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Ultra-high pressure homogenization (UHPH) is a high pressure technique in which a fluid

is pressurized by pumping at higher than 200 MPa and instantaneously depressurized

at atmospheric pressure across a special valve. The full process takes <0.2 s and the

in-valve time is<0.02 s. In the valve, extremely intense impacts and shear forces produce

the nanofragmentation of biological tissue at a range of 100–300 nm. The antimicrobial

effect is highly effective, reaching easily inactivation levels higher than 6-log cycles

even at low in-valve temperatures. At in-valve temperatures of 140–150◦C (0.02 s) the

destruction of thermoresistant spores is possible. Even when the temperature in-valve

can be elevated (70–150◦C), it can be considered a gentle technology because of the

tremendously short processing time. It is easy to get outlet temperatures after valve

of 20–25◦C by the expansion and assisted by heat exchangers. Thermal markers as

hydroxymethylfurfural (HMF) are not formed, nor are deleterious effects observed in

sensitive compounds as terpenes or anthocyanins, probably because of the low effect

in covalent bonds of small molecules of the high-pressure techniques compared with

thermal technologies. Additionally, intense inactivation of oxidative enzymes is observed,

therefore protecting the sensory and nutritional quality of fruit juices and avoiding or

reducing the use of antioxidants as sulphites. UHPH can be consider a powerful and

highly effective continuous and sterilizing technology without thermal repercussions, able

to keep fresh juices with most of their initial sensory and nutritional quality and allowing

high-quality and natural fermented derivatives as wine.

Keywords: emerging technologies, grape must, winemaking, oxidative enzymes, colloidal stability, additives,

sulphites

INTRODUCTION

Currently there are available at commercial and industrial levels two groups of high pressure
technologies: (i) discontinuous high hydrostatic pressure (HHP) and (ii) continuous high pressure
homogenization including high pressure homogenization (HPH), microfluidization (MF), and
ultrahigh pressure homogenization (UHPH). The first group (i) uses a fluid, usually water,
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as pressurizingmedia, and the antimicrobial effect is produced by
the damage produced in membranes and cell walls by the intense
pressures ranging from 400 to 600 MPa, during 3–10min (1, 2).
It is possible to process solid and liquid foods. This technology
is discontinuous on batch-mode and unable to inactivate spores
(3) and with low effect in enzymes (4, 5). However, it is highly
protective with molecules with nutritional or sensory impact,
e.g., vitamins, aroma compounds, and pigments. The second
group (ii) are continuous technologies in which the liquid
is pumped at high pressure. In UHPH, which is the most
effective, pressure ranges from 200 to 600 MPa (Figure 1). The
antimicrobial effect is produced by the intense impact and shear
forces produced in the valve (2, 6, 7). Liquid suffers strong
acceleration when pumped at 300 MPa, reaching Mach 2 speed
and extremely intense deceleration to almost zero when crossing
the valve during <0.02 s. The effect is a full nanofragmentation
to a submicro size range of 100–300 nm of whatever biological
structure: cells, tissues, and biomolecules including enzymes (8).
Depending on in-valve temperature (140◦C), even spores are
destroyed. UHPH sterilization is an alternative technique to UHT
but with lower sensory and nutritional impact.

The objective of this review is to explain the main
features of the processing by UHPH and its advantages
compared with the conventional hydrostatic pressurization
(HHP). Additionally, it described the impact of UHPH in sensory
and nutritional quality and the reduction of conflictive additives
as sulphites.

PERFORMANCE OF CONTINUOUS UHPH
VS. HHP

UHPH is a powerful technique that can be applied in continuous
mode to whatever fluid with a size particle lower than 0.5mm
and a viscosity below 2,000 centipoises (9), and therefore can be
used in most food fluids. Currently UHPH technologies can be
found at the commercial level; one of themost evolved is patented
by UAB and exploded by Ypsicon Advances Technologies (10).
Liquids are pumped usually at 300MPa, which can be considered
the limit between HPH and UHPH (11), and the antimicrobial
effect and enzyme destruction is produced in a special valve
(7, 12) produced with special strong materials as tungsten
carbide (weaker) or artificial diamond (highly resistant). The
homogenizing valve has a few µm in width favoring mechanical
interactions with microbial cells (11, 13). In-valve the intense
impact and shear efforts produce several effects at nano-scale:
nano-fragmentation, nano-covering, nano-encapsulation, and
nano-emulsion that can be modulated to produce sterile or
pasteurized foods (2, 7, 8, 14, 15), to increase the accessibility
of nutrients and health-promoting compounds (16) and to
develop innovative foods with improved colloidal structure or
novel properties.

Pressure range in UHPH is 200–600 MPa; however, at
300 MPa the microbial and enzyme inactivation is more
intense. Pressure higher than 300 MPa does not produce more
intense effects but sometimes increases the level of wearing
in-valve and other components. Concerning the temperature,

most of the applications can be done at pasteurization or
lower temperatures (<70◦C). This includes enzyme inactivation,
microbial destruction, nano-emulsion, and nano-covering (7, 8,
14, 17).

Concerning microbial inactivation at low pasteurization
temperatures (<70◦C) or even at room temperature, but
considering the shorter processing times of UHPH (0.02 s
in-valve and around 0.2 s of total process), it is possible
to eliminate vegetative cells of fungi, yeast, and bacteria at
populations of 6-log CFU/mL or higher (8, 14). The short in-
valve time at this temperature guarantees the absence of thermal
markers as hydroymethylfurfural (HMF) (8).

The elimination of bacterial endospores requires higher
temperature 140–150◦C (7, 18); however, thermal effect is very
soft considering the short processing time that is lower than 0.2 s
for the full process (14). This allows a higher sensory quality than
traditional UHT.

The main features of UHPH in comparison with HHP
concern the processing mode, effects on food components,
antimicrobial capacity, impact in nutritional and sensory
properties, and evaluation of thermal degradation as shown
in Table 1. UHPH shows some advantages concerning gentle
impact in food quality with a more effective antimicrobial and
anti-enzymatic performance.

ELIMINATION OF SPOILAGE
MICROORGANISMS IN MUST AND WINES
AND IMPROVED APPLICATION OF NEW
BIOTECHNOLOGIES

Spoilage yeasts that can be present in grapes, such as
Brettanomyces, are easily destroyed by UHPH processing (14).
Lactic or acetic undesired bacteria that can develop in the future
wine increasing volatile acidity, or forming biogenic amines or
ethyl carbamate, will be eliminated from the grape must using
UHPH, ensuring a healthier wine. The use of 300 MPa and
temperatures of 60–100◦C for 0.2 s eliminate vegetative bacterial
cells (8, 14). Sporulated forms need higher temperatures (6, 7, 18).
Toxins as patulin were not directly affected by UHPH; however,
a significant decrease can be observed in UHPH juices during
storage (18).

There is facilitation of new biotechnologies as use of non-
Saccharomyces yeasts and yeast-bacteria co-inoculations by a
better implantation of the starters in absence of indigenous
competitive microorganism (14, 23).

DESTRUCTION OF OXIDATIVE ENZYMES
(PPO) AND RETENTION OF ANTIOXIDANT
CAPACITY IN JUICES

HPH can be used to modulate enzymatic activity (42), but at
higher pressure using UHPH the enzymes can be denatured.
UHPH processing is able to disrupt quaternary structure of
proteins (43). The intense inactivation of oxidative enzymes
such as polyphenol oxidase (PPO), usually higher than 90%
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FIGURE 1 | Range of pressures in conventional homogenization vs. UHPH. Effect on enzymes and microorganisms and nano-fragmentation in the UHPH valve.

(14, 18), produces wines with antioxidant capacities increased
more than 150% regarding controls (8, 14). Preserved antioxidant
capacity has also been observed in apple or strawberry juices
(30, 44). Moreover, the stability of vitamin C in HPH and
UHPH treatments has been confirmed (30, 45). Additionally,
UHPH grape must can be exposed to air with high exchange
surfaces (>1 cm2/mL) without experimenting oxidations or
browning processes during several days. The inactivation
of pectinmethylesterase has been also observed in apple
juices as what contributes to the colloidal stability of turbid
juices (18).

The impact of UHPH in the wine industry is the potential
reduction of sulfur dioxide (SO2) in wines, opening the
possibility to produce wines with 0 mg/L of sulphites by
inactivating oxidative enzymes but also destroying spoilage
microorganisms (8, 14). For juices both the antimicrobial and
antienzyme effect facilitate the production of low processed juices
that can keep their sensory profile in absence of antimicrobials
and antioxidative chemical products for long periods from
months to years. The production of SO2 free red wine was
studied using discontinuous processing byHHP obtaining a good
sensory quality (46). However, recently, it has been reported that
it is necessary to have at least 60 mg/L of SO2 to preserve quality
in red wines processed at 350 MPa during 10min at 8◦C (47).
Wines with less of 60 mg/L were found both less aromatic and
with lower contents of anthocyanins.

SENSORY AND NUTRITIONAL QUALITY

Concerning sensory and nutritional quality, the short
thermal effect produced by the in-valve temperature is not
affecting the degradation of aroma compound as terpenes
(8) or delicate pigments as anthocyanins (25, 48). Vitamin
contents remain unaffected. Vitamin C contents remain
unaffected after UHPH processing in apple juices (18).
Thermal markers as HMF are not detected after the UHPH
processing (8, 14).

It has been observed that delicate aroma compounds
as several terpenes from a Muscat juice are not affected
by UHPH treatments at 300 MPa, 65◦C, processing time
lower than 0.2 s. Concentrations of linalool, terpinen-4-ol,
epoxylinalool, β-citronellol, geraniol, α-terpineol, cis-linalool
oxide did not show significant differences with the unprocessed
controls (8). Also, differences were not found in the pool
of polyoxygenated terpenes. Additionally, the sensory panel
also did not detect significant differences in the aromatic
varietal profile.

Extraction of phenolic compounds can be improved
significantly when juices with pulps or skin fragments are
processed by UHPH. The intense nanofragmentation of
colloids that are reduced to a size range of 100–300 nm
increase the extraction of flavonoids and phenols from
solids (18).

Frontiers in Nutrition | www.frontiersin.org 3 December 2020 | Volume 7 | Article 598286

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Morata and Guamis UHPH in Juices and Wines

TABLE 1 | Comparative features of UHPH and HHP.

Effect UHPH HHP References

Operating mode Continuous pumping. Treatment time 0.2 s Discontinuous pressurization with water.

Treatment time 3–10min

(2, 7)

Effect on covalent bonds in small

molecules with sensory impact

Unaffected Unaffected (19)

Molds and yeasts control Highly effective at 300 MPa Highly effective at >400 MPa/5–10min (1, 8, 14, 20–23)

Bacteria Highly effective at 300 MPa Effective at >600 MPa/5–10min (1, 14, 20, 22, 23)

Bacterial endospores Highly effective at 300 MPa, if in-valve

Temperature 140◦C 0.2 s

Not applicable. Effective at >1,000

MPa/5–10min

(7, 18, 24)

Effect on biopolymers Intense fragmentation. 100–300 nm. Starch gelatinization. Protein denaturation. (7, 19)

Oxidative enzymes Strong inactivation at 300 MPa. PPO

inactivation >90%. Absence of browning

during more than 5 days in air exposed juices

Weak. Variable, usually needs temperature

assistance

(8, 14, 25, 26)

Thermal markers (HMF) Undetected Lower than in thermal treatments (8, 27)

Antioxidant capacity Increased >150% Non differences-slight reduction (14, 28, 29)

Vitamins Preserved Preserved (30, 31)

Terpenes and aroma molecules Unaffected Unaffected (8, 32)

Anthocyanins Unaffected. Increased extraction from skin

colloidal particles

Unaffected. Improved extraction from grapes (1, 14, 25, 28)

Polyphenols Improved extraction from apple and grapes Non-significant differences in total phenolics and

flavonoids. Improved extraction from grapes.

(1, 18, 33)

Sensory profile Unaffected. Better fruitiness Unaffected (8, 33–35)

New fermentative biotechnologies as use

of non-Saccharomyces and yeast-bacteria

co-inoculations

Better implantation and lesser competitiveness

with indigenous microbiota

Better implantation and lesser competitiveness

with indigenous microbiota

(1, 14, 23)

Release of yeast assimilable nitrogen

(YAN) and nutritional properties of must

Increased extraction from juice cell fragments.

Favors the formation of fermentative esters.

Not described (14)

Protein digestibility Improved Improved (36, 37)

Allergenicity Decreased Decreased (36, 38, 39)

Colloidal and color stability. Improved. Higher stability of nanofragmented

particles. Color stability. Better protein stability

and lower haze formation.

Unaffected. Better protein stability and delayed

protein haze.

(8, 14, 15, 34, 36, 40,

41)

The color of white musts is improved by the intense
inactivation of oxidative enzymes, making it possible to produce
clear and pale juices from white grape varieties (8). Furthermore,
the color remains pale even after several days of intense exposure
to air.

The intense nano-fragmentation on grape cell walls produces
a release of nitrogen compounds that increase the yeast
assimilable nitrogen (YAN) available with positive effects in yeast
nutrition during fermentation but also affecting the formation of
fermentative fruity and floral esters (14).

In vegetal beverages of soya and almond processed by UHPH,
there have been observed a better protein digestibility and a lower
allergenicity (36). The effect is probably due to denaturation
of the protein structure. Contents of lysine were stable after
the treatment.

HIGHLIGHT OF FUTURE DIRECTIONS

The inactivation of spores at lower temperatures can be
optimized probably by a new design of special valves built

with new materials increasing the impact and shear forces.
New geometries of valves increase the mechanical effects,
promoting fluid jet impact, cavitation, and extreme shear efforts.
Emerging materials also can help to improve the possibilities
of processing abrasive foods as high fiber or high viscosity
juices and smoothies. The conventional tungsten carbide alloy
used in the valves must be substituted by ceramic coverings
or artificial diamond seats and needles. There must be better
knowledge of the nanoscale processes, and how to manage
and monitor the nano-covering, nano-encapsulation, and nano-
emulsion processes. The co-injection of different fluids at
ultrahigh pressure promotes the formation of interactions
among proteins, polysaccharides, and lipids creating nano-
structures able to content and to increase the bioavailability
of nutraceutical compounds. Using UHPH, it is possible
to produce functional foods by the nanoencapsulation and
stabilization of nutritional or sensory compounds. Frequently,
these nano-encapsulates are more stable in solution or colloidal
dispersion creating food fluids with same appearance in the
long term without coalescence phenomena. Development of
high throughput UHPH machines able to process more than
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10,000 L/h is another key parameter to reach industrial scale-
up. Currently, there are industrial UHPH devices able to
process at 10,000 L/h working at 300 MPa, just with a single
pump, but it is necessary to have several pumps to increase
this processing flow. There must be development of truck
portable UHPH devices to rent the processing technology
to be used in seasonal food industries. The elimination of
chemical preservatives as SO2, sorbates, benzoates, and others
can help to reach a key objective in the food industry:
cleaning labels.
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