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ABSTRACT

IRLbot: Design and Performance Analysis of a Large-Scale Web Crawler.

(May 2008)

Hsin-Tsang Lee, B.S., National Chiao Tung University

Chair of Advisory Committee: Dr. Dmitri Loguinov

This thesis shares our experience in designing web crawlers that scale to billions

of pages and models their performance. We show that with the quadratically increas-

ing complexity of verifying URL uniqueness, breadth-first search (BFS) crawl order,

and fixed per-host rate-limiting, current crawling algorithms cannot effectively cope

with the sheer volume of URLs generated in large crawls, highly-branching spam, le-

gitimate multi-million-page blog sites, and infinite loops created by server-side scripts.

We offer a set of techniques for dealing with these issues and test their performance

in an implementation we call IRLbot. In our recent experiment that lasted 41 days,

IRLbot running on a single server successfully crawled 6.3 billion valid HTML pages

(7.6 billion connection requests) and sustained an average download rate of 319 mb/s

(1, 789 pages/s). Unlike our prior experiments with algorithms proposed in related

work, this version of IRLbot did not experience any bottlenecks and successfully han-

dled content from over 117 million hosts, parsed out 394 billion links, and discovered

a subset of the web graph with 41 billion unique nodes.
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CHAPTER I

INTRODUCTION

Over the last decade, the World Wide Web (WWW) has evolved from a handful of

pages to billions of diverse objects. In order to harvest this enormous data repository,

search engines download parts of the existing web and offer Internet users access to

this database through keyword search. Search engines consist of two fundamental

components – web crawlers, which find, download, and parse content in the WWW,

and data miners, which extract keywords from pages, rank document importance,

and answer user queries. This thesis does not deal with data miners, but instead

focuses on the design of web crawlers that can scale to the size of the current and

future web, while implementing consistent per-website and per-server rate-limiting

policies and avoiding being trapped in spam farms and infinite webs. We next discuss

our assumptions and explain why this is a challenging issue.

1 Scalability

With the constant growth of the web, discovery of user-created content by web

crawlers faces an inherent tradeoff between scalability, performance, and resource

usage. The first term refers to the number of pages N a crawler can handle without

becoming “bogged down” by the various algorithms and data structures needed to

support the crawl. The second term refers to the speed S at which the crawler dis-

covers the web as a function of the number of pages already crawled. The final term

The journal model is IEEE/ACM Transactions on Networking.
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refers to the CPU and RAM resources Σ that are required to sustain the download of

N pages at an average speed S. In most crawlers, larger N implies higher complex-

ity of checking URL uniqueness, verifying robots.txt, and scanning the DNS cache,

which ultimately results in lower S and higher Σ. At the same time, higher speed S

requires smaller data structures, which often can be satisfied only by either lowering

N or increasing Σ.

Current research literature [2], [4], [7], [9], [14], [20], [22], [23], [25], [26], [27], [16]

generally provides techniques that can solve a subset of the problem and achieve a

combination of any two objectives (i.e., large slow crawls, small fast crawls, or large

fast crawls with unlimited resources). They also do not analyze how the proposed

algorithms scale for very large N given fixed S and Σ. Even assuming sufficient

Internet bandwidth and enough disk space, the problem of designing a web crawler

that can support large N (hundreds of billions of pages), sustain reasonably high

speed S (thousands of pages/s), and operate with fixed resources Σ remains open.

2 Reputation and Spam

The web has changed significantly since the days of early crawlers [4], [23], [25], mostly

in the area of dynamically generated pages and web spam. With server-side scripts

that can create infinite loops, an unlimited number of hostnames, and spam farms

that measure billions of pages, the task of web crawling has changed from simply

doing a BFS scan of the WWW [24] to deciding in real time which sites contain

useful information and giving them higher priority as the crawl progresses.

Our experience shows that BFS becomes trapped in spam after several billion

downloaded pages, which manifests itself in multiple ways: a) the queue of pending

URLs contains a non-negligible fraction of links from spam sites that threaten to
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eventually overtake legitimate URLs due to their high branching factor; b) the DNS

resolver succumbs to the rate at which new hostnames are dynamically created within

a single spam domain; and c) the crawler becomes vulnerable to the delay attack from

sites (often spam) that purposely introduce HTTP and DNS delays in all requests

originating from the crawler’s IP address.

No prior research crawler has attempted to avoid spam or document its impact on

the collected data. Thus, designing low-overhead and robust algorithms for computing

site reputation during the crawl is the second open problem that we aim to address

in this work.

3 Politeness

Even today, webmasters become easily annoyed when web crawlers slow down their

servers, consume too much Internet bandwidth, or simply visit pages with “too much”

frequency. This leads to undesirable consequences including blocking of the crawler

from accessing the site in question, various complaints to the Internet Service Provider

(ISP) hosting the crawler, and even threats of legal action. Incorporating per-website

and per-IP hit limits into a crawler is easy; however, preventing the crawler from

“choking” when its entire RAM gets filled up with URLs pending for a small set of

hosts is much more challenging. When N grows into the billions, the crawler eventu-

ally becomes bottlenecked by its own politeness and is then faced with a decision to

suffer significant slowdown, ignore politeness considerations for certain URLs (at the

risk of crashing target servers or wasting valuable bandwidth on huge spam farms), or

discard a large fraction of backlogged URLs, none of which is particularly appealing.

While related work [2], [7], [14], [23], [27] has proposed several algorithms for

rate-limiting host access, none of these studies have addressed the possibility that a
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crawler may stall due to its politeness restrictions or discussed management of rate-

limited URLs that do not fit into RAM. This is the third open problem that we aim

to solve in this thesis.

4 Our Contributions

The first part of this thesis presents a set of web-crawler algorithms that address

the issues raised above and the second part briefly examines their performance in an

actual web crawl.1 Our design stems from three years of web crawling experience at

Texas A&M University using an implementation we call IRLbot [17] and the various

challenges posed in simultaneously: 1) sustaining a fixed crawling rate of several thou-

sand pages/s; 2) downloading billions of pages; and 3) operating with the resources

of a single server.

The first performance bottleneck we faced was caused by the complexity of ver-

ifying uniqueness of URLs and their compliance with robots.txt. As N scales into

many billions, even the disk algorithms of [23], [27] no longer keep up with the rate at

which new URLs are produced by our crawler (i.e., up to 184K per second). To un-

derstand this problem, we analyze the URL-check methods proposed in the literature

and show that all of them exhibit severe performance limitations when N becomes

sufficiently large. We then introduce a new technique called Disk Repository with

Update Management (DRUM) that can store large volumes of arbitrary hashed data

on disk and implement very fast check, update, and check+update operations using

bucket sort. We model the various approaches and show that DRUM’s overhead re-

mains close to the best theoretically possible as N reaches into the trillions of pages

and that for common disk and RAM size, DRUM can be thousands of times faster

1A separate paper will present a much more detailed analysis of the collected data.
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than prior disk-based methods.

The second bottleneck we faced was created by multi-million-page sites (both

spam and legitimate), which became backlogged in politeness rate-limiting to the

point of overflowing the RAM. This problem was impossible to overcome unless po-

liteness was tightly coupled with site reputation. In order to determine the legitimacy

of a given domain, we use a very simple algorithm based on the number of incoming

links from assets that spammers cannot grow to infinity. Our algorithm, which we call

Spam Tracking and Avoidance through Reputation (STAR), dynamically allocates the

budget of allowable pages for each domain and all of its subdomains in proportion

to the number of in-degree links from other domains. This computation can be done

in real time with little overhead using DRUM even for millions of domains in the

Internet. Once the budgets are known, the rates at which pages can be downloaded

from each domain are scaled proportionally to the corresponding budget.

The final issue we faced in later stages of the crawl was how to prevent live-locks

in processing URLs that exceed their budget. Periodically re-scanning the queue of

over-budget URLs produces only a handful of good links at the cost of huge overhead.

As N becomes large, the crawler ends up spending all of its time cycling through

failed URLs and makes very little progress. The solution to this problem, which we

call Budget Enforcement with Anti-Spam Tactics (BEAST), involves a dynamically

increasing number of disk queues among which the crawler spreads the URLs based

on whether they fit within the budget or not. As a result, almost all pages from

sites that significantly exceed their budgets are pushed into the last queue and are

examined with lower frequency as N increases. This keeps the overhead of reading

spam at some fixed level and effectively prevents it from “snowballing.”

The above algorithms were deployed in IRLbot [17] and tested on the Internet

in June-August 2007 using a single server attached to a 1 gb/s backbone of Texas
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A&M. Over a period of 41 days, IRLbot issued 7, 606, 109, 371 connect requests to

117, 576, 295 hosts, received 7, 437, 281, 300 HTTP responses, and successfully down-

loaded N = 6, 380, 051, 942 unique HTML pages at an average rate of 319 mb/s

(1, 789 pages/s). Even after severely handicapping quickly branching spam and over

30 million low-ranked domains, IRLbot parsed out 394, 619, 023, 142 links and found

41, 502, 195, 631 unique pages residing on 641, 982, 061 hosts, which explains our in-

terest in crawlers that scale to tens and hundreds of billions of pages as we believe a

good fraction of 35B URLs not crawled in this experiment contains useful content.2

The rest of the thesis is organized as follows. Section II overviews related work.

Section III defines our objectives and classifies existing approaches. Section IV dis-

cusses how checking URL uniqueness scales with crawl size and proposes our tech-

nique. Section V models caching and studies its relationship with disk overhead.

Section VI discusses our approach to ranking domains and Section VII introduces

a scalable method of enforcing budgets. Section VIII summarizes our experimental

statistics and Section IX concludes the thesis.

2Performing site searches for all top-level domains (e.g., “site:.com”), Google’s
index size can be estimated at 30 billion pages and Yahoo’s at 37 billion.
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CHAPTER II

RELATED WORK

There is only a limited number of papers describing detailed web-crawler algorithms

and offering their experimental performance. First-generation designs [9], [22], [25],

[26] were developed to crawl the infant web and commonly reported collecting less

than 100, 000 pages. Second-generation crawlers [2], [7], [15], [14], [23], [27] often

reached several hundred million pages in their crawls and typically involved multiple

agents in the crawling process. We discuss their design and scalability issues in the

next section.

Another direction was undertaken by the Internet Archive [6], [16], which main-

tains a history of the Internet by downloading the same set of pages over and over.

In the last 10 years, this database has collected over 85 billion pages, but only a

small fraction of them are unique. Additional crawlers are [4], [8], [13], [20], [28], [29];

however, their focus usually does not include the large scale assumed in this thesis

and their fundamental crawling algorithms are not presented in sufficient detail to be

analyzed here.

The largest prior crawl using a fully-disclosed implementation appeared in [23],

where Mercator obtained N = 473 million HTML pages in 17 days (we exclude non-

HTML content since it has no effect on scalability). The fastest reported crawler was

[13] with 816 pages/s, but the scope of that crawl was only N = 25 million. Finally,

to our knowledge, the largest web dataset used in any paper was AltaVista’s 2003

crawl with 1.4 billion pages [11].
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CHAPTER III

OBJECTIVES AND CLASSIFICATION

This section formalizes the purpose of web crawling and classifies algorithms in related

work, some of which we study later in the thesis.

1 Crawler Objectives

We assume that the ideal task of a crawler is to start from a set of seed URLs Ω0

and eventually crawl the set of all pages Ω∞ that can be discovered from Ω0 using

HTML links. While Ω∞ is likely to be infinite, the crawler is allowed to decide the

order in which URLs are downloaded and discard pages it believes are spam in order

to achieve a reasonably good coverage of the set of “useful” pages ΩU ⊆ Ω∞. Due to

the existence of legitimate sites with hundreds of millions of pages (e.g., ebay.com,

yahoo.com, blogspot.com), the crawler cannot make any restricting assumptions on

the maximum number of pages per host, the number of hosts per domain, the number

of domains in the Internet, or the number of pages in the crawl. We thus classify

algorithms as non-scalable if they impose hard limits on any of these metrics or are

unable to maintain crawling speed when these parameters become very large.

We should also explain why this thesis focuses on the performance of a single

server rather than some distributed architecture. If one server can scale to N pages

and maintain speed S, then with sufficient bandwidth it trivially follows that m

servers can maintain speed mS and scale to mN pages by simply partitioning the

subset of all URLs and data structures between themselves (we assume that the

bandwidth needed to shuffle the URLs between the servers is also well provisioned).
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Table I. Comparison of Prior Crawlers and Their Data Structures

Crawler Year Crawl size URLseen RobotsCache DNScache Q

(HTML pages) RAM Disk RAM Disk

WebCrawler [25] 1994 50K database – – database

Internet Archive [6] 1997 N/A site-based – site-based – site-based RAM

Mercator-A [14] 1999 41M LRU seek LRU – – disk

Mercator-B [23] 2001 473M LRU batch LRU – – disk

Polybot [27] 2001 120M tree batch database database disk

WebBase [7] 2001 125M site-based – site-based – site-based RAM

UbiCrawler [2] 2002 45M site-based – site-based – site-based RAM

Therefore, the aggregate performance of a server farm is ultimately governed by the

characteristics of individual servers and their local limitations. We explore these

limits in detail throughout the thesis.

2 Crawler Operation

The functionality of a basic web crawler can be broken down into several phases: 1)

removal of the next URL u from the queue Q of pending pages; 2) download of u and

extraction of new URLs u1, . . . , uk from u’s HTML tags; 3) for each ui, verification of

uniqueness against some structure URLseen and checking compliance with robots.txt

using some other structure RobotsCache; 4) addition of passing URLs to Q and

URLseen; 5) update of RobotsCache if necessary. The crawler may also maintain its

own DNScache structure in cases when the local DNS server is not able to efficiently

cope with the load (e.g., its RAM cache does not scale to the number of hosts seen

by the crawler or it becomes very slow after caching hundreds of millions of records).

A summary of prior crawls and their methods in managing URLseen, RobotsCache,

DNScache, and queue Q is shown in Table I. The table demonstrates that two ap-

proaches to storing visited URLs have emerged in the literature: RAM-only and

hybrid RAM-disk. In the former case [2], [6], [7], crawlers keep a small subset of hosts

in memory and visit them repeatedly until a certain depth or some target number
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of pages has been downloaded from each site. URLs that do not fit in memory are

discarded and sites are assumed to never have more than some fixed volume of pages.

This approach performs truncated web crawls that require different techniques from

those studied here and will not be considered in our comparison.

In the latter approach [14], [23], [25], [27], URLs are first checked against a buffer

of popular links and those not found are examined using a disk file. The buffer may

be a cache based on the Least Recently Used (LRU) replacement algorithm [14], [23],

an array of recently added URLs [14], [23], a general-purpose database with RAM

caching [25], and a balanced tree of URLs pending a disk check [27].

Most prior approaches keep RobotsCache in RAM and either crawl each host to

exhaustion [2], [6], [7] or use an LRU cache in memory [14], [23]. The only hybrid

approach is used in [27], which employs a general-purpose database for storing down-

loaded robots.txt and relevant DNS records. Finally, with the exception of [27], prior

crawlers do not perform DNS caching and rely on the local DNS server to store these

records for them.
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CHAPTER IV

SCALABILITY OF DISK METHODS

We next describe three disk-check algorithms proposed in prior literature, analyze

their performance, and then introduce our approach.

1 Algorithms

In Mercator-A [14], URLs that are not found in memory cache are looked up on disk

by seeking within the URLseen file and loading the relevant block of hashes. A similar

approach is used in WebCrawler [25], where a general-purpose database performs

multiple seeks (assuming a common B-tree implementation) to find URLs on disk.

Even with a redundant array of inexpensive disks (RAID), disk seeking cannot be

reduced to below 3− 5 ms, which is several orders of magnitude slower than required

in actual web crawls (e.g., 5−10 microseconds in IRLbot). General-purpose databases

that we have examined are much worse and experience a significant slowdown (i.e.,

10 − 50 ms per lookup) after about 100 million inserted records. Therefore, these

approaches do not appear viable unless RAM caching can achieve some enormously

high hit rates (i.e., 99.7% for IRLbot). We examine whether this is possible in the

next section when studying caching.

To avoid the bottleneck of disk-seeking, Mercator-B [23] and Polybot [27] use a

so-called batch disk check – they accumulate a buffer of URLs in memory and then

merge it with a sorted URLseen file in one pass. Mercator-B stores only hashes of

new URLs in RAM and places their text on disk. In order to retain the mapping

from hashes to the text, a special pointer is attached to each hash. After the memory
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buffer is full, it is sorted in place and then compared with blocks of URLseen as they

are read from disk. Non-duplicate URLs are merged with those already on disk and

written into a new version of URLseen. Pointers are then used to recover the text of

unique URLs and append it to the disk queue.

Polybot keeps the entire URLs (i.e., actual strings) in memory and organizes

them into a binary search tree. Once the tree size exceeds some threshold, it is

merged with the disk file URLseen, which contains compressed URLs already seen

by the crawler. Besides being enormously CPU intensive (i.e., compression of URLs

and search in binary string trees are very slow in our experience), this method has

to perform more frequent scans of URLseen than Mercator-B due to the less-efficient

usage of RAM.

2 Modeling Prior Methods

Assume the crawler is in some steady state where the probability of uniqueness p

among new URLs remains constant (we verify that this holds in practice later in the

thesis). Further assume that the current size of URLseen is U entries, the size of RAM

allocated to URL checks is R, the average number of links per downloaded page is l,

the average URL length is b, the URL compression ratio is q, and the crawler expects

to visit N pages. It then follows that n = lN links must pass through URL check,

np of them are unique, and bq is the average number of bytes in a compressed URL.

Finally, denote by H the size of URL hashes used by the crawler and P the size of a

memory pointer. Then we have the following result.

Theorem 1. The overall disk overhead of batch disk check is ω(n,R) = α(n,R)bn,

where for Mercator-B:

α(n,R) =
2(2UH + pHn)(H + P )

bR
+ 2 + p (1)



13

and for Polybot:

α(n,R) =
2(2Ubq + pbqn)(b + 4P )

bR
+ p. (2)

Proof. To prevent locking on URL check, both Mercator-B and Polybot must use

two buffers of accumulated URLs (i.e., one for checking the disk and the other for

newly arriving data). Assume this half-buffer allows storage of m URLs (i.e., m =

R/2(H + P ) for Mercator-B and m = R/2(b + 4P ) for Polybot) and the size of the

original disk file is f (i.e., f = UH for Mercator-B and f = Ubq for Polybot).

For Mercator-B, the i-th iteration requires writing/reading of mb bytes of arriving

URL strings, reading the current URLseen, writing it back, and appending mp hashes

to it, i.e., 2f + 2mb + 2mpH(i − 1) + mpH bytes. This leads to the following after

adding the final overhead to store pbn bytes of unique URLs in the queue:

ω(n) =

n/m∑
i=1

(2f + 2mb + 2mpHi−mpH) + pbn

= nb

(
2(2UH + pHn)(H + P )

bR
+ 2 + p

)
. (3)

For Polybot, the i-th iteration has overhead 2f + 2mpbq(i − 1) + mpbq, which

yields:

ω(n) =

n/m∑
i=1

(2f + 2mpbqi−mpbq) + pbn

= nb

(
2(2Ubq + pbqn)(b + 4P )

bR
+ p

)
(4)

and leads to (2).

This result shows that ω(n,R) is a product of two elements: the number of

bytes bn in all parsed URLs and how many times α(n,R) they are written to/read

from disk. If α(n,R) grows with n, the crawler’s overhead will scale super-linearly and

may eventually become overwhelming to the point of stalling the crawler. As n →∞,
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the quadratic term in ω(n,R) dominates the other terms, which places Mercator-B’s

asymptotic performance at

ω(n, R) =
2(H + P )pHn2

R
(5)

and that of Polybot at

ω(n,R) =
2(b + 4P )pbqn2

R
. (6)

The ratio of these two terms is (H +P )H/bq(b+4P ), which for the IRLbot case

with H = 8 bytes, P = 4 bytes, b = 110, and using very optimistic bq = 5 bytes

shows that Mercator-B is roughly 7.2 times faster than Polybot as n →∞.

The best performance of any method that stores the text of URLs on disk before

checking them against URLseen (e.g., Mercator-B) is αmin = 2 + p, which is the

overhead needed to write all bn bytes to disk, read them back for processing, and then

append bpn bytes to the queue. Methods with memory-kept URLs (e.g., Polybot)

have an absolute lower bound of α′min = p, which is the overhead needed to write the

unique URLs to disk. Neither bound is achievable in practice, however.

3 DRUM

We now describe the URL-check algorithm used in IRLbot, which belongs to a more

general framework we call Disk Repository with Update Management (DRUM). The

purpose of DRUM is to allow for efficient storage of large collections of <key,value>

pairs, where key is a unique identifier (hash) of some data and value is arbitrary

information attached to the key. There are three supported operations on these

pairs – check, update, and check+update. In the first case, the incoming set of

data contains keys that must be checked against those stored in the disk cache and
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Fig. 1. Operation of DRUM.

classified as being duplicate or unique. For duplicate keys, the value associated with

each key can be optionally retrieved from disk and used for some processing. In the

second case, the incoming list contains <key,value> pairs that need to be merged

into the existing disk cache. If a given key exists, its value is updated (e.g., overridden

or incremented); if it does not, a new entry is created in the disk file. Finally, the

third operation performs both check and update in one pass through the disk cache.

Also note that DRUM can be supplied with a mixed list where some entries require

just a check, while others need an update.

A high-level overview of DRUM is shown in Figure 1. In the figure, a continuous

stream of tuples <key,value,aux> arrives into DRUM, where aux is some auxiliary

data associated with each key. DRUM spreads pairs <key,value> between k disk

buckets QH
1 , . . . , QH

k based on their key (i.e., all keys in the same bucket have the

same bit-prefix). This is accomplished by feeding pairs <key,value> into k memory

arrays of size M each and then continuously writing them to disk as the buffers fill

up. The aux portion of each key (which usually contains the text of URLs) from the

i-th bucket is kept in a separate file QT
i in the same FIFO order as pairs <key,value>

in QH
i . Note that to maintain fast sequential writing/reading, all buckets are pre-
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allocated on disk before they are used.

Once the largest bucket reaches a certain size r < R, the following process is

repeated for i = 1, . . . , k: 1) bucket QH
i is read into the bucket buffer shown in

Figure 1 and sorted; 2) the disk cache Z is sequentially read in chunks of ∆ bytes

and compared with the keys in bucket QH
i to determine their uniqueness; 3) those

<key,value> pairs in QH
i that require an update are merged with the contents of the

disk cache and written to the updated version of Z; 4) after all unique keys in QH
i are

found, their original order is restored, QT
i is sequentially read into memory in blocks

of size ∆, and the corresponding aux portion of each unique key is sent for further

processing (see below). An important aspect of this algorithm is that all buckets are

checked in one pass through disk cache Z.1

We now explain how DRUM is used for storing crawler data. The most important

DRUM object is URLseen, which implements only one operation – check+update. In-

coming tuples are <URLhash,-,URLtext>, where the key is an 8-byte hash of each

URL, the value is empty, and the auxiliary data is the URL string. After all unique

URLs are found, their text strings (aux data) are sent to the next queue for pos-

sible crawling. For caching robots.txt, we have another DRUM structure called

RobotsCache, which supports asynchronous check and update operations. For checks,

it receives tuples <HostHash,-,URLtext> and for updates <HostHash,HostData,->,

where HostData contains the relevant robots.txt file, IP address of the host, and op-

tionally other host-related information. The final DRUM object that we describe in

this section is called RobotsRequested and is used for storing the hashes of sites for

which a robots.txt has been requested. Similar to URLseen, it only supports simulta-

1Note that disk bucket sort is a well-known technique that exploits uniformity of
keys; however, its usage in checking URL uniqueness and the associated performance
model of web crawling has not been explored before.
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Fig. 2. High level organization of IRLbot.

neous check+update and its incoming tuples are <HostHash,-,HostText>.

Figure 2 shows the flow of new URLs produced by the crawling threads. They

are first sent directly to URLseen using check+update. Duplicate URLs are discarded

and unique ones are sent for verification of their compliance with the budget (both

STAR and BEAST are discussed later in the thesis). URLs that pass the budget

are queued to be checked against robots.txt using RobotsCache. URLs that have

a matching robots.txt file are classified immediately as passing or failing. Passing

URLs are queued in Q and later downloaded by the crawling threads. Failing URLs

are discarded.

URLs that do not have a matching robots.txt are sent to the back of queue

QR and their hostnames are passed through RobotsRequested using check+update.

Sites whose hash is not already present in this file are fed through queue QD into

a special set of threads that perform DNS lookups and download robots.txt. They

subsequently issue a batch update to RobotsCache using DRUM. Since in steady-
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state (i.e., excluding the initial phase) the time needed to download robots.txt is

much smaller than the average delay in QR (i.e., 1-2 days), each URL makes no more

than one cycle through this loop. In addition, when RobotsCache detects that certain

robots.txt or DNS records have become outdated, it marks all corresponding URLs as

“unable to check, outdated records,” which forces RobotsRequested to pull a new set

of exclusion rules and/or perform another DNS lookup. Old records are automatically

expunged during the update when RobotsCache is re-written.

It should be noted that URLs are kept in memory only when they are needed for

immediate action and all queues in Figure 2 are stored on disk. We should also note

that DRUM data structures can support as many hostnames, URLs, and robots.txt

exception rules as disk space allows.

4 DRUM Model

Assume that the crawler maintains a buffer of size M = 256 KB for each open file

and that the hash bucket size r must be at least ∆ = 32 MB to support efficient

reading during the check-merge phase. Further assume that the crawler can use up

to D bytes of disk space for this process. Then we have the following result.

Theorem 2. Assuming that R ≥ 2∆(1 + P/H), DRUM’s URLseen overhead is

ω(n,R) = α(n,R)bn, where:

α(n,R) =





8M(H+P )(2UH+pHn)
bR2 + 2 + p + 2H

b
R2 < Λ

(H+b)(2UH+pHn)
bD

+ 2 + p + 2H
b

R2 ≥ Λ

(7)

and Λ = 8MD(H + P )/(H + b).

Proof. Memory R needs to support 2k open file buffers and one block of URL hashes

that are loaded from QH
i . In order to compute block size r, recall that it gets expanded
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by a factor of (H + P )/H when read into RAM due to the addition of a pointer to

each text value. We thus obtain that r(H + P )/H + 2Mk = R or:

r =
(R− 2Mk)H

H + P
. (8)

Our disk restriction then gives us that the size of all buckets kr and their text

krb/H must be equal to D:

kr +
krb

H
=

k(H + b)(R− 2Mk)

H + P
= D. (9)

It turns out that not all pairs (R, k) are feasible. The reason is that if R is set

too small, we are not able to fill all of D with buckets since 2Mk will leave no room

for r ≥ ∆.

Re-writing (9), we obtain a quadratic equation 2Mk2 − Rk + A = 0, where

A = (H +P )D/(H + b). If R2 < 8MA, we have no solution and thus R is insufficient

to support D. In that case, we need to maximize k(R − 2Mk) subject to k ≤ km,

where

km =
1

2M

(
R− ∆(H + P )

H

)
(10)

is the maximum number of buckets that still leave room for r ≥ ∆. Maximizing

k(R− 2Mk), we obtain the optimal point k0 = R/(4M). Assuming that R ≥ 2∆(1+

P/H), condition k0 ≤ km is always satisfied. Using k0 buckets brings our disk usage

to D′ = (H + b)R2/8M(H + P ), which is always less than D.

In the case R2 ≥ 4MA, we can satisfy D and the correct number of buckets k is

given by two choices:

k =
R±√R2 − 8MA

4M
. (11)

The reason why we have two values is that we can achieve D either by using
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few buckets (i.e., k is small and r is large) or many buckets (i.e., k is large and r is

small). The correct solution is to take the smaller root to minimize the number of

open handles and disk fragmentation. Putting things together:

k1 =
R−√R2 − 8MA

4M
. (12)

Note that we still need to ensure k1 ≤ km, which holds when:

R ≥ ∆(H + P )

H
+

2MAH

∆(H + P )
. (13)

Given that R ≥ 2∆(1 + P/H) from the statement of the theorem, it is easy to verify

that (13) is always satisfied.

Next, for the i-th iteration that fills up all k buckets, we need to write/read

QT
i once (overhead 2krb/H) and read/write each bucket once as well (overhead 2kr).

The remaining overhead is reading/writing URLseen (overhead 2f + 2krp(i− 1)) and

appending the new URL hashes (overhead krp). We thus obtain that we need nH/kr

iterations and:

ω(n,R) =

nH/kr∑
i=1

(
2f +

2krb

H
+ 2kr + 2krpi− krp

)
+ pbn

= nb

(
(2UH + pHn)H

bkr
+ 2 + p +

2H

b

)
. (14)

Recalling our two conditions, we use k0r = HR2/8M(H + P ) for R2 < 8MA to

obtain:

ω(n,R) = nb

(
8M(H + P )(2UH + pHn)

bR2
+ 2 + p +

2H

b

)
. (15)

For the other case R2 ≥ 8MA, we have k1r = DH/(H + b) and thus get:

ω(n,R) = nb

(
(H + b)(2UH + pHn)

bD
+ 2 + p +

2H

b

)
, (16)
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Table II. Overhead α(n, R) in Crawling N Pages for R = 1 GB, D = 4.3 TB

N Mercator-B Polybot DRUM
800M 11.6 69 2.26
8B 93 663 2.35
80B 917 6, 610 3.3
800B 9, 156 66, 082 12.5
8T 91, 541 660, 802 104

which leads to the statement of the theorem.

The two cases in (7) can be explained as follows. The first condition R2 < Λ

means that R is not enough to fill up the entire disk space D since 2Mk memory

buffers do not leave enough space for the bucket buffer with size r ≥ ∆. In this case,

the overhead depends only on R since it is the bottleneck of the system. The second

case R2 ≥ Λ means that memory size allows the crawler to use more disk space than

D, which results in the disk now becoming the bottleneck. In order to match D to a

given RAM size R and avoid unnecessary allocation of disk space, one should operate

at the optimal point given by R2 = Λ:

Dopt =
R2(H + b)

8M(H + P )
. (17)

For example, R = 1 GB produces Dopt = 4.39 TB and R = 2 GB produces

Dopt = 17 TB. For D = Dopt, the corresponding number of buckets is kopt = R/4M ,

the size of the bucket buffer is ropt = RH/2(H+P ) ≈ 0.33R, and the leading quadratic

term of ω(n,R) in (7) is now R/4M times smaller than in Mercator-B. This ratio is

1000 for R = 1 GB and 8000 for R = 8 GB. The asymptotic speed-up in either case

is significant.

Finally, observe that the best possible performance of any method that stores

both hashes and URLs on disk is α′′min = 2 + p + 2H/b.
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5 Comparison

We next compare disk performance of the studied methods when non-quadratic terms

in ω(n, R) are non-negligible. Table II shows α(n,R) of the three studied methods for

fixed RAM size R and disk D as N increases from 800 million to 8 trillion (p = 1/9,

U = 100M pages, b = 110 bytes, l = 59 links/page). As N reaches into the trillions,

both Mercator-B and Polybot exhibit overhead that is thousands of times larger than

the optimal and invariably become “bogged down” in re-writing URLseen. On the

other hand, DRUM stays within a factor of 50 from the best theoretically possible

value (i.e., α′′min = 2.256) and does not sacrifice nearly as much performance as the

other two methods.

Since disk size D is likely to be scaled with N in order to support the newly

downloaded pages, we assume for the next example that D(n) is the maximum of

1 TB and the size of unique hashes appended to URLseen during the crawl of N

pages, i.e., D(n) = max(pHn, 1012). Table III shows how dynamically scaling disk

size allows DRUM to keep the overhead virtually constant as N increases.

To compute the maximum crawling rate that the above methods support, assume

that W is the average disk I/O speed and consider the next result.

Theorem 3. The maximum average download rate (in pages/s) supported by the disk

portion of URL uniqueness checks is:

Sdisk =
W

α(n,R)bl
. (18)

Proof. The time needed to perform uniqueness checks for n new URLs is spent in

disk I/O involving ω(n,R) = α(n,R)bn = α(n,R)blN bytes. Assuming that W is the

average disk I/O speed, it takes N/S seconds to generate n new URLs and ω(n,R)/W

seconds to check their uniqueness. Equating the two entities, we have (18).
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Table III. Overhead α(n,R) in Crawling N Pages for D = D(n)

N R = 4 GB R = 8 GB
Mercator-B DRUM Mercator-B DRUM

800M 4.48 2.30 3.29 2.30
8B 25 2.7 13.5 2.7
80B 231 3.3 116 3.3
800B 2, 290 3.3 1, 146 3.3
8T 22, 887 8.1 11, 444 3.7

We use IRLbot’s parameters to illustrate the applicability of this theorem. Ne-

glecting the process of appending new URLs to the queue, the crawler’s read and

write overhead is symmetric. Then, assuming IRLbot’s 1-GB/s read speed and 350-

MB/s write speed (24-disk RAID-5), we obtain that its average disk read-write speed

is equal to 675 MB/s. Allocating 15% of this rate for checking URL uniqueness2, the

effective disk bandwidth of the server can be estimated at W = 101.25 MB/s. Given

the conditions of Table III for R = 8 GB and assuming N = 8 trillion pages, DRUM

yields a sustained download rate of Sdisk = 4192 pages/s (i.e., 721 mb/s using IRL-

bot’s average page size of 21.5 KB). With 10 DRUM servers and a 10-gb/s Internet

link, one could create a search engine with a download capacity of 100 billion pages

per month. In crawls of the same scale, Mercator-B would be 3075 times slower and

would admit an average rate of only 1.4 pages/s. Since with these parameters Polybot

is 7.2 times slower than Mercator-B, its average crawling speed would be 0.2 pages/s.

2Additional disk I/O is needed to support the various queues, store the downloaded
content, verify robots.txt, perform reputation analysis, and enforce budgets.
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CHAPTER V

CACHING

To understand whether caching provides improved performance, one must consider a

complex interplay between the available CPU capacity, spare RAM size, disk speed,

performance of the caching algorithm, and crawling rate. This is a three-stage process

– we first examine how cache size and crawl speed affect the hit rate, then analyze

the CPU restrictions of caching, and finally couple them with RAM/disk limitations

using analysis in the previous section.

1 Cache Hit Rate

Assume that c bytes of RAM are available to the cache and that each entry incurs

fixed overhead γ bytes, giving us E = c/γ elements in the cache. Then define π(c, S)

to be the cache miss rate under crawling speed S pages/s and cache size c. The reason

why π depends on S is that the faster the crawl, the more pages it produces between

visits to the same site, which is where duplicate links are most prevalent. Defining

τh to be the per-host visit delay, common sense suggests that π(c, S) should depend

not only on c, but also on τhlS.

Table IV shows LRU cache hit rates 1 − π(c, S) during several stages of our

crawl. We seek in the trace file to the point where the crawler has downloaded N0

pages and then simulate LRU hit rates by passing the next 10E URLs discovered by

the crawler through the cache. As the table shows, a significant jump in hit rates

happens between 4M and 8M entries. This is consistent with IRLbot’s peak value

of τhlS ≈ 7.3 million. Note that before cache size reaches this value, most hits in
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Table IV. LRU Hit Rates Starting at N0 Crawled Pages

Cache elements E N0 = 1B N0 = 4B
256K 19% 16%
4M 26% 22%
8M 68% 59%
16M 71% 67%
64M 73% 73%
512M 80% 78%

the cache stem from redundant links within the same page. As E starts to exceed

τhlS, popular URLs on each site survive between repeat visits and continue staying in

the cache as long as the corresponding site is being crawled. Additional simulations

confirming this effect are omitted for brevity.

Unlike [5], which suggests that E be set 100− 500 times larger than the number

of threads, our results show that E must be slightly larger than τhlS to achieve 60%

hit rate and as high as 10τhlS to achieve 73%.

2 Cache Speed

Another aspect of keeping a RAM cache is the speed at which potentially large mem-

ory structures must be checked and updated as new URLs keep pouring in. Since

searching large trees in RAM usually results in misses in the CPU cache, some of

these algorithms can become very slow as the depth of the search increases. Define

0 ≤ φ(S) ≤ 1 to be the average CPU utilization of the server with a download rate

S pages/s and µ(c) to be the number of URLs/s that a caching algorithm with cache

size c can process on an unloaded server. Then, we have the following result.

Theorem 4. Assuming φ(S) is monotonically non-decreasing, the maximum down-
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load rate Scache (in pages/s) supported by URL caching is:

Scache(c) = g−1(µ(c)), (19)

where g−1 is the inverse of g(x) = lx/(1− φ(x)).

Proof. We assume that caching performance linearly depends on the available CPU

capacity, i.e., if fraction φ(S) of the CPU is allocated to crawling, then the caching

speed is µ(c)(1 − φ(S)) URLs/s. Then, the maximum crawling speed would match

the rate of URL production to that of the cache, i.e.,

lS = µ(c)(1− φ(S)). (20)

Re-writing (20) using g(x) = lx/(1 − φ(x)), we have g(x) = µ(c), which has a

unique solution x = g−1(µ(c)) since g(x) is a strictly increasing function with a proper

inverse.

For the common case φ(S) = S/Smax, where Smax is the server’s maximum (i.e.,

CPU-limited) rate in pages/s, (19) yields a very simple expression:

Scache(c) =
µ(c)Smax

lSmax + µ(c)
. (21)

Table V compares the speed of several memory structures on the IRLbot server

using E = 16M elements and model (21) for Smax = 4000 pages/s. As can be seen

in the table, insertion of text URLs into a balanced tree (used in Polybot [27]) is

the slowest operation that also consumes the most memory. The speed of classical

LRU caching (185K/s) and hash-trees (416K/s) is only slightly better since both use

multiple (i.e., log2 E) jumps through memory. CLOCK [5], which is a space and time

optimized approximation to LRU, achieves a much better speed (2M/s), requires less

RAM, and is a suitable for crawling rates up to 3577 pages/s on this server.
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Table V. Insertion Rate and Maximum Crawling Speed from (21)

Method µ(c) URLs/s Size Scache

Balanced tree (strings) 113K 2.2 GB 1295
Tree-based LRU (8-byte int) 185K 1.6 GB 1757
Balanced tree (8-byte int) 416K 768 MB 2552

CLOCK (8-byte int) 2M 320 MB 3577
Random array (8-byte int) 77M 128 MB 5972

Seq array (8-byte int) 277M 128 MB 5992

Table VI. Overhead α(πn, R − c) in Crawling N Pages for D = D(n) Using Caching

with π = 0.33, c = 320 MB

N R = 4 GB R = 8 GB
Mercator-B DRUM Mercator-B DRUM

800M 3.02 2.27 2.54 2.27
8B 10.4 2.4 6.1 2.4
80B 84 3.3 41 3.3
800B 823 3.3 395 3.3
8T 8, 211 4.5 3, 935 3.3

After experimentally determining µ(c) and φ(S), one can easily compute Scache

from (19); however, this metric by itself does not determine whether caching should

be enabled or even how to select the optimal cache size c. Even though caching

reduces the disk overhead by sending a factor of π fewer URLs to be checked against

the disk, it also consumes more memory and leaves less space for the buffer of URLs in

RAM, which in turn results in more scans through disk to determine URL uniqueness.

Understanding this tradeoff involves careful modeling of hybrid RAM-disk algorithms,

which we perform next.

3 Hybrid Performance

We now address the issue of how to assess the performance of disk-based methods

with RAM caching. Mercator-A improves performance by a factor of 1/π since only
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Table VII. Maximum Hybrid Crawling Rate maxc Shybrid(c) for D = D(n)

N R = 4 GB R = 8 GB
Mercator-B DRUM Mercator-B DRUM

800M 18, 051 26, 433 23, 242 26, 433
8B 6, 438 25, 261 10, 742 25, 261
80B 1, 165 18, 023 2, 262 18, 023
800B 136 18, 023 274 18, 023
8T 13.9 11, 641 27.9 18, 023

πn URLs are sought from disk. Given common values of π ∈ [0.25, 0.35] in Table IV,

this optimization results in a 2.8− 4 times speed-up, which is clearly insufficient for

making this method competitive with the other approaches.

Mercator-B, Polybot, and DRUM all exhibit new overhead α(π(c, S)n,R−c)bπ(c, S)n

with α(n,R) taken from the appropriate model. As n → ∞ and assuming c ¿ R,

all three methods decrease ω by a factor of π−2 ∈ [8, 16] for π ∈ [0.25, 0.35]. For

n ¿ ∞, however, only the linear factor bπ(c, S)n enjoys an immediate reduction,

while α(π(c, S)n,R− c) may or may not change depending on the dominance of the

first term in (1), (2), and (7), as well as the effect of reduced RAM size R − c on

the overhead. Table VI shows one example where c = 320 MB (E = 16M elements,

γ = 20 bytes/element, π = 0.33) occupies only a small fraction of R. Notice in the

table that caching can make Mercator-B’s disk overhead close to optimal for small

N , which nevertheless does not change its scaling performance as N →∞.

Since π(c, S) depends on S, determining the maximum speed a hybrid approach

supports is no longer straightforward.

Theorem 5. Assuming π(c, S) is monotonically non-decreasing in S, the maximum

download rate Shybrid supported by disk algorithms with RAM caching is:

Shybrid(c) = h−1
(W

bl

)
, (22)
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Fig. 3. Finding optimal cache size copt and optimal crawling speed Sopt.

where h−1 is the inverse of h(x) = xα(π(c, x)n,R− c)π(c, x).

Proof. From (18), we have:

S =
W

α(π(c, S)n,R− c)bπ(c, S)l
, (23)

which can be written as h(S) = W/bl. The solution to this equation is S = h−1(W/bl)

where as before the inverse h−1 exists due to the strict monotonicity of h(x).

To better understand (22), we show an example of finding the best cache size c

that maximizes Shybrid(c) assuming π(c, S) is a step function of hit rates derived from

Table IV. Specifically, π(c, S) = 1 if c = 0, π(c, S) = 0.84 if 0 < c < γτhlS, 0.38 if

c < 4γτhlS, 0.26 if c < 10γτhlS, and 0.22 for larger c. Table VII shows the resulting

crawling speed after maximizing (22) with respect to c. As before, Mercator-B is

close to optimal for small N and large R, but for N →∞ its performance degrades.

DRUM, on the other hand, maintains at least 11, 000 pages/s over the entire range

of N . Since these examples use large R in comparison to the cache size needed to

achieve non-trivial hit rates, the values in this table are almost inversely proportional

to those in Table VI, which can be used to ballpark the maximum value of (22)

without inverting h(x).
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Knowing function Shybrid from (22), one needs to couple it with the performance

of the caching algorithm to obtain the true optimal value of c:

copt = arg max
c∈[0,R]

min(Scache(c), Shybrid(c)), (24)

which is illustrated in Figure 3. On the left of the figure, we plot some hypothetical

functions Scache(c) and Shybrid(c) for c ∈ [0, R]. Assuming that µ(0) = ∞, the former

curve always starts at Scache(0) = Smax and is monotonically non-increasing. For

π(0, S) = 1, the latter function starts at Shybrid(0) = Sdisk and tends to zero as

c → R, but not necessarily monotonically. On the right of the figure, we show the

supported crawling rate min(Scache(c), Shybrid(c)) whose maximum point corresponds

to the pair (copt, Sopt). If Sopt > Sdisk, then caching should be enabled with c = copt;

otherwise, it should be disabled. The most common case when the crawler benefits

from disabling the cache is when R is small compared to γτhlS or the CPU is the

bottleneck (i.e., Scache < Sdisk).
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CHAPTER VI

SPAM AND REPUTATION

This section explains the necessity for detecting spam during crawls and proposes a

simple technique for computing domain reputation in real-time.

1 Problems with BFS

Prior crawlers [7], [14], [23], [27] have no documented spam-avoidance algorithms and

are typically assumed to perform BFS traversals of the web graph. Several studies [1],

[3] have examined in simulations the effect of changing crawl order by applying bias

towards more popular pages. The conclusions are mixed and show that PageRank

order [4] can be sometimes marginally better than BFS [1] and sometimes moderately

worse [3], where the metric by which they are compared is the rate at which the crawler

discovers popular pages.

While BFS works well in simulations, its performance on infinite graphs and/or

in the presence of spam farms remains unknown. Our early experiments show that

crawlers eventually encounter a quickly branching site that will start to dominate the

queue after 3 − 4 levels in the BFS tree. Some of these sites are spam-related with

the aim of inflating the page rank of target hosts, while others are created by regular

users sometimes for legitimate purposes (e.g., calendars, testing of asp/php engines),

sometimes for questionable purposes (e.g., intentionally trapping unwanted robots),

and sometimes for no apparent reason at all. What makes these pages similar is

the seemingly infinite number of dynamically generated pages and/or hosts within a

given domain. Crawling these massive webs or performing DNS lookups on millions
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of hosts from a given domain not only places a significant burden on the crawler, but

also wastes bandwidth on downloading largely useless content.

Simply restricting the branching factor or the maximum number of pages/hosts

per domain is not a viable solution since there is a number of legitimate sites that con-

tain over a hundred million pages and over a dozen million virtual hosts (i.e., various

blog sites, hosting services, directories, and forums). For example, Yahoo currently

reports indexing 1.2 billion objects within its own domain and blogspot claims over

50 million users (each user gets a unique host name). Therefore, differentiating be-

tween legitimate and illegitimate web “monsters” becomes a fundamental task of any

crawler.

Note that this task does not entail assigning popularity to each potential page as

would be the case when returning query results to a user; instead, the crawler needs

to decide whether a given domain or host should be allowed to massively branch or

not. Indeed, spam-sites and various auto-generated webs with a handful of pages are

not a problem as they can be downloaded with very little effort and later classified

by data-miners using PageRank or some other appropriate algorithm. The prob-

lem only occurs when the crawler assigns to domain x download bandwidth that is

disproportionate to the value of x’s content.

Another aspect of spam classification is that it must be performed with very

little CPU/RAM effort and run in real-time at speed SL links per second, where L

is the number of unique URLs per page.

2 Controlling Massive Sites

Before we introduce our algorithm, several definitions are in order. Both host and site

refer to Fully Qualified Domain Names (FQDNs) on which valid pages reside (e.g.,
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motors.ebay.com). A server is a physical host that accepts TCP connections and

communicates content to the crawler. Note that multiple hosts may be co-located

on the same server. A top-level domain (TLD) or a country-code TLD (cc-TLD) is a

domain one level below the root in the DNS tree (e.g., .com, .net, .uk). A pay-level

domain (PLD) is any domain that requires payment at a TLD or cc-TLD registrar.

PLDs are usually one level below the corresponding TLD (e.g., amazon.com), with

certain exceptions for cc-TLDs (e.g., ebay.co.uk, det.wa.edu.au). We use a com-

prehensive list of custom rules for identifying PLDs, which have been compiled as

part of our ongoing DNS project.

While computing PageRank [19], BlockRank [18], or SiteRank [10], [30] is a po-

tential solution to the spam problem, these methods become extremely disk intensive

in large-scale applications (e.g., 41 billion pages and 657 million hosts found in our

crawl) and arguably with enough effort can be manipulated [12] by huge link farms

(i.e., millions of pages and sites pointing to a target spam page). In fact, strict

page-level rank is not absolutely necessary for controlling massively branching spam.

Instead, we found that spam could be “deterred” by budgeting the number of allowed

pages per PLD based on domain reputation, which we determine by domain in-degree

from resources that spammers must pay for. There are two options for these resources

– PLDs and IP addresses. We chose the former since classification based on IPs (first

suggested in Lycos [21]) has proven less effective since large subnets inside link farms

could be given unnecessarily high priority and multiple independent sites co-hosted

on the same IP were improperly discounted.

While it is possible to classify each site and even each subdirectory based on

their PLD in-degree, our current implementation uses a coarse-granular approach of

only limiting spam at the PLD level. Each PLD x starts with a default budget B0,

which is dynamically adjusted using some function F (dx) as x’s in-degree dx changes.
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Fig. 4. Operation of STAR.

Budget Bx represents the number of pages that are allowed to pass from x (including

all hosts and subdomains in x) to crawling threads every T time units.

Figure 4 shows how our system, which we call Spam Tracking and Avoidance

through Reputation (STAR), is organized. In the figure, crawling threads aggregate

PLD-PLD link information and send it to a DRUM structure PLDindegree, which

uses a batch update to store for each PLD x its hash hx, in-degree dx, current budget

Bx, number of unique URLs Px from domain x that have passed to budget enforce-

ment, and hashes of all in-degree neighbors in the PLD graph. Unique URLs arriving

from URLseen perform a batch check+update against PLDindegree, increment the

corresponding Px, and are given a tuple (Bx, Px) on their way to BEAST, which we

discuss in the next section.

Note that by varying the budget function F (dx), one can implement a number of

policies – crawling of only popular pages (i.e., zero budget for low-ranked domains and

maximum budget for high-ranked domains), equal distribution between all domains

(i.e., budget Bx = B0 for all x), and crawling with a bias toward popular/unpopular

pages (i.e., budget directly/inversely proportional to the PLD in-degree).
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CHAPTER VII

POLITENESS AND BUDGETS

This section discusses how to enable polite crawler operation and scalably enforce

budgets.

1 Rate Limiting

One of the main goals of IRLbot from the beginning was to adhere to strict rate-

limiting policies in accessing poorly provisioned (in terms of bandwidth or server

load) sites. While larger sites are much more difficult to crash, unleashing a crawler

that can download at 500 mb/s and allowing it unrestricted access to individual

machines would generally be regarded as a denial-of-service attack.

While prior work only enforces a certain per-host access delay τh (which varies

from 10 times the download delay of a page [23] to 30 seconds [27]), we discovered

that this presented a major problem for hosting services that co-located thousands

of virtual hosts on the same physical server and did not provision it to support

simultaneous access to all sites (which in our experience is rather common in the

current Internet). Thus, without an additional per-server limit τs, such hosts could

be easily crashed or overloaded.

We keep τh = 40 seconds for accessing all low-ranked PLDs, but then scale it

down proportional to Bx for high-ranked PLDs up to some minimum value τ 0
h . The

reason for doing so is to prevent the crawler from becoming “bogged down” in a few

massive sites with millions of pages in RAM. Without this rule, the crawler would

make very slow progress through individual sites in addition to eventually running
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out of RAM as it becomes clogged with URLs from a few “monster” networks. For

similar reasons, we keep per-server crawl delay τs at the default 1 second for low-

ranked domains and scale it down with the average budget of PLDs hosted on the

server, up to some minimum τ 0
s .

Crawling threads organize URLs in two heaps – the IP heap, which enforces delay

τs, and the host heap, which enforces delay τh. The URLs themselves are stored in a

searchable tree with pointers to/from each of the heaps. By properly controlling the

coupling between budgets and crawl delays, one can ensure that the rate at which

pages are admitted into RAM is no less than their crawl rate, which results in no

memory backlog.

We should also note that threads that perform DNS lookups and download

robots.txt in Figure 2 are limited by the IP heap, but not the host heap. The reason

is that when the crawler is pulling robots.txt for a given site, no other thread can be

simultaneously accessing that site.

2 Budget Checks

We finally discuss how IRLbot’s budget enforcement works in a method we call Budget

Enforcement with Anti-Spam Tactics (BEAST). The goal of budget enforcement is not

to discard URLs, but rather to delay their download until more is known about their

legitimacy. Most sites have a low rank because they are not well linked to, but this

does not necessarily mean that their content is useless or they belong to a spam farm.

All other things equal, low-ranked domains should be crawled in some approximately

round-robin fashion with careful control of their branching. In addition, as the crawl

progresses, domains change their reputation and URLs that have earlier failed the

budget check need to be rebudgeted and possibly crawled at a different rate. Ideally,
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the crawler should be able to shuffle URLs without losing any of them and eventually

download the entire web if given infinite time.

A naive implementation of budget enforcement in prior versions of IRLbot main-

tained two queues Q and QF , where Q contained URLs that had passed the budget

and QF those that had failed. After Q was emptied, QF was read in its entirety and

again split into two queues – Q and QF . This process was then repeated indefinitely.

We next offer a simple overhead model for this algorithm. As before, assume

that S is the number of pages crawled per second and b is the average URL size.

Further define E[Bx] < ∞ to be the expected budget of a domain in the Internet,

V to be the total number of PLDs seen by the crawler in one pass through QF , and

L to be the number of unique URLs per page (recall that l in our earlier notation

allowed duplicate links). The next result shows that the naive version of BEAST

must increase disk I/O performance with crawl size N .

Theorem 6. The lowest disk I/O speed (in bytes/s) that allows the naive budget-

enforcement approach to support the download of N pages at fixed rate S is:

λ =





2bSN(L−1)
E[Bx]V

N ≥ E[Bx]V

2bS(L− 1) otherwise

. (25)

Proof. Assume that N ≥ E[Bx]V . First notice that the average number of links

allowed into QR is E[Bx]V and define interval T to be the time needed to crawl these

links, i.e., T = E[Bx]V/S. Note that T is a constant, which is important for the

analysis below. Next, by the i-th iteration through QF , the crawler has produced

TiSL links and TSi of them have been consumed through Q. Thus, the size of QF

is TiS(L − 1). Since QF must be both read and written in T time units for any i,

the disk speed λ must be 2TiS(L− 1)/T = 2iS(L− 1) URLs/s. Multiplying this by
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URL size b, we get 2ibS(L − 1) bytes/s. The final step is to realize that N = TSi

(i.e., the total number of crawled pages) and substitute i = N/TS into 2ibS(L− 1).

For the case N < E[Bx]V observe that queue size E[Bx]V must be no larger

than N and thus N = E[Bx]V must hold since we cannot extract from the queue

more elements than have been placed there.

The above analysis shows that λ = Θ(N) and that re-checking failed URLs will

eventually overwhelm any crawler regardless of its disk performance. For IRLbot

(i.e., V = 33M, E[Bx] = 11, L = 6.5, S = 3100, and b = 110), we get the minimum

disk speed of 3.7 MB/s for N = 100 million, 82 MB/s for N = 8 billion, and 820

MB/s for N = 80 billion. Given other disk-intensive tasks, IRLbot’s bandwidth for

BEAST was capped at about 100 MB/s, which explains why this design eventually

became a bottleneck in actual crawls.

The correct implementation of BEAST rechecks QF at exponentially increas-

ing intervals. As shown in Figure 5, suppose the crawler starts with j ≥ 1 queues

Q1, . . . , Qj, where Q1 is the current queue and Qj is the last queue. URLs are read

from the current queue Q1 and written into queues Q2, . . . , Qj based on their budgets.

Specifically, for a given domain x with budget Bx, the first Bx URLs are sent into Q2,
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the next Bx into Q3 and so on. BEAST can always figure out where to place URLs

using a combination of Bx and the total number of pages Px processed for domain x

(both are attached by STAR to each URL). The remaining URLs that do not fit into

Qj are all placed into QF as in the previous design.

After Q1 is emptied, the crawler moves to reading the next queue Q2 and spreads

newly arriving pages between Q3, . . . , Qj, Q1 (note the wrap-around). After it fi-

nally empties Qj, the crawler re-scans QF and splits it into j additional queues

Qj+1, . . . , Q2j. URLs that do not have enough budget for Q2j are placed into a

new version of QF . The process then repeats starting from Q1 until j reaches some

maximum OS-imposed limit or the crawl terminates.

There are two benefits to this approach. First, URLs from sites that exceed their

budget by a factor of j or more are pushed further back as j increases. This leads to

a higher probability that good URLs with enough budget will be queued and crawled

ahead of URLs in QF . The second benefit, shown in the next theorem, is that the

speed at which the disk must be read does not skyrocket to infinity.

Theorem 7. The lowest disk I/O speed (in bytes/s) that allows BEAST to support

the download of N pages at fixed rate S is:

λ = 2Sb[(2− β)(L− 1) + 1], (26)

where

β =





2E[Bx]V
N+E[Bx]V

N ≥ E[Bx]V

1 otherwise

. (27)

Proof. Assume that N ≥ E[Bx]V and suppose one iteration involves reaching QF and

doubling j. Now assume the crawler is at the end of the i-th iteration (i = 1 is the

first iteration), which means that it has emptied 2i+1−1 queues Qi and j is currently
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equal to 2i. The total time taken to reach this stage is T = E[Bx]V (2i+1− 1)/S. The

number of URLs in QF is then TS(L− 1), which must be read/written together with

j smaller queues Q1, . . . , Qj in the time it takes to crawl these j queues. Thus, we

get that the speed must be at least:

λ = 2
TS(L− 1) + jE[Bx]V

jT0

URL/s, (28)

where T0 = E[Bx]V/S is the time to crawl one queue Qi. Expanding, we have:

λ = 2S[(2− 2−i)(L− 1) + 1] URL/s. (29)

To tie this to N , notice that the total number of URLs consumed by the crawler

is N = E[Bx]V (2i+1 − 1) = TS. Thus,

2−i =
2E[Bx]V

N + E[Bx]V
(30)

and we directly obtain (26) after multiplying (29) by URL size b.

For the case N < E[Bx]V , we use the same reasoning as in the proof of the

previous theorem and obtain N = E[Bx]V . This leads to β = 1/2 in (27).

Notice in (27) that β ∈ [0, 1] and in (26) that as N → ∞ disk speed λ →
2Sb(2L− 1), which is roughly four times the speed needed to write all unique URLs

to disk as they are discovered during the crawl. For the examples used earlier in this

section, this implementation needs λ ≤ 8.2 MB/s regardless of crawl size N . From

the above proof, it also follows that the last stage of an N -page crawl will contain

(assuming N ≥ E[Bx]V ):

j =
1

2

( N

E[Bx]V
+ 1

)
(31)

queues. This value for N = 8B is 9 and for N = 80B only 87, neither of which is too

imposing for a modern server.
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CHAPTER VIII

EXPERIMENTS

This section briefly examines the important parameters of the crawl and highlights

our observations.

1 Summary

Between June 9 and August 3, 2007, we ran IRLbot on a quad-CPU AMD Opteron 2.6

GHz server (16 GB RAM, 24-disk RAID-5) attached to a 1-gb/s link at the campus

of Texas A&M University. The crawler was paused several times for maintenance

and upgrades, which resulted in the total active crawling span of 41.27 days. During

this time, IRLbot attempted 7, 606, 109, 371 connections and received 7, 437, 281, 300

valid HTTP replies. Excluding non-HTML content (92M pages), HTTP errors and

redirects (964M), IRLbot ended up with N = 6, 380, 051, 942 responses with status

code 200 and content-type text/html.

We next plot average 10-minute download rates for the active duration of the

crawl in Figure 6, in which fluctuations correspond to day/night bandwidth limits

imposed by the university.1 The average download rate during this crawl was 319

mb/s (1, 789 pages/s) with a peak 10-minute average rate of 470 mb/s (3, 134 pages/s).

The crawler received 143 TB of data, out of which 254 GB were robots.txt files, and

transmitted 1.8 TB of HTTP requests. Counting both compressed and uncompressed

objects, the average size of an HTML page was 21.5 KB.

1University-provided daytime bandwidth was 250 mb/s for days 5 − 32 and 200
mb/s for the rest of the crawl.
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Fig. 6. Download rates during the experiment.

IRLbot parsed out 394, 619, 023, 142 links from downloaded pages. After dis-

carding invalid URLs and known non-HTML extensions, the crawler was left with

K = 374, 707, 295, 503 potentially “crawlable” links that went through URL unique-

ness checks. We use this number to obtain K/N = l ≈ 59 links/page used throughout

the thesis. The average URL size was 70.6 bytes (after removing “http://”), but with

crawler overhead (e.g., depth in the crawl tree, IP address and port, timestamp, and

parent link) attached to each URL, their average size in the queue was b ≈ 110

bytes. The number of pages recorded in URLseen was 41, 502, 195, 631 (332 GB on

disk), which yielded L = 6.5 unique URLs per page. These pages were hosted by

641, 982, 061 unique sites.

As promised earlier, we now show in Figure 7(a) that the probability of unique-

ness p stabilizes around 0.11 once the first billion pages have been downloaded. Since

p is bounded away from 0 even at N = 6.3 billion, this suggests that our crawl has

discovered only a small fraction of the web. While we certainly know there are at

least 41 billion pages in the Internet, the fraction of them with useful content and the

number of additional pages not seen by the crawler remain a mystery at this stage.
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Fig. 7. Evolution of p throughout the crawl and effectiveness of budget-control in lim-

iting low-ranked PLDs.

2 Domain Reputation

The crawler contacted 117, 576, 295 sites, which belonged to 33, 755, 361 pay-level

domains (PLDs) and were hosted on 5, 517, 743 unique IPs. The total number of

nodes in the PLD graph was 89, 652, 630 with the number of PLD-PLD edges equal

to 1, 832, 325, 052. Without knowing how our algorithms would perform, we chose

a conservative budget function F (dx) where the crawler would give only moderate

preference to highly-ranked domains and try to branch out to discover a wide variety of

low-ranked PLDs. Specifically, top 10K ranked domains were given budget Bx linearly

interpolated between 10 and 10K pages. All other PLDs received the default budget

B0 = 10 pages. Rate-limiting delays were adjusted using the following minimums:

τ 0
h = 10 seconds and τ 0

s = 1/20 second.

Figure 7(b) shows the average number of downloaded pages per PLD x based

on its in-degree dx. IRLbot crawled on average 1.2 pages per PLD with dx = 1,

68 pages per PLD with dx = 2, and 43K pages per domain with dx ≥ 512K. The

largest number of pages pulled from any PLD was 347, 613 (blogspot.com), while
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Table VIII. Top Ranked PLDs, Their PLD In-Degree, Google PageRank, and Total

Pages Crawled.

Rank Domain In-degree PageRank Pages
1 microsoft.com 2, 948, 085 9 37, 755
2 google.com 2, 224, 297 10 18, 878
3 yahoo.com 1, 998, 266 9 70, 143
4 adobe.com 1, 287, 798 10 13, 160
5 blogspot.com 1, 195, 991 9 347, 613
7 wikipedia.org 1, 032, 881 8 76, 322
6 w3.org 933, 720 10 9, 817
8 geocities.com 932, 987 8 26, 673
9 msn.com 804, 494 8 10, 802
10 amazon.com 745, 763 9 13, 157

99% of visited domains contributed to the crawl fewer than 3, 044 pages each and

90% less than 586 each. As seen in the figure, IRLbot succeeded at achieving a

strong correlation between domain popularity (i.e., in-degree) and the amount of

bandwidth allocated to that domain during the crawl.

Our manual analysis of top-1000 domains shows that most of them are highly-

ranked legitimate sites, which attests to the effectiveness of our ranking algorithm.

Several of them are listed in Table VIII together with Google’s PageRank of the

main page of each PLD and the number of pages downloaded by IRLbot. The exact

coverage of each site depended on its link structure, as well as the number of hosts

and physical servers (which determined how polite the crawler needed to be). By

changing the budget function F (dx), much more aggressive crawls of large sites could

be achieved, which may be required in practical search-engine applications.

We believe that PLD-level domain ranking by itself is not sufficient for prevent-

ing all types of spam from infiltrating the crawl and that additional fine-granular

ranking algorithms may be needed for classifying individual hosts within a domain

and possibly their subdirectory structure. Future work will address this issue, but
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our first experiment with spam-control algorithms demonstrates that these methods

are not only necessary, but also very effective in helping crawlers scale to billions of

pages.

3 Final Word

We have attempted to reach this crawl scale several times. While our prior imple-

mentations failed for one reason or another, this particular crawl was very successful

as it ran without any bottlenecks, slowdowns, or memory clogging. Analysis shown

earlier in the thesis demonstrates that IRLbot can sustain the same download speed

up to N = 8 trillion pages (given sufficient disk space and bandwidth) using the same

single-server implementation.
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CHAPTER IX

CONCLUSION

This thesis tackled the issue of scaling web crawlers to billions and even trillions of

pages using a single server with constant CPU, disk, and memory speed. We identified

several impediments to building an efficient large-scale crawler and showed that they

could be overcome by simply changing the BFS crawling order and designing low-

overhead disk-based data structures. We experimentally tested our algorithms in the

Internet and found them to scale much better than the methods proposed in prior

literature.

Future work involves refining reputation algorithms, assessing their performance,

and mining the collected data.
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