1	Negeviruses reduce replication of alphaviruses during co-infection
2	

- 3 Edward I. Patterson^{1,2,3*}, Tiffany F. Kautz^{1†}, Maria A. Contreras-Gutierrez^{1,4,5}, Hilda
- 4 Guzman¹, Robert B. Tesh¹, Grant L. Hughes², Naomi L. Forrester^{1,6}
- 5
- ⁶ ¹ Department of Pathology, University of Texas Medical Branch, Galveston, TX
- 7 77550, USA
- 8 ² Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected
- 9 Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- 10 ³ Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1,
- 11 Canada
- 12 ⁴ Tecnológico de Antioquia, Institución Universitaria, Medellin, Colombia
- 13 ⁵ Grupo de Investigación en Sistemática Molecular, Universidad Nacional de
- 14 Colombia, Medellin, Colombia
- 15 ⁶ School of Life Sciences, University of Keele, Keele ST5 5BG, UK
- 16 [†] Current address: Glenn Biggs Institute for Alzheimer's and Neurodegenerative
- 17 Diseases, UT Health San Antonio, San Antonio, TX 78229, USA
- 18 * Corresponding author: ipatterson@brocku.ca

Downloaded from http://jvi.asm.org/ on May 10, 2021 at LIVERPOOL SCH OF TROPICAL MED

19 Abstract

20	Negeviruses are a group of insect-specific virus (ISV) that have been found in
21	many arthropods. Their presence in important vector species led us to examine
22	their interactions with arboviruses during co-infections. Wild-type negeviruses
23	reduced the replication of several alphaviruses during co-infections in mosquito
24	cells. Negev virus (NEGV) isolates were also used to express GFP and anti-
25	chikungunya virus (CHIKV) antibody fragments during co-infections with CHIKV.
26	NEGV expressing anti-CHIKV antibody fragments was able to further reduce
27	replication of CHIKV during co-infections, while reductions of CHIKV with NEGV
28	expressing GFP were similar to titers with wild-type NEGV alone. These results are
29	the first to show that negeviruses induce superinfection exclusion of arboviruses
30	and to demonstrate a novel approach to deliver anti-viral antibody fragments with
31	paratransgenic ISVs. The ability to inhibit arbovirus replication and express
32	exogenous proteins in mosquito cells make negeviruses a promising platform for
33	control of arthropod-borne pathogens.
34	
35	Importance
36	Negeviruses are a group of insect-specific viruses (ISVs), viruses known to
27	and infact in casts. They have been discovered even a wide geographical and masica

only infect insects. They have been discovered over a wide geographical and species
range. Their ability to infect mosquito species that transmit dangerous arboviruses
makes negeviruses a candidate for a pathogen control platform. Co-infections of
mosquito cells with a negevirus and an alphavirus demonstrated that negeviruses
can inhibit the replication of alphaviruses. Additionally, modifying Negev virus

Journal of Virology

42	(NEGV) to express a fragment of an anti-CHIKV antibody further reduced the
43	replication of CHIKV in co-infected cells. This is the first evidence to demonstrate
44	that negeviruses can inhibit the replication of important arboviruses in mosquito
45	cells. The ability of a modified NEGV to drive the expression of antiviral proteins
46	also highlights a method for negeviruses to target specific pathogens and limit the
47	incidence of vector borne diseases.

48 Introduction

49 Many insect-specific viruses (ISVs) have been discovered in wild-caught and 50 laboratory colonies of mosquitoes and in mosquito cell cultures (1). ISVs are only 51 known to replicate in arthropods or insect cell lines. While posing no threat to 52 human or animal health, ISVs may affect the transmission of more dangerous 53 vector-borne pathogens. Highly insect-pathogenic ISVs have been suggested for use 54 as biological control agents to reduce populations of vector competent mosquitoes 55 (2-4). Several recent studies have demonstrated that ISVs may play a more direct 56 role by inhibiting the replication of arboviruses within the insect host. The majority 57 of these experiments have attempted to define a relationship based on 58 superinfection exclusion, a phenomenon in which an established virus infection 59 interferes with a secondary infection by a closely related virus. For example, insect-60 specific flaviviruses, such as cell fusing agent virus (CFAV), Nhumirim virus (NHUV) 61 and Palm Creek virus (PCV) have demonstrated an ability to reduce viral loads of 62 vertebrate pathogenic flaviviruses, like West Nile virus (WNV), Zika virus (ZIKV), 63 dengue virus (DENV), Japanese (JEV) and St. Louis encephalitis (SLEV) viruses (5-64 10). Similarly, the insect-specific alphavirus Eilat virus (EILV) was shown to reduce or slow replication of the pathogenic alphaviruses chikungunya virus (CHIKV), 65 66 Sindbis virus (SINV), eastern (EEEV), western (WEEV) and Venezuelan equine 67 encephalitis (VEEV) viruses in cell culture or in mosquitoes (11). Less information is 68 available about the effect of unrelated viruses during superinfection. Cell cultures 69 chronically infected with Aedes albopictus densovirus (AalDNV) limit replication of 70 DENV (12), cell cultures with established CFAV and Phasi Charoen-like virus (PCLV)

Journal of Virology

71	infections reduced ZIKV and DENV replication (13), and co-infections with Yichang
72	virus, a mesonivirus, reduced DENV replication in cells and dissemination in
73	mosquitoes (14). The mechanism for these reduced titers has not been elucidated,
74	but the relationships appear to be virus specific and even host specific (5, 15, 16).
75	The genus <i>Negevirus</i> is a recently discovered, unclassified group of ISVs (17).
76	Members of this genus have been isolated from several species of hematophagous
77	mosquitoes and sandflies, and negev-like viruses have also been found in other non-
78	vector insects (18-25). Phylogenetic studies have placed this group of viruses most
79	closely to members of the genus <i>Cilevirus</i> , plant pathogens that are transmitted by
80	mites (17, 24). These viruses have a single-stranded, positive-sense RNA genome of
81	\sim 9-10 kb, and contain three open reading frames (ORFs) (17). The ORFs encode for
82	the replication machinery (ORF1), a putative glycoprotein (ORF2), and a putative
83	membrane protein (ORF3). Electron microscopy has shown the structural proteins
84	to be arranged in a hot air balloon morphology, a round particle with a single
85	protrusion that is likely the glycoprotein structure (26-28). Little is known about
86	the infectivity, transmission dynamics, and species range of negeviruses. However,
87	they are commonly found in field collected mosquitoes (29, 30).
88	The association of negeviruses with important vector species over a wide
89	geographical range raises the question of possible interactions or interference of
90	negeviruses with vertebrate pathogenic viruses. Few studies exist that demonstrate
91	the ability of unrelated viruses to induce superinfection exclusion, but evidence for
92	this phenomenon with negeviruses could provide a platform to control vector-borne
93	viral diseases in many arthropod vector species. In this study, three negevirus

Z

Journal of Virology

94 isolates from the Americas were assessed for superinfection exclusion in cell 95 cultures with VEEV, CHIKV Mayaro virus (MAYV), o'nyong'nyong virus (ONNV), and 96 Semliki Forest virus (SFV). The use of a Negev virus (NEGV) infectious clone also 97 allowed manipulation of the virus genome to provide a greater ability to exclude 98 superinfection with CHIKV. 99 100 Results 101 Wild-type negevirus growth curves 102 All wild-type negeviruses reached titers greater than 10log₁₀ pfu/mL within 103 48 hours when infected at a MOI of 1 (Figure 1A). NEGV and PIUV-Lutzomyia neared 104 peak titer by 12 hours post infection (hpi), while PIUV-Culex neared peak titer at 24 105 hpi. Infections of NEGV with MOIs of 1 and 5 produced similar growth curves 106 (Figure 1B). 107 108 *Superinfection exclusion of alphaviruses with wild-type negeviruses* 109 To determine the effect of negeviruses on the replication of alphaviruses in 110 cell culture, negevirus isolates were co-infected with VEEV-TC83 or CHIKV isolates. NEGV was able to significantly reduce replication of VEEV-TC83, with reductions of 111 112 5.5-7.0 log₁₀ pfu/mL of VEEV at 48 hours (Figure 2A). There were no significant 113 differences in VEEV-TC83 titers when co-infected with NEGV inoculated at MOIs of 1 114 or 5. There were also no significant differences in VEEV-TC83 titer when NEGV 115 inoculation preceded VEEV-TC83 inoculation by 0-, 2- or 6 hours. Co-infection with 116 PIUV-Culex or PIUV-Lutzomyia also significantly reduced replication of VEEV-TC83

observed during all negevirus co-infections, as VEEV-TC83 was reduced 4.6-7.2
log ₁₀ pfu/mL at 48 hours.
Co-infections with CHIKV and NEGV also resulted in significantly lower titers
of CHIKV at all time points, but only reducing the titer of CHIKV by 0.65-0.93 \log_{10}
pfu/mL after 48 hours (Figure 3A). Varying the MOI of NEGV and timing of CHIKV
inoculation only produced differing titers of CHIKV at the 12-hour timepoint.
However, titers of CHIKV during co-infection with different negeviruses varied
greatly (Figure 3B, C), with the largest variance of CHIKV titers, reductions of 0.7
\log_{10} , 2.4 \log_{10} and 5.3 \log_{10} pfu/mL, observed when inoculated 6 hours post-
inoculation with NEGV, -PIUV-Culex and -PIUV-Lutzomyia, respectively (Figure 3D).
NEGV and PIUV-Lutzomyia were also able to reduce replication of several
other alphavirus isolates by varying amounts when infected simultaneously. Titers
of VEEV-IC were reduced by 2.8-3.0 log_{10} pfu/mL at 48 hours post co-infection
(Figure 4A). Three isolates of MAYV, Guyane, BeAn343102, and BeAr505411, were
reduced by 1.9-3.2 log_{10} pfu/mL at 48 hours post co-infection (Figure 4B). Outputs
between MAYV co-infections were similar with significant differences at 48 hours
only seen between MAYV-Guyane co-infected with NEGV and PIUV-Lutzomyia,

respectively. ONNV titers were reduced by 2.4-3.2 log₁₀ pfu/mL, and SFV was

across all time points (Figure 2B-D). A similar reduction of VEEV-TC83 was

reduced by 1.2-1.8 log₁₀ pfu/mL after 48 hours (Figure 4C, D).

Replication of modified NEGV isolates 139

140

141

142 as a fusion- and cleaved protein on the C-terminal of ORF3, and as a cleaved protein 143 on the C-terminal of ORF1. 144 Further experiments used isolates with GFP added to the ORF3 (NEGV GFP-145 fusion and NEGV GFP) and also with GFP swapped with scFv CHK265, a partial 146 sequence for an anti-CHIKV antibody (Figure 5A). Mutated isolates were rescued 147 and had titers ranging from $9.6-10.4 \log_{10} \text{ pfu/mL}$, with similar growth curves to the 148 wild-type NEGV (Figure 5B). Cells infected with NEGV GFP-fusion demonstrated 149 brilliant, punctate fluorescence (Figure 5C), while cells infected with NEGV GFP 150 (cleaved) demonstrated dull, diffuse fluorescence (Figure 5D). The number of 151 fluorescent plaques and overall titer of NEGV isolates expressing GFP remained 152 stable for 5 passages in C7/10 cells (Figure 5E, F). 153 154 Superinfection exclusion of alphaviruses with modified NEGV 155 NEGV isolates expressing GFP or scFv-CHK265 were used to infect cells for co-infection with VEEV-TC83 or CHIKV. The results for co-infections with VEEV-156 157 TC83 were similar to the reduction in titer seen with wild-type viruses. At the 48-158 hour timepoint, VEEV-TC83 was reduced by 4.5-5.5 log₁₀ pfu/mL when co-infected 159 with NEGV isolates (Figure 6A), 4.6-5.8 \log_{10} pfu/mL when infected 2 hours post 160 NEGV isolates (Figure 6B), and 5.6-6.9 log₁₀ pfu/mL when infected 6 hours post 161 NEGV isolates (Figure 6C). When infected simultaneously with CHIKV, titers were

The sequence for GFP was successfully cloned as both a fusion- and cleaved

protein at several sites along the NEGV infectious clone (Table 1, Figure 5A).

Following electroporation, viable virus was rescued from isolates with GFP inserted

Journal of Virology

162	reduced by 0.7-1.1 log_{10} pfu/mL during co-infections of NEGV expressing GFP, and
163	by 2.9-3.8 \log_{10} pfu/mL during co-infections of NEGV expressing scFv-CHK265 at the
164	48-hour timepoint (Figure 7A). When inoculated 2 hours post NEGV infection, the
165	titer of CHIKV after 48 hours was reduced 0.7-0.9 \log_{10} pfu/mL with NEGV
166	expressing GFP and 3.7-4.5 log_{10} pfu/mL with NEGV expressing scFv-CHK265
167	(Figure 7B). Delaying CHIKV infection 6 hours post NEGV resulted in reductions of
168	1.2-1.9 \log_{10} pfu/mL and 5.2-5.7 \log_{10} pfu/mL after 48 hours of co-infection with
169	NEGV expressing GFP and scFv-CHK265, respectively (Figure 7C).
170	
171	Discussion
172	The microbiome of arthropod vectors is known to influence host-pathogen
173	interactions (31-33). The precise mechanisms of pathogen inhibition are unknown,
174	but there is increasing evidence that interference from ISVs is one mechanism (5-7,
175	10). Interactions between related viruses has led to the theory of superinfection
176	exclusion, in which an established infection interferes with or inhibits a secondary
177	infection by a closely related virus. For example, a CFAV mosquito isolate reduced
178	the replication of DENV and ZIKV during co-infections in mosquitoes and mosquito
179	cells (5).
180	To investigate if superinfection exclusion occurred with other virus
181	combinations, pathogenic alphaviruses and negeviruses were used in co-infection
182	experiments. Titers of multiple VEEV isolates and MAYV isolates were consistently
183	reduced during co-infection experiments with negeviruses. Reductions varied
184	during CHIKV-negevirus co-infections. These results provide further evidence that

185

			_
5	1		
	-	~	
			_
			-
	-	~	
ь	~		
E.			
			1
			ľ
			Ĩ
			ĺ
			ĺ

186	previous report demonstrating no reduction in titer of VEEV TC-83 and a significant
187	reduction of wild-type VEEV-IC (strain 3908) after 48 hours when co-infected with
188	EILV, an alphavirus ISV (11). However, the potential for superinfection exclusion of
189	pathogens is different for each ISV, despite their relatedness. These differences have
190	been demonstrated among several insect-specific flaviviruses, Nhumirim virus
191	(NHUV) and Palm Creek virus (PCV) were capable of superinfection exclusion; CFAV
192	gave varying results; and Culex flavivirus (CxFV) did not reduce titers of pathogenic
193	arboviruses (5-10, 15, 16, 34-37). In our experiments with negeviruses, PIUV
194	isolates were more capable than NEGV at inhibiting important arboviruses.
195	While ISVs show promising results to block arbovirus replication in
196	mosquito vectors, their unknown mechanism of action may limit their use against a
197	wide range of pathogens, but paratransgenic ISVs could be used to provide antiviral
198	molecules that specifically interfere with pathogen transmission (38). To this end,
199	we used an infectious clone of NEGV to deliver a fragment of an antibody known to
200	neutralize CHIKV (39). A scFv consists of the variable regions of the heavy and light
201	chains of an antibody, joined by a soluble linker. These antibody fragments can
202	possess the neutralizing qualities of their full-size versions in only \sim 27kDa. Co-
203	infections with scFv-expressing NEGV isolates greatly reduced titers of CHIKV,
204	whereas co-infections with control NEGV isolates expressing GFP or wild-type NEGV
205	only modestly reduced CHIKV titers. The use of parastransgenic NEGV expressing
206	scFvs demonstrates a novel approach to disrupt pathogen infection in mosquitoes.
207	This method adapts two existing techniques for pathogen control: Wolbachia

superinfection exclusion of alphaviruses is pathogen specific, but differ from a

S			
۱ A			

Downloaded from http://jvi.asm.org/ on May 10, 2021 at LIVERPOOL SCH OF TROPICAL MED

208	infected mosquitoes and the CRISPR-Cas-aided integration of scFv sequences into
209	the mosquito genome. Wolbachia is a ubiquitous species of bacteria found in many
210	insects that has been shown to block replication of some viral pathogens in cell
211	cultures and mosquitoes. The use of Wolbachia-infected vectors has been widely
212	adapted to curb mosquito-borne viral diseases, propelled by its natural ability to
213	colonize mosquitoes (40). Negeviruses also possess this attribute, having been
214	discovered in numerous mosquito species on 6 continents, along with sandflies and
215	other diverse insect species (20-23, 25). Insertion of gene-editing scFv sequences
216	into mosquito genomes has also been used to prevent <i>Plasmodium</i> and DENV
217	infection (41, 42). By using CRISPR-Cas9 to insert a scFv targeting <i>Plasmodium</i> ,
218	infection was blocked in Anopheles mosquitoes, and gene drive ensured the
219	production of the scFv in the offspring. In this study, we used scFv expression
220	strategy by cloning an anti-CHIKV scFv into the NEGV genome. Using NEGV as a
221	vehicle for paratransgensis is advantageous, because an isolate can infect multiple
222	host species, and it is suspected to be vertically transmitted in mosquitoes and in
223	theory could become established in multiple generations of the infected host species
224	(17, 22, 43).
225	Modifications to certain parts of the NEGV genome were tolerated as both
226	cleaved and fusion proteins. Expression of extraneous proteins in viruses is
227	common with 2A sequences to produce separate proteins or under a separate
228	subgenomic promoter (44, 45). However, extraneous proteins expressed as a fusion
229	with a structural virus protein is uncommon. ORF3 is \sim 25kDa and is suspected to be

231	the putative glycoprotein predicted to form a bud projecting from one end of the
232	virion (26). The viability of the NEGV isolates with GFP- or scFv-fusion at ORF3
233	isolates was surprising because these inserts double the size of the membrane
234	protein, which must interact with itself and ultimately support the projection of the
235	glycoprotein. The modifications to ORF2 resulting in non-viable virus are not
236	surprising as the glycoprotein is suggested to be important for cell attachment and
237	entry (26). GFP preceded by a 2A sequence was also successfully cloned onto the C-
238	terminal of ORF1. As 2A allows for separation of the two proteins, this insertion only
239	added 17 residues to a \sim 268kDa protein. However, ORF1 will likely be expressed at
240	lower levels compared to ORF3. By using NEGV to express anti-CHIKV scFvs, the
241	cleaved and fused inserts may provide distinct advantages. Cleaved scFvs are free to
242	be transported around the cell, accessing many different locations where they may
243	encounter CHIKV proteins. In contrast, fused proteins are bound to the membrane
244	protein of NEGV and are limited to compartments of the cell where NEGV proteins
245	are expressed, and virions are assembled. In theory, increasing the concentration of
246	the scFvs in specific areas of the cell, should inhibit CHIKV virion assembly and
247	egression. By using both cleaved and fused NEGV isolates, the scFv sequence can
248	also be easily replaced to target a new pathogen, adding to the versatility of this
249	technique.
250	The current experiments demonstrate the ability of some negeviruses, both
251	wild-type and paratransgenic isolates, to inhibit the replication in mosquito cells
252	with co-infected arboviruses. The next question is whether genetically altered

253 negeviruses will survive and replicate in live mosquitoes; and if so, will they be

 \leq

Journal of Virology

vertically transmitted or transovarially transmitted in the insects? This will be our
next area of investigation. If successful, then the use of paratransgenic negeviruses
could be another novel method to alter the vector competence of mosquitoes for
selected arboviruses.

258

259 Materials and Methods

260 Cell culture and viruses

261 Aedes albopictus (C7/10) cells (46) were obtained from the World Reference 262 Center for Emerging Viruses and Arboviruses (WRCEVA). African green monkey 263 kidney (Vero E6) cells were obtained from the American Type Culture Collection 264 (ATCC). C7/10 cells were maintained in Dulbecco's minimal essential medium 265 (DMEM) supplemented with 10% fetal bovine serum (FBS), 1% minimal essential 266 medium non-essential amino acids, 1% tryptose phosphate broth and 0.05 mg/mL 267 gentamycin in a 30° C incubator with 5% CO₂. Vero cells were maintained in DMEM 268 supplemented with 10% FBS and 0.05 mg/mL gentamycin in a 37°C incubator with 269 5% CO₂. 270 NEGV was rescued in C7/10 cells from an infectious clone as previously

described and without further passage (47). The sequence was derived from NEGV

strain M30957 isolated from a pool of *Culex coronator* mosquitoes collected in

273 Harris County, Texas, USA in 2008 (17). Piura virus (PIUV) strain EVG 7-47 (PIUV-

- 274 Culex) isolated from a pool of *Culex nigripalpus* mosquitoes from Everglades
- 275 National Park, Florida, USA in 2013 (22). PIUV EVG 7-47 was passaged four times in
- 276 C6/36 cells and obtained from the WRCEVA. PIUV strain CO R 10 (PIUV-Lutzomyia)

was isolated from a pool of Lutzomyia evansi sandflies caught in Ovejas, Sucre,
Colombia in 2013 (22). The isolate PIUV CO R 10 was passaged twice in C6/36 cells
and also obtained from the WRCEVA. CHIKV isolate $181/25$ (48) was rescued in
Vero cells from an infectious clone as previously described (49). Rescued CHIKV
181/25 was subsequently passaged once in C7/10 cells and once in Vero cells.
Venezuelan equine encephalitis virus (VEEV) vaccine strain, TC-83 (50), was
rescued in baby hamster kidney (BHK) cells from an infectious clone without
further passage. VEEV isolate P676 (VEEV-IC), and SFV isolate A774/C2/A were
attained from Public Health England and passaged once in Vero cells. ONNV isolate
UgMP30, and Mayaro virus (MAYV) isolates Guyane, BeAn344102, and BeAr505411
were attained from BEI Resources and passaged once in Vero cells.
Cloning NEGV for exogenous gene expression
<i>Cloning NEGV for exogenous gene expression</i> The NEGV infectious clone was used as the backbone to express exogenous
Cloning NEGV for exogenous gene expression The NEGV infectious clone was used as the backbone to express exogenous genes. Green fluorescent protein (GFP; 717bp) was inserted along several sites of
Cloning NEGV for exogenous gene expression The NEGV infectious clone was used as the backbone to express exogenous genes. Green fluorescent protein (GFP; 717bp) was inserted along several sites of the NEGV genome and the single chain variable fragment (scFv) of anti-CHIKV
Cloning NEGV for exogenous gene expression The NEGV infectious clone was used as the backbone to express exogenous genes. Green fluorescent protein (GFP; 717bp) was inserted along several sites of the NEGV genome and the single chain variable fragment (scFv) of anti-CHIKV neutralizing antibody CHK265 (771bp including linkers) (39) was inserted on the C-
Cloning NEGV for exogenous gene expression The NEGV infectious clone was used as the backbone to express exogenous genes. Green fluorescent protein (GFP; 717bp) was inserted along several sites of the NEGV genome and the single chain variable fragment (scFv) of anti-CHIKV neutralizing antibody CHK265 (771bp including linkers) (39) was inserted on the C- terminal of ORF3 as either a fusion protein, or with a 2A sequence
Cloning NEGV for exogenous gene expression The NEGV infectious clone was used as the backbone to express exogenous genes. Green fluorescent protein (GFP; 717bp) was inserted along several sites of the NEGV genome and the single chain variable fragment (scFv) of anti-CHIKV neutralizing antibody CHK265 (771bp including linkers) (39) was inserted on the C- terminal of ORF3 as either a fusion protein, or with a 2A sequence (EGRGSLLTCGDVEENPGP) (Figure 1A). The cloned scFv CHK265 sequence
Cloning NEGV for exogenous gene expression The NEGV infectious clone was used as the backbone to express exogenous genes. Green fluorescent protein (GFP; 717bp) was inserted along several sites of the NEGV genome and the single chain variable fragment (scFv) of anti-CHIKV neutralizing antibody CHK265 (771bp including linkers) (39) was inserted on the C- terminal of ORF3 as either a fusion protein, or with a 2A sequence (EGRGSLLTCGDVEENPGP) (Figure 1A). The cloned scFv CHK265 sequence contained a N-terminal linker (LAAQPAMA) for articulation from the viral ORF3
Cloning NEGV for exogenous gene expression The NEGV infectious clone was used as the backbone to express exogenous genes. Green fluorescent protein (GFP; 717bp) was inserted along several sites of the NEGV genome and the single chain variable fragment (scFv) of anti-CHIKV neutralizing antibody CHK265 (771bp including linkers) (39) was inserted on the C- terminal of ORF3 as either a fusion protein, or with a 2A sequence (EGRGSLLTCGDVEENPGP) (Figure 1A). The cloned scFv CHK265 sequence contained a N-terminal linker (LAAQPAMA) for articulation from the viral ORF3 protein, and a domain linker ((G4S)4) between the variable heavy (V _H) and variable
Cloning NEGV for exogenous gene expression The NEGV infectious clone was used as the backbone to express exogenous genes. Green fluorescent protein (GFP; 717bp) was inserted along several sites of the NEGV genome and the single chain variable fragment (scFv) of anti-CHIKV neutralizing antibody CHK265 (771bp including linkers) (39) was inserted on the C- terminal of ORF3 as either a fusion protein, or with a 2A sequence (EGRGSLLTCGDVEENPGP) (Figure 1A). The cloned scFv CHK265 sequence contained a N-terminal linker (LAAQPAMA) for articulation from the viral ORF3 protein, and a domain linker ((G4S)4) between the variable heavy (V _H) and variable light (V _L) domains (Integrative DNA Technologies) (Figure 1B). Cloning was

Ň

300	protocol. Correct insertion was confirmed by sequencing. Infectious clones of NEGV
301	containing exogenous genes were rescued in C7/10 cells as previously described
302	and without further passage (47). Passaging of NEGV isolates expressing GFP was
303	performed by inoculating C7/10 cells with a MOI of 1 and collecting media
304	supernatant at 48 hours post infection.
305	
306	Virus growth curves
307	Negevirus and alphavirus growth curves were done in C7/10 cells
308	maintained at 30°C and 5% $\rm CO_2$. Negeviruses were inoculated at a multiplicity of
309	infection (MOI) of 1 or 5. Alphaviruses were inoculated at a MOI of 0.1. Virus was
310	added to the cells which were incubated at 30°C for one hour. Inoculum was
311	removed, cells were washed with PBS, and fresh media was added to the wells. Cells
312	were incubated in a 30°C incubator with 5% CO_2 . Samples were collected in
313	triplicate at 2-, 6-, 12-, 24- and 48-hours post infection (hpi). Samples were clarified
314	by centrifugation at 1962 <i>x g</i> for 5 minutes. Supernatant was removed and stored at
315	-80°C until used for plaque assays. Negevirus titers were determined by plaque
316	assay in C7/10 cells as previously described (47). Alphavirus titers were
317	determined by standard plaque assay in Vero cells.
318	
319	Negevirus-alphavirus co-infections
320	C7/10 cells were inoculated with negevirus isolates at a MOI of 1 or 5 to
321	establish infection in a high proportion of cells. The cells were also inoculated with
322	an alphavirus at a MOI of 0.1 at 0, 2, or 6 hours post negevirus infection. Media was

 \sum

323	removed after 1 hour of simultaneous incubation with negevirus and alphavirus
324	inocula. Cells were then washed with PBS, and fresh medium was added to the wells.
325	Cells were held in a 30°C incubator with 5% CO ₂ . Samples were collected in
326	triplicate at 12-, 24- and 48-hours, or 24- and 48-hours post alphavirus infection.
327	Samples were clarified by centrifugation at 1962 $x g$ for 5 minutes. Supernatant was
328	removed and stored at -80°C until used for plaque assays. Alphavirus titers were
329	determined by standard plaque assay in Vero cells.
330	
331	Statistical analysis
332	Differences in virus growth curves were determined by two-way ANOVA
333	followed by Tukey's test. Comparison of NEGV growth curves with different MOIs
334	was determined by multiple t tests followed by Holm-Sidak method. All statistical
335	tests were performed using GraphPad Prism 6.0.
336	
337	Acknowledgements
338	EIP was supported by the Liverpool School of Tropical Medicine Director's Catalyst
339	Fund award. NLF was supported by the NIH R01-AI095753-01A1 and R01-
340	AI125902. GLH was supported by the BBSRC (BB/T001240/1 and V011278/1), a
341	Royal Society Wolfson Fellowship (RSWF\R1 180013), the NIH (R21AI138074),
342	URKI (20197), and the NIHR (NIHR2000907), GLH is affiliated to the National
343	Institute for Health Research Health Protection Research Unit (NIHR HPRU) in
343 344	Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Emerging and Zoonotic Infections at University of Liverpool in partnership with
343 344 345	Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Emerging and Zoonotic Infections at University of Liverpool in partnership with Public Health England (PHE), in collaboration with Liverpool School of Tropical
343 344 345	Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Emerging and Zoonotic Infections at University of Liverpool in partnership with Public Health England (PHE), in collaboration with Liverpool School of Tropical

 \sum

346

347	are t	hose of the author(s) and not necessarily those of the NHS, the NIHR, the
348	Depa	rtment of Health or Public Health England.
349		
350	Auth	or Contributions
351	EIP d	lesigned the experiments. EIP, TK, MAC-G and HG completed the experiments.
352	EIP u	indertook analysis. EIP, TK, RBT, GLH and NLF wrote and edited the manuscript
353	and a	all authors agreed to the final version. RBT, GLH and NLF provided supervision.
354	EIP a	nd NLF acquired the funding.
355		
356		References
357 358	1.	Calisher CH, Higgs S. 2018. The Discovery of Arthropod-Specific Viruses in
359		Hematophagous Arthropods: An Open Door to Understanding the
360		Mechanisms of Arbovirus and Arthropod Evolution? Annu Rev Entomol
361		63: 87-103.
362	2.	Ledermann JP, Suchman EL, Black WCt, Carlson JO. 2004. Infection and
363		pathogenicity of the mosquito densoviruses AeDNV, HeDNV, and APeDNV in
364		Aedes aegypti mosquitoes (Diptera: Culicidae). J Econ Entomol 97:1828-
365		1835.
366	3.	Carlson J, Suchman E, Buchatsky L. 2006. Densoviruses for control and
367		genetic manipulation of mosquitoes. Adv Virus Res 68: 361-392.

Medicine and the University of Oxford. GLH is based at LSTM. The views expressed

Journal of Virology

368	4.	Hirunkanokpun S, Carlson JO, Kittayapong P. 2008. Evaluation of
369		mosquito densoviruses for controlling Aedes aegypti (Diptera: Culicidae):
370		variation in efficiency due to virus strain and geographic origin of
371		mosquitoes. Am J Trop Med Hyg 78: 784-790.
372	5.	Baidaliuk A, Miot EF, Lequime S, Moltini-Conclois I, Delaigue F, Dabo S,
373		Dickson LB, Aubry F, Merkling SH, Cao-Lormeau VM, Lambrechts L.
374		2019. Cell-Fusing Agent Virus Reduces Arbovirus Dissemination in Aedes
375		aegypti Mosquitoes In Vivo. J Virol 93 .
376	6.	Goenaga S, Kenney JL, Duggal NK, Delorey M, Ebel GD, Zhang B, Levis SC,
377		Enria DA, Brault AC. 2015. Potential for Co-Infection of a Mosquito-Specific
378		Flavivirus, Nhumirim Virus, to Block West Nile Virus Transmission in
379		Mosquitoes. Viruses 7: 5801-5812.
380	7.	Hall-Mendelin S, McLean BJ, Bielefeldt-Ohmann H, Hobson-Peters J, Hall
381		RA, van den Hurk AF. 2016. The insect-specific Palm Creek virus modulates
382		West Nile virus infection in and transmission by Australian mosquitoes.
383		Parasit Vectors 9: 414.
384	8.	Hobson-Peters J, Yam AW, Lu JW, Setoh YX, May FJ, Kurucz N, Walsh S,
385		Prow NA, Davis SS, Weir R, Melville L, Hunt N, Webb RI, Blitvich BJ,
386		Whelan P, Hall RA. 2013. A new insect-specific flavivirus from northern

 \sum

Journal of Virology

3	387		Australia suppresses replication of West Nile virus and Murray Valley
	388		encephalitis virus in co-infected mosquito cells. PLoS One 8: e56534.
	280	9	Kenney II. Solberg OD. Langevin SA. Brault AC 2014. Characterization of a
	505	9.	Kenney JL, Solberg OD, Langevin SA, Drautt AC. 2014. Characterization of a
3	390		novel insect-specific flavivirus from Brazil: potential for inhibition of
	391		infection of arthropod cells with medically important flaviviruses. J Gen Virol
	392		95: 2796-2808.
	202	10	
	393	10.	Romo H, Kenney JL, Blitvich BJ, Brault AC. 2018. Restriction of Zika virus
	394		infection and transmission in Aedes aegypti mediated by an insect-specific
	395		flavivirus. Emerg Microbes Infect 7: 181.
	396	11.	Nasar F, Erasmus JH, Haddow AD, Tesh RB, Weaver SC. 2015. Eilat virus
	397		induces both homologous and heterologous interference. Virology 484: 51-
	398		58.
	399	12.	Burivong P, Pattanakitsakul SN, Thongrungkiat S, Malasit P, Flegel TW.
2	400		2004. Markedly reduced severity of Dengue virus infection in mosquito cell
4	401		cultures persistently infected with Aedes albopictus densovirus (AalDNV).
4	402		Virology 329: 261-269.
4	403	13.	Schultz MJ, Frydman HM, Connor JH. 2018. Dual Insect specific virus
Z	404		infection limits Arbovirus replication in Aedes mosquito cells. Virology
Z	405		518: 406-413.

406	14.	Ye G, Wang Y, Liu X, Dong Q, Cai Q, Yuan Z, Xia H. 2020. Transmission
407		competence of a new mesonivirus, Yichang virus, in mosquitoes and its
408		interference with representative flaviviruses. PLoS Negl Trop Dis
409		14: e0008920.
410	15.	Zhang G, Asad S, Khromykh AA, Asgari S. 2017. Cell fusing agent virus and
411		dengue virus mutually interact in Aedes aegypti cell lines. Sci Rep 7: 6935.
412	16.	Bolling BG, Olea-Popelka FJ, Eisen L, Moore CG, Blair CD. 2012.
413		Transmission dynamics of an insect-specific flavivirus in a naturally infected
414		Culex pipiens laboratory colony and effects of co-infection on vector
415		competence for West Nile virus. Virology 427: 90-97.
416	17.	Vasilakis N, Forrester NL, Palacios G, Nasar F, Savji N, Rossi SL, Guzman
417		H, Wood TG, Popov V, Gorchakov R, Gonzalez AV, Haddow AD, Watts DM,
418		da Rosa AP, Weaver SC, Lipkin WI, Tesh RB. 2013. Negevirus: a proposed
419		new taxon of insect-specific viruses with wide geographic distribution. J Virol
420		87: 2475-2488.
421	18.	Carapeta S, do Bem B, McGuinness J, Esteves A, Abecasis A, Lopes A, de
422		Matos AP, Piedade J, de Almeida AP, Parreira R. 2015. Negeviruses found
423		in multiple species of mosquitoes from southern Portugal: Isolation, genetic
424		diversity, and replication in insect cell culture. Virology 483: 318-328.

425

19.

426		Machain-Williams C, Blitvich BJ. 2018. Detection of novel and recognized
427		RNA viruses in mosquitoes from the Yucatan Peninsula of Mexico using
428		metagenomics and characterization of their in vitro host ranges. J Gen Virol
429		99: 1729-1738.
430	20.	Kondo H, Chiba S, Maruyama K, Andika IB, Suzuki N. 2019. A novel insect-
431		infecting virga/nege-like virus group and its pervasive endogenization into
432		insect genomes. Virus Res 262: 37-47.
433	21.	Kondo H, Fujita M, Hisano H, Hyodo K, Andika IB, Suzuki N. 2020. Virome
434		Analysis of Aphid Populations That Infest the Barley Field: The Discovery of
435		Two Novel Groups of Nege/Kita-Like Viruses and Other Novel RNA Viruses.
436		Front Microbiol 11: 509.
437	22.	Nunes MRT, Contreras-Gutierrez MA, Guzman H, Martins LC, Barbirato
438		MF, Savit C, Balta V, Uribe S, Vivero R, Suaza JD, Oliveira H, Nunes Neto
439		JP, Carvalho VL, da Silva SP, Cardoso JF, de Oliveira RS, da Silva Lemos P,
440		Wood TG, Widen SG, Vasconcelos PFC, Fish D, Vasilakis N, Tesh RB. 2017.
441		Genetic characterization, molecular epidemiology, and phylogenetic
442		relationships of insect-specific viruses in the taxon Negevirus. Virology
443		504: 152-167.

Charles J, Tangudu CS, Hurt SL, Tumescheit C, Firth AE, Garcia-Rejon JE,

Journal of Virology

 \sum

444 23. De Miranda JRH, H.; Onorati, P.; Stephan, J.; Karlberg, O.; Bylund, H.; 445 Terenius, O. 2017. Characterization of a Novel RNA Virus Discovered in the 446 Autumnal Moth Epirrita autumnata in Sweden. Viruses 9. 447 24. Kallies R, Kopp A, Zirkel F, Estrada A, Gillespie TR, Drosten C, Junglen S. 448 2014. Genetic characterization of goutanap virus, a novel virus related to 449 negeviruses, cileviruses and higreviruses. Viruses 6:4346-4357. 450 25. Lu G, Ye ZX, He YJ, Zhang Y, Wang X, Huang HJ, Zhuo JC, Sun ZT, Yan F, 451 Chen JP, Zhang CX, Li JM. 2020. Discovery of Two Novel Negeviruses in a 452 Dungfly Collected from the Arctic. Viruses 12. 453 Colmant AMG, O'Brien CA, Newton ND, Watterson D, Hardy J, Coulibaly 26. 454 F, Bielefeldt-Ohmann H, Warrilow D, Huang B, Paramitha D, Harrison JJ, 455 Hall RA, Hobson-Peters J. 2020. Novel monoclonal antibodies against 456 Australian strains of negeviruses and insights into virus structure, replication 457 and host -restriction. J Gen Virol 101:440-452. 458 Nabeshima T, Inoue S, Okamoto K, Posadas-Herrera G, Yu F, Uchida L, 27. 459 Ichinose A, Sakaguchi M, Sunahara T, Buerano CC, Tadena FP, Orbita IB, 460 Natividad FF, Morita K. 2014. Tanay virus, a new species of virus isolated 461 from mosquitoes in the Philippines. J Gen Virol **95**:1390-1395.

462	28.	O'Brien CA, McLean BJ, Colmant AMG, Harrison JJ, Hall-Mendelin S, van
463		den Hurk AF, Johansen CA, Watterson D, Bielefeldt-Ohmann H, Newton
464		ND, Schulz BL, Hall RA, Hobson-Peters J. 2017. Discovery and
465		Characterisation of Castlerea Virus, a New Species of Negevirus Isolated in
466		Australia. Evol Bioinform Online 13: 1176934317691269.
467	29.	Shi M, Neville P, Nicholson J, Eden JS, Imrie A, Holmes EC. 2017. High-
468		Resolution Metatranscriptomics Reveals the Ecological Dynamics of
469		Mosquito-Associated RNA Viruses in Western Australia. J Virol 91 .
470	30.	Atoni E, Wang Y, Karungu S, Waruhiu C, Zohaib A, Obanda V, Agwanda B,
471		Mutua M, Xia H, Yuan Z. 2018. Metagenomic Virome Analysis of Culex
472		Mosquitoes from Kenya and China. Viruses 10 .
473	31.	Cross ST, Kapuscinski ML, Perino J, Maertens BL, Weger-Lucarelli J, Ebel
474		GD, Stenglein MD. 2018. Co-Infection Patterns in Individual Ixodes
475		scapularis Ticks Reveal Associations between Viral, Eukaryotic and Bacterial
476		Microorganisms. Viruses 10.
477	32.	Hegde S, Khanipov K, Albayrak L, Golovko G, Pimenova M, Saldana MA,
478		Rojas MM, Hornett EA, Motl GC, Fredregill CL, Dennett JA, Debboun M,
479		Fofanov Y, Hughes GL. 2018. Microbiome Interaction Networks and
480		Community Structure From Laboratory-Reared and Field-Collected Aedes

481		aegypti, Aedes albopictus, and Culex quinquefasciatus Mosquito Vectors.
482		Front Microbiol 9: 2160.
483	33.	Nanfack-Minkeu F, Mitri C, Bischoff E, Belda E, Casademont I, Vernick
484		KD. 2019. Interaction of RNA viruses of the natural virome with the African
485		malaria vector, Anopheles coluzzii. Sci Rep 9: 6319.
486	34.	Kuwata R, Isawa H, Hoshino K, Sasaki T, Kobayashi M, Maeda K, Sawabe
487		K. 2015. Analysis of Mosquito-Borne Flavivirus Superinfection in Culex
488		tritaeniorhynchus (Diptera: Culicidae) Cells Persistently Infected with Culex
489		Flavivirus (Flaviviridae). J Med Entomol 52: 222-229.
490	35.	Newman CM, Krebs BL, Anderson TK, Hamer GL, Ruiz MO, Brawn JD,
490 491	35.	Newman CM, Krebs BL, Anderson TK, Hamer GL, Ruiz MO, Brawn JD, Brown WM, Kitron UD, Goldberg TL. 2017. Culex Flavivirus During West
490 491 492	35.	Newman CM, Krebs BL, Anderson TK, Hamer GL, Ruiz MO, Brawn JD, Brown WM, Kitron UD, Goldberg TL. 2017. Culex Flavivirus During West Nile Virus Epidemic and Interepidemic Years in Chicago, United States.
490 491 492 493	35.	Newman CM, Krebs BL, Anderson TK, Hamer GL, Ruiz MO, Brawn JD, Brown WM, Kitron UD, Goldberg TL. 2017. Culex Flavivirus During West Nile Virus Epidemic and Interepidemic Years in Chicago, United States. Vector Borne Zoonotic Dis 17:567-575.
490 491 492 493	35.	Newman CM, Krebs BL, Anderson TK, Hamer GL, Ruiz MO, Brawn JD, Brown WM, Kitron UD, Goldberg TL. 2017. Culex Flavivirus During West Nile Virus Epidemic and Interepidemic Years in Chicago, United States. Vector Borne Zoonotic Dis 17: 567-575.
490 491 492 493 494	35. 36.	Newman CM, Krebs BL, Anderson TK, Hamer GL, Ruiz MO, Brawn JD,Brown WM, Kitron UD, Goldberg TL. 2017. Culex Flavivirus During WestNile Virus Epidemic and Interepidemic Years in Chicago, United States.Vector Borne Zoonotic Dis 17:567-575.Talavera S, Birnberg L, Nunez AI, Munoz-Munoz F, Vazquez A, Busquets
490 491 492 493 494 495	35. 36.	Newman CM, Krebs BL, Anderson TK, Hamer GL, Ruiz MO, Brawn JD,Brown WM, Kitron UD, Goldberg TL. 2017. Culex Flavivirus During WestNile Virus Epidemic and Interepidemic Years in Chicago, United States.Vector Borne Zoonotic Dis 17:567-575.Talavera S, Birnberg L, Nunez AI, Munoz-Munoz F, Vazquez A, BusquetsN. 2018. Culex flavivirus infection in a Culex pipiens mosquito colony and its
490 491 492 493 494 495 496	35. 36.	Newman CM, Krebs BL, Anderson TK, Hamer GL, Ruiz MO, Brawn JD,Brown WM, Kitron UD, Goldberg TL. 2017. Culex Flavivirus During WestNile Virus Epidemic and Interepidemic Years in Chicago, United States.Vector Borne Zoonotic Dis 17:567-575.Talavera S, Birnberg L, Nunez AI, Munoz-Munoz F, Vazquez A, BusquetsN. 2018. Culex flavivirus infection in a Culex pipiens mosquito colony and itseffects on vector competence for Rift Valley fever phlebovirus. Parasit
490 491 492 493 494 495 496 497	35. 36.	Newman CM, Krebs BL, Anderson TK, Hamer GL, Ruiz MO, Brawn JD,Brown WM, Kitron UD, Goldberg TL. 2017. Culex Flavivirus During WestNile Virus Epidemic and Interepidemic Years in Chicago, United States.Vector Borne Zoonotic Dis 17:567-575.Talavera S, Birnberg L, Nunez AI, Munoz-Munoz F, Vazquez A, BusquetsN. 2018. Culex flavivirus infection in a Culex pipiens mosquito colony and itseffects on vector competence for Rift Valley fever phlebovirus. ParasitVectors 11:310.

498	37.	Kent RJ, Crabtree MB, Miller BR. 2010. Transmission of West Nile virus by
499		Culex quinquefasciatus say infected with Culex Flavivirus Izabal. PLoS Negl
500		Trop Dis 4: e671.
501	38.	Patterson EI, Villinger J, Muthoni JN, Dobel-Ober L, Hughes GL. 2020.
502		Exploiting insect-specific viruses as a novel strategy to control vector-borne
503		disease. Curr Opin Insect Sci 39: 50-56.
504	39.	Fox JM, Long F, Edeling MA, Lin H, van Duijl-Richter MKS, Fong RH, Kahle
505		KM, Smit JM, Jin J, Simmons G, Doranz BJ, Crowe JE, Jr., Fremont DH,
506		Rossmann MG, Diamond MS. 2015. Broadly Neutralizing Alphavirus
507		Antibodies Bind an Epitope on E2 and Inhibit Entry and Egress. Cell
508		163: 1095-1107.
509	40.	Jiggins FM. 2017. The spread of Wolbachia through mosquito populations.
510		PLoS Biol 15 :e2002780.
511	41.	Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E,
512		James AA. 2015. Highly efficient Cas9-mediated gene drive for population
513		modification of the malaria vector mosquito Anopheles stephensi. Proc Natl
514		Acad Sci U S A 112: E6736-6743.
515	42.	Buchman A, Gamez S, Li M, Antoshechkin I, Li HH, Wang HW, Chen CH,
516		Klein MJ, Duchemin JB, Crowe JE, Jr., Paradkar PN, Akbari OS. 2020.

 \leq

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

	Broad dengue neutralization in mosquitoes expressing an engineered
	antibody. PLoS Pathog 16: e1008103.
43.	Kawakami K, Kurnia YW, Fujita R, Ito T, Isawa H, Asano S, Binh ND,
	Bando H. 2016. Characterization of a novel negevirus isolated from Aedes
	larvae collected in a subarctic region of Japan. Arch Virol 161: 801-809.
44.	Kautz TF, Jaworski E, Routh A, Forrester NL. 2020. A Low Fidelity Virus
	Shows Increased Recombination during the Removal of an Alphavirus
	Reporter Gene. Viruses 12 .
45.	Suzuki Y, Niu G, Hughes GL, Rasgon JL. 2014. A viral over-expression
	system for the major malaria mosquito Anopheles gambiae. Sci Rep 4: 5127.
46.	Walker T, Jeffries CL, Mansfield KL, Johnson N. 2014. Mosquito cell lines:
	history, isolation, availability and application to assess the threat of arboviral
	transmission in the United Kingdom. Parasit Vectors 7: 382.
47.	Gorchakov RV, Tesh RB, Weaver SC, Nasar F. 2014. Generation of an
	infectious Negev virus cDNA clone. J Gen Virol 95: 2071-2074.
48.	Levitt NH, Ramsburg HH, Hasty SE, Repik PM, Cole FE, Jr., Lupton HW.
	1986. Development of an attenuated strain of chikungunya virus for use in
	vaccine production. Vaccine 4: 157-162.

 \sum

535	49.	Smith DR, Adams AP, Kenney JL, Wang E, Weaver SC. 2008. Venezuelan
536		equine encephalitis virus in the mosquito vector Aedes taeniorhynchus:
537		infection initiated by a small number of susceptible epithelial cells and a
538		population bottleneck. Virology 372: 176-186.
539	50.	Kinney RM, Chang GJ, Tsuchiya KR, Sneider JM, Roehrig JT, Woodward
540		TM, Trent DW. 1993. Attenuation of Venezuelan equine encephalitis virus
541		strain TC-83 is encoded by the 5'-noncoding region and the E2 envelope
542		glycoprotein. J Virol 67: 1269-1277.
543		
544		
545		
546		
547	Figur	e legends
548	Figur	e 1. Growth curve for wild-type negeviruses. A) The titer of each virus, Negev
549	virus	(NEGV), Piura virus-Culex (PIUV-Culex) and Piura virus-Lutzomyia (PIUV-
550	Lutzo	myia) at different time points following infection at MOI of 1 in C7/10 cells. B)
551	Grow	th curve of NEGV with MOI of 1 and 5 in C7/10 cells. All points represent mean
552	of n=3	3, ± SD. Letters indicate significant differences (p < 0.0001).
553		
554	Figur	e 2. Growth curves of VEEV-TC83 in C7/10 cells during co-infections with wild-
555	type r	negeviruses. A) Growth curves of VEEV-TC83 when inoculated on cells at 0-, 2-
556	and 6	hours post NEGV infections. NEGV was inoculated at MOI 1 or 5. B) Growth

557

curves of VEEV-TC83 when inoculated on cells at 0 hours post negevirus infection, 558 C) 2 hours post negevirus infection, and D) 6 hours post negevirus infection. 559 Negeviruses were inoculated at MOI of 1 (B-D). VEEV-TC83 was inoculated at a MOI 560 of 0.1 in all conditions. All points represent mean of $n=3, \pm$ SD. Letters indicate 561 significant differences (p < 0.0001). 562 563 Figure 3. Growth curves of CHIKV in C7/10 cells during co-infections with wild-type 564 negeviruses. A) Growth curves of CHIKV when inoculated on cells at 0-, 2- and 6 565 hours post NEGV infections. NEGV was inoculated at MOI 1 or 5. B) Growth curves of 566 CHIKV when inoculated on cells at 0 hours post negevirus infection, C) 2 hours post 567 negevirus infection, and D) 6 hours post negevirus infection. Negeviruses were 568 inoculated at MOI of 1 (B-D). CHIKV was inoculated at a MOI of 0.1 in all conditions. 569 All points represent mean of $n=3, \pm$ SD. Letters indicate significant differences (p < 570 0.0001). 571

572 Figure 4. Growth curves of VEEV-IC, MAYV isolates, ONNV, and SFV in C7/10 cells 573 during co-infections with wild-type negeviruses. A) Growth curves of VEEV-IC when 574 inoculated on cells at 0 hours post negevirus infections. B) Growth curves of MAYV-575 Guyane, MAYV-BeAn343102, and MAYV-BeAr505411 when inoculated on cells at 0 576 hours post negevirus infection. C) Growth curves of ONNV when inoculated on cells 577 at 0 hours post negevirus infection. D) Growth curves of SFV when inoculated on 578 cells at 0 hours post negevirus infection. Negeviruses were inoculated at MOI of 1 in 579 all conditions. Alphaviruses were inoculated at a MOI of 0.1 in all conditions. All

 $\overline{\leq}$

Journal of Virology

points represent mean of n=3, ± SD. Letters indicate significant differences (p < 580

581 0.0001).

582

583	Figure 5. Rescued paratransgenic NEGV infectious clones. A) Schematic of NEGV
584	genomes for wild-type, and GFP-expressing viruses. NEGV GFP-fusion added the
585	GFP sequence onto ORF3 and NEGV GFP separated the ORF3 and GFP with a 2A
586	sequence to produce the proteins separately. GFP was replaced by scFv-CHK265 for
587	NEGV scFv-CHK265-fusion and NEGV scFv-CHK265. B) Growth curves of NEGV
588	wild-type and NEGV mutants expressing GFP or scFv-CHK265. All points represent
589	mean of n=3, \pm SD. Letters indicate significant differences (p < 0.0001). C)
590	Fluorescent microscopy of C7/10 cells infected with NEGV GFP-fusion. Cells
591	demonstrate brilliant, punctate fluorescence. D) Fluorescent microscopy of C7/10
592	cells infected with NEGV GFP. Cells demonstrate dull, diffuse fluorescence. E) The
593	ratio of plaques to fluorescent plaques over 5 passages in C7/10 cells with NEGV
594	GFP-fusion and NEGV GFP. All points represent mean of n=3, \pm SD. F) Titer of NEGV
595	GFP-fusion and NEGV GFP during 5 passages in $C7/10$ cells. All points represent
596	mean of n=3, \pm SD. All NEGV isolates were inoculated at MOI of 1.
597	
598	Figure 6. Growth curves of VEEV-TC83 during co-infections with paratransgenic
599	NEGV. Growth curves of VEEV-TC83 when inoculated on cells at A) 0 hours post
600	NEGV infection, B) 2 hours post NEGV infection, and C) 6 hours post NEGV infection.

All NEGV isolates were inoculated at MOI of 1. VEEV-TC83 was inoculated at a MOI 601

Arrenter

Z

602 of 0.1 in all conditions. All points represent mean of n=3, ± SD. Letters indicate

- 603 significant differences (p < 0.0001).
- 604
- Figure 7. Growth curves of CHIKV during co-infections with paratransgenic NEGV.
- 606 Growth curves of CHIKV when inoculated on cells at A) 0 hours post NEGV infection,
- 607 B) 2 hours post NEGV infection, and C) 6 hours post NEGV infection. All NEGV
- 608 isolates were inoculated at MOI of 1. CHIKV was inoculated at a MOI of 0.1 in all
- 609 conditions. All points represent mean of n=3, ± SD. Letters indicate significant
- 610 differences (p < 0.0001).

611 Tables

- 612 Table 1. Rescue and passage of NEGV infectious clones with GFP inserted at different
- 613 sites of the genome. Transcribed RNA was electroporated for P0 stock and
- 614 supernatant was collected to generate P1 stock.

Insertion site	GFP expression P0	GFP expression P1	CPE
ORF1-2A-GFP	+	+	+
GFP-ORF2	+	-	-
ORF2-GFP	+	-	-
ORF2-2A-GFP	+	-	-
GFP-ORF3	+	-	-
ORF3-GFP	+	+	+
ORF3-2A-GFP	+	+	+

615

 $\overline{\leq}$

616 Figures

Z

621 Figure 2.

622

620

624 Figure 3.

625

627 Figure 4.

628

631

Z

Α

12-

634

