
A Proposal of Recommendation Function for
Element Fill-in-Blank Problems in Java

Programming Learning Assistant System
Su Sandy Wint, Yan Watequlis Syaifudin,

Nobuo Funabiki, Minoru Kuribayash
Department of Electrical and
Communication Engineering

Okayama University,
Okayama, Japan

pfpo5v7r@s.okayama-u.ac.jp,
funabiki@okayama-u.ac.jp

Shune Lae Aung
Department of Computer Studies

University of Yangon,
Yangon, Myanmar

shunelaeaung@gmail.com

Wen-Chun Kao
Department of Electrical Engineering
National Taiwan Normal University,

Taipei, Taiwan
jungkao@ntnu.edu.tw

Abstract—
Purpose - To advance Java programming educations, we have

developed a Web-based Java programming learning assistant sys-
tem (JPLAS). It offers the element fill-in-blank problem (EFP) for
novice students to study Java grammar and basic programming
skills by filling in the missing elements in a source code. An EFP
instance can be generated by selecting an appropriate code, and
applying the blank element selection algorithm. Since it is expected
to cover broad grammar topics, a number of EFP instances have
been generated. This paper proposes a recommendation function
to guide a student solving the proper EFP instances among them.

Design/methodology/approach This function considers the
difficulty level of the EFP instance and the grammar topics that
have been correctly answered by the student, and is implemented
at the offline answering function of JPLAS using JavaScript so
that students can use it even without the Internet connections.

Findings - To evaluate the effectiveness of the proposal, 85 EFP
instances are prepared to cover various grammar topics, and are
assigned to a total of 92 students in two universities in Myanmar
and Indonesia to solve them using the recommendation function.
Their solution results confirmed the effectiveness of the proposal.

Originality/value The concept of the difficulty level for an
EFP instance is newly defined for the proper recommendation
and the accuracy in terms of correct answer rates among the
students is verified.

Index Terms—Java programming, JPLAS, element fill-in blank
problem,recommendation function, offline answering function,
JavaScript

Paper type Research paper

I. INTRODUCTION

Nowadays, the object-oriented programming language,
Java, has been widely used in various fields including cloud
applications, machine-learning environments, and Internet of
Things technologies, due to its high reliability, portability, and
scalability. Java was selected the most in-demand program-
ming languages in 2018 [TechRepublic, 2018]. Hence, the
strong demand in advancing Java programming educations
has emerged from industries. A typical Java programming
education in a school, consists of grammar instructions with

textbooks in classes and programming exercises using com-
puter operations.

To advance Java programming educations, we have stud-
ied a Web-based Java programming learning assistant sys-
tem (JPLAS) [Funabiki, 2018]-[Ishihara, 2017]. JPLAS offers
several types of Java programming exercises, starting from
exercises for studying code reading and grammar until those
for studying practical code writing using object-oriented pro-
gramming concepts. In any exercise type, each answer from
the learner will be marked automatically on the server, to
support self-studies of Java programming. Currently, JPLAS
provides the element fill-in-blank problem [Funabiki, 2017],
the code completion problem [Kyaw, 2018], the value trace
problem [Zaw, 2015], the statement element fill-in-blank prob-
lem [Ishihara, 2015], and the code writing problem [Funabiki
et al, 2013].

Among the exercise types in JPLAS, the element fill-in-
blank problem (EFP) is designed for novice students to study
Java grammar topics and basic programming skills through
code reading. An EFP instance requests a student to fill in
the missing elements or blanks in the given source code,
which has several blank elements, called the problem code.
This source code should be of high-quality, most worth for
code reading. To solve an EFP instance, a student needs to
carefully read the problem code and understand the structure,
the algorithm/logic, and the semantics.

To support generating new EFP instances by a teacher, the
blank element selection algorithm has been proposed. It can
find feasible blank elements that have the unique answers in
the code. Thus, by downloading model source codes from
Web sites and applying this algorithm, a large number of
EFP instances can be prepared to cover the various Java
programming topics for different stages of students in JPLAS.
As a consequence, a student needs to select proper EFP
instances to be solved that are suitable at his/her learning level.

In this paper, we propose a recommendation function of

selecting a proper EFP instance to be solved next by the
student. To find a proper EFP instance for the student, this
function uses the difficulty level of each EFP instance and that
of the student, and finds the instance whose level is matching
to him/her. Besides, it keeps the grammar topics that have
been correctly answered by the student before, and selects the
instance that has many unsolved topics by the student. The
grammar topics are described by the related keywords that are
defined in the grammar.

For evaluations, we implemented the recommendation
function at the offline answering function of JPLAS using
JavaScript. The offline answering function was developed to
support students in solving exercises in JPLAS without the
Internet access [Funabiki, 2016]. It runs on a Web browser
to offer the same interface as the online version, where
the marking and storage functions were implemented with
JavaScript.

Then, we prepared 85 EFP instances that cover the basic
Java grammar topics and have the difficulty levels from 3 to
25, and applied them to the total of 92 undergraduate students
in two universities in Myanmar and Indonesia. Their solution
results indicate that 1) more than half students reached the
highest level while covering around 80% of the keywords,
2) the difficulty level well explains the student performance,
and 3) high-level students reached the final one smoothly
while low-level students were saturated at middle. Thus, the
effectiveness of the proposal was confirmed.

The rest of this paper is organized as follows: Section II
reviews our preliminary works to this paper. Section III
introduces related works in literature. Sections IV and V
present the proposal and its implementations at the offline
answering function. Section VI shows the evaluation results of
this proposal. Finally, Section VII concludes this paper with
future works.

II. PRELIMINARY WORKS

In this section, we review our preliminary works to this
paper.

A. Online JPLAS

In the online JPLAS server, we adopt Linux for the operating
system, Tomcat for the Web application server, JSP/Java for
application programs, and MySQL for the database as shown
in Figure 1.

JPLAS
(JSP/Java)

Tomcat
(Web server)

MySQL
(Database)

Linux (OS)

Fig. 1: JPLAS server platform.

JPLAS offers the teacher support function and the student
support function. With the teacher support function, a teacher

can create and register new exercise instances in the JPLAS
server from the browser, and analyze the solution results of the
student including their access records. With the student support
function, a student can view the list of the instances assigned
by the teacher, select the instances to be answered, and answer
the questions in each instance. Each answer from the student
will be sent to the JPLAS server where the correctness is
determined.

B. Offline Answering Function

The offline answering function was implemented for stu-
dents to solve EFP instances without the Internet access.
To avoid cheating by students, the hash function for the
correct answers and the message authentication for the student
verification were adopted. The marking function and the data
storage function were implemented with JavaScript so that
they can run at the browser.

C. Element Fill-in-blank Problem

An EFP instance requests a student to fill in the blank
elements in the given source code.

1) Definition of Element: An element represents the least
unit of a code which contains a reserved word, an identifier, a
control symbol, and an operator. A reserved word signifies
a fixed sequence of characters defined in the grammar to
represent a specific function. An identifier is a sequence of
characters defined in the code by the author to represent a
variable, a class, or a method. A control symbol indicates
other grammar elements such as “ . ” (dot), “ : ” (colon),
“ ; ” (semicolon), “ (,) ” (bracket), “ {,} ” (curly bracket).
An operator is used in a conditional expression to describe
a condition to determine a logic in a code, such as “<” and
“&&”.

2) EFP Instance Generation: A new EFP instance will be
generated through the four steps: 1) to obtain a source code
that covers the grammar topics to be studied, 2) to divide the
source code into a sequence of lexical units or elements and
classify the type of each element by applying JFlex and jay,
3) to select the blank elements that have grammatically correct
and unique answers by applying the blank element selection
algorithm, and 4) to upload the generated EFP instance to the
JPLAS server.

3) Blank Element Selection Algorithm: The blank element
selection algorithm [Funabiki, 2017] selects the elements in
the given source code that can be blanked, to generate a
feasible EFP instance such that any blank element has the
unique correct answer. First, the constraint graph is generated
from the source code to describe the constraints in the blank
element selection. In this graph, each vertex represents a
candidate element for being blank and each edge does the pair
of two vertices that should not be blanked at the same time.
Second, the compatibility graph is generated by taking the
complement of the constraint graph, to represent the pairs of
elements that can be blanked simultaneously. Third, a maximal
clique of the compatibility graph is extracted by a simple
greedy algorithm to identify the maximal number of blank

elements with unique answers from the source code. Finally,
extra control symbols are removed from the blank elements so
that the ratio between the number of blanked control symbols
and that for other elements is controlled.

III. RELATED WORKS

In this section, we introduce some related works in litera-
ture.

In [Denny, 2009], Denny et al. investigated the quality of the
multiple choice question (MCQ) repository created by students
in an introductory programming course. They analyzed the
range of topics on which students chose to write questions
without guidance from an instructor. By comparing the repos-
itory coverage with a common list of typical introductory
programming topics, it was found that students created a
repository that covered all the major topics in the curriculum.

In [Hsiao, 2010], Hsiao et al. developed the JavaGuide
system to guide students to appropriate questions in a Java
programming course, and investigated the adaptive navigation
support for self-assessment questions in larger classes with
a broader range of question difficulty. The topic annotations
of the system combine two kinds of adaptation: individual
progress-based adaptation and group-wise time-based adapta-
tion, to inform the individual and group-wise importance of
the topics. It tries to direct students to the best learning content
at any particular moment of time.

In [Brusilovsky, 2013], Brusilovsky et al. presented an
attempt to develop a personalized exam preparation tool for
Java/OOP classes based on a fine-grained concept model
of Java knowledge by exploring two most popular student
model-based approaches: open student modeling and problem
sequencing. Then, they developed a Java exam preparation
tool called KnowledgeZoom by combining an open concept-
level student model component, Knowledge Explorer, and a
concept-based sequencing component, Knowledge Maximizer
into a single interface.

In [Dragon, 2017], Dragon et al. presented the system for
automated analysis that can harness the power of online, in-
teractive textbook and practice systems to provide information
about high-level conceptual understanding using a concept
graph to educators. It presents a visualization using logged
data to provide numeric estimates of a student’s knowledge of
course concepts, to support teachers and individual students.

In [Hasany, 2017], Hasany presented an e-learning system
called c-Learn. Students can use it anywhere and at any time
as a web application to cope up with the problem that as
more lessons are covered, the weak students become weaker
in programming. Using this system, a student can gradually
learn programming, and in case of errors, it can guide back
to the topics which the student should understand to solve the
problem.

IV. PROPOSAL OF RECOMMENDATION FUNCTION

In this section, we present the recommendation function
of recommending the EFP instance to be solved next by the
student. This function can be adopted to other programming
languages by changing the keywords and their weights.

A. Difficulty level

To select an EFP instance with the proper level to a student,
the difficulty level is introduced to each EFP instance and each
student.

1) Keyword List: The difficulty level of an EFP instance is
derived by the summation of the weights associated with the
blanked keywords in the problem code. The keywords consist
of reserved words, common identifiers, and control symbols re-
lated to the Java grammar, referring to [Denny, 2009]-[Hsiao,
2010]. The keyword list in Table I lists them. These keywords
should be freely used by a student at Java programming study.
This list contains the commonly used library classes in Java
programming and newly released grammar topics from Oracle
for the long-term support [Oracle, 2020]-[Java, 2019].

TABLE I: keyword list.

weight grammar topic keywords
1 variable variable
1 access modifier public, private, protected, default
1 primitive data type byte, char, short,int

long, double, float
1 wrapper class Boolean, Character, Byte

Short, Integer, Long, Double
1 operator +, -, *, /, ++, - -

==, !=, <, >, <=, >=
?, &, instanceof

1 control statement if, else if, else, switch, while
do while, for, break, continue

1 array length, declare array
1 common word class, static, void, main

String,System, out, println, in, print
1 code block {, }, ,̇ ,
2 string toString,subString,replace,

StringBuffer,StringBuilder,split
concat,length,indexOf

endsWith,startsWith,equals
2 exception try, catch, finally, throws
2 package import
2 I/O Scanner, BufferedReader, File
3 class field, method, object, constructor

this, extends, super, final, return
3 interface abstract, interface, implements
3 regular expression Patten, Matcher, compile
3 recursion recursively called method
3 collections framework LinkedList, Set

HashSet, TreeSet, Map
HashMap, Stack, Queue

2) Difficulty Level Calculation of EFP instance: The dif-
ficulty level of an EFP instance is actually calculated in the
following procedure:

1. Extract any keyword in Table I from the blank elements in
the problem code by applying the single keyword pattern
matching algorithm [Singh, 2017].

2. Calculate the summation of the weights that are associ-
ated with these keywords for the difficulty level of this
instance.

In the calculation, the same keyword is counted only once
even if it appears in the code multiple times. The following
example problem code has seven keywords at the blank
elements from 1 to 7 . They are class, void, String, for,
< (relational operator), ; , and System. No same keyword is
appeared in the example code. Because each keyword has the
weight 1, the difficulty level is 7.

Example problem code.

public _1_ OperatorSample {
public static _2_ main(_3_ [] args) {
4 (int i = 0; i _5_ 3; i++) {
System.out.println(i) _6_
}
System.out.println("i=" + i);
7 .out.println("end");
}
}

3) Difficulty Level Update of Student: The difficulty level
is also calculated for each student. To avoid confusions, the
difficulty level for a student is called the student level L.

The student level L is dynamically updated by L + ∆L,
every time the student solves an EFP instance or gives up
it. The level change ∆L is different depending on the correct
answer rate x(%) in the previous EFP instance solution. When
all the blanks are correctly solved (x = 100), ∆L becomes
positive. Here, ∆L is changed by the number of submission
times y, since many answer submissions imply that this student
may not understand the previous instance thoroughly. When
“ Give Up Button” in the user interface is clicked and x
is smaller than the given threshold M(%) (x < M), ∆L
becomes negative. Otherwise, ∆L is zero.

The procedure of calculating ∆L is given as follows:
• If x = 100 and y ≤ N , then ∆L = D.
• If x = 100 and y > N , then ∆L = D

y−(N−1) .

• If x < M , then ∆L = D(x
M − 1).

• Otherwise, ∆L = 0.
where D represents the maximum difficulty level change,
N does the submission times parameter, and M does the
maximum correct answer rate (%), which should be properly
assigned as the three important parameters in the recommen-
dation function to select the proper next EFP instance.

B. Next EFP Instance Selection

The EFP instance to be solved next by the student is selected
by applying the instance recommendation algorithm, when
the student solved the previous EFP instance. It identifies the
proper EFP instance considering the correct answer rate and
the number of answer submissions.

1) Keyword Removal: Referring to [Saroji, 2018], in this
paper, we remove the keywords from the keyword list, when
the student correctly solved them twice in the previous EFP
instances. It intends to cover as many keywords in the keyword
list as possible by the recommended EFP instances.

2) Next EFP Instance Selection: Then, the next EFP in-
stance is selected by the following procedure:

1. Find all the unsolved EFP instances whose difficulty
levels exist between L− 2 and L+ 2 for the candidates.

2. From them, choose the candidates containing the largest
number of solved blank elements that were failed at
five or more answer submissions at solving the previous
instance, when the correct answer rate x is 100%.

3. From them, choose the candidates from them containing
the largest number of unsolved blank elements at solving
the previous instance, otherwise.

4. From them, select the next EFP instance containing the
largest number of unsolved keywords in the keyword list
for the blank elements.

V. IMPLEMENTATION AT OFFLINE ANSWERING
FUNCTION

In this section, we present the implementation of the rec-
ommendation function at the offline answering function in
JPLAS.

A. Give Up Button
A student may need to know the correct answers of the

incorrect blanks, if he/she cannot solve them even after many
submissions. For this purpose,“Give up”button is prepared
to give up solving the current instance in the interface. When
it is clicked, the JavaScript program decrypts the encrypted
correct answers and shows them to the student. The correct
answers are encrypted to be hidden from the students, when
the EFP instance is newly generated.

In this implementation, Advanced Encryption Standard
(AES) algorithm is adopted, where crypto-js library [Cryp-
toJS, 2018] is used for JavaScript. The generated secret keys
are kept in a file that is not visible from the students by
applying the hidden permission access. Besides, we apply
JavaScript Obfuscator Tool [ObfuscatorTool, 2020] to make
the JavaScript codes harder to read, copy, re-use, and modify
without authorizations.

B. Recommended Question Button
After the student solves all the blanks or gives up the

instance,“ Recommended Question”button can be clicked.
Then, a new EFP instance will be automatically selected
and appeared in the interface. The following procedure is
implemented using JavaScript, to recommend a new instance:

1. Initialize the unassigned instance ID list by including
all the EFP instance IDs, and the unsolved keyword
list by including all the keywords, when the student
starts solving EFP instances. These lists are stored in
localStorage for Web Storage [WebStorage, 2020].

2. Update the unassigned instance ID list by removing the
currently assigned EFP instance ID.

3. Update the unsolved keyword list by removing the key-
words when the corresponding blanks are correctly solved
at the second time at the current EFP instance.

4. Update the student level by the procedure in Sec-
tion IV-A3. The correct answer rates and the numbers of
submission times in the previous EFP instance solutions
are stored in localStorage for Web Storage.

5. Choose all the EFP instances in the unassigned instance
ID list whose difficulty levels exist between L − 2 and
L+ 2 after updating L.

6. Select the EFP instance among the chosen EFP instances
that contains the largest number of keywords in the
unsolved keyword list.

1) EFP Instance Solution Interface: Figure 2 illustrates the
user interface at the offline answering function for an EFP
instance. It displays the problem number“ Problem #156”,
the difficulty level“ Level 7”, the problem code with seven
blank elements, the answer submission button, the give up
button, and the recommendation request button.

Fig. 2: Interface for EFP with recommendation function.

A student needs to fill in the proper word in each blank
form. If he/she wants to submit the answers for marking,
“ Answer” button should be clicked. Then, in each form,
the background color becomes white if the answer is correct,
and pink otherwise. If the student gives up filling in some
blanks correctly,“ Give up” button can be clicked. After
either button is clicked,“ Recommended Question” button
can be clicked. Then, a next EFP instance will appear in the
interface automatically.

VI. EVALUATION

In this section, we evaluate the recommendation function
for EFP in JPLAS through applications using the offline
answering function to undergraduate students in Myanmar and
Indonesia.

A. Evaluation Setup

For three important parameters in the recommendation
function, we selected D = 2 for the maximum difficulty level
change, N = 3 for the maximum number of submissions,
and M = 80 for the maximum correct answer rate. Then,
we generated 85 EFP instances using source codes in [Denny,
2009] and [Hsiao, 2010] that cover 16 Java grammar topics
and contain 110 keywords. The difficulty levels of the EFP
instances are distributed between from 3 to 25.

B. Results in Myanmar University

First, we asked 40 second-year students in University of
Yangon in Myanmar.

1) Student Solution Result: Table II shows the summary
of the student solution results. The 40 students are divided
into four groups by the final level and the average number of
answer submissions per instance. Besides, the average correct
answer rate among the blanks per instance and the average
keyword rate among the 110 keywords covered by the solved
instances in each group are shown there.

The 29 students (72.5%) in Groups 1 and 2 reached the
final level 25 successfully. Thus, they have sufficient Java
programming skills. The difference between the two groups
is the number of answer submission times. The 16 students
at Group 1 answered any instance correctly with up to five
times.

The 11 students (27.5%) in Groups 3 and 4, did not reach
the final level. They need to improve Java programing skills.
Some of them repeated EFP instances for abstraction and
regular expression whose difficulty levels exist between 17 and
20. The three students in Group 4 did not solve many blanks.
The correct answer rates are very low, and the numbers of
answer submission times are very high. The teacher needs the
care of them.

TABLE II: Student solution results.

of ave. ave. final ave.
group students correct # of level keyword

rate (%) submissions rate (%)
1 16 98-100 1-5 25 79.31
2 13 98-100 5-10 25 77.17
3 8 70-90 5-15 17-20 67.14
4 3 50-60 10-20 13-14 51.67

2) Correlation Analysis Result: Then, we discuss the va-
lidity of the defined difficulty level for an EFP instance in this
paper. Figure 3 shows the relationship between the difficulty
levels and the average numbers of answer submission times by
the students to solve all the blanks in each instance correctly
for the 85 EFP instances. The correlation coefficient between
them is 0.74, which suggests the strong correlation.

If an EFP instance is difficult, students will submit answers
many times until solving the blanks in the instance. If it is
easy, they will solve the blanks with few mistakes. Therefore,
the number of answer submission times can be a good index
to measure the difficulty of an EFP instance. Thus, the validity
of the difficulty level for an EFP instance is confirmed.

Fig. 3: Relationship between average numbers of submission
times and difficulty levels in Myanmar students.

3) Difficulty Level Changes: Here, we observe the difficulty
level change of the typical student in each of the four groups
during the solutions. Figure 4 shows them in the four groups.

The student in Group 1 continuously increased the level
except only one instance until reaching the final level. The
student in Group 2 repeated several instances on regular
expression and collections frame work with the similar levels
before reaching the final level. The student in Group 3 could
not solve instances on Java string and abstract at levels 17-20
and could not exceed level 20. The student in Group 4 could
not solve instances on I/O and inheritance at levels 13-14 and
could not exceed level 13.

Fig. 4: Typical difficulty level changes of three students.

C. Results in Indonesia University

Next, we asked 52 third-year students in Malang State
Polytechnic in Indonesia.

1) Student Solution Result: Table III illustrates the sum-
mary of the student solution results. Again, the 52 students
are divided into four groups by the final level and the average
number of answer submissions per instance.

The 27 students (52%) in Groups 1 and 2 reached the
final level 25 successfully. Thus, they have sufficient Java
programming skills.

The 25 students (48%) in Groups 3 and 4 did not reach
the final level. Some of them repeated EFP instances for
abstraction and recursion whose difficulty levels exist between
16 and 19. The 13 students in Group 4 did not solve many
blanks. The teacher needs the care of them.

TABLE III: Student solution results.

of ave. ave. final ave.
group students correct # of level keyword

rate (%) submissions rate (%)
1 12 98-100 1-5 25 79.67
2 15 98-100 5-10 25 79.07
3 12 06-90 5-15 16-19 60.08
4 13 30-50 10-20 9-15 39.92

2) Correlation Analysis Result: Then, we discuss the va-
lidity of the difficulty level for an EFP instance at the results.
Figure 5 shows the relationship between the difficulty levels
and the average numbers of answer submission times by the
students to solve all the blanks in each instance correctly

for the 85 EFP instances. The correlation coefficient is 0.77,
which suggests the strong correlation. Thus, the validity of
the difficulty level is again confirmed.

Fig. 5: Relationship between average numbers of submission
times and difficulty levels in Indonesia students.

To show the effectiveness of the different weights in Table I,
we calculate the correlation coefficient when any keyword is
assigned one for the weight. Then, the correlation coefficient
for the Myanmar students becomes 0.63 and that for the
Indonesia students does 0.61. They are smaller than the
correlation coefficients with the different weights in this paper.

3) Difficulty Level Changes: Here, we examine the diffi-
culty level change of the typical student in each of the four
groups during the solutions. Figure 6 shows them in the four
groups.

The student in Group 1 continuously increased the level
without failures. The student in Group 2 repeated a few
instances on Java abstraction, regular expression, and collec-
tions frame work with the similar levels before reaching the
final level. The student in Group 3 could not solve instances
on Java interface and recursion at levels 16-19 and could
not exceed level 19. The student in Group 4 could not solve
instances on array, String, and inheritance at levels 9-15 and
could not exceed level 9.

Fig. 6: Typical difficulty level changes of three students.

VII. CONCLUSION

In this paper, we proposed the recommendation function
of selecting a proper EFP instance to be solved next by
considering the difficulty level of the currently solved instance
and the grammar topics asociated with their keywords and
implemented it at the offline answering function in JPLAS.
Then, we verified the effectiveness through applications to the
undergraduate students in Myanmar and Indonesia universities.
In the future, we will continue updating the Java grammar
topics associated with their keywords, generate more EFP
instances, and assign them to students in various universities.

REFERENCES

TechRepublic (2018, September). The 10 most in-demand
programming languages of 2018. Retrieved from
https://www.techrepublic.com/article/the-10-most-in-
demand-programming-languages-of-2018/.

Ao, S. et al. ed.: IAENG transactions on engineering sciences
- special issue for the international association of engineers’
conferences 2016 (volume II). World Sci. Pub., 517-530
(2018).

Ishihara, N., Funabiki, N., Kuribayashi, M., Kao, W.-C.: A
software architecture for Java programming learning assis-
tant system. Int. J. Comp. Soft. Eng. 2(1), (2017).

Funabiki, N., Tana, Zaw, K. K., Ishihara, N., Kao, W.-C.:
A graph-based blank element selection algorithm for fill-
in-blank problems in Java programming learning assistant
system. IAENG Int. J. Comput. Sci. 44(2), 247-260 (2017).

Kyaw, H. H. S., Aung S. T., Thant, H. A., Funabiki, N.: A
proposal of code completion problem for Java programming
learning assistant system. In: Proc. CISIS. 855-864 (2018).

Zaw, K. K., Funabiki, N., Kao, W.-C.: A proposal of value
trace problem for algorithm code reading in Java program-
ming learning assistant system. Inf. Eng. Express. 1(3), 9-18
(2015).

Ishihara, N., Funabiki, N., Kao, W.-C.: A proposal of state-
ment fill-in-blank problem using program dependence graph
in Java programming learning assistant system. Inf. Eng.
Express. 1(3), 19-28 (2015).

Funabiki, N., Matsushima, Y., Nakanishi, T., Watanabe, K., &
Amano, N. (2013, February). A Java programming learn-
ing assistant system using test-driven development method.
IAENG Int. J. Comput. Sci. 40(1), 38-46 (2013).

Funabiki, N., Masaoka, H., Ishihara, N., Lai, I.-W., Kao, W.-
C.: Offline answering function for fill-in-blank problems
in Java programming learning assistant system. In: Proc.
ICCE-TW. 324-325 (2016).

Denny, P., Luxton-Reilly, A., Hamer, J., & Purchase, H.:
Coverage of course topics in a student generated MCQ
repository. Proc. SIGCSE Conf. Innov. Tech. Comput. Sci.
Edu. (ITiCSE), 11-15 (2009).

Hsiao, I.-H., Sosnovsky, S., & Brusilovsky, P.: Guiding stu-
dents to the right questions: adaptive navigation support
in an e-learning system for Java programming. J. Comput.
Assist. Learning 26(4), 270-283 (2010).

Oracle, Oracle Java SE support roadmap (2020). Re-
trieved from https://www.oracle.com/technetwork/java/java-
se-support-roadmap/.

Biswas, S., Bordoloi M., Shreya, J.: A graph based key-
word extraction model using collective node weight. Int.J.
Eng.Tech. 97, 51-59 (2018).

Oracle, Java programming language. Retrieved from
https://docs.oracle.com/javase/8/docs/technotes/guides/language/.

MDN web docs, Using the Web storage API. Retrieved from
https://developer.mozilla.org/en-US/docs/Web/API/Web-
Storage-API/Using-the-Web-Storage-API.

JS, CryptoJS. Retrieved from https://cryptojs.gitbook.io/docs/.
Obfuscator, JavaScript obfuscator tool. Retrieved from

https://obfuscator.io/.
Singh, U.: A comparison of single keyword pattern matching

algorithms. Int. J. Eng. Tech. 3(6), 325-329 (2017).
Brusilovsky, P., Baishya, D., Hosseini, R., Guerra, J., & Liang,

M.: KnowledgeZoom for Java: a concept-based exam study
tool with a zoomable open student model. Proc. Int. Conf.
Adv. Learn. Tech., 275-279 (2013).

Dragon, T., & Lindeman, C.: Automated assessment of stu-
dents ’conceptual understanding: supporting students and
teachers using data from an interactive textbook .Proc. Int.
Symp. Multi. (ISM), 567-572 (2017).

Hasany, N.: E-learning student assistance model for the first
computer programming course. Int. J. Integ. Tech. Edu.,
6(1), 1-7 (2017).

Su Sandy Wint received the B.E. degree in Information
Technology from Thanlyin Technological University, Yangon,
Myanmar, in 2017, and currently a master student in Grad-
uate School of Natural Science and Technology at Okayama
University, Japan. Her research interests include educational
technology.

Yan Watequlis Syaifudin received the B.S. degree in In-
formatics from Bandung Institute of Technology, Indonesia,
in 2003, and the M.S. degree in Information Technology
from Sepuluh Nopember Institute of Technology, Surabaya,
Indonesia, in 2011, respectively. In 2005, he joined State
Polytechnic of Malang, Indonesia as a lecturer. He is currently
a Ph.D. candidate in Graduate School of Natural Science
and Technology at Okayama University, Japan. His research
interests include educational technology and database systems.
He is a student member of IEICE.

Nobuo Funabiki received the B.S. and Ph.D. degrees in
mathematical engineering and information physics from the
University of Tokyo, Japan, in 1984 and 1993, respectively.
He received the M.S. degree in electrical engineering from
Case Western Reserve University, USA, in 1991. From 1984 to
1994, he was with Sumitomo Metal Industries, Ltd., Japan. In
1994, he joined the Department of Information and Computer
Sciences at Osaka University, Japan, as an assistant professor,
and became an associate professor in 1995. In 2001, he moved

to the Department of Communication Network Engineering
(currently, Department of Electrical and Communication En-
gineering) at Okayama University as a professor. He was
the chairman at IEEE Hiroshima section in 2015 and 2016.
His research interests include computer networks, optimization
algorithms, educational technology, and Web technology. He
is a member of IEEE, IEICE, and IPSJ.

Minoru Kuribayashi received his B.E., M.E., and D.E.
degrees from Kobe University, Kobe, Japan, in 1999, 2001,
and 2004. From 2002 to 2007, he was a research associate at
the Department of Electrical and Electronic Engineering, Kobe
University. In 2007, he was appointed as an assistant professor
at the Division of Electrical and Electronic Engineering, Kobe
University. Since 2015, he has been an associate professor
in the Graduate School of Natural Science and Technology,
Okayama University. His research interests include digital
watermarking, information security, cryptography, and coding
theory. He received the young professionals award from IEEE
Kansai Section in 2014. He is a senior member of IEEE and
IEICE.

Shune Lae Aung received the B.S. degree from University of
Yadanabon, Mandalay, Myanmar, in 2012, and the M.S. degree
from University of Yangon, Yangon, Myanmar, in 2015. In
2017, she joined University of Yangon, Yangon, Myanmar, as
a lecturer, where currently she is also a Ph.D. candidate. Her
research interests include educational technology.

Wen-Chung Kao received the M.S. and Ph.D. degrees in
electrical engineering from National Taiwan University, Tai-
wan, in 1992 and 1996, respectively. From 1996 to 2000,
he was a Department Manager at SoC Technology Center,
ERSO, ITRI, Taiwan. From 2000 to 2004, he was an Assistant
Vice President at NuCam Corporation in Foxlink Group,
Taiwan. Since 2004, he has been with National Taiwan Normal
University, Taipei, Taiwan, where he is currently a Professor at
Department of Electrical Engineering and the Dean of School
of Continuing Education. His current research interests include
system-on-a-chip (SoC), flexible electrophoretic display, ma-
chine vision system, digital camera system, and color imaging
science. He is a fellow of IEEE.

