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1 Introduction

The Einstein-Hilbert (henceforth EH ) term is the only known fully ghost-free, consistent
and Lorentz invariant derivative interaction (kinetic) term for a single spin-2 field g [1], i.e.
also for a graviton. It is fully non-linear, invariant under diffeomorphisms acting on g and
propagates the two degrees of freedom (dof ) of a massless spin-2 field. The recent discovery
of ghost-free potential-type interactions for a single [2–4], two [5–7] or multiple [8] spin-2
fields/gravitons resulted in consistent theories for such fields built out of 1) EH terms for
each graviton and 2) the new potential-type interactions. These non-derivative interactions
break some of the diffeomorphism invariance present at the level of the EH terms, leading to
the propagation of additional dof (Goldstone bosons of the broken symmetry). E.g. massive
gravity generically propagates the five degrees of freedom of a massive spin-2 field.1

Having constructed consistent theories that break diffeomorphism invariance(s) in their
potential (non-derivative) interactions, it is natural to ask whether one can also find kinetic
terms other than the EH term for g, possibly propagating more than two dof . Various such

1It is worth emphasising that broken diffeomorphism invariance(s) can simply be restored in a theory via
the Stückelberg trick (see [9] and references therein) — we are simply using actions with broken/unbroken
diffeomorphism invariance as a tool to write down theories with different numbers of propagating dof, since
ultimately what is physical is the number of propagating dof and their interactions, not the amount of gauge
symmetry present in a given action.
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candidate terms2 were proposed at the linear level [10](also see [11–14]), but were shown
to have no fully ghost-free non-linear completion [1] (there do exist completions which are
ghost-free in the decoupling limit, however), so that the EH term still stands as the only
known fully ghost-free, non-linear and Lorentz invariant derivative interaction for a spin-2
field. Given that no consistent derivative interactions for several spin-2 fields are known at
all (as would be relevant in a Bi- and Multi-Gravity context), the EH term at present is
in fact the only fully ghost-free and Lorentz invariant derivative interaction for spin-2 fields
full stop.

In this paper we propose a new candidate family of kinetic and derivative interactions
for N spin-2 fields

LDer[E(1), . . . , E(N )] = det

[∑
i

α(i)E(i)

]
R

[∑
i

α(i)E(i)

]
, (1.1)

where the E(i) are vielbeins, α(i) are constant coefficients and R[X] is the Ricci scalar for
the effective vielbein X. These interactions include new kinetic terms for a single spin-2 field
as well as derivative interactions between several fields. We construct these new terms by
spotting a set of field re-definitions that leave the overall form of potential self-interactions
invariant (only changing coefficients). This allows us to write known fully ghost-free theories
of spin-2 fields in a dual formulation that includes the new kinetic and derivative interac-
tions. We also find that the new derivative interactions are closely linked to the general
matter coupling proposed by [15, 16] and as a result derive the Einstein and Jordan frame
versions of Massive, Bi- and Multi-Gravity. This enables us to show that the new kinetic
and derivative interactions do in fact generically propagate a ghost, which can lie above the
decoupling limit, however, meaning that even in the ghostly setups, the new terms can still be
part of an interesting valid effective field theory (EFT ) below the scale of the ghost. Finally,
we extend the theory graph conventions for multi-gravity in light of new matter couplings
and derivative interactions in order to aid our understanding of the (symmetry) structure of
these theories.

Outline: This paper is organised as follows. In section 2 we review the vielbein formu-
lation and known consistent field theories of spin-2 fields, collect some useful results along
the way and point out a particular property of the known interaction terms under linear
field re-definitions of the vielbeins. In section 3 we then use that property to postulate a
new set of kinetic and derivative interactions and investigate these individually, with added
self-interactions and with added matter coupling terms. In the process we also develop the
‘kinetic’ and ‘potential’ as well as ‘Einstein’ and ‘Jordan’ frame pictures of Massive, Bi- and
Multi-Gravity. In section 4 we then consider what generic actions created via superposing
the new terms with other known interactions look like. We find that they can (but do not

2Throughout this paper, when we talk about candidate terms, we mean interaction terms, which pass
some of the tests to be accepted as consistent interaction terms, but who still remain to be fully understood.
To be more specific, this may mean e.g. that the term in question is healthy at the linear level, but a non-
linear completion is not yet found (if it exists) or it may mean that the term is healthy non-linearly in some
decoupling limit, but it is not understood yet what the range of validity of this term is, i.e. how far beyond
the decoupling limit the interactions described by this term can be trusted. Finally it may mean that a
certain superposition of interaction terms is healthy, but it is not clear yet, whether arbitrarily detuning the
coefficients in this superposition results in a healthy set of interactions as well. We will discuss all of these
cases more throughout the paper.
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have to) lead to the propagation of a ghost, whose scale can lie above the decoupling limit
(again this is true for specific setups). We point out what remains to be done to fully estab-
lish the range of validity of generic spin-2 theories containing arbitrary superpositions of the
proposed candidate terms (and hence to promote them from “candidate” status). Finally we
conclude in section 5.

Conventions: Throughout this paper we use the following conventions. D refers to the
number of spacetime dimensions and we use Greek letters µ, ν, . . . to denote spacetime indices,
which are raised and lowered with the full metric gµν . Capital Latin letters A, B, . . . are
reserved for Lorentz indices and are raised and lowered with the Minkowski metric ηAB. We
also use lower case Latin letters a, b, . . . as a hybrid index, which could be Lorentz or space-
time. This is because in perturbative calculations for vielbeins we will contract indices with
objects such as δ A

µ , so choosing unique labels separating space-time and Lorentz indices is
not useful in this case. For vielbein objects the first index is always the space-time index and
the second one the Lorentz index, e.g. E A

µ . Bracketed indices (i), (j), . . ., label the different
vielbeins/spin-2 fields — label indices are not automatically summed over and whether they
are upper or lower indices carries no meaning. We denote the completely anti-symmetric
epsilon symbol by ε̃ and define it such that ε̃012···D = 1 regardless of the signature of the
metric or the position (up/down) of indices (hence ε̃012···D = ε̃012···D = 1). Finally we use
commas to denote partial differentiation, e.g. for some tensor Tµ we have Tµ,ν ≡ ∂νTµ.

2 Consistent spin-2 field theories

In this section we quickly summarise known consistent field theories for N spin-2 fields,
collect some useful results along the way and point out some of their properties, which will
be relevant for the discussion of new candidate kinetic and derivative interactions.3 We will
be working in the vielbein formulation, which in a gravity context was developed in [20–24].
Note that the metric and vielbein formulations are not always equivalent — for a related
discussion see [8, 25]. A general action for N spin-2 fields, parametrised via N vielbeins E(i)

and graphically depicted in figure 1, can be schematically thought of as consisting of the
following pieces

S = S̃der[E(i), ∂E(i), . . .] + S̃pot[E(i)] + Smatter[Φi, E(1), . . . , E(N )]. (2.1)

S̃der describes the theory’s kinetic sector, i.e. derivative interactions (including kinetic terms
for the individual fields), S̃pot (non-derivative) potential interactions and Smatter the coupling
of the spin-2 fields to the other matter in the universe (the matter fields Φi). It is instructive
to split up (2.1) further and write a general action as

S = Skin[E(i), ∂E(i), . . .] + Sder[E(i), ∂E(i), . . .]

+Spot[E(i)] + Scross[E(i)]

+Smatter[Φi, E(1), . . . , E(N )] + Smatter,der[Φi, E(i), ∂E(i), . . .] (2.2)

The first line now describes derivative interactions for the individual spin-2 fields (kinetic
terms Skin[E(i)]) and derivative interactions between different fields (Sder). The second line

3For more detailed reviews of the field we refer to [17, 18]. For a discussion of some of the as yet unresolved
issues in the field of massive gravity and whether they are problematic for the field see e.g. [19] and the
counterarguments in [18].

– 3 –



J
C
A
P
0
4
(
2
0
1
5
)
0
2
5

Figure 1. Known consistent field theory building blocks for gravitons/spin-2 fields (which are shown
in the vielbein picture — not in the metric picture — with vielbeins E(i) here). As discussed in
section 2 such a field theory is in general made up of four types of terms: Kinetic terms for the
fields, their potential (non-derivative) interactions, cross-interactions between different fields (if there
is more than one dynamical field in the theory, and both of the potential and derivative type) and
finally the coupling to the other matter fields Φi in the universe. Note that the ‘general matter
coupling’ is only consistent (ghost-free) up to a scale Λg > Λ3. At present the only known fully
consistent/ghost-free kinetic term for a graviton/spin-2 field is the Einstein-Hilbert term and there
are no known fully consistent/ghost-free derivative interactions involving several spin-2 fields. In this
paper we consequently investigate the two big question marks: Whether there are alternative valid
kinetic and derivative (cross-)interactions.

describes potential (mass) terms for an individual spin-2 field (Spot), e.g. the dRGT ghost-free
massive gravity potential, and potential interactions linking several dynamical fields (Scross),
e.g. ghost-free Bi- [5–7] and Multi-Gravity [8] potentials.4 The final line then describes the
general coupling to matter of the spin-2 fields Smatter [15, 16] as well as potential deriva-
tive couplings to matter Smatter,der. No consistent terms of the form Smatter,der are known
at present.

2.1 The vielbein formulation

We will be working in the vielbein formulation for gravity, where corresponding to each spin-2
field/metric g and its inverse g−1 we have a vielbein E and an inverse vielbein E−1 satisfying

gµν = E A
µ E B

ν ηAB, g−1µν = E−1 A
µ E−1 B

ν ηAB, (2.3)

4The split between terms for the individual fields and cross-terms between different fields is somewhat
artificial, in that the ‘individual’ terms can be obtained by considering cross-terms with all but one vielbein
being non-dynamical. Nevertheless we will find it useful to consider the two cases separate to begin with.

– 4 –
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where

E−1µAE
A
ν = δµν , E−1µAE

B
µ = δBA . (2.4)

Since we will eventually work with several fields/vielbeins, it is imperative to be clear
about how indices are raised and lowered at this point. Unless specified otherwise, we will
raise/lower space-time/Lorentz indices with the flat Minkowski metric ηµν/ηAB. This also
means we need to explicitly keep track of when inverse vielbeins are used, since

E−1µAgµνη
AB = E B

ν , E−1µAηµνη
AB 6= E B

ν . (2.5)

2.2 Kinetic terms: the Einstein-Hilbert term

The only known fully consistent and ghost-free kinetic term for a single spin-2 field is the
Einstein-Hilbert term [1]. For a metric gµν we can build the associated Riemann tensor
Rdabc[g] and express it in terms of g’s affine connection Γ[g] as follows

Rabc
d[g] = Γ[g]dbeΓ[g]eac − Γ[g]daeΓ[g]ebc − Γ[g]dbc,a + Γ[g]dac,b, (2.6)

where

Γ[g] =
1

2
g−1ad (gcd,b + gbd,c − gbc,d) . (2.7)

Using these expressions and writing R[g] = Rµνρ
σδνσg

−1µρ, we can express the Ricci scalar
purely as a function of the vielbein E and its inverse E−1

R[E] =
3

2
E−1abE−1cbE

−1deE−1fiEdi,aEfe,c−E−1abE−1cbE−1deE−1fiEde,aEfi,c

−2E−1abE−1cbE
−1deEde,a,c−E−1abE−1cbE−1deE−1fiEdi,cEae,f

+2E−1abE−1cbE
−1deE−1fiEfi,cEae,d+

1

2
E−1abE−1cbE

−1deE−1f eEfi,cEa
i
,d

+2E−1abE−1cbE
−1deE−1fiEae,cEfi,d+2E−1abE−1cbE

−1deEae,c,d

−1

2
E−1abE−1cbE

−1deE−1fiEci,dEae,f−E−1abE−1cbE−1deE−1fiEae,dEci,f

−1

2
E−1abE−1cbE

−1deE−1f eEa
i
,dEci,f−2E−1abE−1cbE

−1deE−1fiEae,cEdi,f . (2.8)

We can also express the determinant of E in four dimensions as

det(E) =
1

4
EabEb

cEc
dEda −

1

3
EaaE

bcEc
dEdb −

1

8
EabEbaE

cdEdc

+
1

4
EaaE

b
bE

cdEdc −
1

24
EaaE

b
bE

c
cE

d
d (2.9)

The general expression in D dimensions is det(E) = (1/D!)εA1,A2,...,ADε
µ1,µ2,...,µDEA1

µ1 E
A2
µ2 . . . E

AD
µD

and it satisfies det(E) =
√
−g. This then allows us to map the EH term directly from the

metric to the vielbein formulation

SEH = M2
Pl

∫
dDx
√
−gR[g]⇔M2

Pl

∫
dDxdet(E)R[E]. (2.10)

– 5 –
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It will prove to be useful to express the EH term perturbatively, in particular since the
graviton is essentially a perturbation h in E around a given background, which we will choose
to be flat here for convenience (we also set M2

Pl = 1 in the following). We therefore have

E A
µ = δ A

µ + h A
µ (2.11)

and it is possible to expand the inverse vielbein in terms of h as

E−1µA = δµA − hµA + hµdhdA − hµdhdchcA + hµdhd
chfAhcf +O(h5). (2.12)

Note that we may view δµ
A as the ‘vielbein’ of a non-dynamical Minkowski metric. We will

find it useful for comparison later on to compute the full EH term at different orders in h.
At second order in h one finds (after some integration-by-parts)

L(2)EH = −hcc,bhaa,b + hab,bha
c
,c + 2hab,ahb

c
,c + 2haa

,bhcb,c − hbc,ahab,c

−5

2
hcb,ah

ab,c − 3

2
hac,bh

ab,c +
5

2
hab,ch

ab,c − 3

2
hba,ch

ab,c, (2.13)

and at third order in h the EH term is

L(3)EH = −5habhcd,ahcd,b + 3habhcd,ahdc,b + 2habhcc,ah
d
d,b + 2habhdd,bha

c
,c − 2habhdd,bh

c
a,c

−2habhb
c
,ah

d
d,c − 2habhcb,ah

d
d,c − 2habhca,bh

d
d,c + 2habhdd,chba

,c − haahdd,chbb,c

−2habha
c
,chb

d
,d + haah

bc
,chb

d
,d − 2habhb

c
,ahc

d
,d − 2habhcb,ahc

d
,d − 2habha

c
,bhc

d
,d

+2haah
bc
,bhc

d
,d − 2habhab

,chc
d
,d − 2habha

c
,ch

d
b,d + 2habhb

c
,ah

d
c,d − 2habhcb,ah

d
c,d

+2habha
c
,bh

d
c,d − 2habhab

,chdc,d − 2habhba
,chdc,d + 2haah

b
b
,chdc,d + 2habhd

c
,cha

b,d

−habhcd,bhac,d + habhdc,bha
c,d + habhbd,cha

c,d + habhdb,cha
c,d − 3habhbc,dha

c,d

+3habhcb,dha
c,d + habhcd,ahb

c,d + 3habhdc,ahb
c,d + 2habhda,chb

c,d − haahcd,bhbc,d

−5

2
haahdc,bh

bc,d − 3

2
haahbd,ch

bc,d +
5

2
haahbc,dh

bc,d − 3

2
haahcb,dh

bc,d + 2habhcd,bh
c
a
,d

+2habhdb,ch
c
a
,d − 2habhcb,dh

c
a
,d + 3habhcd,ah

c
b
,d + habhdc,ah

c
b
,d + 2habha

b
,chd

c,d.

(2.14)

Finally let us point out that, by itself, the EH term is of course a fully ghost-free and consis-
tent EFT all the way up to the Planck scaleMPl. Also the EH termM2

Pl

∫
dDxdet(E(i))R[E(i)]

is invariant under local diffeomorphism symmetries f(i) and Lorentz transformations Λ(i) for
the field E(i)

E(i)
A
µ (x)→ ∂f(i)ν

∂xµ
E(i)

A
ν (f(i)(x)) , E(i)

A
µ → Λ(i)

A
BE(i)

B
µ . (2.15)

2.3 Potential terms: ghost-free massive, bi- and multi-gravity

The known ghost-free potential interactions for N spin-2 fields are those of ghost-free massive
gravity [2–4], Bigravity [5–7] and Multi-Gravity [8]. In terms of vielbeins they can all be cast
in the unified format [8] (in D dimensions)

I(i1i2...iD) ≡ ε̃A1A2···AD ε̃
µ1µ2···µD E(i1)

A1
µ1 E(i2)

A2
µ2 · · ·E(iD)

AD
µD

, (2.16)

– 6 –
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(a) Cosmological constant (b) Bimetric (c) Trimetric

Figure 2. Theory graphs for ghost-free potential interaction terms: Nodes denote the individual
spin-2 fields and dashed lines potential interactions. a) A cosmological constant for a single spin-2
field takes on the form of a loop, since it is a self-interaction. b) Ghost-free potential interactions
between two spin-2 fields. We have not yet specified whether these fields are dynamical or not, so
this is the potential type interaction for both Massive and Bi-Gravity. c) A Ghost-free interaction
between three spin-2 fields of the form (2.18). Note that the graphs in this figure only depict potential
self-interactions — how kinetic terms and matter couplings are added to theory graphs is displayed
in figures 4 and 3.

where the indices (i1i2 . . . iD) keep track of which fields are interacting.5 Ghost-free mas-
sive gravity potential interactions then consist of all the ways to build (2.16) with a single
dynamical vielbein E(1) and a non-dynamical reference vielbein (in the case of a flat refer-

ence metric this non-dynamical vielbein is E(0)
A
µ = δ A

µ ). Ghost-free Bigravity consists of
all interactions (2.16) that can be build with two dynamical vielbeins E(1) and E(2), and so
on. The most general known, fully ghost-free potential interaction for N spin-2 fields can
therefore be written as

S̃pot
[
E(i)

]
=

N∑
ij

c(i1i2...iD)I(i1i2...iD), (2.18)

where the c(i1i2...iD) are constant coefficients completely symmetric in all the ij . Figure 2
depicts the theory graphs for some potentials. We emphasise that all terms of the form (2.16)
are fully ghost-free individually and that this remains true for any linear superposition of
such terms as in (2.18). One particular such superposition of interaction terms, which we
will find to be of relevance later one, is∫

dDxdet

[∑
i

α(i)E(i)
A
µ

]
. (2.19)

The potential interaction terms considered here introduce a new scale into the theory.
This is the scale of the least suppressed irrelevant operators in the action — the operators
picked out by the so-called decoupling limit. In the case of dRGT ghost-free massive gravity
this scale is Λ3

Λ3 =
(
MPlm

λ−1
)1/λ

= m

(
MPl

m

)1/λ

, (2.20)

5If we promote the vielbeins to be proper one-forms EA(i) = E(i)
A
µ dxµ, this interaction can be written

I(i1i2...iD)d
Dx ≡ ε̃A1A2···AD EA1

(i1)
∧EA2

(i2)
∧ . . . ∧EAD

(iD), (2.17)

in terms of the usual wedge product. Also note that the anti-symmetric nature of the interaction term means
the order of labels in (2.16) (i1i2 . . . iD) is irrelevant.

– 7 –
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(a) Minimal coupling (c) L
[
Φi, E(1) + E(2)

]
(b) Bigravity minimal coupling

Figure 3. Theory graphs for different matter couplings: Dark-shaded nodes denote the fields that
are directly coupled to matter. a) A single spin-2 field minimally coupled to matter as in (2.22). b)
Two spin-2 fields, one coupled to matter as in (2.22) and the other not directly coupled to matter.
c) Two spin-2 fields coupled to matter as in (2.23) or (2.25). Note that the graphs in this figure only
depict different ways of coupling to matter — how kinetic terms and potential self-interactions are
added to theory graphs is displayed in figures 4 and 2.

where m2M2
Pl is the coupling constant in front of an interaction term like (2.16) (so for (2.18)

we schematically have c(i1,i2,...,iD) = m2
(i1,i2,...,iD)M

2
Pl). In ghost-free Multi-Gravity this scale is

somewhat modified as it picks up a dependence on the number of fields N — for details see [9,
26]. There are further scales of interest which derive from Λ3: ΛQ, the scale where quantum
corrections are no longer suppressed wrt. the tree level result and ΛV , the (Vainshtein) scale
where classical non-linearities begin to dominate over the linear result. ΛQ > ΛV for ghost-
free massive gravity [17], which allows for regions where classical non-linear computations
can be trusted (in particular the Vainshtein mechanism) and are not swamped by quantum
corrections. More specifically, for ghost-free massive gravity solutions around a source with
mass M we can translate the energy scales ΛQ and ΛV into distance (radii) scales rQ and rV
where quantum corrections/classical non-linearities become important and one finds [17]

rQ ∼
1

Λ3
rV ∼

(
M

MPl

)1/3 1

Λ3
. (2.21)

Also note that Λc, the scale where the EFT completely breaks down and e.g. unitarity
violations occur, is another in principle distinct (and potentially larger) scale (even though
ΛQ to all intents and purposes is the scale where we cannot trust the theory’s predictions in
the absence of a re-summation for quantum corrections to all orders).

The dRGT ghost-free massive gravity potential (a theory of one dynamical and one
non-dynamical vielbein) and in fact any potential of the form (2.18), where some of the
E(i) are non-dynamical, generically break all diffeomorphism symmetries (2.15) that were
present in the kinetic sector of the theory.6 For a potential like (2.18), where all the fields are
dynamical, the diffeomorphism symmetries for all E(i) (2.15) generically get broken down to
their diagonal subgroup (for details see [8, 9]).

2.4 The coupling to matter: effective matter metrics and vielbeins

The standard minimal coupling of a single spin-2 field (g(i) in the metric formalism) to matter∫
dDx

√
−det

(
g(i)
)
L
[
Φi, g

(i)
]

(2.22)

is of course fully ghost-free (in the sense that a form of the Boulware-Deser ghost does not
get re-exited by this coupling — naturally one is at liberty to introduce matter ghosts into

6This is the case if the kinetic sector is simply a linear superposition of EH terms for all dynamical spin-2
fields. We will discuss some exceptions in section 4.2.
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the matter Lagrangian). Coupling matter minimally to more than one spin-2 field, however,
re-exites the Boulware-Deser ghost at a low scale and is consequently not consistent [15, 27].
Recently a more general matter coupling than (2.22) was proposed in the presence of N
spin-2 fields [15, 16].7 This is of the form∫

dDx
√
−det

(
g(M)

)
L
[
Φi, g

(M)
]
, (2.23)

and consequently obeys the weak equivalence principle by construction. The matter metric
g(M) can be expressed in terms of the ‘matter vielbein’ E(M) satisfying

g(M)
µν = E(M) A

µ E(M) B
ν ηAB, E(M) A

µ =

N∑
i=1

α(i)E
(i) A
µ . (2.24)

As such let us write this new universal coupling to matter in the vielbein language as∫
dDxdet[E(M)]L

[
Φi, E

(M)
]
. (2.25)

Theory graphs for different types of matter couplings are shown in figure 3. For some related
work exploring models with this new matter coupling further see [29–33].

The new matter coupling (2.23) generates additional pure spin-2 potential interactions,
which are fully ghost-free by construction [15, 16]. In fact they are of the form (2.19) and
come from the cosmological-constant-like piece in (2.25), i.e. the constant piece of L, whether
bare or generated by matter loops, gives rise to pure spin-2 interactions. Once non-trivial (i.e.
dynamical) matter fields are introduced, however, (2.23) ceases to be linear in all the lapses
of the vielbeins involved [15]. This means a constraint is lost and the Boulware-Deser ghost
re-appears (for a further discussion of this point see [29, 32]). The scale of this ghost Λg lies
above Λ3, as it can be shown explicitly that the new ghost is not present in the decoupling
limit [15]. So, in a general setting with the new matter coupling, one is dealing with an EFT
valid up to the scale Λg or Λc, whichever is lower. At present it is unknown, where between
Λ3 and Λc the scale of the matter-coupling ghost Λg lies.8

2.5 Invariance under field re-definitions

The potential interactions discussed in 2.3 and the general matter coupling discussed in 2.4
above have an interesting property, which will be key in the following discussion. Namely
their form stays invariant under linear field re-definitions

E(i) →
∑
j

β(ij)E(j). (2.26)

Of course linear field re-definitions performed on a full action leave the physics described
invariant. The key observation here is, that field re-definitions of the form (2.26) can be
performed on the individual potential and matter coupling terms (rather than on all terms

7In [28] we construct the most general matter coupling in the vielbein formulation and investigate whether
more general consistent matter couplings can be constructed.

8If Λg lies very close to Λ3, the theory will essentially have no valid non-linear regime and hence not exhibit
the Vainshtein mechanism. If, however, Λg is parametrically larger than Λ3, interesting non-linear phenomena
are describable within the range of validity of the EFT.
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in the full action). This results in a different theory, i.e. the theory is not invariant under
this change. But the new theory does remain a valid, consistent, ghost-free EFT (up to the
scale Λg, should there be a non-trivial matter coupling).

In the following sections we will use this observation in order to generate new candidate
kinetic and derivative interactions. Here we point out an interesting analogy, namely that all
consistent Massive, Bi- and Multi-Gravity potential interactions could have been discovered
in the same fashion. Take a cosmological constant interaction for a single spin-2 field and
perform the above field re-definition∫

dDxdet
[
E(1)

A
µ

]
Λ→

∫
dDxdet

[∑
i

α(i)E(i)
A
µ

]
Λ. (2.27)

This is the particular superposition of all known potential interaction terms (2.19). If only
one of the fields E(i) is dynamical, these terms will be of the dRGT type, for two dynamical
fields we recover the Bigravity interactions and for N dynamical fields we recover Multi-
Gravity interactions. Of course what makes these terms even more interesting is that they
are all ghost-free and consistent by themselves, not just in their superposed form (2.27). In
other words, ghost freedom of (2.27) is maintained when the coefficients of the individual
interactions terms in this superposition are detuned. Nevertheless, finding the right field re-
definition could have been used as a neat trick in order to generate all candidate consistent
potential interactions in a particular superposition (the coefficients of which could have been
subsequently detuned, leading to the finding that any superposition of these interaction
terms is also ghost-free). We will take this approach now with the kinetic sector of the
theory, aiming to find new consistent candidate kinetic and derivative interactions.

3 New kinetic and derivative interactions

In this section we first propose a set of new kinetic and derivative interactions for N spin-2
fields, using the field re-definitions discussed above. We then discuss their properties, first by
themselves, then once potential self-interactions are added and then with an added coupling
to matter. This progression is instructive, because superposing two actions, which are ghost-
free and consistent by themselves, does not necessarily result in a consistent new theory.9 We
will see an explicit example of this in this section. In addition there are interesting symmetry
breaking phenomena when superposing the different interactions, which we will discuss.

For a general theory withN spin-2 fields andN corresponding vielbeins E(i), we propose
the following candidate derivative interactions

LDer[E(1), . . . , E(N )] = det

[∑
i

α(i)E(i)

]
R

[∑
i

α(i)E(i)

]
, (3.1)

which can be obtained by performing the field re-definition (2.26) on the EH term

LEH[E(1)] = det
[
E(1)

]
R
[
E(1)

]
. (3.2)

Two specific cases will be of particular interest. First the case, where we have a single dy-
namical vielbein E(1) and a non-dynamical reference metric (which is a linear superposition

9We thank Claudia de Rham and Andrew Matas for stressing this point in discussions.
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of arbitrary non-dynamical vielbeins). Such a term provides a new candidate kinetic inter-
action for E(1). Let us consider the case where the non-dynamical reference vielbein is flat
and we therefore have

L̂Kin I[E(1)] = det
[
α(1)E(1) + α(2)δ

]
R
[
α(1)E(1) + α(2)δ

]
. (3.3)

In fact, we can simplify this even more and consider the equivalent interaction (equivalent up
to overall constants of proportionality and a rescaling of the field E(1) — a re-scaled Planck
mass for E(1) if you will)

LKin I[E(1)] = det
[
E(1) + δ

]
R
[
E(1) + δ

]
. (3.4)

Secondly we will be interested in the Bigravity version of (3.1) as a minimal example of the
new derivative interactions involving several dynamical fields

LDer II[E(1), E(2)] = det
[
E(1) + E(2)

]
R
[
E(1) + E(2)

]
, (3.5)

where we have again absorbed the constants α(i) for simplicity. Theory graphs depicting the
different kinetic and derivative interactions are shown in figure 4.

3.1 Kinetic terms

The new candidate kinetic term for a single spin-2 field E(1) proposed above is

LKin I[E(1)] = det
[
E(1) + δ

]
R
[
E(1) + δ

]
. (3.6)

Note that, by itself this term is equivalent to the EH term (since they are related by linear
field re-definitions and there are no other terms in the action yet) and hence trivially ghost-
free. Two observations can already be made at this point. LKin I is invariant under local
diffeomorphism symmetries and Lorentz transformations (2.15) acting on E(1) + δ (not on
E(1)). Again this is a straightforward consequence of the fact that LKin I is related to the EH
term via a linear field redefinition. Secondly we can perturb LKin I just as we did for the EH
term (2.13), (2.14),etc. Setting E(1) = δ + h we then find

L(n)EH[h] = 2n−2L(n)Kin I[h]. (3.7)

In other words, up to an overall constant of proportionality these two kinetic interactions
are the same up to a rescaling in h, h→ ĥ = h/2. This is of course not surprising, since e.g.

R
[
E(1) + δ

]
= R [2δ + h] ∝ R

[
δ + ĥ

]
.

3.2 Derivative interactions

If more than one dynamical field is present, (3.1) describes new derivative interactions be-
tween these fields. For simplicity let us focus on the two field case

LDer II[E(1), E(2)] = det
[
E(1) + E(2)

]
R
[
E(1) + E(2)

]
. (3.8)

Since we are working in the vielbein formulation, all conclusions will straightforwardly gener-
alise to the case of several fields. (3.8) is invariant under local diffeomorphism symmetries and
Lorentz transformations (2.15) acting on E(1)+E(2), i.e. under the diagonal subgroup of local
diffeomorphism symmetries and Lorentz transformations acting on E(1) and E(2) separately.
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This straightforwardly generalises to the same symmetries acting on
∑

i α(i)E(i) for (3.1).
In other words, a term such as (3.8) or (3.1) comes with one copy of generalised coordinate
invariance GC(i) (cf. [9, 34, 35]) linked to its ‘argument’ (

∑
i α(i)E(i)). Also, just as for the

kinetic term above, by itself LDer II describes the same physics as the EH term (since it is
the EH term with a linear field re-definition) and is consequently trivially ghost-free and
consistent.

It is worth pointing out that LDer II by itself still only describes the propagating dof of
a single massless spin-2 field, precisely because it is related to the EH via a linear field
redefinition. It is only when other interactions are added to the action that more of the
dof contained in E(1) and E(2) become dynamical — see below. It may be instructive to
consider a quick scalar field example to illustrate this point. We begin with a single massless
scalar field φ with action

Sφ =

∫
dDx− 1

2
∂µφ∂

µφ (3.9)

and perform the linear field re-definition φ→ φ+ π. The resulting action

Sφ+π =

∫
dDx− 1

2
∂aφ∂

aφ− ∂aπ∂aφ−
1

2
∂aπ∂

aπ, (3.10)

analogous to (3.8), describes the dof of a single massless scalar and nothing else, despite of
the appearance of two fields in the action. However, if we were to add extra interactions for
φ and/or π, extra propagating dof can be introduced.

For completeness let us repeat our perturbative analysis, this time for LDer II[E(1), E(2)].
We perturb the two vielbeins via

E(1)
A
µ = δ A

µ + h A
µ E(2)

A
µ = δ A

µ + l Aµ (3.11)

and find at quadratic order in the fields

L(2)Der II = 2hab,al
c
c,b − hcc,bhaa,b − 2lcc,bh

a
a
,b − lcc,blaa,b + hab,bha

c
,c + 2hab,ahb

c
,c

+2haa
,bhcb,c + 2hab,bla

c
,c + lab,bla

c
,c + 2hab,alb

c
,c + 2lab,alb

c
,c + 2hab,bl

c
a,c

+2haa
,blcb,c + 2laa

,blcb,c − hbc,ahab,c −
5

2
hcb,ah

ab,c − lbc,ahab,c − 5lcb,ah
ab,c

−3

2
hac,bh

ab,c − 3lac,bh
ab,c − lca,bhab,c +

5

2
hab,ch

ab,c − 3

2
hba,ch

ab,c + 5lab,ch
ab,c

−3lba,ch
ab,c − lbc,alab,c −

5

2
lcb,al

ab,c − 3

2
lac,bl

ab,c +
5

2
lab,cl

ab,c − 3

2
lba,cl

ab,c. (3.12)

We will refrain from showing cubic order (which contains ∼ 500 terms) and higher here.

3.3 Adding self-interactions: ‘potential’ and ‘kinetic’ frames

Let us now move on and consider adding self-interactions for the spin-2 fields to the kinetic
and derivative terms discussed above (which by themselves described the exact same physics
as isolated EH terms).

A single field: The complete set of GR interactions consists of the two Lovelock
invariants in 4D: The EH term plus a cosmological constant potential self-interaction term

SGR =

∫
dDxdet[E]R[E] +

∫
dDxdet[E]Λ

=

∫
dDxLEH[E] +

∫
dDxdet[E]Λ, (3.13)

– 12 –



J
C
A
P
0
4
(
2
0
1
5
)
0
2
5

(a) EH terms (b) LDer II (c) Theory (4.2)

Figure 4. Theory graphs for kinetic and derivative interactions: These are denoted by double lines
around nodes or thick lines connecting nodes. a) Two fields, each equipped with an EH term as
denoted by the double circles around the node (the second node also has a cosmological constant
interaction as indicated by the loop). b) A derivative interaction linking two fields of the type (3.8).
If one of the fields is frozen to become non-dynamical, this is the interaction (3.6). In terms of theory
graphs these two cases look the same (as long as there are no further terms in the theory that break
the degeneracy). c) The theory (4.2), which combines LDer II with two EH terms.

(a) Kinetic frame (3.16) (b) Potential frame (3.17)

Figure 5. Here we show a particular bigravity theory in its kinetic frame version (3.16) and in its
potential frame version (3.17). The two cases are related by linear field re-definitions of the vielbeins,
involve EH terms, the new derivative intraction LDer II and potential self-interactions of the bigravity
and cosmological constant type.

where Λ is a (cosmological) constant. If we linearly redefine fields throughout this whole
action, we have obviously not changed anything. However, if we only do this with the field
re-definition (2.26) for one of the terms (i.e. we do not perform a linear field redefinition at
the level of the full action), then we obtain a different action. Consider one specific such case

S1 =

∫
dDxdet[E + δ]R[E + δ] +

∫
dDxdet[E]Λ

=

∫
dDxLKin I[E] +

∫
dDxdet[E]Λ. (3.14)

Upon a linear field re-definition E → Ẽ − δ (now at the level of the full action, so leading to
an equivalent theory to S1) this becomes

S̃1 =

∫
dDxdet[Ẽ]R[Ẽ] +

∫
dDxdet[Ẽ − δ]Λ

=

∫
dDxLEH[Ẽ] +

∫
dDxdet[Ẽ − δ]Λ. (3.15)

This is a fully ghost-free massive gravity theory with a particular superposition of ghost-
free massive gravity interaction terms of the form discussed above (2.19).10 It has a strong

10Throughout this section we use this form of the potential self-interactions for simplicity, but do note that
we could just as well consider e.g. (3.15) with a general self-interaction of the form (2.18). In that case the
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coupling scale Λ3, where the associated mass scale m is given via Λ ≡ m2M2
Pl.

11 So in
particular this means that (3.14) is a fully ghost-free theory of a spin-2 field with the new
kinetic term LKin I[E]. The elaborate structure of the massive gravity potential interactions
has been traded for the new kinetic term here. We shall refer to an action like (3.14) as the
‘potential frame’ version of the theory (with maximally simple — in this case cosmological
constant type — self-interactions, but complicated kinetic interactions), whereas (3.15) is the
‘kinetic frame’ version of the theory (where kinetic interactions are maximally simple and of
EH form).12

Actions (3.14) and (3.15) are no longer diffeomorphism invariant, in an interesting way.
In (3.14) (the kinetic frame) the kinetic term is invariant under diffeomorphisms acting on
E + δ, the cosmological constant term under diffeomorphisms acting on E. In this picture,
where E is the fundamental dof , the kinetic term LKin I[E] breaks diffeomorphism invariance
and hence leads to the propagation of additional dof. The resulting 5 dof describe a single
massive graviton. The dual picture in the potential frame (3.15) describes a theory where
diffeomorphisms for E are broken by the known ghost-free massive gravity interactions. The
propagating 5 dof of a massive graviton here arise as a consequence of the symmetry breaking
potential type interactions.13

Two fields. Let us do the same for the Bigravity case (in the vielbein language the general
argument for N vielbeins then straightforwardly follows). We pick a simple, consistent and
fully ghost-free bigravity action

S2 =

∫
dDxdet[E(1)]R[E(1)] +

∫
dDxdet[E(2)]R[E(2)]

+

∫
dDxdet

[
E(1) + E(2)

]
Λ.

=

∫
dDxLEH[E(1)] +

∫
dDxLEH[E(2)] +

∫
dDxdet

[
E(1) + E(2)

]
Λ. (3.16)

Such an action is again in the ‘kinetic’ frame, where kinetic terms take on the simple EH -form
and potential self-interactions are of the ghost-free multi-gravity type. The field re-definition
E(1) → E(1) − E(2) then maps this to the potential frame (where potential interactions are
simple cosmological constants, but kinetic interactions take on the new form) and which has

dual theory (3.14) would not just have cosmological constant-type self-interactions, but more general potential
interactions (also of the form (2.18) but with different coefficients) as well.

11Note that we have set M2
Pl to unity in (3.15) and (3.14) as well as ignored overall multiplicative factors.

12Note that, for a fully general spin-2 field theory, one is of course not guaranteed to be able to find a ‘frame’
where all kinetic terms are EH or all the self-interactions are of the cosmological constant type, although this
is the case for theories that are valid, ghost-free EFT s all the way to the Planck scale (cf. [1]). Even in cases
where the ‘kinetic frame’ version only contains EH terms, the potential frame version of the theory will not
in general just be a superposition of cosmological constant type terms for the individual fields. This is only
the case if the potential self-interactions in the kinetic frame are of the form det

[∑
i α(i)E(i)

]
.

13After this paper was published on the arXiv, we became aware of appendix A in [36], where a construction
analogous to our “kinetic” and “potential” frames is discussed for a single massive graviton. We thank an
anonymous referee for pointing this out.
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an action

S̃2 =

∫
dDxdet[E(1) − E(2)]R[E(1) − E(2)] +

∫
dDxdet[E(2)]R[E(2)]

+

∫
dDxdet

[
E(1)

]
Λ

=

∫
dDxLDer II[E(1),−E(2)] +

∫
dDxLEH[E(2)] +

∫
dDxdet

[
E(1)

]
Λ. (3.17)

The potential frame version of the theory therefore describes a fully ghost-free set of interac-
tions involving LDer II. Theory graphs depicting these Kinetic and Potential frame examples
are shown in figure 5. (3.16) has a kinetic sector invariant under diffeomorphisms acting on
E(1) and E(2) separately, where the potential interactions break this down to their diagonal
subgroup and lead to a total of 2 + 5 propagating dof. In contrast (3.17) has a potential
sector invariant under diffeomorphisms acting on E(1) and a kinetic sector invariant under
diffeomorphisms acting on E(1) − E(2) and E(2). So, in terms of diffeomorphisms acting on
E(1) and E(2), the LDer II derivative interaction breaks the overall diffeomorphism symmetry
of the theory down to their diagonal subgroup (for details of the symmetry breaking pattern
we again refer to [8, 9]). Finally, just as discussed above, the qualitative conclusions drawn
here would not change had we used a more general potential self-interaction to start with
in (3.16).

Several fields. Analogous examples for generic Multi-Gravity theory with N fields are
easily computed.14 For example the fully ghost-free (kinetic frame) theory

S3 =

N∑
i

∫
dDxdet[E(i)]R

[
E(i)

]
+

∫
dDxdet

[ N∑
i

α(i)E(i)

]
Λ (3.18)

under the linear field re-definition α(1)E(1) → α(1)E(1) −
∑N

i=2 α(i)E(i) maps to

S̃3 =

∫
dDxdet

[
E(1) +

1

α(1)

N∑
i=2

α(i)E(i)

]
R

[
E(1) +

1

α(1)

N∑
i=2

α(i)E(i)

]

+
N∑
i=2

∫
dDxdet[E(i)]R

[
E(i)

]
+

∫
dDxdet

[
α(1)E(1)

]
Λ. (3.19)

Again (3.19) describes a consistent theory of N interacting spin-2 fields, where the breaking
of several diffeomorphism invariances and the associated additional propagating degrees of
freedom are now encoded in the derivative LDer terms and takes place just as discussed above.

Let us finish this subsection by emphasizing that the field re-definition trick used to
generate the new kinetic interactions and map between frames is not a trivial procedure.
It relies on spotting the right set of field re-definitions (2.26) that leave the form of the
ghost-free potential interactions unchanged. Taking some other linear field re-definition and
selectively applying it to some of the terms in a consistent spin-2 field theory (like we did in
going from (3.13) to (3.14)) does not generate another consistent theory. For example, taking
a theory with the EH term in metric form,

√
−gR[g], plus a cosmological constant term for g

and then replacing g → g + η only in the kinetic term does not result in a ghost-free theory.
In other words,

∫
dDx

√
−(g + η)R[g+ η] +

√
−gΛ is not a ghost-free theory of a spin-2 field.

14For a precise classification of how many and which dof propagate in a general multi-gravity theory see [9].
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(a) Einstein frame (3.21) (b) Jordan frame (3.22)

Figure 6. Here we show a particular bigravity theory in its Einstein frame version (3.21) and in its
Jordan frame version (3.22). The two cases are related by linear field re-definitions of the vielbeins,
involve EH terms, the new derivative interaction LDer II and minimal GR-like matter couplings as
well as the more general new matter couplings (2.25).

3.4 Adding a coupling to matter: ‘Einstein’ and ‘Jordan’ frames

Having considered ‘kinetic’ and ‘potential’ frames above, including a coupling to matter
and working out the ‘Einstein’ and ‘Jordan’ frame pictures for Massive-, Bi- and Multi-
Gravity now becomes straightforward. The general theories for spin-2 fields coupled to matter
discussed in 2.4 above have the form

S3 =

N∑
i

∫
dDxdet[E(i)]R[E(i)] +

∫
dDxdet

[ N∑
i

α(i)E(i)

]
L

[
Φi,

N∑
i

α(i)E(i)

]
. (3.20)

The standard minimal coupling we know from GR is contained as a special case with some
αi = 1 and αj = 0 for all j 6= i. Again, as discussed in 2.4, (3.20) has a ghost at the scale
Λg, but is a valid and consistent EFT at all scales below Λg or Λc, whichever is lower.

For simplicity let us again focus on a particular Bigravity case and ignore additional
potential self-interactions.15 The particular action we consider is

S4 =

∫
dDxdet[E(1)]R[E(1)] +

∫
dDxdet[E(2)]R[E(2)]

+

∫
dDxdet

[
E(1) + E(2)

]
L
[
Φi, E(1) + E(2)

]
. (3.21)

Up to the scale of the ghost Λg (and at the very least up to Λ3) this is a fully consistent
EFT. S4 is an example of an ‘Einstein’ frame action, where kinetic interactions are simply a
superposition of the standard EH terms for individual spin-2 fields. The field re-definition
E(1) → E(1) − E(2) then maps (3.21) to a frame, which we may call the Jordan frame and
which has an action

S̃4 =

∫
dDxdet[E(1) − E(2)]R[E(1) − E(2)] +

∫
dDxdet[E(2)]R[E(2)]

+

∫
dDxdet

[
E(1)

]
L
[
Φi, E(1)

]
. (3.22)

By construction (3.22) also has to have a ghost at the scale Λg, but is a healthy EFT be-
low that scale. (3.22) is consequently an example of a theory that includes the new kinetic
interaction LDer II[E(1),−E(2)] and in addition an EH term and a minimally coupled matter

15Omitting potential self-interactions will not change any of the conclusions of this section, since these
preserve their overall form under linear field-redefinitions of the vielbeins. Also note that the massive gravity
case can be obtained by setting E(2) = δ in the bigravity action (3.21).
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sector. All these terms are ghost-free individually, but still give rise to a ghost when su-
perposed. This is an explicit example of the point discussed above, that superposing fully
consistent actions is not guaranteed to yield a consistent theory for all scales. It also alerts us
to the fact that the new kinetic and derivative interactions proposed here cannot simply be
added to any known consistent action without adding instabilities at some scale, making our
findings fully consistent with the ‘no-go’ theorem of [1]. In [37] we will investigate the scale of
the associated ghost Λg — the ‘Jordan frame’ picture (3.22) should prove very useful in this
task, decoupling the non-trivial part of the action from the sector that involves a direct cou-
pling to all matter species. We again emphasize that below their cutoff scale, theories (3.21)
and (3.22) are perfectly healthy EFT s — if Λg � Λ3 these will have an interesting non-linear
regime with non-trivial matter couplings and/or kinetic and derivative interactions. Theory
graphs depicting these Einstein and Jordan frame examples are shown in figure 6.

As before it is straightforward to extend the above to a generic Multi-Gravity case. For
example consider the ‘Einstein frame’ action

S5 =

N∑
i

∫
dDxdet[E(i)]R[E(i)] +

∫
dDxdet

[ N∑
i

α(i)E(i)

]
L

[
Φi,

N∑
i

α(i)E(i)

]
. (3.23)

Under the linear field re-definition α(1)E(1) → α(1)E(1) −
∑N

i=2 α(i)E(i) this action maps to
the ‘Jordan frame’ action

S̃5 =

∫
dDxdet

[
E(1) +

1

α(1)

N∑
i=2

α(i)E(i)

]
R

[
E(1) +

1

α(1)

N∑
i=2

α(i)E(i)

]

+
N∑
i=2

∫
dDxdet[E(i)]R

[
E(i)

]
+

∫
dDxdet

[
α(1)E(1)

]
L
[
Φi, α(1)E(1)

]
. (3.24)

3.5 Other candidate kinetic and derivative interactions

In the above we have constructed new kinetic and derivative interactions, which can be
included in the construction of completely ghost-free pure spin-2 theories such as (3.14), (3.16)
and (3.19) or in the construction of spin-2 theories coupled to matter, which are valid EFT s
up to the scale Λg (or, in the best case: Λc), such as (3.22) and (3.24). Other candidate kinetic
terms, different from the EH term, exist [1]. These terms are S4dKG and S4dKK?R and can be
obtained by considering a discretised 5D Gauss-Bonnet Lagrangian. S4dKG can also be seen as
a non-linear completion of the linearised EH term, which, at non-linear orders, is different
from the EH term. In a similar vein, S4dKK?R can be seen as a non-linear completion of the

candidate linear kinetic term L(der)3 , proposed by [10] (also see [11–14]). As shown by [1], both
S4dKG and S4dKK?R are ghost-free in the decoupling limit (i.e. up to the scale Λ3), but inevitably
contain a ghost at some larger scale. Also note that, in the metric formulation, [38] discuss
kinetic terms arising from field re-definitions explicitly separating out the massive modes of
the theory.

S4dKG and S4dKK?R are therefore different from the LDer terms proposed here, which are
completely ghost-free by themselves (because they are just EH in that case), can be com-
pletely ghost-free when self-interaction terms are added as discussed above, but also generi-
cally contain a ghost at a scale Λg (e.g. when a general coupling to matter is added). However,
the same logic applies for all of these terms: Even if there is a ghost present in the theory
with any of the candidate kinetic and derivative terms at a scale Λg, below that scale the
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theory can still be a valid and ghost-free EFT . If Λg � Λ3, in addition there will be interest-
ing non-linear phenomenology (such as Vainshtein screening) described within the regime of
validity of the theory. We investigate all the candidate kinetic terms and identify the associ-
ated scales Λg in [37]. It would also be interesting to consider Multi-Gravity generalisations
of S4dKG and S4dKK?R as candidate derivative interactions involving more than one dynamical
spin-2 field.

4 General spin-2 theories

Having constructed a set of new kinetic interactions and established their relation with ‘Ki-
netic’ and ‘Potential’/‘Einstein’ and ‘Jordan’ frames, in this section we point out some the-
ories involving the new kinetic/derivative terms that merit further investigation and extend
the theory graph machinery of [8, 9, 34, 35] in order to have a diagrammatic way of repre-
senting theories involving the new matter coupling and kinetic/derivative interactions, which
makes the symmetry (and symmetry-breaking) structure of those theories explicit.

4.1 Arbitrary superpositions of terms

In the previous sections we spotted a set of field re-definitions that leave the form of consistent
self-interaction potentials (2.18) and the general matter couplings (2.25) unchanged. We
then used this to propose a new set of kinetic and derivative terms, related to the EH
term(s) via the same set of field re-definitions. This had two effects: 1) We established the
Kinetic/Potential and Einstein/Jordan frames for Massive, Bi- and Multi-Gravity. 2) In the
process we found a set of actions involving the new kinetic and derivative interactions, which
were related to known theories via linear field re-definitions and hence either fully ghost-free
(in the case of some specific theories of just spin-2 fields) or had a ghost at a scale Λg > Λ3

(in the case of general theories involving a non-trivial matter coupling).

What happens when we consider actions that involve the new kinetic and derivative
interactions, but where the new terms cannot all be turned into EH terms via linear field
re-definitions? In other words, having generated particular combinations of the new kinetic
and derivative interactions via the trick discussed above, can we now deconstruct those par-
ticular combinations and build arbitrary combinations of the new kinetic/derivative terms
(and pair them with potential and matter coupling terms), which are consistent?16 Gener-
ically we should expect these theories to have a ghost (as indicated by the matter coupling
considerations above), but at what scales does the ghost enter? Some simple examples of

16As discussed in 2.5 we could have discovered particular superpositions of the set of consistent spin-2
potential interaction terms in an analogous fashion. For the potential terms of course every linear superposition
of such terms is consistent — here we are asking to what extent the same holds for the new kinetic and
derivative terms.
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actions where the LDer terms cannot be removed with field re-definitions are

S6 = M2
(1)

∫
dDxdet[E + δ]R[E + δ] +M2

(2)

∫
dDxdet[E]R[E], (4.1)

S7 = M2
(1)

∫
dDxdet[E(1)]R[E(1)] +M2

(2)

∫
dDxdet[E(1) + E(2)]R[E(1) + E(2)]

+M2
(3)

∫
dDxdet[E(2)]R[E(2)], (4.2)

S8 =

∫
dDxdet[E(1)]R[E(1)] +

∫
dDxdet[E(1) − E(2)]R[E(1) − E(2)]

+

∫
dDxdet[E(1) + E(2)]R[E(1) + E(2)] +

∫
dDxdet

[
E(1) + E(2)

]
L
[
Φi, E(1) + E(2)

]
.

(4.3)

We discuss these examples and others in [37] (showing that the above examples S6,S7,S8
generically have ghosts and discussing at what scale the ghost enters). Here we just wish to
emphasize a few final observations about the new kinetic and derivative terms. From [39]
we know that there can be no fully consistent theory of interacting massless spin-2 fields
(where the fields interact with one another), but generic combinations of the new kinetic and
derivative terms proposed here and EH terms will break diffeomorphism symmetries and lead
to the propagation of massive spin-2 dof, so the construction here generically evades this no-
go theorem. The terms proposed here are equivalent to EH when considered by themselves,
but generic combinations of the new terms with EH terms, potential self-interactions and
general matter couplings will destroy this equivalence and generically introduce a ghost. This
explains the consistency of the new terms with the kinetic no-go theorem of [1] (since the
no-go theorem of [1] applies to new kinetic terms which are ghost-free at all scales up to MPl).
Establishing the scale of the ghost Λg in generic setups will determine what the regime of
validity for the resulting EFT s is. In particular if Λg � Λ3 the resulting theories will have
interesting non-linear physics and hence the potential for screening mechanisms as well.17

4.2 Theory graphs

In light of the new kinetic and derivative interactions proposed here and the matter coupling
proposed in [15, 16], it is useful to extend the theory graph conventions for Multi-Gravity
theories [8, 9, 34, 35] to allow us to depict a general spin-2 theory with all the proposed
interaction terms (in the general case this will mean consistent up to some scale Λg > Λ3).

18

Every node in a theory graph corresponds to a spin-2 field/vielbein E(i). In principle
each such field comes equipped with its own diffeomorphism symmetry and associated copy of
generalised co-ordinate invariance GC(i). Dashed lines connecting nodes denote potential-like
interactions involving these fields.19 A dashed loop around a node consequently corresponds

17If e.g. S6,S7 or S8 satisfy this criterion, then the derivative interactions proposed in this paper can be
used to build interesting models describing distinct physics from models without these new terms. Otherwise
the kinetic/potential and Einstein/Jordan frame pictures developed throughout this paper are useful different
representations of consistent theories, but all interesting models with the new derivative interactions proposed
in this paper would be ultimately dual to models without these interactions. We discuss this in further detail
in [37].

18Note that we have slightly modified the conventions for plotting potential self-interactions from [9] in
order to avoid ambiguities when plotting the new kinetic/derivative and matter coupling interactions.

19We emphasize that the theory graphs encode no information about the value of coupling constants in any
of the interactions.
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(a) GR (b) dRGT Massive Gravity (c) HR Bigravity

Figure 7. Using the theory graph conventions developed throughout this paper, we can now suc-
cintly depict the actions for a) GR, with a single spin-2 field endowed with an EH term (the doubly
circled node), which is coupled to matter minimally (the node is dark-shaded) and in principle has
a cosmological constant term (the dashed loop). b) dRGT Massive Gravity, with a single dynamical
metric (the doubly circled node indicating an EH term for this field) with that dynamical metric
minimally coupled to matter (a single dark-shaded node) and a potential type interaction (dashed
line) linking this metric to a non-dynamical reference metric (the white node without a double-circle).
c) Hassan-Rosen Bigravity with two dynamical spin-2 fields, linked by potential type interactions, but
with only one field directly (and minimally) coupling to matter.

to a cosmological constant term for this field. See figure 2 for examples. Nodes encircled by
a double boundary have their own EH term and nodes connected by thick lines have one
of the new kinetic/derivative interactions discussed in this paper — see figure 4. Finally,
all dark-shaded nodes are coupling to matter in a way that explicitly upholds the weak
equivalence principle as discussed in 2.4 — see figure 3. Figure 7 then shows the resulting
theory graphs for some familiar examples: GR, dRGT ghost-free massive gravity and Hassan-
Rosen Bigravity, fully specifying the kinetic and self-interaction potential for these theories
as well as the way they couple to matter.

The theory graphs constructed in this way make the symmetry properties of the given
theory explicit. Every connected island has one remaining, unbroken copy of diffeomorphism
invariance. This is true as long as all the fields involved are dynamical, which corresponds to
having the same number of derivative interactions (double circles and thick lines) involving
linearly independent combinations of the vielbeins as we have fields in that connected island.
If some of the participating fields are non-dynamical, all diffeomorphism invariances are
broken — dRGT massive gravity as depicted in figure 7 is an example of such a theory
(it has two nodes/fields, but only one kinetic term/double circle). Note, however, that the
new matter coupling and kinetic interactions make reading off the number of propagating
dof from a theory graph somewhat more complex than before. If a given field E(i) can be
completely eliminated from the theory with linear field re-definitions, then it clearly doesn’t
describe any additional dof. A concrete example of this is

S9 =

∫
dDxdet[E(1) + E(2)]R[E(1) + E(2)] +

∫
dDxdet

[
E(1) + E(2)

]
L
[
Φi, E(1) + E(2)

]
→
∫
dDxdet[E(1)]R[E(1)] +

∫
dDxdet

[
E(1)

]
L
[
Φi, E(1)

]
, (4.4)

where we have performed the linear field re-definition E(1) → E(1)−E(2) in going to the second
line. Note that we could have added a potential self-interaction det[E(1)+E(2)]Λ and field re-
defined it into a cosmological constant for a single field as well. In the theory graph picture,
cases analogous to (4.4) correspond to a field’s potential (dashed lines), kinetic/derivative
(thick lines and doubly circled nodes) and matter coupling (dark shaded nodes) interactions
all linking the same set of nodes. This is shown in figure 8. Figure 8 also illustrates how
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(a) Theory (4.4) (b) Dual to (a) (a) Theory (4.5)

Figure 8. (a) and (b) depict the theories (4.4) , which are equivalent upon a linear field re-definition.
This theory therefore only propagates the dof of a single massless spin-2 field (plus the dof of the
matter fields of course). This serves to illustrate that it is not always trivial to read off the number of
propagating dof from theory graphs. (c) Here we diagrammatically represent (4.5), a more complex
theory combining all the different types of interactions discussed throughout this paper.

more complex theories combining the different types of interactions discussed throughout
this paper can be depicted by showing the theory graph for the following theory20

S9 =

∫
dDxdet[E(1)]R[E(1)] +

∫
dDxdet[E(1) − E(2)]R[E(1) − E(2)]

+

∫
dDxdet[E(1) + E(2)]R[E(1) + E(2)] +

∫
dDxdet

[
E(1) + E(2)

]
L
[
Φi, E(1) + E(2)

]
+

∫
dDxdet[E(3)]R[E(3)] +

∫
dDxdet[E(3) + E(2)]R[E(3) + E(2)]. (4.5)

5 Summary and conclusions

In this paper we have proposed and discussed a set of new kinetic and derivative interactions
for spin-2 fields. These were closely linked to the Einstein and Jordan frame pictures for Mas-
sive, Bi- and Multi-Gravity, which we described and which connect the new kinetic/derivative
interactions to the matter couplings proposed by [15, 16]. As such the new kinetic/derivative
interactions, when combined with general potential self-interactions and matter coupling
terms, are expected to generically inherit a ghost (in several cases outside of the decoupling
limit) at a scale Λg — we will establish the exact scale Λg of this ghost and how it relates
to the cutoff scale of the theory in [37]. Here we have already shown, however, that the new
kinetic and derivative interactions are ghost-free by themselves (since individually they are
EH terms up to field re-definitions) and can be part of fully ghost-free spin-2 field theories
via the Kinetic/Potential frame versions of spin-2 theories discussed in section 3.

Several topics suggest themselves for future work. Investigating the background cos-
mology as well as the behaviour of perturbations in theories involving the new interaction
terms will help establish whether new viable cosmological solutions are included within the
framework of general spin-2 field theories. In fact, even for exploring already known theories,
the Einstein/Jordan and Kinetic/Potential frames described in section 3 should hopefully
prove useful. The most pressing question, however, remains what the scale of the ghost in
generic spin-2 theories with the new matter couplings and/or the new kinetic and derivative

20Note that the theory graphs only keep track of which fields are linked by interaction terms. Two terms
linking the same fields, but differing by their choice of interaction coefficients will look identical — hence
the double-line in figure 8 resulting from the two kinetic interactions det[E(1) + E(2)]R[E(1) + E(2)] and
det[E(1)−E(2)]R[E(1)−E(2)]. Those two terms can of course be combined into a single derivative interaction
term, but we here choose to keep the composition in terms of EH -like objects explicit.
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interactions presented here as well as for the non-linear candidate kinetic interactions of [1] is
— only once we know this scale will we know the range of validity of general EFT s for spin-2
field theories and in which such theories interesting non-linear behaviour can be described.
We discuss the scale of all the associated ghosts in [37]. In addressing these and other related
questions we will hopefully come closer to getting a more complete picture of what consistent
theories for spin-2 fields we can build, approaching the same level of understanding we have
already obtained for field theories of spin-1 and spin-0 fields.

Acknowledgments

I would like to thank Claudia de Rham, Pedro Ferreira, Andrew Matas, Sigurd Næss, Rachel
Rosen, James Scargill, Adam Solomon, David Stefanyszyn and Andrew Tolley for very useful
discussions. I am supported by the STFC, BIPAC and the Royal Commission for the Ex-
hibition of 1851. The xAct package for Mathematica [40] was used in the computation and
check of some of the results presented here.

References

[1] C. de Rham, A. Matas and A.J. Tolley, New Kinetic Interactions for Massive Gravity?, Class.
Quant. Grav. 31 (2014) 165004 [arXiv:1311.6485] [INSPIRE].

[2] C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli Action, Phys. Rev. D 82
(2010) 044020 [arXiv:1007.0443] [INSPIRE].

[3] C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev. Lett.
106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

[4] S.F. Hassan and R.A. Rosen, Resolving the Ghost Problem in non-Linear Massive Gravity,
Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].

[5] S.F. Hassan, R.A. Rosen and A. Schmidt-May, Ghost-free Massive Gravity with a General
Reference Metric, JHEP 02 (2012) 026 [arXiv:1109.3230] [INSPIRE].

[6] S.F. Hassan and R.A. Rosen, Bimetric Gravity from Ghost-free Massive Gravity, JHEP 02
(2012) 126 [arXiv:1109.3515] [INSPIRE].

[7] S.F. Hassan and R.A. Rosen, Confirmation of the Secondary Constraint and Absence of Ghost
in Massive Gravity and Bimetric Gravity, JHEP 04 (2012) 123 [arXiv:1111.2070] [INSPIRE].

[8] K. Hinterbichler and R.A. Rosen, Interacting Spin-2 Fields, JHEP 07 (2012) 047
[arXiv:1203.5783] [INSPIRE].

[9] J. Noller, J.H.C. Scargill and P.G. Ferreira, Interacting spin-2 fields in the Stückelberg picture,
JCAP 02 (2014) 007 [arXiv:1311.7009] [INSPIRE].

[10] K. Hinterbichler, Ghost-Free Derivative Interactions for a Massive Graviton, JHEP 10 (2013)
102 [arXiv:1305.7227] [INSPIRE].

[11] S. Folkerts, A. Pritzel and N. Wintergerst, On ghosts in theories of self-interacting massive
spin-2 particles, arXiv:1107.3157 [INSPIRE].

[12] R. Kimura and D. Yamauchi, Derivative interactions in de Rham-Gabadadze-Tolley massive
gravity, Phys. Rev. D 88 (2013) 084025 [arXiv:1308.0523] [INSPIRE].

[13] S. Folkerts, C. Germani and N. Wintergerst, Massive spin-2 theories, Cosmology and Particle
Physics beyond Standard Models: Ten Years of the SEENET-MTP Network (2014) 87
[arXiv:1310.0453] [INSPIRE].

– 22 –

http://dx.doi.org/10.1088/0264-9381/31/16/165004
http://dx.doi.org/10.1088/0264-9381/31/16/165004
http://arxiv.org/abs/1311.6485
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.6485
http://dx.doi.org/10.1103/PhysRevD.82.044020
http://dx.doi.org/10.1103/PhysRevD.82.044020
http://arxiv.org/abs/1007.0443
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.0443
http://dx.doi.org/10.1103/PhysRevLett.106.231101
http://dx.doi.org/10.1103/PhysRevLett.106.231101
http://arxiv.org/abs/1011.1232
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1232
http://dx.doi.org/10.1103/PhysRevLett.108.041101
http://arxiv.org/abs/1106.3344
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.3344
http://dx.doi.org/10.1007/JHEP02(2012)026
http://arxiv.org/abs/1109.3230
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.3230
http://dx.doi.org/10.1007/JHEP02(2012)126
http://dx.doi.org/10.1007/JHEP02(2012)126
http://arxiv.org/abs/1109.3515
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.3515
http://dx.doi.org/10.1007/JHEP04(2012)123
http://arxiv.org/abs/1111.2070
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.2070
http://dx.doi.org/10.1007/JHEP07(2012)047
http://arxiv.org/abs/1203.5783
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.5783
http://dx.doi.org/10.1088/1475-7516/2014/02/007
http://arxiv.org/abs/1311.7009
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.7009
http://dx.doi.org/10.1007/JHEP10(2013)102
http://dx.doi.org/10.1007/JHEP10(2013)102
http://arxiv.org/abs/1305.7227
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.7227
http://arxiv.org/abs/1107.3157
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3157
http://dx.doi.org/10.1103/PhysRevD.88.084025
http://arxiv.org/abs/1308.0523
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.0523
http://arxiv.org/abs/1310.0453
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.0453


J
C
A
P
0
4
(
2
0
1
5
)
0
2
5

[14] X. Gao, Derivative interactions for a spin-2 field at cubic order, Phys. Rev. D 90 (2014)
064024 [arXiv:1403.6781] [INSPIRE].

[15] C. de Rham, L. Heisenberg and R.H. Ribeiro, On couplings to matter in massive (bi-)gravity,
Class. Quant. Grav. 32 (2015) 035022 [arXiv:1408.1678] [INSPIRE].

[16] J. Noller and S. Melville, The coupling to matter in Massive, Bi- and Multi-Gravity, JCAP 01
(2015) 003 [arXiv:1408.5131] [INSPIRE].

[17] K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671
[arXiv:1105.3735] [INSPIRE].

[18] C. de Rham, Massive Gravity, Living Rev. Rel. 17 (2014) 7 [arXiv:1401.4173] [INSPIRE].

[19] S. Deser, K. Izumi, Y.C. Ong and A. Waldron, Problems of Massive Gravities,
arXiv:1410.2289 [INSPIRE].

[20] S. Groot Nibbelink, M. Peloso and M. Sexton, Nonlinear Properties of Vielbein Massive
Gravity, Eur. Phys. J. C 51 (2007) 741 [hep-th/0610169] [INSPIRE].

[21] T. Hanada, K. Shinoda and K. Shiraishi, Multi-graviton theory in vierbein formalism,
arXiv:0801.2641 [INSPIRE].

[22] A.H. Chamseddine and V. Mukhanov, Massive Gravity Simplified: A Quadratic Action, JHEP
08 (2011) 091 [arXiv:1106.5868] [INSPIRE].

[23] A.H. Chamseddine and M.S. Volkov, Cosmological solutions with massive gravitons, Phys. Lett.
B 704 (2011) 652 [arXiv:1107.5504] [INSPIRE].

[24] M. Mirbabayi, A Proof Of Ghost Freedom In de Rham-Gabadadze-Tolley Massive Gravity,
Phys. Rev. D 86 (2012) 084006 [arXiv:1112.1435] [INSPIRE].

[25] C. Deffayet, J. Mourad and G. Zahariade, A note on ’symmetric’ vielbeins in bimetric, massive,
perturbative and non perturbative gravities, JHEP 03 (2013) 086 [arXiv:1208.4493] [INSPIRE].

[26] C. de Rham, A. Matas and A.J. Tolley, Deconstructing Dimensions and Massive Gravity,
Class. Quant. Grav. 31 (2014) 025004 [arXiv:1308.4136] [INSPIRE].

[27] Y. Yamashita, A. De Felice and T. Tanaka, Appearance of Boulware-Deser ghost in bigravity
with doubly coupled matter, Int. J. Mod. Phys. D 23 (2014) 3003 [arXiv:1408.0487] [INSPIRE].

[28] S. Melville and J. Noller, in preparation.

[29] S.F. Hassan, M. Kocic and A. Schmidt-May, Absence of ghost in a new bimetric-matter
coupling, arXiv:1409.1909 [INSPIRE].

[30] J. Enander, A.R. Solomon, Y. Akrami and E. Mortsell, Cosmic expansion histories in massive
bigravity with symmetric matter coupling, JCAP 01 (2015) 006 [arXiv:1409.2860] [INSPIRE].

[31] A. Schmidt-May, Mass eigenstates in bimetric theory with matter coupling, JCAP 01 (2015)
039 [arXiv:1409.3146] [INSPIRE].

[32] C. de Rham, L. Heisenberg and R.H. Ribeiro, Ghosts and matter couplings in massive gravity,
bigravity and multigravity, Phys. Rev. D 90 (2014) 124042 [arXiv:1409.3834] [INSPIRE].
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