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Abstract. We prove that perturbing the periodic annulus of the
reversible quadratic polynomial differential system ẋ = y + ax2,
ẏ = −x with a 6= 0 inside the class of all quadratic polynomial
differential systems we can obtain at most two limit cycle, includ-
ing their multiplicities. Since the first integral of the unperturbed
system contains an exponential function, the traditional methods
can not be applied, except in [6] a computer-assisted method was
used. In this paper we provide a method for studying the problem.
This is also the first purely mathematical proof of the conjecture
formulated by F. Dumortier and R. Roussarie in [5] for q ≤ 2. The
method may be used in other problems.

1. Introduction and statement of the main results

We recall that a center of a planar differential system is a singular
point p of the system having a neighborhood filled up of periodic orbits
with the unique exception of the point p. The period annulus of a center
is the maximal region filled up with the periodic orbits surrounding the
center.

There is a big program whose objective is to find the exact upper
bound for the number of limit cycles that can bifurcate from the pe-
riodic orbits of the period annuli of the quadratic polynomial differen-
tial systems under quadratic perturbations, see for instance the second
part of the book of C. Christhopher and C. Li [3]. This upper bound
is called the cyclicity of the period annulus. This program started with
V. I. Arnold [1, 2] and has produced more than one hundred articles,
see for instance the references of [3].

Here we contribute to this program determining this upper bound for
the period annulus of the center of the quadratic polynomial differential
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systems

(1) Ẋ = Y + aX2, Ẏ = −X,

with a 6= 0. We note that to study the cyclicity of the period annulus
of system (1) is equivalent to study the cyclicity of the period annulus
of the system

(2) ẋ = y + 4x2, ẏ = −x.

Indeed, doing the change of variables (X, Y ) → (x, y) where X = 4x/a
and Y = 4y/a system (1) becomes system (2).

System (2) has the first integral

H(x, y) = e8y
(
4x2 + y − 1

8

)
,

and the corresponding integrating factor R(y) = 8e8y.

The phase portrait of system (2) in the Poincaré disc is shown in
Figure 1. This phase portrait has a unique finite singular point, the

Figure 1. The phase portrait of system (2) in the Poincaré disc, with the parabola
y = −4x2 + 1/8 at the boundary of the period annulus.

center localized at the origin of coordinates. It has two pairs of infinite
singular points localized at the endpoints of the x and y axes. At
the endpoint of the positive x-half-axis there is a hyperbolic stable
node, at the endpoint of the negative x-half-axis there is a hyperbolic
unstable node, at the endpoints of the y-axis there is a nilpotent saddle,
having a hyperbolic sector at the endpoint of the positive y-half-axis
and three hyperbolic sectors at the endpoint of the negative y-axis.
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For the definitions of first integral and integrating factor see Chapter
8, for the definition of the Poincaré disc see Chapter 5, and for the
definitions of hyperbolic and nilpotent singular points see Chapters
2 and 3 respectively of [4]. The boundary of the period annulus of
the center of system (2) localized at the origin of coordinates is the
parabola y = −4x2 + 1/8. Then the period annulus can be expressed
by {γh : h ∈ (−1/8, 0)}, where γh is the periodic orbit

(3) H(x, y) = e8y
(
4x2 + y − 1

8

)
= h.

In what follows we will say simply quadratic system instead of qua-
dratic polynomial differential system. It is known, see for instance [7],
that any reversible quadratic system can be written in the complex
form ż = −iz + az2 + 2|z|2 + bz̄2 where z = x+ iy, or in the real form

ẋ = y + (a + b+ 2)x2 − (a+ b− 2)y2, ẏ = −x+ 2(a− b)xy,

where a and b are real parameters. When a = b = 1 the reversible
quadratic system (4) becomes system (2).

Our main result is the following one.

Theorem 1. The cyclicity of the period annulus of system (2) under
quadratic perturbations is two.

Theorem 1 is proved in next section.

Remark 2. Note that system (8) of [5] is just our system (1) with
a = −1, hence the Abelian integrals I1(h), I3(h), I5(h) for h ∈ (−1/8, 0)
in Lemma 4 are equivalent to J1(h), J3(h), J5(h) for h ∈ (0, 1/2) in [5].
F. Dumortier and R. Roussarie formulated a conjecture on page 726
of [5], that {J ′

1(h), J
′
3(h), . . . J

′
2q+1(h)} forms a strict Chebyshev system

for h ∈ (0, 1/2) and for any integer q ≥ 0. This conjecture is obviously
true for q = 0. We give a positive answer to this conjecture for q = 1 in
Lemma 6 and for q = 2 in Lemmas 7-9, by using purely mathematical
method. Note also that J. Figuerasa, W. Tucker and J. Villadelprat
in [6] gave a proof of this conjecture for q ≤ 2 by using theoretical
analysis and computations by computer, that are based on computer-
assisted techniques. For example, the computations for the proof of a
lemma take six and a half hours on a desktop computer with a 2.8 GHz
CPU, see Remark 4.11 of [6].
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2. Proof of Theorem 1

We first state a result by I. D. Iliev, see statement (ii). (3) with
a = b = 1 in Theorem 2 of [7].

Theorem 3. The exact upper bound for the number of limit cycles
produced by the period annulus of the reversible quadratic system (2)
under quadratic perturbations is equal to the maximal number of zeros
in the interval (−1/8, 0) counting multiplicities of the function

(4) M(h) =

∫∫

H(x,y)<h

8e8y(µ1 + µ2y + µ3y
2)dxdy,

where µ1, µ2 and µ3 are arbitrary constants, and µ2
1 + µ2

2 + µ2
3 6= 0.

Lemma 4. For h ∈ (−1/8, 0) the function (4) can be expressed as

(5) M(h) = α1I1(h) + α2I3(h) + α3I5(h),

where α1, α2 and α3 are arbitrary constants, α2
1 + α2

2 + α2
3 6= 0, and

(6) Ik(h) =

∫

γh

8e8yxkdy, k = 1, 3, 5.

Proof. It is obviously that (4) can be expressed as

(7)

∫

γh

e8y(µ̄1 + µ̄2y + µ̄3y
2)dx,

where µ̄1, µ̄2 and µ̄3 are arbitrary constants and µ̄2
1 + µ̄2

2 + µ̄2
3 6= 0.

Hence, we only need to prove that each
∫
γh
e8yykdx (for k = 0, 1, 2) can

be expressed as a linear combination of I1(h), I3(h) and I5(h).

First, using integration by parts we have∫

γh

e8ydx = −I1(h).

Next, by using (3) and integration by parts we have
∫

γh

e8yydx =

∫

γh

[
h+ e8y

(
1

8
− 4x2

)]
dx = −1

8
I1(h) +

4

3
I3(h).

Finally, by using integration by parts we have∫

γh

e8yy2dx = −2

∫

γh

xye8ydy − 8

∫

γh

xy2e8ydy = −2K1(h)− 8K2(h).

From (2) we have

(8) xdx+ (y + 4x2)dy = 0,
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Multiplying (8) by xe8y we have

K1(h) = −1

2
I3(h)−

∮

γh

x2e8ydx = −1

6
I3(h).

Multiplying (8) by xye8y we have

K2(h) = −4

∮

γh

x3ye8ydy −
∮

γh

x2ye8ydx

= −4

∮

γh

x3

[
d

(
1

8
ye8y

)
− 1

8
e8ydy

]
−

∮

γh

x2ye8ydx

=
1

2

∮

γh

x2ye8ydx+
1

16
I3(h).

Using (3), we change the first integral above (neglecting the fact 1
2
) to

∮

γh

x2ye8ydx =

∮

γh

x2

[
h+

(
1

8
− 4x2

)
e8y

]
dx

=

∮

γh

x2

(
1

8
− 4x2

)
e8ydx =

1

8

∮

γh

x2e8ydx− 4

∮

γh

x4e8ydx

= − 1

24
I3(h) +

4

5
I5(h).

�
Lemma 5. For h ∈ (−1/8, 0) the function M(h) in (5) satisfies

(9) M ′(h) = α1I
′
1(h) + α2I

′
3(h) + α3I

′
5(h),

where

(10) I ′k(h) =

∫

γh

kxk−2dy, k = 1, 3, 5.

Proof. It is easy to check by (3) that along γh one has

∂x

∂h
=

1

8e8yx
,

thus

I ′k(h) =

∫

γh

8e8ykxk−1∂x

∂h
dy =

∫

γh

kxk−2dy, k = 1, 3, 5.

�

Since the orientation along γh is clockwise, we have Ik(h) < 0 for
k = 1, 3, 5 and h ∈ (−1/8, 0). Furthermore to simplify computations,
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we introduce the new variable z = y + 4x2, then the equation (2)
becomes

(11)
dx

dt
= z,

dz

dt
= −x(1 − 8z)

and the curve γh has the form

(12) γh =

{
(x, z) | e−32x2+8z

(
z − 1

8

)
= h, h ∈

(
−1

8
, 0

)}
.

Thus, along γh we have

(13)
∂x

∂h
= − 1

64xh
,

∂z

∂h
= −

1
8
− z

8zh
,

and

(14) z <
1

8
,

dz

x
= −(1− 8z)dt < 0, dz = −x

(
1

z
− 8

)
dx.

By Lemma 5 it is obvious that

(15) M ′(h) =

∫

γh

F (x)

x
dy =

∫

γh

F (x)

x
dz,

where F (x) = α1 + 3α2x
2 + 5α3x

4.

In the following we use the new variables (x, z).

Lemma 6. If α3 = 0, then for h ∈ (−1/8, 0) the function M ′(h) has
at most one zero, including its multiplicity, where M(h) is the linear
combinations of I1(h), I3(h) and I5(h), shown in (5).

Proof. If α3 = α2 = 0, then α1 6= 0. By (15) and the second equality
of (14) we obtain

M ′(h) = α1

∫

γh

dz

x
6= 0, h ∈ (−1/8, 0).

If α3 = 0, α2 6= 0, we can rewrite (5) as

M(h) = I3(h) + αI1(h).

By using (10) we have

(16) M ′(h) = I ′3(h) + αI ′1(h) =

∫

γh

3x2 + α

x
dz.

If α ≥ 0, then M ′(h) < 0, because dz
x
< 0 along γh by (14).

If α < 0, we denote x0 the positive root of 3x2 + α = 0. Suppose
that the intersection points of the curve γh and the axis {(x, z) |z = 0}



7

are (±xM (h), 0), the most left and the most right points of γh, then by
(12) γh has two branches z = zi(x, h) with

(17) z1 < 0 < z2 <
1

8
for x ∈ (−xM (h), xM(h)).

Note that γh tends to the origin as h → −1/8+, monotonically ex-
pands as h increases from −1/8, and tends to infinity in ±x direction
as h → 0−.

If h ∈ (−1
8
, h0], where h0 = H(x0, 0), then xM (h) ≤ x0, the curve

γh is located in the strip {(x, z) | 3x2 + α ≤ 0}, see Figure 2(i). Hence
M ′(h) > 0, because dz

x
< 0 along γh by (14).

xx

z

z

OO
x0x0 −x0−x0

γhγh

xMxM

z1(x0, h)

z2(x0, h)

z1(x, h)

z2(x, h)

x2(z, h)

(i)h ∈ (− 1
8 , h0) (ii)h ∈ (h0, 0)

Figure 2. The relative positions of γh and the straight lines {(x, z)|x = ±x0}.

If h ∈ (h0, 0), then xM(h) > x0, the curve γh must cut the straight
lines {(x, z)|x = ±x0}, see Figure 2(ii). The curve γh is symmetry with
respect to z-axis, so we will only consider the side x ≥ 0. We divide

the integral form of M ′(h)
2

into two parts as follows:

M ′(h)

2
=

∫ x0

0

(3x2 + α)

(
1

z1
− 1

z2

)
dx−

∫ z2(x0,h)

z1(x0,h)

3x2
2 + α

x2
dz,

where zi = zi(x, h), i = 1, 2; we use the last quality of (14) in the first
integral to change dz to dx; in the second integral, x2 = x2(z, h) is the

positive root of e−32x2+8z
(
z − 1

8

)
= h for any z ∈ [z1(x0, h), z2(x0, h)],

hence x2 ≥ x0 > 0.
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Making one more derivative with respect to h by using (13), we have

M ′′(h)

2
=

∫ x0

0

3x2 + α

8h

( 1
8
− z1

z31
−

1
8
− z2

z32

)
dx

−3x2
0 + α

x0
·
(
∂z2(x0, h)

∂h
− ∂z1(x0, h)

∂h

)
+

∫ z2(x0,h)

z1(x0,h)

3x2
2 − α

64hx3
2

dz < 0,

because 3x2 + α < 0 for x ∈ (0, x0), z1 < 0 < z2 <
1
8
(see (17)), h < 0,

and 3x2
2 −α > 0. Besides, 3x2

0 +α = 0 and

∣∣∣∣
∂z2(x0, h)

∂h
− ∂z1(x0, h)

∂h

∣∣∣∣ is
bounded by (13), so the above middle term is zero and we will directly
omit the similar terms in further calculations.

Thus, M ′(h) has at most one zero on (h0, 0). As we have proved
that M ′(h) > 0 on h ∈ (−1

8
, h0], hence M ′(h) has at most one zero on

(−1
8
, 0). �

If α3 6= 0 in (5), without loss of generality we consider

(18) M(h) = αI1(h) + βI3(h) + I5(h), h ∈
(
−1

8
, 0

)
.

where α and β are arbitrary constants. From (10) we have

(19) M ′(h) = I ′5(h) + βI ′3(h) + αI ′1(h) =

∫

γh

F (x)

x
dz,

where

(20) F (x) = 5x4 + 3βx2 + α.

Lemma 7. If β ≥ 0, then M ′(h) has at most one zero on (−1
8
, 0),

including its multiplicity.

Proof. When α ≥ 0, it is obvious that M ′(h) < 0, because dz
x

< 0
along γh. Hence we suppose α < 0 in the rest part, and denote the
only positive root of F (x) = 0 by x0, and h0 = H(x0, 0).

If h ∈ (−1
8
, h0], then xM(h) ≤ x0, the curve γh is located in the strip

{(x, y) |F (x) < 0}. Hence M ′(h) > 0.

If h ∈ (h0, 0), then xM (h) > x0, the proof is completely similar to
the proof of Lemma 6, so we only list some different computations. We
first rewrite M ′(h) as

(21)
M ′(h)

2
=

∫ x0

0

(
F (x)

z1
− F (x)

z2

)
dx−

∫ z2(x0,h)

z1(x0,h)

F (x2)

x2

dz.
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Then by (13) we obtain

(22)

M ′′(h)

2
=

∫ x0

0

F (x)

8h

( 1
8
− z1

z31
−

1
8
− z2

z32

)
dx

+

∫ z2(x0,h)

z1(x0,h)

G(x2)

64hx3
2

dz,

where

(23) G(x) = 15x4 + 3βx2 − α.

Now β ≥ 0, α < 0, by using (20) (together with the definition of x0) ,
(17), (23) and h < 0 we obtain M ′′(h) < 0, hence M ′(h) has at most
one zero on (−1

8
, 0). �

Now suppose β < 0 and we start from the simple case α ≤ 0.

Lemma 8. If β < 0, α ≤ 0, then M ′(h) has at most one zero on
(−1

8
, 0), including its multiplicity, where M(h) is shown in (18).

Proof. In this case, F (x) = 0 has exactly one positive root x0. Similar
to the proof of Lemma 7, we denote h0 = H(x0, 0), if h ∈ (−1

8
, h0],

then xM(h) ≤ x0, F (x) ≤ 0 along γh, hence M ′(h) > 0.

If h ∈ (h0, 0), then xM(h) > x0, we get the same expressions (21)
and (22). Now β < 0, α ≤ 0, hence F (x) < 0 on (0, x0); when x ≥
x0, we have F (x) ≥ 0, then G(x) = 3F (x) − 6βx2 − 4α > 0, hence
M ′′(h) < 0. In any case we obtain that M ′(h) has at most one zero for
h ∈ (−1/8, 0). �

Finally we consider the most complicated case β < 0 and α > 0.

Lemma 9. If β < 0 and α > 0, then M ′(h) has at most two zeros on
(−1

8
, 0), including their multiplicities, where M(h) is shown in (18).

Proof. Since β < 0 and α > 0, F (x) = 0 may have no positive root,
a double positive root, or two different positive roots. In the first two
cases, it is obviously M ′(h) < 0 for all h ∈ (−1/8, 0), because F (x) > 0
for all x, except for the possible double root of F , and dz

x
< 0 along γh.

It remains to consider the case that F (x) = 0 has two different
positive roots. In this case we denote the smaller root by x0, then

(24) x2
0 =

−3β −
√
9β2 − 20α

10
, 9β2 − 20α > 0.

We will prove two assertions, and denote h0 = H(x0, 0).
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Assertion 1: M ′(h) < 0 for h ∈ (−1
8
, h0].

Since xM (h) ≤ x0 for h ∈ (−1
8
, h0], the curve γh is located in the

strip {(x, z) | |x| ≤ x0}. Notice F (x) > 0 on (0, x0), because α > 0.
Similar to the proof of Lemma 7, we can get M ′(h) < 0. This assertion
is proved.

Assertion 2: M ′(h) has at most two zeros (including the multiplic-
ities) for h ∈ (h0, 0).

In this case xM(h) > x0. We get the same forms (21) and (22). It
is easy to see from (23) that G(x) has exactly one positive root for
β < 0, α > 0, and it is a simple root. Besides, G(0) = −α < 0, and by
using (23) and (24) we have

G(x0) = 20x4
0 + 6βx2

0 = −2x2
0

√
9β2 − 20α < 0.

Hence the unique positive root of G(x), denoted by x1, satisfies x1 >
x0 > 0.

If h ∈ (h0, h1], then x0 < xM(h) ≤ x1. Obviously G(x) < 0 on
(x0, x1). From (22) we have M ′′(h) > 0, because F (x) > 0 on (0, x0),
h < 0, z1 < 0 < z2 <

1
8
, and x2 > 0.

If h ∈ (h1, 0), then xM(h) > x1, we divide the second integral in (22)
into two parts, use the last equality of (14) in the first part, and move
(−h) to the left side in the whole equality, we have

(−h)M ′′(h)

2
=

∫ x0

0

F (x)

8

( 1
8
− z2

z32
−

1
8
− z1

z31

)
dx

−
∫ x1

x0

G(x)

64x2

(
1

z2
− 1

z1

)
dx−

∫ z2(x1,h)

z1(x1,h)

G(x2)

64x3
2

dz.

Making one more derivative with respect to h by (13), we obtain

[(−h)M ′′(h)]′

2

=

∫ x0

0

F (x)

32h

(
(1
8
− z2)(

3
16

− z2)

z52
− (1

8
− z1)(

3
16

− z1)

z51

)
dx

−
∫ x1

x0

G(x)

83hx2

( 1
8
− z2

z32
−

1
8
− z1

z31

)
dx

+

∫ z2(x1,h)

z1(x1,h)

15x4
2 − 3βx2

2 + 3α

642hx5
2

dz < 0,
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because F (x) > 0 on (0, x0), h < 0, z1 < 0 < z2 < 1
8
, G(x) < 0 on

(x0, x1), x2 > 0, and 15x4
2 − 3βx2

2 + 3α > 0 for β < 0 and α > 0.

Thus, (−h)M ′′(h), hence M ′′(h), has at most one zero on (h1, 0).
Since we have proved that M ′′(h) > 0 on (h0, h1], we get that M ′′(h)
has at most one zero on (h0, 0), hence M ′(h) has at most two zeros on
(h0, 0). the Assertion 2 is proved.

Supping up the results in Assertion 1 and Assertion 2, we obtain
that M ′(h) has at most two zeros on (−1

8
, 0). All multiplicities of the

zeros are taken into account. �

Proof of Theorem 1. We claim that M(h) has at most two zeros
on (−1

8
, 0), including their multiplicities. Otherwise, if M(h) has at

least three zeros on (−1
8
, 0), then since M(−1

8
) = 0, M ′(h) would have

at least three zeros on (−1
8
, 0), which contradicts Lemmas 6-9.
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