
GLOBAL SCHEDULING ON TEMPERATURE-CONSTRAINED

MULTIPROCESSOR REAL-TIME SYSTEMS

A Thesis

by

JA RYEONG KOO

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2008

Major Subject: Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4273972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

GLOBAL SCHEDULING ON TEMPERATURE-CONSTRAINED

MULTIPROCESSOR REAL-TIME SYSTEMS

A Thesis

by

JA RYEONG KOO

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Riccardo Bettati
Committee Members, Rabi N. Mahapatra

Alexander Sprintson
Head of Department, Valerie E. Taylor

May 2008

Major Subject: Computer Science

iii

ABSTRACT

Global Scheduling on Temperature-Constrained Multiprocessor Real-Time Systems.

(May 2008)

Ja Ryeong Koo, B.S., Kyunghee University

Chair of Advisory Committee: Dr. Riccardo Bettati

In this thesis, we study temperature-constrained multiprocessor real-time systems,

where real-time guarantees must be met without exceeding safe temperature levels

within the processors. We focus on Pfair scheduling algorithms, especially ERfair

scheduling scheme (a work-conserving extension to Pfair scheduling) as our main

multiprocessor real-time scheduling methodology. Then, we study the benefits of

simple reactive speed scaling as described in the real-time multiprocessor systems.

In this thesis, in support of the temperature-awareness, we extend the applicability

of the reactive speed scaling to global scheduling schemes for multiprocessors. We

propose temperature-aware scheduling and processor selection schemes motivated by

existing (thermally non-optimal) ERfair scheduling in order to reduce thermal stress

and therefore increase the processor utilization. Then, we show that the proposed

algorithm and reactive scheme can enhance the processor utilization compared with

any constant speed scheme on real-time multiprocessor systems. Additionally, we

show how the maximum schedulable utilization (MSU) for partitioning heuristics can

be determined on the temperature-constrained multiprocessor real-time systems.

iv

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Thermal Issues and Speed Scaling 1

B. Overview of Real-Time Scheduling on Multiprocessors . . . 2

C. Organization . 4

II BACKGROUND AND RELATED WORK 5

A. Real-Time Multiprocessor Scheduling 5

1. Partitioning . 5

2. Proportionate-Fair (Pfair) Multiprocessor Scheduling . 6

B. Thermal Model . 11

C. Reactive Speed Scaling . 13

D. Task Model . 15

III MULTIPROCESSOR SCHEDULING OF TASKS WITH EARLY-

DEADLINES . 18

A. Early-Deadline Early-Release Fair Scheduling (ED-ERfair) 18

B. Critical Instance and Busy Interval 21

C. ERfairness Test . 22

D. Maximum Schedulable Utilization for ED-ERfair Scheduling 25

IV THERMALLY-AWARE MULTIPROCESSOR REAL-TIME

SCHEDULING . 28

A. Background: Real-Time Scheduling on Temperature-

Constrained Real-Time Systems 28

B. Critical Instant and Busy Interval on Temperature-Constrained

RTS’s . 35

1. Critical Instant for ED-ERfair on Temperature-

Constrained Single Processors 35

2. Critical Instance on Temperature-Constrained Mul-

tiprocessor RTS . 38

C. Maximum Schedulable Utilization for ED-ERfair Schedul-

ing on Temperature-Constrained Multiprocessor Real-

Time Systems . 39

v

CHAPTER Page

V COMPARISON BETWEEN PARTITIONING AND ED-ERFAIR

ON TCMRTS . 41

A. Partitioning . 41

VI CONCLUSION . 43

REFERENCES . 44

VITA . 47

vi

LIST OF FIGURES

FIGURE Page

1 Windows of the first job of Γi with weight 6/14 7

2 Comparison between PD2 schedule (above) and ERfair version of

the PD2 (below) of two tasks (Γ1, Γ2) on two processors 11

3 Description of reactive speed scaling 15

4 Critical instance for task 3 under ED-ERfair scheduling 22

5 Description of the maximum busy intervals on two processors 23

6 Description for MSU analysis of ED-ERfair scheduling 26

7 Temperature effect . 29

8 Delay effect . 30

9 Description of critical instance on temperature-constrained RTS . . . 32

10 Single-job case under reactive speed scaling 33

11 Description of the worst-case delay under reactive speed scaling . . . 34

12 Description of critical instant for T2 under ED-ERfair on TCRTS . . 37

1

CHAPTER I

INTRODUCTION

This chapter introduces an overview of my research and contains Thermal Issues and

Speed Scaling, Overview of Real-Time Scheduling on Multiprocessors, and Organiza-

tion.

A. Thermal Issues and Speed Scaling

In recent years, power density in processors has increased exponentially [1]. Very high

power density leads to power and temperature dissipation. Processors tend to easily

overheat given the large energy consumption. It is generally assumed that most elec-

tronic failures are temperature-related because the circuit reliability is exponentially

dependent on the operating temperature [2].

Power dissipation is often a particularly important issue in high-performance

embedded systems, where packaging requirement may render active dissipation, such

as fans, not practicable. A solution in such systems is to resort to speed scaling, where

the power consumption is (at least transiently) reduced by decreasing the processing

speed. Recently, a number of approaches have been developed for real-time systems

that are based on dynamic speed scaling in a variety of settings. Wang et al. [3,4], for

example, have stated that temperature-constrained hard real-time scheduling must

guarantee real-time constraints within safe temperature levels of the processors. They

proceed to show in [3] that the processor utilization can be improved by simple reactive

speed scaling, compared with any constant speed scheme. Ferreira et al. [5] have

developed models for dynamic thermal management in server farms and have shown

The journal model is IEEE Transactions on Automatic Control.

2

how these efforts address dynamic thermal management through speed scaling either

for single processor systems [3,4] or for potentially large collections of single processor

systems [5].

In this thesis, we plan to study the benefits of reactive speed scaling as it is

applied in real-time multiprocessor systems. We will be studying how to optimally

allocate and schedule real-time workload in a type of multiprocessor system: systems

where processors are largely thermally independent from each other (i.e., typically,

systems with discrete, single core processors). We assume that our scheme will be able

to be applied to another type of multiprocessor system by simply changing the way

to allocate the workload: multiprocessors with inter-processor thermal effects (i.e.,

typically system-on-chip or multi-core systems). This type of multiprocessor system

has been studied in [6].

B. Overview of Real-Time Scheduling on Multiprocessors

In general, there have been two main approaches for scheduling on multiprocessors de-

pending on whether task migration is allowed or not: partitioning and global schedul-

ing. Between them, we focus on global scheduling schemes in that they are more

efficient and flexible than partitioning heuristics. We will treat these more specifi-

cally in Chapter II.

Recently, there have been many global scheduling schemes (including Pfair schedul-

ing algorithms [7–11]) and several variants for real-time scheduling on multiprocessors.

Among them, the Pfair scheduling algorithms have proved to be optimal for periodic

tasks in a large number of multiprocessor settings. In this thesis, we focus on ERfair

scheduling algorithm [11] which is a work-conserving extension to Pfair scheduling.

Main reason for this is discussed in Chapter II.

3

The Pfair and other multiprocessor algorithms do not take thermal management

into consideration. For example, current Pfair scheduling algorithms only consider

task urgency in their scheduling decisions and processor availability in the task allo-

cation. Consequently, situations where some processors are suffering from intensive

thermal stress and the system unduly has to resort to speed scaling in order to main-

tain temperature constraint can occur.

The objective of this thesis is to make thermally non-optimal Pfair scheduling

algorithms temperature-aware ones. As mentioned above, existing Pfair scheduling

schemes do not consider thermal issues. Specifically, the Pfair scheduling algorithms

assume the schedule of periodic tasks with relative deadlines equal to their periods.

Through [3], when Di = δ · Pi (where δ = 1, Di is relative deadline, δ is deadline

ratio, and Pi is a period.), we see that for MSU (Maximum Schedulable Utilization),

reactive speed scaling has no benefit in comparison with constant speed scaling. That

is because there cannot be idle time during each period if the processor is fully-utilized.

We specifically deal with this in Chapter IV.

For the temperature-awareness, first of all, this thesis will extend the work of [3]

and study the applicability of reactive speed scaling to multiprocessors. Accordingly,

as our task model, we consider two different types of sets of identical periodic tasks

(one is Di = δ · P and the other is Di = δi · P . (here, for all δ, 0 < δ ≤ 1)).

As a result, this thesis shows how MSU (Maximum Schedulable Utilization)

can be improved on multiprocessor real-time systems using classical ERfair schedul-

ing scheme and temperature-constrained multiprocessor real-time systems using our

temperature-aware ERfair scheduling algorithm.

4

C. Organization

In Chapter II, we summarize the previous works related to our research and back-

ground concepts. Then, in Chapter III, we study multiprocessor schedules of tasks

with early-deadlines. We describe our thermally aware multiprocessor scheduling and

perform schedulability tests on the temperature-constrained multiprocessor real-time

systems in Chapter IV. In Chapter V, we compare partitioning heuristics with our

thermally-aware ERfair scheduling scheme through MSU. Finally, in Chapter VI, we

conclude our work with final remarks.

5

CHAPTER II

BACKGROUND AND RELATED WORK

In the following, we give a short overview of the state of the art in real-time mul-

tiprocessor scheduling with a focus on Pfair scheduling. I will then proceed to give

an overview of thermal models for embedded systems and describe our approach to

dynamic thermal management. We conclude this chapter with our task model.

A. Real-Time Multiprocessor Scheduling

Real-time scheduling on multiprocessors makes use of two major approaches depend-

ing on whether task migration is permitted: Partitioning and Pfair scheduling [7].

1. Partitioning

In partitioning schemes [12,13], each processor has its local ready queue and schedules

tasks independently. When a new task arrives, the task is assigned to one of the

available processors through one of several heuristics (non-optimal) prior to run-time.

Then, at run-time the assigned task is scheduled and executed such as EDF [14].

With the methodology above, even though partitioning tends to perform well in

practice in that it causes relatively less overhead than global scheduling scheme and

it reduces a multiprocessor scheduling problem to a set of uniprocessor problems, it

has two critical disadvantages. First, assigning tasks optimally to processors is a bin-

packing problem, which has been known to be NP-hard [15]. Thus, tasks are generally

partitioned by non-optimal heuristics. Second, task sets exist that are schedulable

only if tasks are not partitioned. For example, a task set consisting of three tasks

which are each with an execution requirement of 2 and a period of 3 cannot be

scheduled on two processors without task migration.

6

Consequently, in this thesis, we focus on Pfair scheduling in that it provides

enhanced schedulability and flexibility [8].

2. Proportionate-Fair (Pfair) Multiprocessor Scheduling

Here, we briefly introduce Pfair scheduling algorithms [7] and summarize related

previous works.

Assume that there is a set Γ of N Tasks ({Γi : i = 1, 2, ..., N}) to be scheduled on

M identical processors. Each task Γi has an integer period Pi, an integer execution

unit Ci and a weight wi (which is Ci/Pi) in range [0, 1). Specifically, wi is the rate

at which Γi must be executed. Pfair scheduling algorithms allocate processor time in

quanta which are discrete time unit. We say that slot t indicates the quantum-length

time interval [t, t + 1), where t ≥ 0. Time t is the beginning of slot t. For each slot,

each task can be assigned to a different processor (i.e., task migration is permitted),

but not to more than one processor in the same slot (i.e., task parallelism is not

allowed).

In an ideal schedule, a Task Γi in Γ should receive a share of wi · t time units

over the interval [0, t). Unfortunately, in practice, the ideal schedule (i.e., perfectly

fair schedule) is impractical. Pfair scheduling uses the notion of lag as the formalized

concept of tracking the ideal schedule. Formally, the lag of Task Γi at time t is defined

as the following:

lag(Γi, t) = wi · t− allocated(Γi, t) (2.1)

where wi · t means the allocation that Task Γi should receive in an ideal schedule and

allocated(Γi, t) is the allocation of Task Γi in the Pfair schedule. A schedule is defined

7

to be Pfair if and only if the size of all task lags is strictly less than one, i.e.,

−1 < lag(Γi, t) < 1 (2.2)

where i = 1, 2, ..., N .

The execution of each task Γi corresponds to the execution of an infinite sequence

of quantum-length subtasks (subjobs), Γi,1, Γi,2, ..., Γi,j. Each subtask has its own

pseudo-release r(Γi,j) and a pseudo-deadline d(Γi,j), which can be formally defined

as the follows:

r(Γi,j) =

⌊
j − 1

wi

⌋
∧ d(Γi,j) =

⌈
j

wi

⌉
(2.3)

To satisfy (2.2), Subtask Γi,j has to be scheduled in the interval W (Γi,j) =

[r(Γi,j), d(Γi,j)), called its window. Figure 1 describes the windows of the first job of

a periodic task Γi with weight 6/14. In this figure, the first job is composed of six

subtasks Γi,1, ..., Γi,6, each of which must be scheduled within its window. Otherwise,

a lag-bound violation occurs by (2.2). For instance, Subtask Γi,1 must be scheduled

at one of the three slots (slot 0, slot 1, and slot 2). The pattern of these windows is

repeated for every job.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

W(Γi,2)

W(Γi,1)

W(Γi,3)

W(Γi,4)

W(Γi,5)

W(Γi,6)

Fig. 1. Windows of the first job of Γi with weight 6/14

Baruah et al. [9] shows that a periodic task set {Γi : i = 1, 2, ..., N} has a Pfair

8

schedule on M processors if and only if

N∑
i=1

Ci

Pi

≤ M (2.4)

So far, there have been PF [7], PD [9], PD2 [10] as the only known optimal Pfair

scheduling algorithms. These algorithms prioritize subtasks on an Earliest Pseudo-

Deadline First basis (EPDF) [7] (i.e., a subtask with an earlier pseudo-deadline has

a higher priority than one with a later deadline.), but differ only in their tie-breaking

rules. For both synchronous and asynchronous periodic task systems, PD2 is the

most efficient Pfair scheduling algorithm of the three and its two tie-breaking rules

incorporate those of the other two algorithms in a more comprehensive category [8,11].

For this reason, we assume use of the priority definition of PD2 as a way to prioritize

given tasks.

As one of extensions to Pfair scheduling, for increased flexibility of Pfair schedul-

ing, Anderson et al. [11] introduced a work-conserving variant of Pfair scheduling

named Early-release fair (ERfair) scheduling, and proved that the early-release ver-

sion of PD2 is also optimal for scheduling periodic tasks on multiprocessors. Note

that under the ERfair scheduling, no processor is left idle as long as M unfinished

jobs (not subtasks) exist. This makes PD2 scheduling algorithm a work-conserving

version, and thereby ERfair scheduling scheme can be considered a variant of Pfair

scheduling algorithm which guarantees the shortest response time for all jobs among

all other Pfair variants. Under ERfair scheduling, if two subtasks are parts of the

same job, then the second subtask becomes eligible for execution immediately after

execution of the first subtask completes. Consequently, since in this thesis, we ana-

lyze critical instance and busy interval which can be generated by a work-conserving

scheduler, we mainly assume use of this ERfair version [11] of PD2 Pfair scheduling

algorithm defined in [10] as our task selection scheme. The following Subsection shows

9

this variant [11] using PD2 priority definitions [10] more specifically.

Early-Release Fair Scheduling (ERfair Scheduling)

In this section, we introduce Early-Release fair scheduling algorithm (ERfair

scheduling algorithm) [11].

ERfair scheduling can be obtained by simply dropping the -1 lag constraint from

Equation (2.2). Formally, a schedule is ERfair if and only if

lag(Γi, t) < 1, (2.5)

where there is a set Γ of N tasks (Γi : i = 1, 2, ..., N).

Although ERfair scheduling version is a variant of PD2 [10,11], it can easily adapt

other Pfair scheduling schemes such as PF [7] and PD [9] as well. As mentioned in the

previous section, we only consider ERfair scheduling scheme which uses the priority

definition of PD2 as underlying task selection algorithm. Under PD2, Subtask Γi,j’s

priority is higher than that of Subtask Γp,q, if one of the following three rules is

satisfied [10]:

• d(Γi,j) < d(Γp,g),

• d(Γi,j) = d(Γp,q) and b(Γi,j) > b(Γp,q),

• d(Γi,j) = d(Γp,q), b(Γi,j) = b(Γp,q) = 1,

and D(Γi,j) ≥ D(Γp,q).

(2.6)

where d(Γi,j), b(Γi,j), and D(Γi,j) are a pseudo-deadline, a successor bit, and a group-

deadline of Subtask Γi,j, respectively.

The successor bit is a parameter for tie-breaking to be used when multiple sub-

tasks have same pseudo-deadlines. Formally, the successor bit of Subtask Γi,j is

10

defined as follows.

b(Γi,j) =

⌈
j

wi

⌉
−

⌊
j

wi

⌋
(2.7)

Therefore, b(Γi,j) is either 0 or 1. Informally, b(Γi,j) indicates the number of slots by

which Γi,j+1’s window overlaps Γi,j’s window.

The group-deadline is another parameter for the tie-breaking. To motivate the

definition of the group deadline, let me consider a sequence Γi,1, ..., Γi,j of subtasks

such that b(Γi,k) = 1 and the size of windows of Γi,k is 2 for all 1 ≤ k < j. In this

case, scheduling Γi,k in the last slot on its window will force the other subtasks in this

sequence to be scheduled in their last slots. The group deadline of Subtask Γi,k is the

earliest time by which such a cascade must end. More detailed description for these

parameters can be found in [10].

With regard to the above rules, any ties not resolved by these three rules can be

broken arbitrarily. Thus, for example, according to the definition (2.6), Γi,j’s priority

is higher than that of Γp,q if it has an earlier pseudo-deadline. If Γi,j and Γp,q have

equal pseudo-deadlines, but b(Γi,j) = 1 and b(Γp,q) = 0, then the tie is broken in favor

of Γi,j. Finally, if Γi,j and Γp,q have equal pseudo-deadlines and successor bits of one,

then their group deadlines will be inspected to break the tie.

ERfair version [11] of the above priority definition contains additional policies

to make early-release fair scheduling feasible. Briefly speaking, under the ERfair

version of the above rules, a job that has not completed execution is always eligible

for scheduling during its period under ERfair version [11]. Again, specifically, in

ERfair scheduled system, if Subtask Γi,j−1 and Γi,j are part of the same job, then Γi,j

becomes eligible for execution immediately after Γi,j−1 executes, which may be before

Γi,j Pfair window. If Γi,j−1 and Γi,j are part of different jobs, then Γi,j is inserted into

an appropriate release queue for a future time slot.

11

The following Figure 2 shows how the original PD2 (above) is different with

ERfair version of the PD2 (below). It is easy to see that ERfair scheduling is a work-

Γ1 (2, 9)

Γ2 (4, 9)

Γ1 (2, 9)

Γ2 (4, 9)

Processor 1 Processor 2

Fig. 2. Comparison between PD2 schedule (above) and ERfair version of the PD2

(below) of two tasks (Γ1, Γ2) on two processors

conserving extension to Pfair scheduling. That is because as long as at least M (here,

M is 2) unfinished jobs exist, no processor is left idle under ERfair scheduling.

B. Thermal Model

In the last few years, several kinds of thermal models for processor have been proposed.

HotSpot [16] is an example describing the thermal behavior at architecture-level,

identifying the effects of hotspots more precisely.

In this paper, we will be using a basic chip-wide thermal model [17–20]. Although

this model does not show fine-grained thermal behaviors, [16] states that it is likely

to be suitable for study of chip-level techniques like speed-scaling. Moreover, current

processors, such as the Intel Core Duo processor, have sophisticated hotspots, and

the requirement of the fine-grained temperature modeling is relieved through accurate

arrangement of sensors. This simple model can be used to derive more accurate models

12

by more precisely modeling the power dissipation or by increasing the input power

by a stochastic component, etc.

First of all, we define the processor speed (frequency), s(t), at time t. Then we

can represent the input power P (t) at time t as follow:

P (t) = asα(t), (2.8)

for some constant a and α = 1. Usually, it is assumed that α = 3 [17,18]. Most works

in the literature assume the above relation between power and processor speed [17].

We define the temperature, T (t), at time t. We apply the same approach in

[17, 18] and adopt Fourier’s Law of heat conduction which states that the cooling

rate is proportionate to the difference in temperature between the environment and

the object. Here, we assume that the environment has a defined temperature, and

scale the temperature in order for the ambient temperature to be zero. Then we can

represent the Fourier’s Law as the follow [17,18]:

T ′(t) = P (t)− bT (t), (2.9)

where b is a positive constant that indicates the power dissipation rate. By (2.8) and

(2.9), we can have the following formula:

T ′(t) = asα(t)− bT (t), (2.10)

where a and b are positive constants which we have addressed above, (2.8) and (2.9).

Equation (2.10) is a classic linear differential equation. With an assumption that the

temperature at time t0 is T0, i.e., T (t0) = T0, we can solve Equation (2.10) as the

follow:

T (t) =

∫ t

t0

asα(τ)e−b(t−τ)dτ + T0e
−b(t−t0). (2.11)

13

With (2.10) and (2.11), to appropriately scale the speed to control the temperature,

we consider the observations from [3]. In the observations:

• If we want to keep the temperature constant at a value TC during a time interval

[t0, t1], then for any t ∈[t0, t1], the speed at time t, s(t), is set as the follow:

s(t) = (
bTC

a
)

1
α . (2.12)

• On the other hand, if we want to keep the speed constant, i.e., s(t) = sC , during

the same interval, then the temperature at time t, T (t), can be developed as

the follow:

T (t) =
asα

0

b
+ (T (t0)−

asα
C

b
)e−b(t−t0). (2.13)

We will be using this relation between processor speed and temperature as the

basis of our speed scaling scheme.

C. Reactive Speed Scaling

The purpose of temperature control is to keep the processor temperature within safe

temperature level, and thereby not exceed the highest-temperature threshold TH . This

temperature threshold should be at a safe margin from the maximum temperature

causing DTM events such as clock throttling. Temperature control must make sure

that

T (t) ≤ TH . (2.14)

The processor speed can be also set within some maximum speed, sH , as the follow:

0 ≤ s(t) ≤ sH . (2.15)

14

However, without use of dynamic speed scaling, we must run the processor at

some constant speed so that the temperature never exceeds TH , i.e., s(t) = sC , where

sC is constant. With Fourier’s Law in (2.10), after the temperature first increases at

some rate, eventually it will reach a steady-state, which is T ′(t) = asα
C − bT (t) = 0

(i.e., from then, the temperature will remain constant). In this paper, we consider

the equilibrium speed sE defined in S. Wang et al. [3] as the maximum speed of sC

for constant-speed scaling, assuming that the initial temperature is less than TH :

sE = (
b

a
TH)

1
α . (2.16)

Equation (2.16) means that if we use a constant processor speed sE, the processor

temperature does not exceed the threshold temperature TH . Again, the speed sE is

the maximum speed for constant-speed scaling that keeps the processor within the

safe temperature level.

A dynamic speed scaling scheme exploits the power dissipation during idle times.

It uses periods where the processor is “cool” after idle periods to increase the speed

temporarily and execute tasks at speeds higher than sE. In this paper, we adopt a

fully reactive speed-scaling technique defined in [3] to enhance the overall processor

utilization. S. Wang et al. [3] defines the reactive speed-scaling scheme using the

following formula:

s(t) =

sH , (W (t) > 0) ∧ (T (t) < TH)

sE, (W (t) > 0) ∧ (T (t) = TH)

0, W (t) = 0

(2.17)

where W (t) means the backlogged workload at time t.

This scheme makes sure that the temperature does not exceed the threshold

temperature TH in any case. By using speeds sometime that are significantly higher

15

than sE, we achieve processor utilizations than those for constant-speed scaling. As

described in the formula above, the reactive speed scaling is simple: The processor

runs at full speed sH whenever backlogged workload exists and the temperature is

below TH . If the temperature hits TH and the backlogged workload still exists, the

processor run at the equilibrium speed sE defined in (2.16). Whenever there is no

backlogged workload, the processor will be idle (i.e., zero speed). Figure 3 describes

an example of a single periodic task under reactive speed scaling. Note that the

temperature at the beginning of each period increases as time goes by. With this

effect, it is easy to see that for the same amount of workload in each period, the

length of the execution at speed sH is decreasing.

s(t)
sH

sE

T(t)
TH

t

t

Fig. 3. Description of reactive speed scaling

In Chapter IV, we take advantage of reactive speed scaling and apply it to

temperature-aware global scheduling on temperature-constrained multiprocessor real-

time systems.

D. Task Model

We consider a set of identical-periodic tasks {Γi : i = 1, 2, ..., n}, where a Task Γi

is characterized by two integer parameters - an execution requirement Ci defined for

each task and an identical period P (i.e., Γi = (P, Ci)). We assume that each task

16

has its own deadline ratio δi (0 < δi ≤ 1 for all i). Note that when δi = 1 for all i

(i = 1, 2, ..., n), reactive speed scaling has no benefit, as constant-speed scaling would

be sufficient to generate a feasible schedule. Therefore, we will be focusing on tasks

with relative deadlines less than their periods.

In our task model, a task generates a job at each integer multiple of the period

P , and each such job has an execution requirement of Ci execution cycles, which must

be completed by its relative deadline equal to or less than its period P .

Under ERfair scheduling, each job is broken into a series of quantum-length

subtasks, and then each period P of a task splits up a sequence of windows of approx-

imately equal lengths (potentially overlapping). In this paper, we assume that each

job (likewise, each subtask) is independent in the sense that it does not affect other

jobs of another task.

Additionally, we assume that both job preemption and job migration are

permitted with no penalty [21]. Job preemption means that a job executing on a

processor is preempted before completing its execution, and then is resumed later.

In case of job migration, a job that has been preempted on a specified processor

continues execution on a different processor. We also assume that there is no task

parallelism [21], which means that each task (i.e., each subtask in the task) should

be executed on at most one processor at any given instant in time. Note that under

ERfair scheduling, a job consists of at least one subtask, and the job must execute

without preemption or migration for at least duration of a subtask execution.

A given task set is said to be feasible on a given multiprocessor system if there

exists a schedule for the task set in which all jobs of tasks in the task set meet their

deadlines. We consider feasibility analysis of a task set on M multiprocessors in

the absence of the Integer Boundary Constraint (IBC) defined in [21] as a particular

kind of restriction on the preemptability of jobs. In [21], Baruah defined the Integer

17

Boundary Constraint (IBC), a limitation on the preemptability of jobs. For example,

in the presence of the IBC, a job executing on a processor may be preempted if and

only if it has finished an integer number of execution units on that processor. In this

thesis, we consider real-time scheduling in the absence of IBC because the amount of

cycles executed in a slot may not be integer under reactive-speed scaling. However,

in the absence of IBC, a job must execute without preemption or migration for at

least duration of a subtask execution.

Finally, in order to determine the worst-case delay for jobs in tasks, we first need

to think through the worst-case arrival pattern, called critical instance. Since we

must consider the additional temperature constraints, note that the analysis of the

critical instance is different from the traditional one. In Chapter IV, we study how

the critical instance can be determined for reactive speed scaling on temperature-

constrained multiprocessor real-time systems when we use ERfair scheduling scheme.

18

CHAPTER III

MULTIPROCESSOR SCHEDULING OF TASKS WITH EARLY-DEADLINES

In this chapter, we consider multiprocessor real-time schedules of a set of identical-

periodic tasks {Γi : i = 1, 2, ..., n}, where Γi = (P, Ci, δi). The deadline Di of Task

Γi is defined by the deadline ratio δi as follows: Di = δiP . In this thesis, we explore

early deadlines, that is, 0 < δ < 1. We define the ERfair scheduling algorithm with

early deadlines which we call ED-ERfair in the following. Prior to study thermally-

aware schedules of tasks with early-deadlines in the next chapter, we first consider

how to schedule tasks with early-deadlines using the ED-ERfair scheduling scheme on

non thermally-constrained multiprocessors. Then, we identify the critical instance,

which is the worst-case arrival pattern that gives rise to the longest busy interval.

As a result, the response times are maximized when a task invocation arrives at the

critical instant. In this chapter, we also study whether a given task set can satisfy

ERfairness with the ED-ERfair scheduling scheme or not. We conclude this chapter

with an analysis of Maximum Schedulable Utilization for the ED-ERfair scheduling

algorithm on M processors.

A. Early-Deadline Early-Release Fair Scheduling (ED-ERfair)

In this section, we propose ED-ERfair, a new algorithm for tasks with early-deadlines.

ED-ERfair is based on ERfair (described in Section (A.2) of Chapter II) with spe-

cial consideration for early deadlines when recalculating and reconstructing lag and

pseudo-deadlines [11].

We note that pseudo-release does not matter for early-release tasks. It is therefore

sufficient to only treat lag and pseudo-deadlines for tasks under ERfair scheduling.

Equations (3.1) and (3.2) show the lag and pseudo-deadline definitions, respectively,

19

for the traditional ERfair scheduling algorithm when the relative deadlines of tasks

are equal to their periods

lag(Γi, t + 1) =

 lag(Γi, t) + wi

lag(Γi, t) + wi − 1
, and (3.1)

d(Γi,j) =

⌈
j

wi

⌉
. (3.2)

Equation (3.1) shows that lag(Γi, t + 1) is equal to lag(Γi, t) + wi if Γi is not

scheduled in slot t. Likewise, it indicates that lag(Γi, t+1) is equal to lag(Γi, t)+wi−1

if Γi is scheduled in slot t.

For identical-periodic tasks with relative deadlines less than or equal to the period

P , we use the density concept defined in [22]. The density of the task, which we

denote by ∆i, is defined as the ratio of the execution requirement Ci of Task Γi to

the minimum of its relative deadline Di and period P , that is, ∆i = Ci

min(Di,P)
, in our

case ∆i = Ci

δiP
. With this definition, we replace wi with ∆i in the equations for lag

and pseudo-deadlines :

lag(Γi, t + 1) =

 lag(Γi, t) + ∆i

lag(Γi, t) + ∆i − 1
, and (3.3)

d(Γi,j) =

⌈
j

∆i

⌉
. (3.4)

In the following, we describe ED-ERfair scheduling algorithm with the recalcu-

lated lag and pseudo-deadlines.

Now, we describe the ED-ERfair scheduling algorithm for a set of identical-period

tasks with relative deadlines less than or equal to the period. The following descrip-

20

tion shows how tasks are scheduled using ED-ERfair. We consider how to assign

intermediate deadlines to subjobs (i.e., subtasks) and how to schedule the prioritized

subjobs in the ED-ERfair scheduling algorithm.

Algorithm A: ED-ERfair scheduling algorithm

- Upon arrival of the kth invocation, Ji,k, of a Job Ji in Task Γi, assign intermediate

deadlines as follows:

1. Partition Ji into subjobs Ji,k: All task parameters are expressed as integer mul-

tiples of the slot size, s. The jobs of a Task Γi with execution time Ci are

partitioned into
⌈

Ci

s

⌉
subjobs of length s each.

2. Assign priorities to the subjobs: For tasks with relative deadlines less than or

equal to a period P , calculate both lag and pseudo-deadline d for each subjob as

follows:

lag(Γi, t + 1) =

 lag(Γi, t) + ∆i

lag(Γi, t) + ∆i − 1
, and (3.5)

d(Ji,k) =

⌈
k

∆i

⌉
. (3.6)

With the modified pseudo-deadline information for each subjob, we use the PD2

ordering (2.6) to assign priorities to subjobs.

- Schedule prioritized subjobs by ERfair scheduling scheme.

1. Given the PD2 priority assignment from the previous step 2, at the start of each

slot, the M highest priority subjobs are selected to execute in the current slot.

(M is the number of processors)

21

2. If Subjob Ji,k−1 and Ji,k are part of the same job, then Ji,k becomes eligible for

execution immediately after Ji,k−1 finishes execution, which may be before J ′i,ks

Pfair window.

In order to determine the maximum schedulable utilization for ED-ERfair schedul-

ing, we must identify the worst-case arrival pattern, also named critical instance for

each task. In the next section, we study the critical instance and the busy intervals

that occur as a result of the critical instance on M processors.

B. Critical Instance and Busy Interval

In a single-processor static-priority real-time system without blocking, the critical

instance of a Task Γi occurs when one of its job Ji,c is released at the same time with

a job in every higher-priority task [22]. Under Pfair scheduling, the critical instance

for a Task Γi also occurs when all higher-priority tasks are released during the same

slot as task Γi [23]. Figure 4 shows an example of the critical instance for Task Γ3 in

a three-task system with ERfair scheduling. Each upward arrow indicates the relative

deadline of a task. Therefore, in Figure 4, it is easy to see that Task Γ3 has the longest

relative deadline (i.e., the lowest priority), and its response time forms the maximum

busy interval for all three tasks.

According to [23], in a multiprocessor system with M processors, a Task Γi is

released at the critical instance when all higher-priority tasks are released in the same

slot as Γi.

We assume that whenever the number of eligible tasks are less than M , the

tasks are first scheduled on smaller-indexed processors. For example, there are three

processors and only two tasks that are eligible at time t. In this case the two tasks

will be scheduled at time t on the first and second processor, respectively. With this

22

Λ

r3,c f3,c

1Γ

2Γ

3Γ

Fig. 4. Critical instance for task 3 under ED-ERfair scheduling

assumption, it is easy to see that the maximum busy interval will be always formed

on the first processor when we schedule a set of synchronous tasks (In a synchronous

task system, each task releases its first job at time 0 [8]). Figure 5 describes the

maximum busy intervals beginning with the critical instance of the Task Γ3 on two

processors. From Figure 5 it is easy to see that the relative deadlines of Task Γ3

and Task Γ2 form two busy intervals on two processors when the processors are fully

utilized. Fully-processor utilized case means the case where total utilization of given

tasks is equal to the maximum schedulable utilization, which will be determined by

Theorem 1 in later part of this section.

Before showing the schedulable utilization bound for the ED-ERfair scheduling

algorithm, in the next section we study whether ED-ERfair schedules satisfy ERfair-

ness.

C. ERfairness Test

In Section (A.2) of Chapter II, we have introduced ERfairness. In this section, we

perform the schedulability test to check if a given task set is schedulable with the

23

Processor 1

Processor 2

Λ1

kP (k+1)P
Λ2

1Γ
2Γ

3Γ

Fig. 5. Description of the maximum busy intervals on two processors

ED-ERfair scheduling algorithm. For this lemma, we assume that each task Γi has

its own deadline ratio δi, and the number of tasks is larger than that of processors.

Lemma 1 A system of n independent, preemptable, identical-period, and synchronous

tasks with relative deadlines less than their periods satisfies ERfairness when sched-

uled according to the ED-ERfair algorithm on M processors if and only if the following

inequality is satisfied:

∀i :
dni

δi · P
≤ M, (3.7)

where i = 1, 2, ...n, and dni denotes the number of pseudo-deadlines before the rela-

tive deadline Di.

Proof. First, we show that Inequality (3.7) is a necessary condition for ER-

fairness. With ERfair scheduling, a subjob may be released “early”, i.e., before the

beginning of its Pfair window. Therefore, more than one subjob can be scheduled

within a “window” of time slots because the subjobs can be early-released. In order

to satisfy the lag bound for ERfairness, at least one subjob must execute before its

24

pseudo-deadline. If not, the subjob will miss its pseudo-deadline, and therefore a task

set including the subjob will not satisfy ERfairness. Therefore, we conclude that the

number of pseudo-deadlines which are before time t is equal to the minimal number

of subjobs which should be scheduled by the time t. With the assumption that each

task has its own deadline ratio (i.e., Di = δi · P , where 0 < δi ≤ 1, i = 1, 2, ..., n),

we check if ERfairness is satisfied or not at each relative deadline of each task. If the

ratio, dni

δi·P , exceeds M at the relative deadline of Task Γi, the minimally-required total

utilization before the relative deadline must exceed M in order to satisfy ERfairness

on M processors. However, by (2.4), the given task set is not schedulable on M pro-

cessors. Therefore, some subjobs will not be scheduled before their pseudo-deadlines

as well. Consequently, Inequality (3.7) is a necessary condition for ERfairness.

Next, we prove that Inequality (3.7) is a sufficient condition for ERfairness. On

M processors, if ERfairness is satisfied for a given task set, then the task set must have

a ERfair schedule at any time instant, and total utilization of the task set is equal to

or less than M . If a schedule is not ERfair, at least one subjob is not scheduled before

its pseudo-deadline. In such a schedule, the total utilization by subjobs needing to

be scheduled before the same pseudo-deadline exceeds M , which means that dni

t
is

more than M . In this situation, it is easy to see that the left side of Inequality (3.7)

must exceed M . Therefore, Inequality (3.7) is a sufficient condition of ERfairness.

In the next section, we study how the maximum schedulable utilization (MSU)

for the ED-ERfair scheduling algorithm can be calculated.

25

D. Maximum Schedulable Utilization for ED-ERfair Scheduling

The following theorem gives us the schedulable utilization of our ED-ERfair scheduling

algorithm. Note that we only focus on tasks with relative deadlines less than or equal

to an identical period P . We also assume that each task has its own deadline ratio,

δi, and δi+1 ≥ δi for all i, where i = 1, 2, ..., n. In this theorem, we use the definition

for busy intervals on M processors, which has been described in the previous section.

Theorem 1 A system of n independent, preemptable tasks with identical period P

and relative deadlines less than or equal to P can be feasibly scheduled on M processors

using ED-ERfair scheduling algorithm if its total utilization U is less than or equal to

UED−ERfair(n, M, δi) =
n∑

i=n−(M−1)

δi , (3.8)

where δi+1 ≥ δi (i = 1, 2, ..., n).

Proof. Figure 6 shows the case where there are M processors and n tasks with

relative deadlines less than or equal to an identical period P . Specifically, in this case,

tasks are ordered in increasing deadline ratios, that is, δi+1 ≥ δi, (i = 1, 2, ..., n).

From Figure 6, first we calculate the schedulable utilization for the area A. Note

that the ED-ERfair algorithm uses ERfair scheduling with PD2 priority assignment.

Since the schedulable utilization for ERfair scheduling scheme on M processors is M

when Di = P [11], it is easy to see that the schedulable utilization for the area A

is δ1M . Likewise, the schedulable utilization for the area B is (δ2 − δ1)M . Conse-

quently, we repeat these calculations until the number of the remaining tasks (after

the calculations) become smaller than that of processors (i.e., n−M +1 times). This

26

0

…

1Pδ 2Pδ 3Pδ 4Pδ 2n M Pδ − + nPδ P1n M Pδ − +

T1

T2

T3

T4

Tn-1

Tn

…
Tn-2

n - M

M

n
A B

…

C

D

Fig. 6. Description for MSU analysis of ED-ERfair scheduling

calculation can be expressed as follows:

δ1M + (δ2 − δ1)M + (δ3 − δ2)M + ... + (δn−M+1 − δn−M)M . (3.9)

Note that tasks indexed from (n−M + 2)th to nth cannot be fully scheduled on

M processors because the number of remaining tasks is smaller than the number of

processors. Therefore, we calculate the schedulable utilization for the area C and D

as follows:

(δn−M+2 − δn−M+1) + (δn−M+3 − δn−M+1) + ... + (δn − δn−M+1) . (3.10)

27

Finally, by summation of (4.11) and (3.10), we have the following maximum

schedulable utilization of the ED-ERfair scheduling algorithm on M processors.

δn−M+1 ·M +
n∑

i=n−M+2

(δi − δn−M+1) (3.11)

= δn−M+1 ·M + (
n∑

i=n−M+2

δi)− (M − 1) · δn−M+1 (3.12)

= δn−M+1 · {M − (M − 1)}+
n∑

i=n−M+2

δi (3.13)

= δn−M+1 +
n∑

i=n−M+2

δi (3.14)

=
n∑

i=n−M+1

δi . (3.15)

We use the following example to illustrate Theorem 1: When we use the ED-

ERfair scheduling algorithm, if there are two processors and three tasks, the two

largest relative deadlines of the three tasks determine the maximum schedulable uti-

lization.

So far, we have studied schedulability for ED-ERfair scheduling on non thermally-

constrained multiprocessor real-time systems. In the next chapter, we proceed to

study the schedulability for global scheduling on temperature-constrained multipro-

cessor real-time systems.

28

CHAPTER IV

THERMALLY-AWARE MULTIPROCESSOR REAL-TIME SCHEDULING

In this chapter, we study ED-ERfair scheduling on Temperature-Constrained Multi-

processor Real-Time Systems (TCMRTS). In the first section, we introduce previous

works from Wang et al. [3, 4, 24]. Then, based on these results, we proceed to show

how the critical instance and busy intervals on TCMRTS can be identified with ED-

ERfair scheduling scheme. We conclude this chapter with a schedulability analysis

for ED-ERfair scheduling on TCMRTS.

A. Background: Real-Time Scheduling on Temperature-Constrained Real-Time Sys-

tems

In this section, we briefly describe a model for temperature-aware computation in

real-time systems based on reactive speed scaling, which has been defined in [3,4,24].

Using the thermal model and reactive speed scaling previously introduced in

Chapter II, we make two observations [3, 4, 24]. The observations show how the

change of temperature, job arrival, and job execution will affect the temperature at a

later time (Observation A) or the delay of a later job (Observation B). These obser-

vations will be used when we describe the critical instance and busy interval in the

later part of this section. The proofs of these observations are found in [24].

Observation A. (stated in [4]) In a system under reactive speed scaling, given

a time instance t, a job with release time tr and completion time tf can be considered

such that tr < t and tf < t. It is assumed that the processor is idle during [tf , t].

If either of the following actions takes, as shown in Figure 7, then Tt ≤ T ∗
t , where

Tr and T ∗
t are the temperatures at time t in the original and the modified scenarios

29

respectively.

(A)

(B)

(C)

tr tf

tr t*f

tr t*f

t*r t*f

t

t

t

t

t0

Fig. 7. Temperature effect

• Action A: Increasing the temperature at time t0 (t0 ≤ tr such that the job has

the same release time tr but a new completion time t∗f satisfying t∗f < t.

• Action B : Increasing the processor cycles for this job such that the job has the

same release time tr but a new completion time t∗f satisfying t∗f < t.

• Action C : Shifting the job such that the job has a new release time t∗r and a new

completion time t∗f satisfying tr < t∗r < t and tf < t∗f < t.

Observation B. (stated in [4]) In a system under the reactive speed scaling, two

jobs Jk’s (k = 1, 2), each of which has a release time tk,r and the completion time tk,f

are considered. t1,f < t2,f is assumed. If either of the following actions as shown in

Figure 8, then t2,f ≤ t∗2,f . If d2 and d∗2 as the delay of Job J2 in the original and the

modified scenariods respectively, then d2 ≤ d∗2.

30

(A)

(B)

(C)

t1,r t1,f

t1,r t*1,f

t*1,r t2,r t*1,f t*2,f

t0t1,r t1,f

t2,r t2,f

t2,r t*2,f

t2,r t*2,f

Fig. 8. Delay effect

• Action A: Increasing the temperature at t0 (t0 ≤ t2,r) such that Job J2 has the

same release time t2,r but a new completion time t∗2,f .

• Action B : Increasing the processor cycles of Job J1 such that Job Jk (k = 1, 2)

has the same release time tk,r but a new completion time t∗k,f .

• Action C : Shifting Job J1 has a new release time t∗1,r and a new completion time

t∗1,f , and Job J2 has the same release time t2,r and a new completion time t∗2,f

satisfying t1,r ≤ t∗1,r and t∗1,f ≤ t∗2,f

.

The two observations above are particularly significant for analysis of the critical

instance under our algorithm when reactive speed scaling is used on temperature-

constrained systems. Consequently, Observation A shows that the temperature for

the critical instance always raises when the last job before the critical instance is

delayed. Then, Observation B states that the completion of the job released at the

critical instance is delayed with increasing temperature.

In order to determine the worst-case delay for jobs in tasks, Wang et al. [3] have

identified the critical instance for fixed-priority scheduling on temperature-constrained

31

real-time systems. Due to the additional temperature constraints, the analysis of the

critical instance is different from the traditional one. In a fully preemptable system

with reactive speed scaling, Wang et al. [3] consider the following two factors that

affect the critical instance:

• How many high-priority jobs will preempt this job? This is same as in the tra-

ditional critical instance analysis.

• What is the temperature at this time instance? With reactive speed scaling, once

the temperature hits the threshold, the speed drops to no higher than equilibrium

speed. Therefore, the response time of a job is affected by the temperature at

its arrival. The higher the temperature at this time instance, the longer the

response time.

Consequently, Wang et al. [3] consider both the worst-case preemption and the

worst-case temperature for their critical-instant analysis. Then, they consider the

maximum busy interval Λ beginning with the critical instance for each task in a tra-

ditional real-time system without blocking. Based on this maximum busy interval Λ,

finally, they obtain the critical instance for each task in the temperature-constrained

real-time system. Figure 9 illustrates the critical instant for each task in a set of three

tasks. The jobs of lower-priority task are scheduled to be aligned back-to-back before

the critical instance. Then, by Observation A and B, the initial temperature is raised;

tasks released at the critical instant will experience the worst-case temperature, which

in turn further delays the completion of the job under consideration.

Since the task set is single-period, and the scheduler is work-conserving, the

entire task set can be represented as a single task. Figure 10 describes this single

32

Λ

<Critical Instance of Task 1>

Λ

<Critical Instance of Task 2>

<Critical Instance of Task 3>

T1

T2

T3

T1

T2

T3

T1

T2

T3

T4

T4

T4

Λ

Fig. 9. Description of critical instance on temperature-constrained RTS

job case. For the single task, the following Equations (4.1), (4.2), (4.3), and (4.4) are

obtained by using the temperature formulas from Chapter II:

πk,RH = tk,H − tk,R =
1

b
ln

aSα
H

b
− Tk,R

aSα
H

b
− TH

(4.1)

πk,HC = tk,C − tk,H =
SH

SE

(
C

SH

− πk,RH) (4.2)

πk,RC = tk,C − tk,R =
C

SE

+ (1− SH

SE

) · πk,RH (4.3)

πk−1,CR = tk,R − tk−1,C = (P − C

SE

) +
1

b
(
SH

SE

− 1) · ln
aSα

H

b
− Tk−1,R

aSα
H

b
− TH

(4.4)

Recall that TH , SH , SE, b, C, and P denote the threshold temperature, some maxi-

mum speed (frequency) and equilibrium speed for a given processor, power dissipation

33

s(t)
smax
sE

T(t)
TH

t

t

Job Jk

tk,R tk,Ctk,H

Tk,R

Λ

T1

T2

T3

Fig. 10. Single-job case under reactive speed scaling

rate, execution cycles and the identical period of the given tasks, respectively.

Based on these equations, one also obtains Equation (4.5), which calculates the

temperature (Tk,R) at the beginning of the maximum busy interval Λ:

Tk,R

TH

= (
(SH

SE
)α − Tk−1,R

TH

(SH

SE
)α − 1

)
1−SH

SE · exp(−b(P − C

SE

)) . (4.5)

The steady-state temperature (a fixed point, T ∗) can be calculated (when lim
k→∞

Tk,R),

and the following Equation (4.6) can be obtained for the steady-state temperature,

T ∗:

T ∗

TH

= (
(SH

SE
)α − T ∗

TH

(SH

SE
)α − 1

)
1−SH

SE · exp(−b(P − C

SE

)) . (4.6)

34

Based on the thermal behavior in the steady-state, one obtains the worst-case delay

bound (4.9) for the single job, and the maximum schedulable utilization (4.10). Note

that in the case of early deadlines, i.e., Di = δP (0 < δ ≤ 1), the MSU (URSS(δ)) can

be computed by setting P + 1
b
ln T ∗

TH
= δP . Figure 11 describes how these Equations

(4.6), (4.9), and (4.10) are calculated in the thermal steady-state:

lim
k→∞

πk,RC = P − lim
k→∞

(tk,R − tk−1,C) (4.7)

= P +
1

b
lim
k→∞

ln
Tk,R

TH

(4.8)

= P +
1

b
ln

T ∗

TH

, (4.9)

URSS(δ) =
SE

SH

δ + (1− SE

SH

)
1

bP
· ln(

(SH

SE
)α − e−b(1−δ)P

(SH

SE
)α − 1

) . (4.10)

CC C

s(t)

smax

sE

T(t)

TH

t

t

Job Jk

tk,R tk,Ctk,H

Job Jk+1

tk+1,R

T* Tk,R

Tk+1,R

P

δP
*1

ln
H

T
P

b T
+

Fig. 11. Description of the worst-case delay under reactive speed scaling

35

So far, we have studied how thermally-aware computation can be performed in

real-time system based on reactive speed scaling. Based on the observations and

results in this section, in the next section, we study how the critical instance and

busy intervals can be identified on temperature-constrained multiprocessor real-time

system when we use ED-ERfair scheduling.

B. Critical Instant and Busy Interval on Temperature-Constrained RTS’s

In this section, we study how the critical instant and busy interval can be identified

on temperature-constrained multiprocessor real-time systems. Before we consider the

critical instant for ED-ERfair scheduling on M processors later in this section, we first

proceed to study the critical instant for each task under the ED-ERfair scheduling on

a single processor.

1. Critical Instant for ED-ERfair on Temperature-Constrained Single Processors

We showed earlier that the task response time in a single-task system is maximized

when the system is in thermal steady-state. Therefore, to identify the critical instant

and the maximum busy interval, we limit our attention to the thermal steady-state.

In order to determine the critical instant for a job, we must consider two causes

for delay: delay due to temperature and delay due to preemption.

We make two observations: (1) The delay due to temperature is maximized

whenever each task except Ti is shifted so that its last subjob during the busy interval

is completed as late as possible before the completion of the last subjob of Ti. (2)

In order to compute the maximum delay due to preemption, we must consider that,

under ED-ERfair scheduling, the worst-case preemption can be caused by both tasks

with shorter relative deadlines and the intermediate pseudo-deadlines of tasks with

36

longer relative deadlines.

We propose the following Algorithm B to identify the critical instant for Task

Ti on a temperature-constrained single processor under ED-ERfair scheduling with

reactive speed scaling. We start with the maximum busy interval Λ beginning with

the critical instant in a traditional real-time system without blocking (See Figure 4).

The following example in Figure 12 shows how the critical instance for Task T2 can

be identified by Algorithm B.

Algorithm B.

Input: Parameters of the given tasks (execution cycles, period, and deadline ratios),

speed ratio, and threshold temperature.

Output: Critical instant for task Ti.

Step 1. Calculate the steady-state temperature, T ∗, using Equation (4.6) being based

on the busy interval Λ.

Step 2. At the thermally steady-state, first, each of tasks except Ti is shifted so that

its last subjob during the busy interval Λ is completed as late as possible before

the completion of the last subjob of Ti.

Step 3. Then, the subjobs of the task with larger relative-deadline than Ti are con-

tinuously shifted by one slot until the release time of the task is same with the

release time of Ti.

Step 4. We identify a moment when Ti has the maximum response time for the first

time. Then, all tasks are phased like the moment.

In Figure 12, it is easy to see that with Algorithm B, all tasks are phased like Figure

37

(b)

(a)
Processor

Thermally steady-state

T*

(c)

(c.1) (c.2) (c.3) (c.4)

T1

T2

T3

Fig. 12. Description of critical instant for T2 under ED-ERfair on TCRTS

12(c.3) for the critical instance of Task T2. Note that the busy interval Λ is maintained

in Figure 12 while we identify the critical instance.

Consequently, in Figure 12, with total execution cycles during the busy interval

Λ, we can obtain the steady-state temperature (T ∗). Then, with the T ∗, if T ∗
2 < TH ,

we have the worst-case delay dRSS
ED−ERfair,2 experienced by a job in Task T2 bounded

as dRSS
ED−ERfair,2 ≤ P + 1

b
ln T ∗

TH
− C2,r

SH
− s

SE
, where C2,r and s denote execution cycles of

the subjobs of lower-priority task aligned back-to-back before the critical instance of

T2 and the slot size, respectively (This calculation can be done with Equations (4.6)

and (4.9)).

Additionally, if the deadline of task Di = δP , where 0 < δ ≤ 1, we have the worst-

case delay dRSS
ED−ERfair for any job in all n tasks bounded as dRSS

ED−ERfair ≤ P + 1
b
ln T ∗

TH
.

38

2. Critical Instance on Temperature-Constrained Multiprocessor RTS

Now, we consider the critical instance and busy intervals for tasks scheduled by ED-

ERfair on temperature-constrained multiprocessor real-time systems. We propose the

following Algorithm C to identify the critical instance for Task Ti on TCMRTS. Note

that based on the busy intervals in traditional (non thermally-constrained) multipro-

cessor real-time systems (see Figure 5), we obtain the critical instance for Task Ti by

the following Algorithm C.

Algorithm C.

Input: Parameters of the given tasks (execution cycles, period, and deadline ratios),

the number of tasks and processors, speed ratio, and threshold temperature.

Output: Critical instant for task Ti.

Step 1. We get Steady-State Temperature, T ∗
j , based on the busy interval, Λj, where

j = 1, 2, ...,M (Therefore, T ∗
j denotes steady-state temperature on jth proces-

sor.).

Step 2. At the thermally steady-state, each of tasks except Ti is shifted so that its

last subjob during the busy intervals on M processors is completed as late as

possible before the completion of the last subjob of Ti. Here, as the processor

for each subjob of Ti, the hottest processor is always selected.

Step 3. Then, the subjobs of the task with larger relative-deadline than Ti are con-

tinuously shifted by one slot on M processors until the release time of the task

is same with the release time of Ti.

Step 4. We find a moment when Ti has the maximum response time for the first time.

39

All tasks are phased like the moment on M processors.

With the critical instance and busy intervals identified by Algorithm C, we can

have the worst-case delay for Task Ti assigned on the hottest processor under ED-

ERfair scheduling scheme. Let’s define T ∗
H to be the steady-state temperature on the

hottest processor. Then, T ∗
H can be obtained by the maximum busy interval formed

on the hottest processor. Consequently, with the T ∗
H , if the deadline of task Di = δP ,

where 0 < δ ≤ 1, we have the worst-case delay for any job in all n tasks bounded as

dRSS
ED−ERfair,TCMRTS ≤ P + 1

b
ln

T ∗H
TH

.

In the next section, with the analysis in this section, we show how MSU can

be calculated under ED-ERfair scheduling on temperature-constrained multiproces-

sor real-time system. Based on the maximum busy intervals formed in traditional

multiprocessor real-time systems (see Figure 5), the maximum schedulable utilization

on temperature-constrained multiprocessor real-time system is calculated.

C. Maximum Schedulable Utilization for ED-ERfair Scheduling on Temperature-

Constrained Multiprocessor Real-Time Systems

In this section, we determine MSU on temperature-constrained multiprocessor real-

time systems when we use ED-ERfair scheduling scheme.

Based on the maximum busy intervals formed in traditional multiprocessor sys-

tems, we have the following theorem. The proof for this theorem is done by replacing

δi in Theorem 1 with URSS(δi) (URSS(δ) has been calculated in (4.10).). Recall that

MSU is determined when P + 1
b
ln

T ∗j
TH

= δiP , where T ∗
j and δiP denote the steady-

state temperature on jth processor (j = M, M − 1, ..., 1) and the relative deadline of

Task Ti (i = n− (M − 1), n− (M − 1) + 1, ..., n), respectively.

Theorem 2 A system of n independent, preemptable, and identical-periodic tasks

40

with relative deadlines less than or equal to a period P can be feasibly scheduled

on temperature-constrained M processors if scheduled according to the ED-ERfair

scheduling algorithm if its total utilization U is less than or equal to

URSS
ED−ERfair(n, M, δi) =

n∑
i=n−(M−1)

URSS(δi) (4.11)

where δi+1 ≥ δi (i = 1, 2, ..., n).

In the next chapter, we study how the maximum schedulable utilization can be

determined under existing partitioning heuristics on temperature-constrained multi-

processor real-time systems.

41

CHAPTER V

COMPARISON BETWEEN PARTITIONING AND ED-ERFAIR ON TCMRTS

In this chapter, we compare existing partitioning heuristics with our ED-ERfair

scheduling scheme by showing MSU on temperature-constrained multiprocessor real-

time system.

A. Partitioning

In this section, we show how MSU can be determined under existing partitioning

heuristics on temperature-constrained multiprocessor real-time systems.

As we mentioned in Section (A.1) of Chapter II, in partitioning schemes, each

processor schedules tasks independently from a local ready queue. When a new task

arrives, it is assigned to one of these ready queues and executes only on the associated

processor until the task finishes execution. Therefore, no task migration is permitted

in partitioning.

With this consideration, we have the following Theorem 5.1 showing how MSU

can be considered for partitioning on temperature-constrained multiprocessor real-

time systems. We assume use of a fixed-priority scheduling scheme as the chosen

uniprocesor scheduling algorithm.

Theorem 3 For a system of n independent, preemptable, and identical-periodic tasks

with relative deadlines less than or equal to the period P, the maximum schedulable

utilization URSS
Partitioning under reactive speed scaling can be expressed if scheduled ac-

cording to partitioning heuristics on temperature-constrained multiprocessor real-time

systems as:

URSS
Partitioning =

M∑
i=1

URSS(δmax,i) (5.1)

42

where δmax,i denotes the maximal δ on ith processor.

Proof. When we schedule tasks with partitioning heuristics, each task is assigned

to one of M processors. The processor selection scheme depends on which heuristic

we uses.

Regardless of the kind of the heuristics, in order to determine MSU for the chosen

partitioning scheme on M processors, we simply sum each MSU calculated on each

processor. Since each MSU is determined by the largest relative deadline among those

of tasks scheduled on the associated processor, MSU on ith processor can be expressed

as URSS(δmax,i). Therefore, total MSU is calculated by summing up all MSU on M

processors.

43

CHAPTER VI

CONCLUSION

It is a well-known problem that power density in processors has increased expo-

nentially, and power dissipation is often particularly important in dense packaging

environments of high-performance embedded systems.

In this thesis, we describe a methodology for temperature-aware scheduling and

computation on thermally-constrained multiprocessor real-time systems. For real-

time scheduling on multiprocessors, this thesis is based on ERfair scheduling, which

is a work-conserving extension to Pfair global scheduling. Then, we study the bene-

fits of Reactive Speed Scaling, a dynamic thermal management scheme, in real-time

multiprocessor systems.

Pointing out that reactive speed scaling has no benefit under existing ERfair

scheduling, we propose the ED-ERfair (ERfair scheduling for tasks with Early-Deadlines)

scheduling scheme for a set of identical-period tasks with relative deadlines less than or

equal to the period. We also perform ERfairness test to check if the given task set sat-

isfies ERfairness under ED-ERfair scheduling. Then, in support of the temperature-

awareness, we extend the applicability of reactive speed scaling to our ED-ERfair

scheduling algorithm.

We show how the proposed algorithm and reactive speed scaling scheme can

enhance the processor utilization compared with any constant-speed scheme on real-

time multiprocessor systems. Moreover, we show how the maximum schedulable

utilization can be determined for existing partitioning heuristics.

44

REFERENCES

[1] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, and D. Tarjan, “Temperature-

aware computer systems: opportunities and challenges,” in Proc. IEEE Micro,

Dec. 2003, pp. 52-61.

[2] L. T. Yeh and R. C. Chu, Thermal Management of Microelectronic Equip-

ment: Heat Transfer Theory, Analysis Methods and Design Practices, New

York: ASME Press, 2001.

[3] S. Wang and R. Bettati, “Reactive speed control in temperature-constrained

real-time system,” in Proc. 18th Euromicro Conference on Real-Time Systems

(ECRTS ’06), Dresden, Germany, Jul. 2006, pp. 161-170.

[4] S. Wang and R. Bettati, “Delay analysis in temperature-constrained hard real-

time systems with general task arrivals,” in Proc. 27th IEEE International Real-

Time System Symposium (RTSS ’06), Dec. 2006, pp. 323-334.

[5] A. P. Ferreira, Daniel Mosse, and Jae C. Oh, “Thermal faults modeling us-

ing a RC model with an application to web farms,” in Proc. 19th Euromicro

Conference on Real-Time Systems (ECRTS ’07), Jul. 2007, pp. 113-124.

[6] K. Stavrou and P. Trancoso, “Thermal-aware scheduling: a solution for future

chip multiprocessors thermal problems,” in Proc. 9th Euromicro Conference on

Digital System Design (DSD ’06), Aug. 2006, pp. 123-126.

[7] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel, “Proportionate progress: a

notion of fairness in resource allocation,” Algorithmica, 1996, pp. 600-625.

45

[8] J. Anderson and A. Srinivasan, “Mixed Pfair and ERfair scheduling of asyn-

chronous periodic tasks,” in Proc. 13th Euromicro Conference on Real-Time

Systems (ECRTS ’01), Jun. 2001, pp. 76-84.

[9] S. Baruah, J. Gehrke, and C. G. Plaxton, “Fast scheduling of periodic tasks on

multiple resources,” in Proc. 9th International Parallel Processing Symposium,

Apr. 1995, pp. 280-288.

[10] J. Anderson and A. Srinivasan, “A new look at Pfair priorities,” Dept. Comput.

Sci., Univ. North Carolina, Chapel Hill, NC, Tech. Rep. TR00-023, Sep. 2000.

[11] J. Anderson and A. Srinivasan, “Early-release fair scheduling,” in Proc. 12th

Euromicro Conference on Real-Time Systems (ECRTS ’00), Jun. 2000, pp. 35-

43.

[12] S. Davari and S. Dhall, “An on-line algorithm for real-time tasks allocation,”

in Proc. 7th IEEE International Real-Time Systems Symposium (RTSS ’86),

1986, pp. 194-200.

[13] S. Dhall and C. Liu, “On a real-time scheduling problem,”Operations Research,

Jan. 1978, pp. 127-140.

[14] Shelby Funk and Sanjoy Baruah, “Task assignment on uniform heterogeneous

multiprocessor,” in Proc. 17th Euromicro Conference on Real-Time Systems

(ECRTS ’05), Jul. 2005, pp. 219-226.

[15] M. Garey and D. Johnson, Computers and Intractability: A Guide to the The-

ory of NP-Completeness, New York: W. H. Freeman and Company, 1979.

[16] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D.

Tarjan, “Temperature-aware microarchitecture: extended discussion and re-

46

sults,” Dept. Comput. Sci., Univ. Virginia, Charlottesville, VA, Tech. Rep. CS-

2003-08, Apr. 2003.

[17] N. Bansal, T. Kimbrel, and K. Pruhs, “Dynamic speed scaling to manage energy

and temperature,” in Symposium on Foundations of Computer Science (FOCS

’04), Oct. 2004, pp. 520-529.

[18] N. Bansal and K. Pruhs, “Speed scaling to manage temperature,” in Symposium

on Theoretical Aspects of Computer Science (STACS ’05), Mar. 2005, pp. 1-9.

[19] A. Dhodapkar, C. H. Lim, G. Cai, and W. R. Daasch, “Tempest: a thermal en-

abled multimodel power/performance estimator,” in Workshop on Power-Aware

Computer Systems, 2000, pp. 112-125.

[20] A. Cohen, L. Finkelstein, A. Mendelson, R. Ronen, and D. Rudoy, “On esti-

mating optimal performance of cpu dynamic thermal management,” Computer

Architecture Letters, Jan. 2003, pp. 6-15.

[21] S. K. Baruah, “Scheduling periodic tasks on uniform multiprocessors,” in Proc.

12th Euromicro Conference on Real-Time Systems (ECRTS ’00), Jun. 2000, pp.

7-15.

[22] J. Liu, Real-Time Systems, Upper Saddle River, NJ: Prentice Hall, 2000.

[23] S. K. Baruah, “Fairness in periodic real-time scheduling,” in Proc. 16th IEEE

International Real-Time Systems Symposium (RTSS ’95), Dec. 1995, pp. 200-

206.

[24] S. Wang and R. Bettati, “Delay analysis in temperature-constrained hard real-

time systems with general task arrivals,”Dept. Comput. Sci., Texas A&M Univ.,

College Station, TX, Tech. Rep. tamu-cs-tr-2006-5-3, May 2006.

47

VITA

Ja Ryeong Koo received his Bachelor of Science degree in computer engineering

from Kyunghee University in 2003. He entered the Computer Science program at

Texas A&M University in August 2005 and received his Master of Science degree in

May 2008. His research interests include real-time operating systems and scheduling.

Mr. Koo may be reached at 301 Harvey R. Bright Building, College Station, TX

77843. His email is wjbkoo@gmail.com.

