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Abstract

Online surveys, despite their cost and effort advantages, are particularly
prone to selection bias due to the differences between target population and
potentially covered population (online population). This leads to the unrelia-
bility of estimates coming from online samples unless further adjustments are
applied. Some techniques have arisen in the last years regarding this issue,
among which superpopulation modeling can be useful in Big Data context
where censuses are accesible. This technique uses the sample to train a
model capturing the behaviour of a target variable which is to be estimated,
and applies it to the nonsampled individuals to obtain population-level es-
timates. The modeling step has been usually done with linear regression
or LASSO models, but machine learning (ML) algorithms has been pointed
out as promising alternatives. In this study we examine the use of these
algorithms in the online survey context, in order to evaluate and compare
their performance and adequacy to the problem. A simulation study shows
that ML algorithms can effectively volunteering bias to a greater extent than
traditional methods in several scenarios.

Keywords: Superpopulation modeling, Machine Learning, Online surveys
and Simulation.

1. Introduction

Online surveys have become one of the most used modes of survey admin-
istration worldwide. They are a powerful tool for recruiting respondents fast
and effortlessly with small costs in comparison to traditional survey admin-
istration modes. However, samples from online surveys are usually collected
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using a nonprobabilistic scheme, given that access to all members of the tar-
get population is not guaranteed in most cases and the inclusion probability
cannot be obtained because of the absence of a sampling frame. As a result,
selection bias derived from this procedure, defined by [8] as the presence of
a substantial difference between observed and unobserved population, makes
survey estimates not valid for inference [22].

Different inference procedures are proposed in the literature to correct
for selection bias induced by non-random selection mechanisms. There are
three important approaches: the pseudo-design based inference (or pseudo-
randomization [6]), statistical matching and predictive inference.

In the pseudo-design based inference, the idea is to construct weights
to correct for selection bias. The first method consists of estimating re-
sponse probabilities and using them in Horvitz-Thompson type estimators
to account for unequal selection probabilities. The most used method to
estimate the response probabilities is propensity scoring proposed by [19]
(see e.g. [13]). This method uses a probability reference sample to con-
struct a propensity model for the non-probability sample. Sample matching
is another approach also applied to reduce selection bias in non-probability
samples by combining them with a probability sample.

In this paper, we consider the situation where there is only a non-probability
sample available for measuring the target information, in addition to some
auxiliary information of the full population of interest, and we consider sev-
eral predictive inference methods. Predictive methods are based on super-
population models. In this approach, a statistical model is fitted for the
analysis variable y from the sample and used to project the sample to the
full population. This approach (that can be used with probability and non-
probability samples) let us use auxiliary information about covariates on
different methods for predicting the unknown values. The objective of this
study is to examine the use of Machine Learning algorithms in the online
survey context, to evaluate and compare their performance and adequacy to
the problem. A simulation study is performed for that matter.

2. Predictive inference for non-probability samples

Let s be the online sample, s the population not included in the sample,
and U the complete target population so s ∪ s = U . The goal is to estimate
the population parameter of a target variable, y, which has been measured
in s but it is not available in data from s.
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The prediction approach is based on superpopulation models, which as-
sume that the population under study y = (y1, ..., yN)′ are observations of
super-population random variables Y = (Y1, ..., YN)′ having a superpopula-
tion model ξ. To incorporate auxiliary information xi available for all i ∈ U
we assume a superpopulation for y built on some mean function of x:

Yi = m(xi) + ei, i = 1, ..., N. (1)

The random vector e = (e1, ..., eN)′ is assumed to have zero mean and a
positive definite covariance matrix which is diagonal.

Using a set of covariates, x, measured in s and s it is possible to estimate
the values of y in s with regression modeling such that the estimated value
of y for an individual i can be calculated through the following expression:

ŷi = Em(yi|xi) (2)

m alludes to the specific model which provides the expectation of yi, and xi

are the values of the i-th individual in the covariates x.
If we want to estimate the total of y, Y , we can use the auxiliary infor-

mation in several ways and we can define several estimators:

• the model-based estimator:

Ŷ m =
1

N

(∑
i∈s

yi +
∑
i∈s

ŷi

)
(3)

• the model-assisted estimator:

Ŷ ma =
1

N

(∑
i∈U

ŷi +
∑
i∈s

(yi − ŷi)wi

)
(4)

being wi a weight of the unit i (set by the researcher to adjust the
lack of response, lack of coverage, voluntariness, ... usually employing
post-stratification).

• the model-calibrated estimator:

Ŷ cal =
1

N

∑
k∈s

ykw
CAL
k (5)

where wCAL
k are such that they minimize

∑
k∈sG

(
wCAL

k , wk

)
, where

G(·, ·) is a particular distance function, subject to
∑

k∈sw
CAL
k ŷi =∑

k∈U ŷi.
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3. Machine learning techniques in superpopulation modelling

Usually the linear regression model is considered for estimation, Em(yi|xi) =
xT
i β, and the above estimators can be rewritten as a type of regression esti-

mators. Alternatively to the linear regression model, Machine Learning (ML)
methods have been proposed for the estimation of the nonsampled popula-
tion values. In situations where additivity and/or linearity do not hold, ML
algorithms are more suitable for regression and classification. Some of these
algorithms, such as decision trees and related (Random Forests, Gradient
Boosting Machines) can also take interactions into account without the need
of specifying the terms. The use of some ML algorithms for probabilistic
samples has been studied in the last few years for deriving model-assisted
estimators ([14]; [1]; [21]; [23]; [4]). In this section, we consider some of the
most important ML algorithms that can be used to define model-assisted,
model-based and model-calibrated estimators for a non-probability sample.

3.1. Advanced linear regression models

β coefficients of a linear regression estimated by ordinary least squares
are estimated as β = (X′X)−1X′Y. However, as [10] stated, this estimation
becomes sensitive when X′X is far from being a unit matrix (i. e. multi-
collinearity is present in covariates). In such a case, ridge regression can be
an alternative. It estimates regression coefficients adding an identity term to
control instability, β = (X′X+ kI)−1X′Y, where k ≥ 0 is a coefficient which
depends on (unknown) real regression parameters and therefore has to be
chosen arbitrarily or via hyperparameter tuning. From a Bayesian point of
view, the resulting β can be considered the posterior mean of a prior Normal
distribution with zero mean and a variance of Iσ2/k as described in [11].
Gibbs sampling can provide Bayesian estimates for β in such a case.

An alternative to ridge regression is the Least Absolute Shrinkage and
Selection Operator (LASSO) regression, described in [20], where coefficients
are estimated through minimizing the least-squares with a penalty parameter,
α, subject to a restriction on a tuning parameter:

argmin
∑N

i=1(yi − α−
∑

j βjxij)
2

subject to
∑

j |βj| ≤ t
(6)

The restriction t is fixed to allow shrinkage of the solutions towards zero,
allowing some coefficients to be equal to zero. As a consequence, this ap-
proach performs variable selection, in contrast to ridge regression where co-
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efficients are always different from zero. LASSO estimates can be seen as
posterior estimates of the distribution mode of prior Laplace independent
and identical distributions. Therefore, Bayesian procedures can be used for
LASSO estimation as described in [18].

3.2. Bagged Trees

Estimating the expectance Em(yi|xi) under decision tree modeling results
in the following expression:

Em(yi|xi) =


y(sJ1) {i ∈ s/xi ∈ J1}
... ...

y(sJk) {i ∈ s/xi ∈ Jk}
(7)

where y(sJi) is the mean of y for the members of the sampled population, s,
which meet the criteria of the ith terminal node. If considering the Bagged
Trees method, predictions are made by averaging results from a range of m
unpruned trees known as weak classifiers, each one trained in a bootstrapped
subsample of the complete dataset:

Em(yi|xi) =

∑m
j=1 φj(xi)

m
, φj(xi) =


y(sJ

j
1 ) {i ∈ s/xi ∈ J j

1}
... ...

y(sJ
j
k) {i ∈ s/xi ∈ J j

k}
(8)

where y(sJ
j
i ) is the mean of y for the members of the sampled population, s,

which meet the criteria of the ith terminal node of the jth tree.

3.3. Gradient Boosting Machine

Gradient Boosting Machine (GBM) algorithm can be used for prediction
in superpopulation modeling. The new formula of the estimates of y would
be:

Em(yi|xi) = vTJ(xi) (9)

where J(xi) stands for a matrix of terminal nodes of m decision trees used
for boosting, which is obtained through an iterative process that aims to
minimize a given loss function, and v is a vector representing the weight of
each tree.
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3.4. k-Nearest Neighbors

k-Nearest Neighbors (k-NN) can also be used for prediction, although they
constitute a much simpler algorithm. The expectance of yi is calculated by
averaging the value of y for its k nearest neighbors, this is, the k individuals
closer to the ith individual according to the covariates xi:

Em(yi|xi) =

∑
j∈s/d(xi,xj)≤d(xi,x(k))

yj

k
(10)

where x(1),...,x(n−1) denote, respectively, the closest and the furthest individ-
ual to xi according to the distance d.

3.5. Neural networks with Bayesian Regularization

Approaches based on neural networks have been considered in the liter-
ature for superpopulation modeling [4]. In that class of models, expectance
of yi is calculated through an iterative process as defined in [17]:

Em(yi|xi) = g

(
L∑

k=1

vkfk(·) + b

)
(11)

where g and fk stand for activation functions which can have the same image,
vk are the weights of the kth neuron of the hidden layer and b is the activation
threshold. The inputs are noted as fk(·) given that several hidden layers can
be fixed and, as a result, the inputs would go through an iterative process
before reaching the last layer where the outputs are calculated. Alternatively,
and as a regularization method to avoid overfitting, prior distributions can
be imposed in vk weights so they can be estimated by calculating those who
maximize the posterior density or via maximum likelihood. Further details
are described in [17].

4. The simulation study

4.1. Data

We have selected 3 different populations to experiment with. Also, for
each one, we have tried different sampling strategies.

The first population, P1, consists of the 2012 edition of the Spanish Life
Conditions Survey microdata [16]. The dataset contains information on eco-
nomic and life conditions variables for 28,610 adult individuals. We pretend
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to predict the mean self-reported health on a scale from 1 to 5. For training,
we used the 56 related variables. In this population, we tested two sampling
strategies. The first one, P1S1, was a simple random sampling (SRS) among
the population with internet access. For the second one, P1S2, a propensity
to participate was considered according to the formula Pr(yr) = yr2−19002

19962−19002
,

where yr is the year the individual was born.
The second population, P2, is BigLucy [9]. It corresponds to some finan-

cial variables of 85,396 industrial companies of a city in a particular fiscal
year. We used the annual income as the target variable. For training, we took
into account the level of the company (small, medium or big), the number of
employees, whether it is ISO certified and the company’s income tax. In this
population, we tried two different sampling methods. The first one, P2S1,
was SRS excluding the companies without SPAM options and the small com-
panies. In this scenario, we tested if the algorithms could accurately predict
data without any training sample (since any small company can be sampled).
The second one, P2S2, only filtered by SPAM availability but it included a
propensity to participate with the formula Pr(taxes) = min(taxes2/30, 1)
where taxes is the company’s income tax.

The third population, P3, is the Bank Marketing Data Set [15], related
to direct marketing campaigns (phone calls) of a Portuguese banking insti-
tution. We aimed to estimate the mean contact duration. We trained the
algorithms with 18 variables. For sampling, we filtered by the number of
contacts performed for each client and tested two possibilities. In the first
one, P3S1, we performed SRS among those contacted more than 3 times. In
the second one, P3S2, we tested another SRS among those contacted more
than twice.

4.2. Procedure

For each population and sampling strategy described, we ran an exper-
iment with 3 different sample sizes: 1000, 2000 and 5000. For each sample
size, 500 simulations were executed. In each simulation, model-based, model-
assisted and model-calibrated estimates were obtained using the following
predictive algorithms: linear regression (glm), Ridge regression with and
without Bayesian priors (bridge and ridge respectively), LASSO regression
via penalized maximum likelihood (glmnet), LARS-EN algorithm (lasso) and
using Bayesian priors on the estimates (blasso), k-Nearest Neighbors (knn),
Bagged Trees (treebag), Gradient Boosting Machine (gbm) and Bayesian-
regularized Neural Networks (brnn). Default parameters were used for every
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algorithm except for k-Nearest Neighbors since its results were especially
sensitive to parameter optimization. The proper k is chosen via bootstrap.

The relative mean bias, relative standard deviation and the relative Root
Mean Square Error in each scenario are measured as follows:

RBias (%) =

(∑500
i=1 p̂yi
500

− py

)
· 100

py
; RSD (%) =

√∑500
i=1(p̂yi − ˆ̄py)

2

499
· 100

py

RMSE (%) =
√
RBias2 +RSD2

with py the value of the target variable, ˆ̄py the mean of the 500 estimations
of py and p̂yi the estimation of py in the i -th simulation.

To compare each estimator, we consider three metrics: its mean efficiency,
its median efficiency and the number of times it has been among the best.
An estimator has performed as the best when its RMSE differs from the
minimum RMSE by less than 1%. The efficiency is defined as follows:

Efficiency (%) =
Baseline−RMSE

Baseline
· 100

where the baseline is the RMSE of using the sample average as the estimation.
Additionally, the results were analyzed using linear mixed-effects regres-

sion, to obtain estimates of the effect sizes of each algorithm on the final
Root Mean Square Error (RMSE). All the analyses were performed in R.

4.3. Results

RMSEs of each estimator for each population, sampling method and sam-
ple size can be observed in Table 1. Some algorithms achieve good results
consistently, like Ridge regression. Others can greatly outperform the rest
for some cases while getting poor results for the rest, like k-Nearest Neigh-
bors. Bayesian-regularized Neural Networks are a special case since they
produce promising estimations but can suffer due to a lack of data. Finally,
there is a group of algorithms that never seem to be the right choice, like
Bagged Trees. In any case, there is not much difference between model-based,
model-assisted and model-calibrated estimates.

In order to confirm those impressions, the ranking can be seen in Table
2. Model-assisted Ridge regression has the best mean efficiency, median
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efficiency and the number of times it has been among the best. This is
not a surprise since it is a technique for analyzing data that suffer from
multicollinearity, which is expected to be the case for most biased samples.

Results of the linear mixed-effects regression (see Appendix) confirm these
conclusions: there is no evidence in the simulations’ results that the effect
is different between Ridge regression, GLM, LASSO maximum-likelihood re-
gression (both bayesian and non-bayesian), k-Nearest Neighbors or Bayesian-
regularized Neural Networks. Nonetheless, there is evidence of a smaller
RMSE reduction effect for Gradient Boosting Machines and Bagged Trees in
comparison to the algorithms aforementioned, except for k-Nearest Neigh-
bors.

5. Conclusions

This paper describes some options for estimation in non-probability sam-
ples using ML techniques in three approaches: model-based, model-assisted
and model-calibrated. The paper clarifies which assumptions are required
and illustrates how these proposed estimators perform empirically. The main
conclusion in our simulation study is that the selection of the ML algorithm
used in the process is more important than the approach used in the esti-
mation. There is a group of ML techniques that are similar in their good
performance, highlighting the Ridge regression method.

[6] also evaluates the behavior of various ML methods for model-based
estimators. We have conducted a study with a broader class of estimators
and more ML methods. The results obtained in our study agree on those
obtained in the study by [6] in the sense that Machine Learning methods are
more powerful at removing selection bias in non-probability samples than
traditional estimators. However, their performance is strongly dependent
on the dataset characteristics, meaning that there could not be a unique
algorithm for maximizing the estimates’ accuracy. Further research should
consider algorithm-specific data preprocessing steps in the analysis.
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Table 2: Mean and median efficiency (%) of each estimator and times it has been among
the best. ma = Model-assisted, mb = Model-based, mc = Model-calibrated

Mean Median Best Mean Median Best
ma ridge 62,2 64,3 13 mb blasso 57,4 60,8 10
mb ridge 61,9 64,1 12 mc bridge 56,3 60,9 9
ma glm 61,7 64,3 12 ma bridge 56,2 61,2 9
mb glm 61,7 64,1 12 mc brnn 55,8 61,4 9
mc glm 61,7 64,3 12 mb knn 55,7 51,6 6
mc ridge 61,6 64,3 12 mb bridge 55,7 61,3 7
ma glmnet 61,6 62,8 11 ma gbm 32,6 34,7 0
mc glmnet 61,5 63 12 mc gbm 32,4 35,1 0
mb glmnet 61,3 63 9 mb gbm 32,4 35 0
mc knn 59,1 53,1 7 mb treebag 32,3 49,6 0
ma knn 58,5 52,7 7 ma treebag 31,5 49,3 0
mc blasso 58,5 61,3 10 mc treebag 29,1 49,5 1
ma blasso 58,2 61,2 11 mc lasso 25,1 14,9 3
mb brnn 57,9 61,8 8 ma lasso 24,8 14,5 3
ma brnn 57,8 61,4 9 mb lasso 24,7 14,3 3
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Appendix

Coefficient Estimate Std. Error D. f. t value IC 95% p-value
(Intercept) 24.073 5.118 5.641 4.704 [11.354; 36.792] 0.0039

blasso -14.805 1.454 542.000 -10.183 [-17.661; -11.949] 2.10e-16
bridge -14.637 1.454 542.000 -10.068 [-17.493; -11.781] 5.69e-16

brnn -14.767 1.454 542.000 -10.157 [-17.623; -11.911] 2.63e-16
gbm -8.880 1.454 542.000 -6.108 [-11.736; -6.024] 1.93e-03
glm -15.444 1.454 542.000 -10.623 [-18.299; -12.588] 4.51e-18

glmnet -15.268 1.454 542.000 -10.502 [-18.124; -12.412] 1.31e-17
knn -14.132 1.454 542.000 -9.720 [-16.988; -11.276] 1.08e-14

lasso -3.509 1.454 542.000 -2.413 [-6.364; -0.653] 0.0161
ridge -15.457 1.454 542.000 -10.632 [-18.313; -12.602] 4.15e-18

treebag -8.964 1.454 542.000 -6.166 [-11.820; -6.108] 1.37e-03

Group Variance Std. Dev.
Dataset 147.66 12.151

Residual 28.53 5.342
Dataset Sampling Intercept

P1 P1S1 16.082
P1 P1S2 18.852
P2 P2S1 47.410
P2 P2S2 27.340
P3 P3S1 17.981
P3 P3S2 16.776

Table 3: Linear mixed-effects model considering algorithms as a fixed effect and datasets
as random effects.
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