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Abstract: Randomized response (RR) techniques are widely used in research involving sensitive
variables, such as drugs, violence or crime, especially when a population mean or prevalence must
be estimated. However, they are not generally applied to examine relationships between a sensitive
variable and other characteristics. This type of technique was initially applied to qualitative variables,
and studies later showed that a logistic regression may be performed with RR data. Since many
of the variables considered in this context are quantitative, RR techniques were extended to these
cases to estimate the values required. Regression analysis is a valuable statistical tool for exploring
relationships among variables and for establishing associations between responses and covariates.
In this article, we propose a design-based regression analysis for complex sample designs based on
the unified RR approach. We present estimators of the regression coefficients, study their theoretical
properties and consider different ways to estimate their variance. The properties of these estimation
techniques were simulated using various quantitative randomized models. The method proposed
was also used to analyse the findings from a real-world survey.

Keywords: regression models; randomized response techniques; complex sampling designs

1. Introduction

Standard randomized response (RR) methods are mainly used in surveys that elicit
a binary response to a sensitive question in order to estimate the proportion of the study
population presenting a given (sensitive) characteristic. Warner’s study generated a rapidly
expanding body of research literature on alternative techniques for eliciting suitable RR
schemes in order to estimate such a population proportion ([1–6]).

Some studies addressed situations in which the response to a sensitive question results
in a quantitative variable and when the researcher wishes to estimate a linear parameter
as the mean or the total of the sensitive variable under study. In the method proposed
by [7], the interviewee was asked to choose, by means of a randomization device, from two
questions; one concerned the sensitive variable and the other was unrelated (both were
of the same order of magnitude). Other important papers in this regard include [8–21],
together with the contributions compiled by [22–26]. When dealing with quantitative
sensitive variables, the idea is that respondents should not disclose the true value of the
sensitive variable but rather provide a scrambled value, which is obtained by algebraically
perturbing the true response. This is done by applying one or more scrambling random
variables, independent from each other and from the sensitive variable, the distributions of
which are fully known to the researcher.

RR methods were also been applied to examine relationships between a qualitative
sensitive variable and other variables. Thus, reference [27] showed that logistic regression
may be performed with RR data, and [28] developed multivariate regression logistic
techniques for four RR designs. In addition, reference [29] considered the univariate
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logistic regression model for binary RR response variables and presented this model as a
generalized linear model. The same research group also developed a multivariate logistic
regression model for RR response variables. Under simple random sampling, reference [30]
considered a generalized linear model and generalized linear mixed models for RR designs
where the probability of obtaining a positive response can be written as a linear equation of
the answer to the sensitive question. Finally, reference [31] presented a logistic regression
model on RR data when the covariates for some subjects were randomly missing.

However, few prior studies were made of regression techniques for quantitative
randomized response variables. reference [32] performed a linear regression analysis
using the model presented in [10] for the simple random sampling case, from which the
variance of the estimate was calculated. In a related paper, reference [33] discussed the
maximum likelihood estimation of an independently and identically distributed normal
linear regression model when some of the covariates are subject to RR.

In this paper, we address the question of regression techniques for quantitative RR
data under a general sampling design. Specifically, we consider a general class of RR
methods ([34]) for quantitative variables and show how the RR can be used as the outcome
in regression models.

The rest of this paper is organized as follows. First, we review the unified RRT
approach described by [21] to establish the framework, and clarify the notation used
(Section 2). We then show how RR can be used as the outcome in regression models,
present estimators for the regression coefficients and investigate their theoretical properties
in Section 3. Based on the asymptotic variance, we propose an estimator for the variance
and discuss two interesting resampling methods, jackknife and bootstrap. Simulation
experiments were carried out to confirm the finite size sample properties of the proposed
estimators. These simulations are discussed in Section 4, after which the method described
is applied to a real-world situation, that of a survey focused on sensitive characteristics.
Finally, in Section 6, we summarize the main findings obtained and the conclusions drawn.

2. Randomized Response Survey Designs for Quantitative Variables

Let U = {1, . . . , i, . . . , N} be a finite population consisting of N different elements. Let
yi be the value of the sensitive aspect under study for the i-th population element.

In this case, y is a sensitive variable that cannot be observed directly. We consider the
unified approach given by [21] because some important RR techniques [8,10,11,13] can be
viewed as particular cases of this approach.

The respondent performs a random experiment with three possible outcomes. If
the first result is obtained, the respondent reports the real value of variable; with the
second result, the respondent reports the scrambled response yiS1i + S2i, and otherwise
the respondent reports a value of a variable S3i where S1, S2 and S3 are scramble variables
whose distributions are known. In this randomization device, the distribution of the
response given by person i is

zi =


yi with probability p1
yiS1i + S2i with probability p2
S3i otherwise

mj and σ2
j denote the mean and the variance, respectively, of the variable Sj (j = 1, 2, 3).

The sample s of individuals is chosen according to a sampling design p(·). πi = ∑s3i p(s)
and πij = ∑s3i,j p(s) where i, j ∈ U are the first- and second-order inclusion probabilities.
We assume that the sampling design and the randomization stage are independent of
each other and that the randomization stage is performed on each selected individual
independently ([35]).
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The main study goal is usually to estimate Ȳ = 1
N ∑N

i=1 yi. A design-unbiased estimator
of the population mean Y is given by the Horvitz-Thompson (HT) estimator:

yrrt =
1
N ∑

i∈s
wiri (1)

where wi =
1
πi

is the sampling weight and

ri =
zi − p2m2 − p3m3

p1 + p2m1
.

The variance of this estimator and an estimator of this variance are given in [21]. In
cases where the population size N is unknown, is usual to consider the Hájek estimator
(see [36,37]). The Hájek estimator is generally preferred to the Horvitz-Thompson estimator
for the mean, although it is not considered in this paper.

3. Regression for RR Models

Consider a regression problem, in which the data that are collected on the i-th subject
are the outcome variable yi and a vector xi = (x1, x2, . . . , xK)

′ of K covariates. Under
this scenario, we can consider superpopulation models, in which it is assumed that the
population under study y = (y1, ..., yN)

′ constitutes a realization of superpopulation
random variables Y = (Y1, ..., YN)

′ under a superpopulation model M. The value of
the variable of interest, associated with the i-th unit of the population, has two terms: a
deterministic element µi = g(x′iβ) and a random element:

Yi = µi + ei, i = 1, ..., N

where g(·) is a specific function and the random vector e = (e1, ..., eN) is assumed to have
a zero mean and independent components.

Now, our aim is to estimate the regression coefficients β. To do so, let µi = EM(Yi|xi, β)
denote the expectation under the model of Yi given the covariates and β.

Because the values of Yi cannot be observed directly we need to relate the randomized
response to the linear predictor of the sensitive question. This relation is given by:

E(Zi|xi, β) = EMER(Zi|xi, β) = EM(Yi p1 + (Yim1 + m2)p2 + m3 p3|xi, β)

= g(x′iβ)(p1 + m1 p2) + m2 p2 + m3 p3

where ER denotes the expectation under the RR mechanism.
A linear transformation of the observed values can then be performed:

ri =
zi −m2 p2 −m3 p3

p1 + m1 p2

which can be considered a realization of the variables

Ri =
Zi −m2 p2 −m3 p3

p1 + m1 p2
.

Thus, we consider the new regression model Ri = g(x′iβ) + εi. The components of
random vector ε = (ε1, ..., εN) are supposed to be independent with a zero mean and a
positive definite covariance matrix which is diagonal, E(ε2

i |xi) = σ2vi = σ2
Ri. The vi are

known constants depending on xi. This model verifies that E(Ri) = g(x′iβ) = EM(Yi).
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3.1. Estimation of the Regression Coefficients

Consider the population function:

U(β) =
1
N ∑

U
di

ri − g(x′iβ)
σ2

Ri
=

1
N ∑

U
u(ri, xi, β)

where di =
∂g(x′i β)

∂β .
The population regression coefficient βN is obtained as the solution of the estimating

equations U(β) = 0. βN is an estimate of the model parameter β if the census data set is
known and βN defines a parameter for the survey population if it is unknown.

Given the values observed in the sample we consider the weighted estimation function

Û(β) =
1
N ∑

s
widi

ri − g(x′iβ)
σ2

Ri

Let β̂W be a solution to Û(β) = 0. We study the properties of β̂W as an estimator
of βN .

The usual asymptotic framework in survey sampling is adopted: the finite population
U and the sampling design p(·) are embedded within a sequence of populations and
designs indexed by ν, {Uν, pν}, with ν→ ∞. Stochastic order Op(·) is with respect to the
above sequence of designs. To confirm our results, the following technical assumptions
are made:

• A.1. The survey design satisfies Û(β)−U(β) = Op(n−1/2) for any β ∈ Θ.
• A.2. The survey design ensures that Û(β) is asymptotically normally distributed with

mean U(β) and entries of the variance-covariance matrix at the order n−1 for any
β ∈ Θ.

• A.3. The survey design satisfies ∂Û
∂β = Op(1) and ∂2Û

∂β∂β′
= Op(1) for any β ∈ Θ.

Theorem 1. Under assumptions A.1 and A.3 , the solution to Û(β) = 0 provides a consistent
estimator for the parameter βN . If condition A.2 is also met, the weighted quasi-likelihood estimator
β̂W is asymptotically normally distributed with mean βN and variance-covariance matrix

V(β̂W) = J(βN)
−1V

(
1
N ∑

s
widi

ri − g(x′iβN)

σ2
Ri

)
J′(βN)

−1 (2)

where V is the design variance-covariance matrix and J(β) = 1
N ∑U

∂u(ri ,xi ,β)
∂β .

Proof. The estimating function u(ri, xi, β) = di
ri−g(x′i β)

σ2
Ri

is twice differentiable with respect

to β. [38] showed that, under these conditions, a general parameter θN given by the solution
of the population equation U(θ) = 0 is consistently estimated by θ̂ the solution to Û(θ) = 0.

In our case θN = βN and U(θ) = 1
N ∑U di

ri−g(x′i β)
σ2

Ri
.

Consider the following Taylor series expansion

β̂W = βN − J(βN)
−1Û(βN) + Op(n−1).

Thus, β̂W is asymptotically normally distributed because Û(βN) is asymptotically
normally distributed under assumption A.2. The asymptotic variance-covariance matrix of
β̂W is easily derived:

J(βN)
−1V(Û(βN))J

′(βN)
−1

and thus expression (2) is obtained.
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Remark 1. Please note that in the RR setting there are two sources of randomness (if we do not
account for the model variability), due to the sampling design, and to the randomization device that
scrambles the variable of interest. Thus, the variances in V(Û(βN)) are composed of two terms.

Let Ed and Vd denote the expectation and variance operators for any sampling design d. Taking
into account the two sources of variability induced by the sampling design and the randomization
device, we have the variance decomposition formula:

V

(
1
N ∑

s
wi

∂g(x′iβ)
∂βk

ri − g(x′iβ)
σ2

Ri

)
=

1
N2 EdVR

(
∑

s
wi

∂g(x′iβ)
∂βk

ri − g(x′iβ)
σ2

Ri

)
+

1
N2 VdER

(
∑

s
wi

∂g(x′iβ)
∂βk

ri − g(x′iβ)
σ2

Ri

)
=

1
N2

[
Ed

(
∑
i∈s

w2
i

σ4
Ri

∂g(x′iβ)
∂βk

2

VR(ri)

)
+ Vd

(
∑

s
wi

∂g(x′iβ)
∂βk

yi − g(x′iβ)
σ2

Ri

)]
=

1
N2

[
∑
i∈U

wi

σ4
Ri
(

∂g(x′iβ)
∂βk

)2VR(ri)+

∑
i,j∈U

(wiwjπij − 1)
∂g(x′iβ)

∂βk

∂g(x′jβ)

∂βk

yi − g(x′iβ)
σ2

Ri

yj − g(x′jβ)

σ2
Rj

]
where ER and VR are the expectation–variance operators over the RR device. A detailed expression
of VR(ri) can be seen in ([21], formulae 3).

The expressions of the covariances are simpler since the randomization stage is performed on
each selected individual independently (covR(ri, rj) = 0 ).

Remark 2. Software packages such as survey [39] in R with the function svyglm can be used to fit
linear and generalized linear models incorporating the design weights and thus to calculate β̂W from
the randomized values ri, but the reported variances and covariances are incorrect. Accordingly,
the standard significance test based on these values is invalid and can lead to grossly misleading
conclusions being drawn.

From (2) we can construct a design-based estimator for the variance-covariance matrix of β̂W
through the plug-in method:

v(β̂W) = Ĵ−1V̂Ĵ′−1 (3)

where

Ĵ =
1
N ∑

s
wi

[
∂u
∂β

]
β=β̂W

and

V̂ =
1

N2 ∑
i,j∈s

ũiũ′j
wiwjπij − 1

πij

with ũi = di
ri−g(x′i β̂W )

σ̂2
Ri

and where σ̂2
Ri is an estimator of σ2

Ri.

This variance estimator is not unbiased because it does not include the terms of variability
induced by the randomization device; moreover, it is difficult to obtain because on many occasions it
does not have an estimator of σ2

Ri. Furthermore, the estimator requires knowledge of second-order
inclusion probabilities, which are often impossible to compute or are not available for complex
sampling designs.

From a practical viewpoint therefore, it is better to use the jackknife ([40]) and bootstrap
techniques ([41]), which are readily applicable under diverse conditions.
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The application of the jackknife method to the regression coefficient under simple random
sampling is given in Section 4.4 and its use in stratified sampling is given in Section 4.5 of [42].
We apply these methods to ri rather than yi.

The jackknife estimation of variance of an estimator of the population mean based on a RR
survey data is considered in [43,44]. The authors show that the jackknife estimator underestimates
the variance of the Horvitz-Thompson estimator of the population mean and propose modifications
of the conventional jackknife estimator. These modifications include an additional term that adds an
estimate of the variance due to the randomization device that scrambles the variable of interest.

The bootstrap method developed by [41] has been adjusted for survey sampling and its sampling
design is incorporated in several studies (see e.g., [45–47]). Direct applications of bootstrap methods
for estimating the variance-covariance matrix (2) involve solving the equation Û(β) = 0 repeatedly
for each bootstrap sample. Multiplier bootstrap with estimating functions was proposed by [48]. We
use this method with the ri values to estimate the variance of the proposed estimator. See [49] for a
detailed description of this bootstrap method, Section 10.3.1.

Obtaining jackknife and bootstrap estimators for the variance of β̂W that takes into account
the randomness due to the RR process is a lot more complex than in the case of estimating means.
Measuring the influence of the randomization mechanism on the variance estimation using jackknife
or bootstrap is an open problem that requires further investigation.

3.2. The Homoscedastic Linear Model

Let us now consider the case of the homoscedastic linear model: µi = x′iβ and
var(Ri|xi) = σ2. In this case the weighted quasi-likelihood estimate β̂W reduces to the
weighted least squared estimator that is the solution to the equation:

Û(β) = ∑
s

wixi
ri − x′iβ

σ2 = 0

The solution is given by the design-weighted estimator:

β̂W =
∑s wixiri

∑s wixix′i
(4)

This estimator is model-unbiased and design-consistent.
For this linear model, matrix J is simplified, and takes the simple expression

J =
1
N ∑

U

xix′i
σ2 ,

Thus, an estimator of the asymptotic variance of β̂W is given by:

ˆvar(β̂W) =

(
1
N

∑s wixix′i
σ̂2

)−1

ˆvar(Û(β̂W))

(
1
N

∑s wixix′i
σ̂2

)−1

(5)

with σ̂2 = ∑s
wi(ri−x′i β̂)

2

∑s wi
and where ˆvar(Û(β̂W)) is the estimated HT variance.

3.3. The Ratio Model

We now consider the case of a single auxiliary variable, x, and the following ratio
model ([37])

E(Ri) = βxi and V(Ri) = σ2xi

The weighted quasi-likelihood estimate βW can be reduced to the solution of the
simple equation:

Û(β) = ∑
s

wi
ri − xiβ

σ2 = 0.
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This solution is given by the design-weighted ratio estimator:

β̂R =
∑s wiri

∑s wixi
=

yrrt
xHT

(6)

where xHT is the HT estimator of the population mean X. The estimator of the variance of
a ratio estimator is straightforwardly obtained by Taylor linearization (see e.g., [42]):

V̂(β̂R) =
1

x2
HT

(V̂(yrrt) + β̂2
RV̂(xHT)− 2β̂R ˆcov(yrrt, xHT))

where

V̂(yrrt) =
1

N2 ∑
i∈s

viw2
i + ∑

i,j∈s
rirj

wiwjπij − 1
πij

and where vi =
1

(p1+p2µ1)2 (r2
i A + riB + C) (see ([21]) and

V̂(xHT) =
1

N2 ∑
i,j∈s

xixj
wiwjπij − 1

πij
.

Since

cov(yrrt, xHT) = EdcovR(yrrt, xHT) + covd(Er(yrrt), xHT) = 0 + covd((yHT), xHT)

an estimator for this covariance can be obtained as follows:

ˆcov(yrrt, xHT) =
1

N2 ∑
i,j∈s

xirj
wiwjπij − 1

πij
.

4. Simulation Study

This section describes an extensive simulation study, which was implemented in R. In
the first study, the variables were simulated using the R-package simstudy ([50]) and the
samples were selected with sampling package discussed in ([51]).

The population size was N = 2350. The main variable y and two auxiliary variables x1
and x2 were generated using the genCorData function. The means, the standard deviations
and the correlation matrix were:

µ = (3, 8, 15), σ = (1, 2.5, 3) and ρ =

 1.0 0.5 0.7
0.5 1.0 0.2
0.7 0.2 1.0


We use as sampling design stratified simple random sampling from a stratified pop-

ulation with six strata of sizes Nh = 1000, 500, 150, 250, 150 and 300. Three different
combinations of sample sizes were drawn for the population, corresponding to the follow-
ing number of units per stratum:
n1 = (70, 35, 27, 38, 26, 54) = 250.
n2 = (230, 100, 32, 55, 38, 45) = 500.
n3 = (310, 215, 27, 65, 40, 93) = 750.

Point estimators of the coefficient of regression were computed using the Eichhorn
and Hayre (EH) and the Bar-Lev, Bobovitch and Boukai (BBB) models. For both models
we let S as an innocuous quantitative variable unrelated to the sensitive variable and
assume that its distribution is known. In Eichhorn and Hayre model the i-th respondent
answer the truth multiplied by a generated number si from S. In BBB model, the procedure
is as follows, the i-th respondent is asked to answer the truth about the sensible variable
with probability p and answer the truth multiplied by a generated number si from S with
probability 1− p. In this study a F20,20 distribution was used for the scramble variable S,
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and in the BBB model p = 0.5 was assumed. The use of the Fn,n distribution as a scrambling
distribution is justified by [10], who highlighted the protection it gives the respondent.
For this reason, it is commonly used as a scramble variable in RRT simulation studies, see
e.g., [17,21].

For each estimator β̂W of the population coefficient of regression βN , we computed
the relative bias RB = EMC(β̂W − βN)/βN × 100% (in percent) and the relative mean
squared error RMSE = EMC[(β̂W − βN)

2]/β2
N × 100% (in percent), where EMC denotes

the average based on 1000 simulation runs.
The results for every possible combination are shown in Table 1.

Table 1. Absolute relative bias and relative mean squared error in percent for β̂W1 and β̂W2 in SRSS
for the BBB and EH models.

BBB Method EH Method

β̂W1 β̂W2 β̂W1 β̂W2

n |RB| RMSE |RB| RMSE |RB| RMSE |RB| RMSE

250 4.374 9.152 1.51 1.44 7.83 14.73 2.89 2.25
500 2.99 4.13 0.56 0.07 6.06 7.07 1.89 1.08
750 1.46 2.2 0.07 0.86 1.56 3.27 1.22 0.89

The RMSE values in this table confirm that the estimators β̂W1 and β̂W2 obtained using
the EH method are less efficient than with BBB method. Moreover, on comparing the
estimator β̂W for βW1 and for βW2 the estimates for the first parameter are worse.

The second simulation study examines the behaviour of variance estimators. In this
study, we obtained the plug-in method based on the asymptotic variance formulae AV
(described in Section 3.1), the jackknife JK and the bootstrap BS variance estimators. Table 2
shows the average length (L) of the 95% confidence intervals based on a normal distribution,
the simulated coverage (Cov) probability for each method, the absolute relative bias (|RB|)
and the relative mean squared error (RMSE) in percent. In this case, and for each variance
estimator, AV, JK, BS, RB and RMSE are calculated based on a simulated variance obtained
as the average of 1000 independent runs.

The most important observation is that, in general, all the variance estimators and
the associated confidence intervals present good levels of performance. The lengths of the
confidence intervals are small and the coverage probabilities of the 95% confidence interval
are close to the nominal coverage.

The jackknife variance estimator has the smallest length, which means there is under-
coverage for the confidence interval for some sample sizes. The bootstrap variance estima-
tor provides a short length and the resulting coverage is very close to the nominal value.

We start by noting that the percent relative bias of all variance estimators were small,
(less than 0.667% in absolute value for estimator AV, less than 0.233% in absolute value
for estimator JK and less than 0.141% in absolute value for estimator BS). The model used
to randomize the response has a low impact on the relative bias. For all models and
sample sizes, we observed that JK and BS estimators are similar in terms of relative mean
squared error.

This study was then repeated with a sample size n = 500 and considering also a F5,5
distribution of the distribution of scramble variable S. The dispersion of the β̂W1 and β̂W2
values obtained for each randomization method and degrees of freedom are represented
by boxplot graphics (Figure 1).
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Table 2. Average length and coverage, relative bias and relative mean squared error for AV, JK and BS variances of β̂W1 and
β̂W2 in SRSS for the BBB and EH models.

Asymptotic Variance Jackknife Bootstrap

β̂W1 β̂W2 β̂W1 β̂W2 β̂W1 β̂W2

n L Cov L Cov L Cov L Cov L Cov L Cov

BBB method
250 0.161 0.967 0.085 0.952 0.122 0.936 0.066 0.931 0.129 0.954 0.070 0.940
500 0.116 0.969 0.060 0.965 0.085 0.926 0.045 0.924 0.095 0.950 0.051 0.953
750 0.082 0.982 0.043 0.971 0.058 0.911 0.031 0.905 0.070 0.960 0.038 0.966

EH model
250 0.189 0.952 0.101 0.956 0.153 0.922 0.083 0.930 0.163 0.933 0.089 0.939
500 0.133 0.957 0.069 0.954 0.107 0.931 0.057 0.930 0.120 0.958 0.064 0.960
750 0.092 0.976 0.049 0.958 0.072 0.912 0.039 0.920 0.087 0.964 0.047 0.964

n |RB| RMSE |RB| RMSE |RB| RMSE |RB| RMSE |RB| RMSE |RB| RMSE

BBB method

250 0.667 1.023 0.616 1.017 0.076 0.082 0.062 0.093 0.039 0.099 0.061 0.118
500 0.616 0.619 0.530 0.546 0.143 0.077 0.139 0.074 0.081 0.094 0.091 0.095
750 0.562 0.450 0.484 0.382 0.228 0.070 0.231 0.071 0.126 0.075 0.130 0.071

EH model
250 0.391 0.489 0.397 0.534 0.109 0.043 0.071 0.044 0.009 0.048 0.057 0.061
500 0.353 0.251 0.303 0.238 0.129 0.042 0.119 0.039 0.094 0.052 0.109 0.053
750 0.263 0.145 0.244 0.149 0.233 0.040 0.222 0.032 0.121 0.046 0.141 0.050
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Figure 1. Boxplot for β̂W1 and β̂W2 in SRSS in the BBB model (left) and EH model (right) .

The figure shows that the values of β̂W2 are higher and the dispersion is lower than
with β̂W1 for all randomization methods. Moreover, the variance of the scramble variable
increases in line with the dispersion.

Following this example, the value of the plug-in method based on the asymptotic
variance, the jackknife and bootstrap variances and the dispersion obtained for each
randomization method and degrees of freedom considered are represented by boxplot
graphics (Figure 2).

For each randomization method, we note that the greater the variance of the scram-
ble variable S, the greater the dispersion. This behaviour is especially noticeable in the
estimation of parameter β̂W1. This result is expected, since adding more noise makes the
dispersion increase, but in practice it is not possible to use scramble variables with little
variance, as this reduces the privacy protection obtained.

To compare regression-based RR model and ratio-based RR model, we conducted the
third simulation study in which both models are included. We use as sampling design
the simple random sampling under a population of size N = 10, 000. Three different
combinations of sample sizes were drawn from the population, n = 250, 500, 750. As in
the previous study, point estimators of the coefficient of regression were computed using
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the Eichhorn and Hayre (EH) and the Bar-Lev, Bobovitch and Boukai (BBB) models. A
F20,20 distribution was used for the scramble variable S, and in the BBB model p = 0.5
was assumed. The main variable y and an auxiliary variables x were generated using
the model yi = βxi + εi with E(εi) = σ2xi, in this case x ∼ N(30, 2), σ = 0.5, β = 7 and
εi ∼ N(0, σ2xi).
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Figure 2. Boxplot for AV, JK and BS variances of β̂W1 and β̂W2 in SRSS in the BBB and EH models.

For all randomization methods and in both models, regression and ratio, we can see
(Table 3) how the values obtained from the relative bias and the relative mean squared
error are small. Focusing on the RMSE, we observe that the value decreases as the sample
size increases, as we expected, and we obtain a slightly better behavior of the ratio model
compared to the regression model.

Table 3. Absolute relative bias and relative mean squared error in percent for β̂R and β̂W in SRS for
the BBB and EH models.

BBB Method EH Method

β̂R β̂W β̂R β̂W

n |RB| RMSE |RB| RMSE |RB| RMSE |RB| RMSE

250 0.042 0.090 0.083 0.092 0.083 0.050 0.085 0.051
500 0.128 0.047 0.158 0.048 0.132 0.026 0.129 0.027
750 0.168 0.029 0.201 0.030 0.119 0.016 0.116 0.017
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5. Real Application

As a real application of the methods described above, we conducted a survey by
stratified random sampling at the University of *** to investigate the consumption of
alcohol and drugs among the university population (in a sample of 754 students).

The sensitive question in this case was, “Indicates the age at which you started
drinking alcohol and using drugs” and the RR technique used was the model proposed
by [11]. To apply this model, each student was asked to use used as a randomizing device
the app “Baraja Española” (a deck of cards, composed of 40 cards, divided into four families
or suits, each numbered one to seven plus three face cards). When the user touches the
screen, a card is shown. When it is a face card, the sensitive question should be answered;
otherwise, the real number should be given, multiplied by the number shown on the card.
Thus, the design parameter of the BarLev model was 3/10.

After the study data was compiled, a regression model was performed, in which the
sensitive variable was taken as the dependent variable and the variable “Indicate on a
scale of 0 (very bad) to 10 (optimal), how would you rate your relationship with your
parents?” was an independent variable. After obtaining the value of the parameter, the
estimate of the variance was obtained by the jackknife technique and the corresponding
95% confidence interval. This approach produced the following results:

β̂ = 2.392682, v̂J(β̂) = 9.45795e−06 and IC = [2.387; 2.399].

In other words, the better the relationship with their parents, the higher the age at
which these students began to consume alcohol and drugs.

6. Conclusions

Indirect interview techniques effectively reduce voluntary bias in surveys referring to
sensitive questions. In recent years, many new techniques emerged for the estimation of
proportions, means or totals of sensitive variables, but few studies addressed the question
of dependency parameters.

In this paper, we propose a general scheme for a randomized response (RR) technique,
under a general sampling design for estimating regression coefficients. We study the
theoretical properties of the proposed estimators and we derive several estimators for
their variances.

To assess the accuracy of the proposed estimators, a simulation study was conducted
using two RR techniques. In this simulation study, the proposed estimators obtained good
results in terms of relative bias and relative mean squared error.

The application of the proposed technique to a real survey enabled us to relate the age
at which young people begin to consume alcohol and drugs with the perceived quality of
the relationship with their parents.
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