
mathematics

Article

T-Growth Stochastic Model: Simulation and Inference via
Metaheuristic Algorithms

Antonio Barrera 1,2,*,† , Patricia Román-Román 2,3,† and Francisco Torres-Ruiz 2,3,†

����������
�������

Citation: Barrera, A.; Román-Román,

P.; Torres-Ruiz, F. T-Growth Stochastic

Model: Simulation and Inference via

Metaheuristic Algorithms.

Mathematics 2021, 9, 959. https://

doi.org/10.3390/math9090959

Academic Editor: Elvira Di Nardo

Received: 2 March 2021

Accepted: 22 April 2021

Published: 25 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Departamento de Análisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada,
Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, 29010 Málaga, Spain

2 Instituto de Matemáticas de la Universidad de Granada (IMAG), Calle Ventanilla 11, 18001 Granada, Spain;
proman@ugr.es (P.R.-R.); fdeasis@ugr.es (F.T.-R.)

3 Departamento de Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de Granada,
Avenida Fuente Nueva s/n, 18071 Granada, Spain

* Correspondence: antonio.barrera@uma.es; Tel.: +34-952131896
† These authors contributed equally to this work.

Abstract: The main objective of this work is to introduce a stochastic model associated with
the one described by the T-growth curve, which is in turn a modification of the logistic curve.
By conveniently reformulating the T curve, it may be obtained as a solution to a linear differential
equation. This greatly simplifies the mathematical treatment of the model and allows a diffusion
process to be defined, which is derived from the non-homogeneous lognormal diffusion process,
whose mean function is a T curve. This allows the phenomenon under study to be viewed in a
dynamic way. In these pages, the distribution of the process is obtained, as are its main characteristics.
The maximum likelihood estimation procedure is carried out by optimization via metaheuristic
algorithms. Thanks to an exhaustive study of the curve, a strategy is obtained to bound the parametric
space, which is a requirement for the application of various swarm-based metaheuristic algorithms.
A simulation study is presented to show the validity of the bounding procedure and an example
based on real data is provided.

Keywords: growth curves; diffusion processes; inference on diffusion processes; metaheuristic algorithms

1. Introduction

In recent years, the mathematical description of growth-related phenomena has be-
come a burgeoning field of research. Today, the formal analysis of such phenomena and
the prediction of future behavior from past observed data make good use of the so-called
growth models. The availability of large datasets and the increasing computational ca-
pacity for the analysis and development of new statistical techniques have propelled the
traditional field of population dynamics towards the center stage, where new, increasingly
sophisticated models are required. Taking growth curves as a basis, researchers work on
models which are applied to fields as diverse as cell growth (whether tumoral, stem, or
other tissue), the exploitation of energy resources, or infection transmission and the spread
of pandemics. In this latter regard, it is obvious that the SARS-CoV-2 virus has further
fueled interest in the development and application of new dynamic models.

For the reasons outlined above, the use of growth curves in the study of biological
phenomena has become more widespread than ever before. Recent studies have applied
growth curves to the description of a variety of phenomena. For example, Ram et al. [1]
employed logistic, exponential, and Gompertz curves to the study of microbial growth in a
mixed culture. Spiess et al. [2,3] studied the methods used in the analysis of PCR techniques
(currently applied to the detection of the new coronavirus), whose observations can be
modeled through growth curves. Additionally, and also concerning pandemic dynamics,
Rajasekar et al. [4] obtained some results about a SIRS model with logistic growth. Several
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fields of study can be formally approached by means of deterministic growth models, such
as the analysis of fish growth [5], which is carried out by considering a new framework
related with the von Bertalanffy curve. However, such tools lend themselves not only to the
description of phenomena: their behavior in context itself has become the object of study.
In this sense, one very successful approach is to extend classic models by introducing
functions that modify their original behavior and allow them to reproduce real phenomena
of greater complexity. Concerning this approach, the next section makes a brief review of
models that have emerged recently thanks to the incorporation of hyperbolic functions to
classic models such as the logistic and the Weibull.

Despite the high degree of effectiveness shown by many of these deterministic models,
many of them lack the ability to account for random factors affecting growth dynamics.
To improve a model’s ability to fit a phenomenon, one must take into consideration the
uncertainty generated by factors both internal and external to the process, which are
unknown and therefore commonly disregarded. The same applies to errors generated
by the observation and measurement of the phenomenon and to the random nature of
certain dynamics. For this reason, stochastic models must be introduced which can be
built on the basis of said growth curves as a basis. As a matter of fact, including certain
noise factors in the ordinary differential equations which generate said curves leads to
stochastic differential equations, which have, under certain conditions, diffusion processes
as a solution. The literature is extensive in this regard and continues to grow, as exemplified
by Hening et al. [6], who developed a model characterized by a density-dependent growth
rate and applies it to structured populations under the conditions of a heterogeneous
environment. Additionally, Parsons [7] considered some stochastic processes and their
effects on populations with a logistic behavior and Román-Román and Torres-Ruiz [8]
defined a stochastic model based on a Richards-type growth curve. On the other hand,
concerning birth-and-death processes, Asadi et al. [9] dealt with a generalization of the
Gompertz model showing good fit to real data from COVID-19 outbreak. In connection
with the growth curves, widely used to model tumor dynamics, other studies such as
the one carried out by Ascione et al. [10] also build a fractional version of stochastic
models. Furthermore, and as mentioned above, stochastic models can also be developed by
generalizing classic ones (see the next section for some examples linked with the objective
of the present paper).

However, to obtain stochastic models derived from growth curves, one must face
certain problems concerning inference, as the very nature of said processes commonly
prevents the explicit knowledge of certain features such as the transition density functions.
Similarly, analytical complexity thwarts the estimation of parameters from mere observa-
tion. In this regard, non-homogeneous lognormal diffusion processes allow for many of
the characteristics of the process to be known and render the process in general much more
manageable. To build these processes from growth curves, the original model must usually
be reformulated. The convenience of such an approach is complemented by the possibility
of carrying out estimations by means of maximum likelihood procedures. Along these
lines, Román-Román et al. [11] carried out a study regarding the estimation by maximum
likelihood in the lognormal process with a generic exogenous factor. This enables the esti-
mation of various processes associated with growth curves, such as multisigmoidal models,
to be addressed [12]. Moreover, maximum-likelihood equations can also be dealt with by
means of metaheuristic algorithms, as the complexity of the model may hamper efforts to
solve the equations. Several algorithms exist which can be used to optimize the likelihood
function, among them Simulated Annealing or Variable Neighbourhood Search, which
is applied in [8] to the case of a Richards-type model. More successful recent algorithms
are, for example, the Whale Optimization or the Grey Wolf and Moth Flame optimizers
algorithms (see [13–15] for more details), all of them based on animal social behavior.
In addition, the Clonal Selection algorithm [16] is based on cell behavior and has been
applied, for example, to optimization problems related with electromagnetics [17]. Another
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procedure is the Harmony Search algorithm, widely extended to many applications and
subject to several extensions (see [18–20]).

To a large extent, the procedure used to develop stochastic growth models takes into
account the factors stated above. However, the sheer complexity of the initial deterministic
model plays a central role in the development and application of any stochastic model.
In this regard, growth curves must be used that allow for a better fit to the data without
needlessly increasing complexity. The present work deals with building a model based
on the T-growth curve, which has been shown to have great potential in modeling tumor
growth dynamics in the presence of an immune response. Given its inherent analytical
simplicity, this model, which is derived from the classic logistic one, may be successfully
combined with equations associated with dynamics involving the effector cells of the
immune system.

The structure of the present work is as follows. Section 2 provides a brief sum-
mary of the evolution followed by the study of hyperbolastic and derived models, both
deterministic and stochastic. Section 3 presents the T-growth curve, analyzes its main
properties, and introduces a reformulation that enables asymptotic dependence on the
initial conditions. Thanks to this, a stochastic model associated with the curve based
on the non-homogeneous lognormal diffusion process is introduced, which is the objec-
tive of Section 3. Inference in this process is addressed in Section 4, which considers the
use of five metaheuristic algorithms (“Clonal Selection”, “Harmony Search”, “Grey Wolf
Optimizer”, “Moth Flame Optimizer”, and “Whale Optimization Algorithm”) with the
goal of optimizing the maximum-likelihood function. In addition, a proposal is made
concerning the strategy employed in order to bound the parametric space associated with
the process. Section 5 presents a simulation study in order to compare the performance of
the aforementioned metaheuristic algorithms regarding the inference of the new process.
Additionally, it shows the validity of the parametric bounding procedure proposed in these
pages. Finally, Section 6 provides an application of the proposed model and methodology
to real data.

2. Brief Overview on Hyperbolastic and Associated Models

The origins of the T-type growth model can be traced back to the methodology
suggested by Tabatabai et al. [21] and Bursac et al. [22] for generating the so-called
hyperbolastic models. Their starting concept was using classic growth curves as the basis
to develop other, more flexible models which do not require a large increase in the number
of parameters. By virtue of this flexibility, such models can be used to represent certain real
phenomena which classic models are unable to adequately explain.

Following these premises, in the aforementioned work, the authors introduced Type I,
II, and III hyperbolastic curves (usually denoted as H1, H2 and H3) as the solution of certain
ordinary differential equations. In essence, curves H1 and H3 are obtained by solving
certain generalizations of the logistic and Weibull differential equations, while curve H2 is
a non-homogeneous quadratic equation. All such differential equations have in common
the presence of hyperbolic functions (or derivatives of them). The resulting models have
been applied to several fields, mostly dealing with bio-sanitary phenomena such as cell
proliferation. Thus, Eby et al. [23] used hyperbolastic curves to analyze the growth of
solid Ehrlich carcinoma using a variety of treatments. Tabatabai et al. [24] used them as
a model for the study of stem cell proliferation, showing how some of them, specifically
H3, improve the results obtained with other models such as Deasy’s [25]. In other fields,
the models have been used to represent wound healing [26], specifically in the research of
variations in the healing speed of different types of wounds at several stages of the healing
process. Mixed-effects models based on the H2 curve have also been considered (see [27]).

Hyperbolastic curves are not the only product of the methodology outlined above.
Tabatabai et al. [28] considered the so-called oscillabolastic model, which is used to explain
the behavior of dynamic biomedical data in which an oscillatory behavior is observed.
Such model was applied to the study of Ehrlich ascites tumor growth and to the modeling
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of signal intensity in the gene expression of the Hes1 gene. Another curve of interest is
the hypertabastic curve, introduced in Eby and Tabatabai [29] within a context of survival
models. In that work, the authors recommended its use to model stem cell differentiation
time and suggested the inclusion in the curve of covariates that enable the study of the
influence of various factors. Finally, the main subject of the present work, the T-type
growth curve was introduced by Tabatabai et al. [30] from a modified differential equation
of a logistic one. As the authors mentioned, the model shows great versatility in the
representation of dynamic growth phenomena, while enabling models of biphasic growth
patterns to be built. Such patterns appear, for instance, in the development of tumors that
display temporary decreases in their growth.

Although all these models have been shown to be useful in the description and
adjustment of phenomena such as those mentioned above, they are in essence deterministic
models since they do not take into account the random fluctuations that may exist in the
system under study. In light of that, these curves would be well served by associating
them with dynamic models with the power to represent such random information. Some
such models are those representing stochastic processes and, more specifically, diffusion
processes. Such processes arise when white noise is introduced into the ordinary differential
equation that produces the curve, giving way to the consideration of stochastic differential
equations whose solution are, under certain conditions of regularity, diffusion processes.
These processes are advantageously applied to the computation of multiple statistics aiming
to describe the dynamics under study, such as the mean, mode or quantile functions. These
statistical functions could also be used for prediction purposes. At the same time, this
stochastic-type approach makes it possible to address another series of problems associated
with the study of these types of dynamic variables. Among them, the determination of
temporal variables that represent the moment in which the variable under study verifies a
certain condition stands out, such as the moment of inflection or the moment in which a
certain threshold is exceeded. These questions can be posed as first-passage time problems
for which there is a well-established methodology within the field of diffusion processes,
from theoretical and applied perspectives (see [31–33], respectively).

Within this context, Barrera et al. [34,35] established two different diffusion pro-
cesses associated with curves H1 and H3. In both cases, they analyzed their properties
and addressed the estimation problem. Both processes were used for the determination
of fluorescence, as a function of the cycle, in the application of the qPCR technique of
molecular biology. On the other hand, Barrera et al. [36] presented several alternatives
for modeling oscillabolastic-type behavior, more specifically a Gaussian-type process and
another derived from the inhomogeneous lognormal process.

3. The T-Growth Curve

The T-growth curve is defined as the solution of the ordinary differential equation

d
dt

S(t) = S(t)
(

1− S(t)
M

)
β cosh(βt), t ≥ t0, (1)

with initial condition S(t0) = S0. Parameter β > 0 is the growth rate and M > 0 is
the asymptotic value of the quantity S(t), known as the carrying capacity. Its solution is
(see [30]),

S(t) =
M

1 + α exp(− sinh(βt))
, t ≥ t0, (2)

where α is a parameter depending on the initial values,

α =
M− S0

S0
exp(sinh(βt0)).
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Note that Equation (1) can be viewed as the classic logistic differential equation with a
multiplicative factor β cosh(βt). Solving β cosh(βt) > 1 for t, it follows that the T-growth
model grows faster than the logistic model when t > arccosh(1/β)/β.

As is well known, in this type of sigmoidal increasing curves, the inflection point of
the curve determines the time instant of maximum growth velocity. Thus, this point is of
special interest in any study about population growth. As a matter of fact, the T-growth
model may have different inflection points, which increases the flexibility of the curve and
its ability to adapt to different behaviours.

The time t∗ at which inflection occurs verifies the equation

exp(sinh(βt∗))− α

exp(sinh(βt∗)) + α
= tanh(βt∗) sech(βt∗). (3)

After some algebra, and from Expression (2), if follows that the value of the curve at
the inflection time is

S(t∗) =
M
2

(tanh(βt∗) sech(βt∗) + 1).

This guarantees that, even if it depends on growth rate β, at inflection t∗, the value of
the curve is greater than half of its maximum capacity, that is S(t∗) > M/2.

Another remarkable time is that at which the curve reaches a particular value. The first
time the curve crosses a threshold T such that S0 < T < M is important in terms of growth
analysis. Indeed, such threshold can be expressed as T = kM, where S0/M ≤ k < 1 is a
positive number representing 100k% of the total carrying capacity. If such crossing-time is
denoted by τk, it means that S(τk) = kM. Solving this expression, it follows that

τk =
1
β

arcsinh
(

log
(

αk
1− k

))
.

A different approach can be taken by considering the threshold as a quantity T = nS0
consisting of n > 0 times the initial value of the curve. As far as the study of growth
phenomena is concerned, this approach is particularly useful in fields such as the analysis
of tumor growth, as it can be used to estimate the moment at which the initial volume of
the tumor reaches a particular size (expressed in percentages). This expression could be
also included in other dynamical systems, e.g., those taking into account the dynamics of
the tumor growth under certain treatments. Now, being λn the time at which the curve
reaches n times its initial value, then S(λn) = nS0, and finally

λn =
1
β

arcsinh
(

log
(

αnS0

M− nS0

))
.

Please note that M > nS0, provided that M is an asymptotic value. Then, it follows
that 0 < n < M/S0. Figure 1 shows the evolution of times τk and λn for k when the carrying
capacity M = 3, and for n when the initial volume is S0 = 0.1, respectively. The growth
rate is β = 0.75. On the one hand, 0.1/3 ≤ k < 1 and, on the other, 0 < n < 30. The effect
of β is shown in the scale of the vertical axis. Actually, as the growth rate increases, the
range of each time becomes smaller.
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Figure 1. From left to right: times τk and λn for different magnitudes k of carrying capacity M
and n of initial volume S0 = 0.1, in the case of parameters β = 0.75 and M = 3. Horizontal
dashed lines indicate inflection time. Vertical dashed lines show the values of k and n at inflection
time, respectively.

Reformulation of the T-Growth Model

The original formulation of the T-growth model implies that the carrying capacity will
be independent of the initial value. Nevertheless, in many practical applications, such in-
dependence would not adequately describe the dynamic phenomena under study. In such
cases, the carrying capacity must be made to depend on the initial value. For example,
concerning the study of livestock, the weight or size of individuals is studied to determine
the moment at which they become marketable. Similarly, in fruit farms, knowing the
distribution of fruit size at harvest is of great importance for fruit producers. An increase
in benefits may result from proper forecasting of this distribution and from the prediction
of calibers (an application in this sense was shown by Román-Román and Torres-Ruiz
[37]). In both cases, it is logical to think that the limit values reached by individuals are
not the same, and that they depend on the starting values reached at the first moment of
observation. For that reason, a reformulation of the T-growth curve is appropriate. To deal
with this issue, from initial condition S(t0) = S0 it follows that S(t) can be reformulated as

S(t) = S0
η + exp(− sinh(βt0))

η + exp(− sinh(βt))
, (4)

where η = 1/α is a parameter. Note that limt→∞ S(t) now depends on S0 and t0. Note
also that α (and hence η) becomes a parameter, instead of a function of the initial values.
With this formulation, the expression for the inflection time becomes

η − exp(− sinh(βt∗))
η + exp(− sinh(βt∗))

= tanh(βt∗) sech(βt∗), (5)

similar to (3) with new parameter η. The value of the curve at the inflection is the same as
in the original curve, but replacing parameter M with S0

η+exp(− sinh(βt0))
η .

Crossing times τk and λn can be obtained in a similar way as in the original case,
resulting in

τk =
1
β

arcsinh log
kM

η(S0 − kM) + S0e− sinh(βt0)
,

η

η + e− sinh(βt0)
≤ k < 1,

λn =
1
β

arcsinh log
n

η(1− n) + e− sinh(βt0)
, 0 < n <

η + e− sinh(βt0)

η
.
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It is important to note that, following this reformulation, the curve can now be obtained
as solution of the linear differential equation

dS(t)
dt

= hξ(t)S(t),

where

hξ(t) =
e− sinh(βt)

η + e− sinh(βt)
cosh(βt)β, ξ = (η, β)T . (6)

Indeed, its logarithmic derivative is independent of the curve itself, and mathematical
treatment is therefore greatly simplified. At the same time, this approach allows the
use of stochastic differential equation with explicit solutions, as demonstrated in the
following section.

Figure 2 shows the T-growth curve for different values of η and β. The presence of
inflections is determined mainly by η, whereas β, being the growth rate parameter, affects
the position of such inflection. Beside each plot of the curve, the first and second derivatives
are shown.
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Figure 2. (Top) T-growth curve for different values of η and β, starting at S0 = 0.2; and (Bottom) first
(black line) and second (red dashed line) derivative.
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4. Stochastic Model

Deterministic models such as the T-growth curve may be useful to predict and describe
the behavior of dynamic phenomena, as they take into account known variables and the
relations between them. Nevertheless, in real life, factors remain that are unknown to the
researcher. In addition, errors or misleading interpretations of the measurements (caused
sometimes from the instruments themselves) may arise during the observation phase and
the collection of data. Finally, the random nature of many processes and affecting factors
may have an influence on the dynamics under study. For all of these reasons, the use of
deterministic models in such studies is not advised. Stochastic models, on the contrary, are
able to address these issues and provide an effective way to study, analyze, and describe
dynamic phenomena such as the ones concerning growth. For this reason, this section
proposes a stochastic counterpart to the T-growth model.

There are different ways to construct such model, but many of them result in equations
and processes that are, due to their complexity, useless from a theoretical or even practical
point of view. Here, a lognormal diffusion process with exogenous factors, based on the
T-growth curve, is proposed. This model can be viewed as a nice one, meaning that many
useful properties and explicit expressions are satisfied.

The construction of the model relies on the property, satisfied by the reformulated
curve (4), d

dt S(t) = hξ(t)S(t) where hξ(t) is the real continuous function given in (6).
Such function can be viewed as the time-dependent fertility rate of a Malthusian model.
A stochastic version follows from the perturbation of such fertility, by replacing hξ(t)
by hξ(t) + ζ(t), where ζ(t) is a white noise with variance σ2. As a result, the stochastic
differential equation

dXξ′(t) = hξ(t)Xξ′(t)dt + σXξ′(t)dW(t), ξ′ = (η, β, σ)T ,

follows, where W(t) is the standard Wiener process, independent on initial value
X0 := Xξ′(t0) for every t ≥ t0. The continuity of function hξ(t) implies the existence
and uniqueness of a solution. In this case, such solution Xξ′(t) is meant to be a diffusion
process for which an explicit formula is given by

Xξ′(t) = X0 exp
(∫ t

t0

hξ(u)du− σ2

2
(t− t0) + σ(W(t)−W(t0))

)
.

Its finite-dimensional distributions, provided X0 is either a degenerate variable (i.e.,
P[X0 = x0] = 1) or lognormal distributed Λ1[µ0, σ0] are lognormal. That is, for n ∈ N

and time instants t1 < · · · < tn, the random vector
(

Xξ′(t1), . . . , Xξ′(tn)
)T

follows an
n-dimensional distribution Λn[ε, Σ], where

εi = µ0 +
∫ ti

t0

hξ(u)du− σ2

2
(ti − t0),

σij = σ2
0 + σ2(min(ti, tj)− t0

)
are the components of vector ε, for i, j = 1, . . . , n, and matrix Σ, respectively.

Then, it follows that the conditional distribution is also lognormal, that is, for s < t
and state y,

Xξ′(t)|Xξ′(s) = y ∼ Λ1

[
log y +

∫ t

s
hξ(u)du− σ2

2
(t− s); σ2(t− s)

]
.

This leads to the explicit form of the probability transition density function, allowing
future inference procedures such as maximum-likelihood estimation with the exact density
and metaheuristic optimization of an objective function derived from such density.
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Finally, the theory about lognormal processes allows us to find explicit expressions for
many useful functions. Following Román-Román et al. [11], many of these characteristics
can be expressed in a unique way by the function

Gρ

ξ′
(t|y, s) =

(
η + e− sinh(βs)

η + e− sinh(βt)

)ρ1

exp
(

ρ1

(
y− σ2

2
(t− s)

)
+ ρ2

(
ρ3σ2

0 + σ2(t− s)
)ρ4
)

,

for a vector ρ = (ρ1, ρ2, ρ3, ρ4)
T and a generic state y, being s < t. Different values of ρ, s

and y lead to some interesting characteristics, as summarized in Table 1.

Table 1. Some characteristics of the T-growth process, according to the values of Gρ
ξ′
(t|z, s). Here, Qα

is the quantile function and zα is the α-quantile of the standard normal distribution.

Function of the Process z s ρ

E
[

Xξ′ (t)n
]

µ0 t0
(
n, n2/2, 1, 1

)T

E
[

Xξ′ (t)n|Xξ′ (s) = z
]

log y s
(
n, n2/2, 0, 1

)T

Mode
[

Xξ′ (t)
]

µ0 t0 (1,−1, 1, 1)T

Mode
[

Xξ′ (t)|Xξ′ (s) = z
]

log y s (1,−1, 0, 1)T

Qα

[
Xξ′ (t)

]
µ0 t0 (1, zα, 1, 1/2)T

Qα

[
Xξ′ (t)|Xξ′ (s) = z

]
log y s (1, zα, 0, 1/2)T

Please note that, in the case of the mean function of the process, it follows

E
[

Xξ′(t)
]
= E[X0] e

∫ t
t0

hξ(u)du
= E[X0]

η + e− sinh(βt0)

η + e− sinh(βt)
,

which is the T-growth curve starting at E[X0].

5. Inference on the Model

The present section addresses the estimation of the parameters by means of maximum-
likelihood procedure. In the particular case of the T-growth model, there are only two
parameters, namely η and β, in addition to the diffusion coefficient σ2.

Let us consider the observation of d sample paths at time instants tij for i = 1, . . . , d
and j = 1, . . . , ni. For the sake of expositional clarity, we suppose that ti1, i.e., the first
observation time, is the same for all sample paths, that is, ti1 = t0 ≥ 0 for all i. Now, if
XT

i =
(
X(ti1), . . . , X(tini )

)T , we denote X =
(
XT

1 | . . . |XT
d
)T as the matrix of observations.

Let us denote xij as the observation of variable X(tij) at instant tij. Such observations
form a vector x. On the other hand, let us consider an initial lognormal distribution, i.e.,
X0 ∼ Λ1

[
µ1, σ2

1
]

of parameters µ1 and σ2
1 > 0.

To address the maximum-likelihood estimation, and regarding the conditional dis-
tribution of the process (and hence the knowledge of its probability transition density
function), we deal with the corresponding log-likelihood function:

log L(x; µ1, σ2
1 , ξ′) =− 1

2

(
n log(2π) + d log σ2

1 + (n− d) log σ2
)

(7)

−
d

∑
i=1

(
log xi1 +

1
2σ2 (log xi1 − µ1)

2
)

−
d

∑
i=1

ni

∑
j=2

(
log xij +

1
2

log ∆ij +
1

2σ2∆ij

(
Qij − Tξ

ij +
σ2

2
∆ij

)2)
,
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for any observation set x = (xij) ∈ X, where n = ∑d
i=1 ni and, for every i = 1, . . . , d and

j = 1, . . . , ni, the following grouped variables have been defined:

Qij = log
xij

xij−1
,

Tξ
ij = log

η + exp(− sinh(βtij−1))

η + exp(− sinh(βtij))
,

∆ij = tij − tij−1.

The optimization of this function can be carried out by different methods. The direct
one is to solve the maximum-likelihood equations. To this end, numerical methods might
be required. Nevertheless, the convergence conditions imposed by numerical methods
such as Newton–Raphson and its derivatives cannot always be guaranteed. As a matter of
fact, such methods require calculating (or at least approximating) the inverse of the Hessian
matrix. The existence of this inverse cannot always be guaranteed given the dependence of
the system of likelihood equations on the observed data. On other occasions, this inverse
may be badly conditioned and give rise to unstable solutions. Additionally, these methods
require initial solutions whose determination is not always easy to carry out both due to
the difficulty in calculating them and because of their optimality to favor the convergence
of the numerical method. Another way to solve the maximum-likelihood estimation is
based on the use of metaheuristic algorithms. Such algorithms have the ability to find
the local and global minima (or maxima) of a function within a bounded region of the
parametric space. These boundaries depend on the properties of the parameters and the
original model.

5.1. Bounded Parametric Space

Many metaheuristic algorithms, including those used in this work, require a bounded
region within the parametric space. The Grey Wolf Optimizer, for example, will not work
properly if the wolves are unable to meet each other while moving without limitations.
For that reason, an initial region to search maxima or minima could avoid issues related
with the convergence of the algorithm.

The stochastic T-growth model has two parameters, named η, β > 0, which do not
have, a priori, upper bounds. However, in the context of growth phenomena, some
assumptions could lead to these parameters being totally bound.

Indeed, we suppose that there exists at least one inflection point in our model. This is
due to the required flexibility of the model and its relation with inflections. If observations
could be explained by a curve with no inflections, many other simpler models would be
preferable over the T-growth.

5.1.1. Case t0 6= 0

By assuming that there exists an inflection at time t∗, inflection condition (5) holds
for every η and β. Let us then define auxiliary functions v1(t) =

η−exp(− sinh(βt))
η+exp(− sinh(βt)) and

v2(t) = tanh(βt) sech(βt). Then (5) could be expressed as

w(t∗) = 0,

where w(t) = v1(t)− v2(t) for all t. After some algebra, it follows that v1 is monotonically
increasing and limt→∞ v1(t) = 1. Since v1(0) =

η−1
η+1 , it follows that the range of v1 is the

interval
[

η−1
η+1 , 1

)
. Analogously, it can be shown that limt→∞ v2(t) = 0, with v2(0) = 0 with

a maximum at t = 1
2 . It follows that the range of v2 is

[
0, 1

2

]
. Given this, we can conclude

that w(t) = 0 has no solutions when the ranges of v1 and v2 do not intersect, that is, when
η−1
η+1 > 1

2 . Solving for η shows that, if inflections do exist, then η ≤ 3. Furthermore, a more
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precise upper bound can be obtained by solving (5) for η. Indeed, for an inflection time t∗,
it follows that

η =
cosh2(βt∗) + sinh(βt∗)
cosh2(βt∗)− sinh(βt∗)

e− sinh(βt∗).

Then, η can be viewed as a function fη(β) of β. Then, fη(0) = 1 and limβ→∞ fη(β) = 0,
i.e., for high values of the growth rate, and when there exists an inflection, parameter η
must decrease in order to maintain such flexibility. The study of d

dβ fη(β) leads to the

existence of a maximum at β̃ = 1
t∗ arcsinh

√
z, where z =

(√
3− 3

)
/2 ≈ 0.526. Then, the

maximum value of η is fη(β̃) ≈ 1.42. With this, it can be concluded that, for a T-growth
model with at least one inflection point, it holds that η ∈ [0, 1.42].

On the other hand, a bounded interval of β can be obtained from the expression of the
carrying capacity. Indeed, from the original expression of such asymptotic value M and its
expression in the reformulation, if follows that

M = s0
η + exp(− sinh(βt0))

η
.

Solving for β leads to a function of η, fβ(η),

fβ(η) =
1
t0

arcsinh
(
− log

((
M
S0
− 1
)

η

))
.

This function verifies that limη→0 fβ(η) = ∞, but from 1
fβ(η)

d
dη fβ(η) it follows that the

growth is slow for lower values of η. This implies that, for a positive lower bound of η, and
even of high orders such as 10−10, a bounded interval for β follows. Furthermore, being β
the growth rate in the context of growth phenomena, it would be reasonable to consider
β ≥ 0. That is, if η ∈ [εη , 1.42], for εη ≤ 10−10, then β ∈ [0, fβ(εη)].

5.1.2. Case t0 = 0

The methodology described above requires that t0 6= 0 in order to get the expression
of fβ(η) and hence the interval of β. However, when t0 = 0, this approach cannot be
accomplished. In such case, provided the relation η = S0

M−S0
between η and the carrying

capacity, and where xini is the last observed value of the ith path, we propose that η be
bound as follows

x0

maxi=1,...,d (xini )− x0
≤ η ≤ x0

mini=1,...,d (xini )− x0
.

Then, solving (5) at each one of those bounds of η and inflection time t∗, corresponding
bounds for β follow. Such equation might be solved, for example, by applying the bisection
method. Even in such case, the quest for an interval where the root (here, a bound of β)
lies, may lead to two minimal intervals where the two bounds lie. Another possibility here
is to consider a mixture of those two intervals, by taking the minimum and the maximum
of the four values as the lower and upper ends, respectively, of the interval of β.

5.2. Metaheuristic Approaches

In this subsection, the metaheuristic algorithms used to estimate the maximum-
likelihood parameters of the T-growth model are introduced. The common framework for
these procedures comprises a bounded parametric space and an objective function to opti-
mize. The parametric space can be bounded according to the aforementioned methodology.



Mathematics 2021, 9, 959 12 of 20

On the other hand, the objective function is obtained from the log-likelihood function (7)
by getting rid of constants and initial-value terms. Indeed, the function to be optimized is

fo(η, β, σ2) = −d(n− 1)
2

log σ2 − 1
2σ2

d

∑
i=1

ni

∑
j=2

1
∆ij

(
Qij − Tξ

ij +
σ2

2
∆ij

)2

.

5.2.1. Clonal Selection Algorithm

The “Clonal Selection” algorithm (CLONALG) was introduced by Castro and Zuben
[16], and it is based on the clonal selection principle, which studies the immune response
to antigenic stimuli. Related to evolutionary algorithms, clonal selection has shown great
performance in engineering, as illustrated in [17,38]. The algorithm describes two popu-
lations, one of antigens and one of antibodies, and the relations of affinity between them.
The basic steps can be summarized as follows:

1. Initialize random population of antigens.
2. Determine the affinity to all antibodies.
3. Select the antibodies showing the highest affinity and clone them according to their

antigenic affinities.
4. Mature generated clones inversely to the antigenic affinity (high affinity, small muta-

tion rate).
5. Select those with the highest affinity to antigens and replace if it is better.
6. Check the stopping criteria (maximum number of iterations or good fitness).

5.2.2. Harmony Search Algorithm

The “Harmony Search” algorithm (HS) was introduced by Geem et al. [18] and
improved in many recent works (e.g., [19]). This algorithm tries to mimic the process of
improvisation performed by music players. With fewer mathematical requirements than
other heuristic algorithms, it has been successful in its application to several optimization
problems (see [20]). Its steps are as follows:

1. Initialize a matrix of random values, sorted by the value of the objective function,
called “Harmony Memory” (HM).

2. Improvise a new harmony (generated according to the parameters) after considera-
tions of HM.

3. Update HM by including the new harmony (according to fitness, and replacing if
better) and excluding the worst harmony.

4. Check the stopping criteria (maximum number of improvisations).

5.2.3. Grey Wolf Optimizer

This algorithm, inspired by nature, was introduced by Mirjalili et al. [14] and attempts
the leadership structure of wolf packs. Some of its results have been successfully applied,
and this in turn has produced some interesting modifications (see [39,40]). The algorithm
is based on the hierarchy of wolf populations, in which individuals are classified as leaders
(both male and female) or α, followed by β and δ in decreasing order or leadership. The rest
of the wolves are tagged as ω. The iterations consist of updating the leadership according to
fitness. The rest of the wolves move towards their leaders. Its steps can be summarized as:

1. Initialize the random population of wolves and established the hierarchy according
to the fitness coming from the objective function.

2. Update the positions of wolves according to the position of leaders. This updating is
performed in several stages, such as hunting, searching, or attacking the prey.

3. Replace the leaders according to better fitness.
4. Check the stopping criteria and return α as the optimal value.
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5.2.4. Moth Flame Optimizer

The “Moth Flame Optimizer” (MFO) (see [15]) is a population-based algorithm in-
spired by the particular navigation method exhibited by moths. These insects fly with a
fixed angle with respect to the Moon. This technique, called transverse orientation, allows
them to fly long distances efficiently. Some works about the applications and modifications
of this highly successful optimizer are found in [41,42]. The algorithm considers two
populations, one of moths and one of flames (flags). The former act as search agents across
the parametric space, whereas the latter represent the matrix of best solutions according to
the fitness of the objective function. By this procedure, moths are ensured to never discard
the best solution. Its steps are as follows:

1. Initialize random population of moths and calculate fitness according to objective
function. This leads to a flame as the best position so far.

2. Update position of the moths moving around the flames, which decrease in number
with every iteration.

3. Update flame position according to better solutions.
4. Check the stopping criteria (maximum number of iterations).

5.2.5. Whale Optimization Algorithm

The “Whale Optimization Algorithm” (WOA) was introduced by Mirjalili and Lewis
[13] and has shown very good results in, among others, the study of combinatorial problems.
This algorithm draws from nature to mimic the social behavior of humpback whales.
This species has a particular way of hunting called “bubble-net”. It creates bubbles in
a circular pattern in order to hunt their prey by driving it closer to the surface of water.
The algorithm models such ascending spirals of bubbles in order perform the optimization
process. Its basic steps can be summarized as follows:

1. Initialize a population of random whales and calculate fitness according to the objec-
tive function.

2. Update whale positions randomly or according to the bubble-net technique.
3. Update the best search agent (whale), which is the one approaching the best fitness.
4. Check the stopping criteria (maximum number of iterations).

6. Simulation Study

The metaheuristic algorithms described above were applied to simulated data from the
T-growth stochastic process in order to study the robustness of the proposed methodology
concerning the bounded parametric space. Specifically, 25 sample paths were simulated
in the same time interval, [t0, 30], for t0 ≥ 0. The time step was calculated for a sample
size n, which takes values 11, 31, and 51. The initial variable here was degenerate at
x0 = 9, meaning that P[X0 = x0] = 1. Parameters η and β were fixed at values 0.25
and 0.1, respectively. Furthermore, diffusion coefficient σ took values 0.01, 0.05, and 0.1
in order to illustrate the performance of the algorithms in the parametric space under
conditions of low as well as high variability. For each algorithm and every combination
of parameters, 50 replications were made, and their mean was taken as the final value.
Regarding the metaheuristic algorithms, none required parameter tuning, and the default
values recommended by their respective authors were used.

The results were determined by considering the relative absolute error between
the observed mean and the mean of the simulated process with the estimated values.
The expression of such measure is

RAE =
1
N

N

∑
i=1

|mi − Ê[X(ti)]|
mi

,

where mi is the value of the observed mean at time ti and Ê[X(ti)] is the value of the mean
of the estimated process at the same time. N is the corresponding sample size in every case.
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The results are summarized in Table 2, for all combinations between σ and n. It is
shown that all the metaheuristics perform very well despite the sample size or the vari-
ability. The parametric space was bounded according to the proposed methodology, and it
was the same for all five algorithms.

Estimated values for parameters η, β, and σ are shown for each algorithm in the rest
of the tables. For each estimation, the corresponding mean relative error is shown, which
was calculated according to

MRE =
1
N

N

∑
i=1

|α− α̂|
α

,

where α is the corresponding parameter and α̂ its estimated value.
As displayed in Table 2, the “Moth Flame Optimizer” algorithm performs very well in

all possible scenarios, even when sample size is small and variability is high. The estimated
parameters obtained by this metaheuristic are shown in Table 3, where the maximum MRE
is just 0.0067, corresponding to the case σ = 0.1 and n = 11. The best estimation obtained
with this algorithm corresponds to the case σ = 0.01 and n = 51. This result is expected
due to the low variability and large sample size. Nevertheless, as illustrated by Table 2, the
best estimation of MFO occurs when σ = 0.01 and n = 11. This is explained by measure
MRE being affected by the deviation of any parameter, whereas the RAE takes the mean of
the deviations with respect to the estimated mean (taking into account the estimation of σ).

Besides MFO, the other algorithms also perform well, although they present higher
errors in cases of high variability. This is shown in detail in Tables 4–7 for the WOA, GWO,
CLONALG, and HS algorithms, respectively.

In particular, the aforementioned tables show that, in general, MRE decreases as the
number of points n increases, except maybe for the case σ = 0.05, where it remains the
same or even increases slightly. In any case, values are low and acceptable. The final results
for the parameters are essentially the same despite the algorithm employed. Focusing
on each parameter, a maximum variation of approximately 0.04 is apparent for values of
η across all algorithms. This variation occurs when n = 31 and n = 51 for σ = 0.1 (the
maximum and minimum estimates of η, respectively). Of course, such high variability
has an impact on the solutions and appears to be particularly sensitive to variations of
n. Nevertheless, MRE decreases across all algorithms for such cases. On the other hand,
results for parameter β, mainly involved in the flexibility of the curve, show a maximum
variation below 0.004. In particular, the cases σ = 0.01 with n = 11 and σ = 0.05 with
n = 31 present the largest differences, although these remain very small.

All of these results show the robustness of the strategy proposed to bound the para-
metric space. As a matter of fact, and despite their disparate behaviors, all the algorithms
were able to find optimal values with low errors. A particular case of interest is that of low
sample sizes. This is a very common case in many practical applications, which makes
algorithm performance within the bounded parametric space all the more important. The
tables mentioned above show very good performance for low sample sizes. Additionally,
even when errors naturally decrease as sample size increases in nearly every algorithm,
the estimations when n = 11 remain quite good. Once again, MFO shows lower errors
for small sample sizes even when variability is high. Nevertheless, the values yielded by
the rest of the algorithms remain good, to an extent that guarantees the robustness of the
procedure and the applicability of this model and strategy to the description of growth
phenomena in which few data observations are available.

Finally, Figure 3 shows a comparison between the observed and the estimated means
for every algorithm in every case. The conclusions drawn are the same, with variations
being somewhat higher in the case σ = 0.1. In particular, simulated mean paths for the
results of every algorithm are shown against the sample mean observation. Cases are
sorted by increasing values of σ from top to bottom and increasing values of n from left
to right. As can be expected, figures in the first row show small differences between the
paths. On the contrary, the last row plots show wider variability due to value σ = 0.1. With
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respect to n, such differences are less noticeable in the plots, but σ = 0.05 illustrates that
high values of n lead to slightly larger distances between paths.

Figure 3. Comparison of observed mean (solid black line) and estimated means for every algorithm.

Table 2. Relative absolute errors for every metaheuristic algorithm in the case of simulated T-growth
process with parameters η = 0.25 and β = 0.1 and different values of σ and n.

WOA MFO GWO CLONALG HS

σ = 0.01
n = 11 0.004596 0.004203 0.005010 0.027998 0.004583
n = 31 0.013944 0.008499 0.007087 0.051982 0.005861
n = 51 0.003792 0.009805 0.009740 0.037694 0.008499

σ = 0.05
n = 11 0.025560 0.015626 0.040875 0.036209 0.014687
n = 31 0.039790 0.022904 0.062858 0.030954 0.036023
n = 51 0.027456 0.036456 0.082239 0.036688 0.013407

σ = 0.1
n = 11 0.074296 0.038146 0.092243 0.037846 0.047159
n = 31 0.047714 0.02956951 0.1718793 0.054826 0.1773981
n = 51 0.107721 0.062996 0.123859 0.050686 0.215345
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Table 3. Estimated parameters and mean relative error of the MFO algorithm in the case of η = 0.25
and β = 0.1, for different values of σ and n.

η̂ β̂ σ̂ MRE

σ = 0.01
n = 11 0.2509756 0.1009127 0.01064425 0.02581848
n = 31 0.2478262 0.09944957 0.009785756 0.01187461
n = 51 0.2471421 0.09995375 0.01005502 0.005798523

σ = 0.05
n = 11 0.2409002 0.09842545 0.05054152 0.02099172
n = 31 0.2455311 0.09914826 0.05329188 0.03074345
n = 51 0.26337 0.09822727 0.05227099 0.03887568

σ = 0.1
n = 11 0.2681699 0.101778 0.1109459 0.0666395
n = 31 0.2710887 0.09861253 0.09997612 0.03282277
n = 51 0.2353388 0.09912472 0.09934843 0.0246378

Table 4. Estimated parameters and mean relative error of the WOA algorithm in the case of η = 0.25
and β = 0.1, for different values of σ and n.

η̂ β̂ σ̂ MRE

σ = 0.01
n = 11 0.2509266 0.100913 0.01066472 0.02643622
n = 31 0.2469859 0.09944247 0.009953973 0.007411521
n = 51 0.2471157 0.09995652 0.01005198 0.005723296

σ = 0.05
n = 11 0.2403702 0.09844525 0.05055765 0.0217399
n = 31 0.2452724 0.09915115 0.05329859 0.03112355
n = 51 0.263635 0.09819216 0.05228017 0.03940729

σ = 0.1
n = 11 0.2672859 0.1017511 0.1110155 0.06560311
n = 31 0.2720849 0.09859512 0.09996334 0.0342517
n = 51 0.2380585 0.09985639 0.09908654 0.01944554

Table 5. Estimated parameters and mean relative error of the GWO algorithm in the case of η = 0.25
and β = 0.1, for different values of σ and n.

η̂ β̂ σ̂ MRE

σ = 0.01
n = 11 0.2509764 0.1009246 0.01064277 0.02580951
n = 31 0.2478205 0.09944689 0.009782874 0.01198724
n = 51 0.2471215 0.09996527 0.01004665 0.005508826

σ = 0.05
n = 11 0.2408722 0.09842666 0.050547 0.02106147
n = 31 0.2454393 0.0991375 0.05328924 0.03088416
n = 51 0.2633211 0.09822432 0.0522742 0.03884178

σ = 0.1
n = 11 0.2681796 0.1017863 0.110939 0.06665699
n = 31 0.2709916 0.09860349 0.09996272 0.03276809
n = 51 0.2354084 0.09913233 0.09935355 0.02450257

Table 6. Estimated parameters and mean relative error of the CLONALG algorithm in the case of
η = 0.25 and β = 0.1, for different values of σ and n.

η̂ β̂ σ̂ MRE

σ = 0.01
n = 11 0.252627 0.107977 0.02083098 0.3911254
n = 31 0.2479919 0.09313908 0.01602853 0.2264982
n = 51 0.2473206 0.0902483 0.01440435 0.1828897

σ = 0.05
n = 11 0.2401952 0.09537204 0.05049653 0.03180981
n = 31 0.2486393 0.1027989 0.05409315 0.03843151
n = 51 0.2610024 0.09328716 0.05313177 0.05792447

σ = 0.1
n = 11 0.2689292 0.102819 0.1094837 0.0662479
n = 31 0.2692818 0.09915501 0.1035572 0.04038295
n = 51 0.2342171 0.09737465 0.09926846 0.03223356
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Table 7. Estimated parameters and mean relative error of the HS algorithm in the case of η = 0.25
and β = 0.1, for different values of σ and n.

η̂ β̂ σ̂ MRE

σ = 0.01
n = 11 0.2507133 0.1004446 0.01060876 0.02272496
n = 31 0.2477269 0.09915076 0.009438699 0.02457161
n = 51 0.2469593 0.09944281 0.01004033 0.007255965

σ = 0.05
n = 11 0.240688 0.09844413 0.05050159 0.02094608
n = 31 0.2455214 0.09907743 0.05316942 0.0301762
n = 51 0.2633633 0.09814548 0.05208191 0.03787881

σ = 0.1
n = 11 0.2680154 0.1016684 0.1109767 0.06617093
n = 31 0.271004 0.0984852 0.09997166 0.03314918
n = 51 0.2364888 0.09758188 0.0982698 0.03184272

7. Application to Real Data

In this section, the proposed methodology is applied to real data extracted from the
work of Song et al. [43]. The dataset concerns the volume of tumors in nasopharyngeal
cancer, a disease with high incidence in Southern China. Despite classic treatments such as
radiotherapy, chemotherapy, or immunotherapy, local recurrence and distant metastasis
are frequent among patients. One technology, called RNA interference (RNAi), uses post-
transcriptive gene silencing and has shown good performance inhibiting tumor growth
by silencing one single gene involved in tumor development. In [43], it is shown that
the effect of RNAi in the reduction of the tumor volume is greater when it is applied to
multiple involved genes at once than when applied to a single gene. Nasopharyngeal
tumor volume is measured for a number of weeks in several groups according to the
affected gene. The involved genes are VEGF, C-myc, Survivin, and hTERT. In the work
introducing the T-growth curve, Tabatabai et al. [30] fitted the model to data related to
the VEGF gene, showing better results than other classic models such as the logistic or
Gompertz curves. In this section, the proposed T-growth stochastic model is fitted to
data for all four genes. Following the methodology, parameter estimation was performed
considering the five different metaheuristic algorithms with t0 = 2, n = 5 and a time step
of 1 (weeks). The results are shown in Table 8. Given these estimations, five T-growth
processes were simulated in order to compare their mean paths with the original data (see
Figure 4). Again, Table 8 shows that relative absolute errors are low and very similar, with
MFO and GWO yielding the best results. In particular, the MFO algorithm boasts great
performance, as it did with simulated data. It is worth noting that the process and the
proposed methodology are here applied to a small dataset, n = 5. The results are consistent
with others in simulations with few data points like n = 11. The T-growth stochastic
model could thus be used in this context to describe the evolution of tumor volume for the
RNAi technique acting over a variety of genetic origins. Furthermore, in [30], the T-growth
curve was introduced in a system of equations concerning the dynamics of effector and
tumor cells. Such proposal opens possibilities for using the T-growth stochastic model
within systems of stochastic differential equations describing more complex behaviors in
the dynamics of the RNAi technique and tumor volume.

Table 8. Application to real data: estimated parameters and RAE for every metaheuristic algorithm
in the case of tumor volume data under RNAi (data from [43]).

η̂ β̂ σ̂ RAE

WOA 0.04543004 0.4721142 0.08919208 0.03083607
MFO 0.04543903 0.4720851 0.09028120 0.03051089
GWO 0.04545478 0.4720773 0.08920575 0.03291900

CLONALG 0.04551454 0.4718910 0.08924891 0.03187722
HS 0.04539460 0.4718072 0.08921148 0.03449431
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Figure 4. Application to real data: nasopharyngeal mean tumor volume (black dashed line with
squares) and the mean of T-growth model simulated paths according to the estimated parameters
followed from every metaheuristic algorithm (data from [43]).

8. Conclusions

In the present work, a new stochastic growth model is proposed. It is based on
the T-growth curve, which is an extension of the classic logistic growth curve. This new
model has some interesting features which make it a suitable choice to describe growth
phenomena without compromising efficiency in the estimation of the parameters. As a
matter of fact, the T-growth model only has two parameters, in addition to the diffusion
coefficient and a simple analytic expression. The use of the hyperbolic sine inside the
exponential function leads to a significant increase in the flexibility of the curve, and the
presence of inflections makes the model a good fit for a wide range of growth data.

In many practical applications, parameter estimation is a major issue. In this case, the
low number of parameters and simplicity of the analytical formulation make this easier to
address, although the estimation may require the use of metaheuristic algorithms.

Parameter estimation is particularly interesting given the model’s possibilities for
real-world applications. Maximum likelihood estimation leads to a system of equations
that cannot be solved explicitly, and therefore numerical resolution methods are required.
The fact that the verification of the applicability hypotheses of common numerical methods
cannot always be guaranteed makes it advisable to study alternatives, such as metaheuris-
tic algorithms.

As a general rule, these procedures require a bounded parametric space to work
properly, which in the previous pages is obtained by means of a strategy that employs the
T-growth model.

The robustness of such strategy was observed after studying the performance of five
different well-known metaheuristic algorithms. All such algorithms were able to estimate
parameters η, β, and σ with low relative absolute errors. Simulations were carried out
under different values of parameter σ and sample size n. The reason these were chosen is
that, in practical applications, it must be known whether the process and the estimation
are able to perform well with few data values and in conditions of great variability.

The possible limitations of this model become more evident in contexts which require
a high number of parameters. However, given its simplicity, its low number of parameters,
and the robustness of the methodology developed for bounding the parametric space when
it is applied to several metaheuristic algorithms, the T-growth stochastic model appears as
a good choice to describe, analyze, and make predictions within many different fields of
practical application.
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Future research lines concerning this model could rely on the study of asymptotic
distributions of the estimators among other statistics properties derived from the diffusion
process. In addition, a more practically oriented approach may follow from the study of
dynamic statistical variables such as stopping times or first-passage times. Finally, the
introduction of the model into dynamic systems (by taking advantage of its simplicity)
may lead to more sophisticated ways to analyze and predict complex behaviors.
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