Resolution Protocol (ARP) table and
map the Internet Protocol (IP) address of the router with the Media Access Control (MAC)
address of the attacker. This allows the attacker to impersonate the network router and
interfere with the communications among the network entities. The purpose of this attack
is mainly sniffing or manipulating the transmitted data.

In general, before conducting any attack, the scanning phase should take place. This
is part of the active reconnaissance that discovers the running services on the victims’
machines and the type of operating systems they are using. This can be conducted through
port scanning and Time to Live (TTL) analysis. Knowing this information helps the attacker
identify the vulnerabilities of these services to attack them successfully and cause severe
damage to the IoT system and its resources.

In this study, we considered the intrusion identification label for the IoTID20 dataset
indicating identification of the intrusion activities from normal ones. The number of
intrusion activities is approximately 15 times the normal ones, having the value of 585,710
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for the intrusion label compared to the value of 40,073 for the normal label. Thus, it is an
imbalanced dataset.

5. Proposed Approach

In this section, the components of the proposed approach are discussed. Figure 3
illustrates the steps proposed for detecting the intrusion attacks. As observed in the figure,
the IoT dataset is split into 2/3 and 1/3 divisions indicating the training and testing
portions, which is one of the most common split strategies for classification [61]. The
training portion is then considered for the following three main stages of the proposed
approach:

• Data reduction with clustering
• Oversampling
• Classification with SLFN

These stages are further discussed in the following sections. Finally, the generated
model is evaluated using the testing data portion.

The proposed approach is represented by Algorithm 1. The algorithm accepts the
dataset and several other values including the number of clusters (k), the oversampling
ratio, and the reduction percentage. The training and testing split is presented by Line 1.
The three stages reduction with clustering, oversampling, and classification are presented
on Lines 2–4, 5, and 6, respectively. Then, the testing portion is predicted on Line 7
by the model generated from the classification stage. Finally, the evaluation process is
performed on Line 8 generating the Accuracy (ACC), Precision (PREC), Recall (REC), and
G-mean (GM).

Algorithm 1: SLFN-SVM-SMOTE
Input: dataset, k, ratio, reduction%
Output: ACC, PREC, REC, GM

1 train, test = split(dataset)
2 clusters = k-means++(train, k)
3 updated-clusters = reduce(clusters, reduction%)
4 reduced-dataset = aggregate(updated-clusters)
5 oversampled-dataset = SVM-SMOTE(reduced-dataset, ratio)
6 model = SLFN(oversampled-dataset)
7 predicted-labels = predict(model, test)
8 ACC, PREC, REC, GM = evaluate(predicted-labels)
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Figure 3. The proposed SLFN-SVM-SMOTE technique including the three stages reduction with
clustering, oversampling, and classification.

5.1. Data Reduction with Clustering

Data of similar characteristics can be grouped using a clustering technique to handle
each group of instances in a similar way. The aim is to provide a mechanism to maintain a
useful dataset but with reduced number of instances.

Figure 4 shows the steps of applying the data reduction with clustering stage. First,
the 2/3 split of data forming the training data is clustered using the k-means++ clustering
algorithm to produce a set of clusters. Second, each cluster is reduced by 10% to form an
updated set of clusters, which are then aggregated to form a reduced but comprehensive
dataset in the last step.
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Clustering
 k-means++

Reduction 10%

Aggregation

Clustering
 k-means++

Reduction 10%

Aggregation

Figure 4. Data reduction with clustering stage using k-means++, a reduction by 10%, and the
aggregation step.

The updated dataset is then passed to the oversampling stage discussed in the follow-
ing section. This provides another benefit of the reduction process as it is later enlarged
at the oversampling stage, which results in minimizing the processing volume of the
computation while maintaining a useful and comprehensive dataset.

5.2. Oversampling

Unbalanced datasets suffer from poor predicting performance by a classification
algorithm. The classification algorithm generates either an over-fitted model or a model
which is bias toward the majority class. Oversampling techniques are used to solve this
shortcoming, as discussed in Section 3.2. The SVM-SMOTE oversampling technique is
chosen to oversample the reduced dataset into an enlarged one, as observed in Figure 5. The
enlarged dataset is then passed to the classification stage discussed in the following section.

Intrusion

Normal

Features Labels

Oversampling
SVM SMOTE

Figure 5. The SVM-SMOTE oversampling technique to increase the number of instances of the
normal class.
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5.3. Classification with SLFN

The enlarged dataset is then classified using the SLFN to generate the classification
model. The testing portion of the data is considered as an input for the model, which
produces classified instances into intrusion and normal activities. Then, it is evaluated by
the evaluation techniques to assess the quality of the classification model.

6. Experiments and Results

This section presents the environmental settings, the description of the evaluation
measures, and the evaluation of the framework. The evaluation of the framework was
done by the following stages:

• Select the best classification algorithm for the proposed framework with the best value
of k for the k-means++ clustering technique.

• Select the best oversampling technique for the proposed framework with the best
oversampling ratio.

• Compare the best selection of the classifier, oversampling technique, k value, and
oversampling ratio with the other basic classifiers, including SVM, Stochastic Gradient
Descent (SGD), Logistic Regression (LR), and SLFN.

6.1. Environmental Settings

A personal computer with Intel core i7-1065G7 CPU and 1.30GHz/16 GB RAM was
used for running the experiments. The imbalanced-learn [62] and Scikit Learn [63] Python
libraries with Python 3.8 were used to run the k-means++, SLFN, SVM, SGD, LR, SMOTE,
Adaptive Synthetic (ADASYN) sampling approach, SVM-SMOTE, Borderline1-SMOTE,
and Borderline2-SMOTE techniques.

The k values of 2, 3, and 4 for the k-means++ clustering algorithm and the oversam-
pling ratio values of 0.1, 0,2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 for the oversampling
technique were considered. The SLFN, SVM, SGD, LR and NB classifiers were used for
comparison with the proposed framework. Finally, the intrusion identification label of the
dataset was considered for the proposed framework.

6.2. Evaluation Measures

The framework was evaluated using the accuracy, precision, recall, and G-mean
measures. The Accuracy (ACC), Precision of the intrusion class (PRECI), Precision of the
normal class (PRECN), Recall of the intrusion class (RECI), Recall of the normal class
(RECN), and G-mean (GM) measures are described by Equations (3)–(8), respectively:

ACC =
TP + TN

TP + TN + FP + FN
(3)

PRECI =
TP

TP + FP
(4)

PRECN =
TN

TN + FN
(5)

RECI =
TP

TP + FN
(6)

RECN =
TN

TN + FP
(7)

GM =
√

RECI ∗ RECN (8)

where TP is the true positive indicating the number of intrusion instances which are
predicted as intrusion, TN is the true negative indicating the number of normal instances
which are predicted as normal, FP is the false positive indicating the number of normal
instances which are predicted as intrusion, and FN is the false negative indicating the
number of intrusion instances which are predicted as normal.
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6.3. Effect of the Data Reduction with Clustering

The distribution of the intrusion and normal activity instances for each cluster is
presented by Figure 6. As observed in the figure, the training dataset is clustered into
three clusters. The first cluster contains a majority of the instances as intrusion which
dominates the normal ones. The same observation is concluded for the other clusters
having a domination of the intrusion instances for the second cluster and an absence of the
normal instances for the third cluster.

In contrast, the distribution of the intrusion and normal activities for each cluster
after the reduction process is presented in Figure 7. As intended, to provide representative
dataset, a similar distribution can be observed in Figure 7 compared to Figure 6. The
only difference is the number of instances, which are reduced by 10% for each cluster, as
discussed in Section 5.1. Note that the reduction is not performed equally for each label of
the same cluster but rather performed at the cluster level, producing a reduced number of
cluster instances.

0 20 40 60 80 100
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20

40

60

80

100

C1 Intrusion
334245

C1 Normal
18085

C2 Intrusion
42106

C2 Normal
8748

C3 Intrusion
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Figure 6. Distribution of instances before reduction.
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Figure 7. Distribution of instances after reduction.
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6.4. Evaluation of the Framework with Basic Classifiers

Different classifiers were tested with the k-means having different values of k. The
values of 2, 3, and 4 were considered for k and the SVM, SGD, LR, and SLFN were
considered as a classifier. Table 2 shows the ACC, PREC, REC, and GM values for different
classifiers and different values of k. We ignore the results achieved by the NB classifier
because the high values of the PRECN and RECI do not reflect high-quality prediction as
the majority of the normal activity instances are classified as intrusion having very low
values of RECN and GM. Thus, by ignoring these values, the maximum values from the
other techniques are determined in bold. Considering this, SLFN classifier outperformed
the other classifiers for the IoTID20 dataset and thus was considered for the next stages
of the evaluation of the framework. In addition, the PRECN, RECI, and GM values for
SLFN for the k value of 3 outperformed the other values of k. With imbalanced datasets,
GM measure ensures that the lack of instances for the minority class does not affect the
quality of the results generated by the classifier. In addition, predicting the largest amount
of intrusion from the instances that are labeled as intrusion, which is reflected by the RECI
measure, is critical. Thus, the SLFN classifier with the k value of 3 was considered for the
framework for the IoTID20 dataset.

Table 2. Evaluation of the framework with basic classifiers including SVM, SGD, LR, and SLFN with
the values of 2, 3, and 4 for k.

Technique ACC PRECI PRECN RECI RECN GM

SVM-k-means++k=2 0.9709 0.9220 0.9731 0.5974 0.9965 0.77156

SVM-k-means++k=3 0.9708 0.9177 0.9731 0.5976 0.9963 0.77161

SVM-k-means++k=4 0.9700 0.9004 0.9732 0.5991 0.9955 0.7723

SGD-k-means++k=2 0.9589 0.7692 0.9674 0.5133 0.9894 0.7127

SGD-k-means++k=3 0.9657 0.8758 0.9694 0.5422 0.9947 0.7344

SGD-k-means++k=4 0.9686 0.9332 0.9700 0.5498 0.9973 0.7405

LR-k-means++k=2 0.9587 0.8457 0.9626 0.4359 0.9946 0.6584

LR-k-means++k=3 0.9574 0.8083 0.9628 0.4403 0.9928 0.6612

LR-k-means++k=4 0.9570 0.7905 0.9633 0.4491 0.9918 0.6674

SLFN-k-means++k=2 0.9703 0.8435 0.9770 0.6591 0.9916 0.8084

SLFN-k-means++k=3 0.9776 0.8216 0.9885 0.8318 0.9876 0.9064

SLFN-k-means++k=4 0.9844 0.9647 0.9855 0.7854 0.9980 0.8854

NB-k-means++k=2 0.3199 0.0862 1.0000 1.0000 0.2734 0.5228

NB-k-means++k=3 0.3198 0.0861 1.0000 0.9999 0.2732 0.5227

NB-k-means++k=4 0.3184 0.0860 1.0000 0.9999 0.2717 0.5212

6.5. Effect of the Oversampling Techniques on the Framework

Different oversampling techniques were tested with different oversampling ratio
values for the SLFN classification algorithm with k value of 3. The SMOTE, ADASYN,
SVM-SMOTE, Borderline1-SMOTE, and Borderline2-SMOTE oversampling techniques
with the oversampling ratio values of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 were
considered. Figure 8 shows the performance of the different oversampling techniques and
the different values of the oversampling ratio in terms of GM. The oversampling ratio
for each oversampling technique having the best GM value was considered for the next
stage of comparisons. Based on the figure, the oversampling ratios of 0.9, 0.6, 0.9, 0.6, and
0.5 were considered for the SMOTE, ADASYN, SVM-SMOTE, Borderline1-SMOTE, and
Borderline2-SMOTE oversampling techniques, respectively.
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Figure 8. GM evaluation of different values of oversampling ratios and different oversampling
techniques (SMOTE, ADASYN, SVM-SMOTE, Borderline1-SMOTE, and Borderline2-SMOTE).

Table 3 is a performance comparison of different oversampling techniques for the
selected values of the oversampling ratio. The average and standard deviation values of
ACC, PREC, REC, and GM for 10 runs are presented in the table in the form of [value± std].
The maximum values are determined in bold. As shown in the table, the best values for
PRECN, RECI, and GM were observed for the SVM-SMOTE oversampling technique.
Although SMOTE oversampling technique has good results for ACC, PRECI, and RECN,
as discussed above, GM is the most important measure for imbalanced datasets. Further,
Figure 9 illustrates the values of the GM measure for different oversampling techniques for
10 runs. It shows the minimum, maximum, mean, and standard deviation values for each
technique for the best oversampling ratio value. The figure shows that the SVM-SMOTE
has better values than other techniques; it has the best maximum, minimum, and mean
values as well as the best standard deviation as the box values have the minimum height
compared to the others. This indicates the stable and exceptional performance of SVM-
SMOTE compared to the other oversampling techniques. Thus, based on the observations
presented in Table 3 and Figure 9, the SVM-SMOTE oversampling technique was considered
as the best oversampling technique for the framework for the IoTID20 dataset.

Table 3. Evaluation of SLFN-k-means++k=3 with different oversampling techniques.

Oversampling Ratio ACC PRECI PRECN RECI RECN GM

SMOTE 0.9 0.9481 ± 0.0330 0.6055 ± 0.1389 0.9936 ± 0.0027 0.9098 ± 0.0408 0.9508 ± 0.0372 0.9293 ± 0.0158
ADASYN 0.6 0.8942 ± 0.0601 0.4211 ± 0.1318 0.9958 ± 0.0024 0.9433 ± 0.0359 0.8909 ± 0.0660 0.9154 ± 0.0262
SVM-SMOTE 0.9 0.9351 ± 0.0287 0.5211 ± 0.1139 0.9969 ± 0.0028 0.9578 ± 0.0410 0.9335 ± 0.0335 0.9453 ± 0.0183
Borderline1-SMOTE 0.6 0.9222 ± 0.0376 0.4915 ± 0.1355 0.9952 ± 0.0042 0.9331 ± 0.0623 0.9214 ± 0.0427 0.9260 ± 0.0264
Borderline2-SMOTE 0.5 0.9023 ± 0.0433 0.4275 ± 0.1276 0.9958 ± 0.0022 0.9433 ± 0.0323 0.8994 ± 0.0479 0.9203 ± 0.0175
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Figure 9. The box plot for the GM value for different oversampling techniques.

6.6. Comparison with Basic Classifiers

Based on the analysis of the previous experiments, the SLFN classifier with k value of
3 and SVM-SMOTE oversampling technique with 0.9 oversampling ratio were considered
for evaluating the proposed framework, by comparing the results with SVM, SGD, LR,
SLFN, and NB. Table 4 shows the values of ACC, PREC, REC and GM for SLFN-SVM-
SMOTE (r = 0.9, k = 3), SVM, SGD, LR, SLFN, and NB. Ignoring the results achieved by NB,
as discussed in Section 6.4, the maximum values from the other techniques are determined
in bold. Thus, the table shows that the PRECN, RECI, and GM values of the proposed
approach are larger than those of the other classifiers. Consequently, the GM value indicates
an advanced performance for the proposed framework.

Table 4. Comparison of SLFN-SVM-SMOTE (r = 0.9, k = 3) with basic classifiers.

Technique ACC PRECI PRECN RECI RECN GM

SLFN-SVM-SMOTE (r = 0.9, k = 3) 0.9351 0.5211 0.9969 0.9578 0.9335 0.9453
SVM 0.9713 0.9179 0.9737 0.6066 0.9963 0.7774
SGD 0.9668 0.8760 0.9707 0.5619 0.9946 0.7475
LR 0.9572 0.8094 0.9625 0.4350 0.9930 0.6573
SLFN 0.9842 0.9879 0.9841 0.7637 0.9994 0.8736
NB 0.3199 0.0862 1.0000 1.0000 0.2733 0.5228

6.7. Discussion

In summary, reduction with clustering, oversampling, and classification stages were
tested for the IoTID20 dataset with a selected values of oversampling ratio and k for k-means
clustering technique using SLFN classifier and SVM-SMOTE oversampling technique.

The reduction with clustering stage produced an undersampled but representative
dataset having the same distribution of normal and intrusion activities. The SLFN classifi-
cation technique and k-means clustering with k value of 3 generated better performance
than other classification techniques and other values of k by having the highest value of
GM. In addition, the performance of the SVM-SMOTE with a value of 0.9 for the over-
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sampling ratio gave better results than other oversampling techniques and other values of
oversampling ratio. Finally, the proposed approach outperformed the other basic classifiers
in terms of GM.

The experiments were limited to the classification of the intrusion identification label,
which could extended to include the category label and the subcategory label for the
IoTID20 dataset. It also considered the specific distribution of the activities for the IoTID20
dataset and could be tested on different datasets having different distribution of activities.
Other works in the future are expected to be observed for the IoTID20 dataset where a
comparison and empirical evaluation can hold. In addition, an issue might arise if there
is a significant difference between the sizes of the resulted clusters in the first stage (i.e.,
some clusters are very small compared to other clusters). In this case, the pattern of such
instances will be underrepresented for the training algorithm and consequently lead to
misclassification of similar instances.

7. Conclusions and Future Work

This paper proposes an intrusion detection approach for a recent IoT dataset named
IoTID20. The proposed approach and the value settings can be summarized as follows:

• k-means clustering of the training data to three clusters
• Clusters reduction by 10% and then aggregation of the three reduced clusters
• Oversampling the aggregated data into an enlarged one using the SVM-SMOTE

oversampling technique with an oversampling ratio value of 0.9
• Generating the classification model of the oversampled data by SLFN classification

technique
• Evaluating the model using the testing data in terms of ACC, PREC, REC, and GM

The effects of the data reduction with clustering, different oversampling techniques,
and the selection of the classification technique were tested by the proposed technique.
The aim of the reduction with clustering stage is to provide a mechanism to maintain
a representative dataset but with reduced number of instances while minimizing the
processing volume of the computation. On the other hand, the aim of the oversampling
stage is to solve the problem of imbalanced dataset. Finally, the classification stage generates
the classification model to classify instances into intrusion and normal activities. The results
show that the combination of clustering the dataset with k-means++ into three clusters
with a reduction by 10% and an oversampling by a ratio value of 0.9 with SVM-SMOTE
technique is the best approach for producing high-quality results, and this approach
outperforms the other approaches on the selected IoTID20 dataset.

For future work, the other two labels presented by the dataset can be considered to
detect the intrusion activity type and the sub type. Other unsupervised and supervised
learning approaches can also be considered. In addition, different IoT intrusion detection
datasets can be tested by the proposed approach.
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