
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2020

IFIX: Fixing concurrency bugs while they are introduced IFIX: Fixing concurrency bugs while they are introduced

Zan WANG

Haichi WANG

Shuang LIU

Jun SUN

Haoyu WANG

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5938&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5938&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Zan WANG, Haichi WANG, Shuang LIU, Jun SUN, Haoyu WANG, and Junjie CHEN

IFIX: Fixing Concurrency Bugs While They Are
Introduced

Zan Wang
College of Intelligence and Computing

Tianjin University

Tianjin, China

wangzan@tju.edu.cn

Haichi Wang
College of Intelligence and Computing

Tianjin University

Tianjin, China

wanghaichi@tju.edu.cn

Shuang Liu*
College of Intelligence and Computing

Tianjin University

Tianjin, China

shuang.liu@tju.edu.cn

Jun Sun
School of Information Systems

Singapore Management University

Singapore

junsun@smu.edu.sg

Haoyu Wang
College of Intelligence and Computing

Tianjin University

Tianjin, China

wanghaoyu@tju.edu.cn

Junjie Chen
College of Intelligence and Computing

Tianjin University

Tianjin, China

junjiechen@tju.edu.cn

Abstract—Concurrency bugs are notoriously hard to identify
and fix. A systematic way of avoiding concurrency bugs is to
design and implement a locking policy that consistently guards
all shared variables. Concurrency bugs thus can be viewed as the
result of an illy-designed or poorly implemented locking policy.
The trouble is that the locking policy is often not documented,
which makes debugging concurrency bugs clueless. We argue that
it is too late to debug concurrency bugs after programming is
done and we instead detect and fix them while they are being
implemented. In this work, we propose an approach named IFIX
which flags potential concurrency bugs and recommends fixes
while the bugs are introduced. The key idea is to automatically
conjecture what the intended locking policy is based on static
analysis and recommend fixes accordingly. The recommended
fixes are present to the programmer promptly and the user
feedback (i.e., whether the certain recommendation is selected)
is used to refine the conjectured locking policy and consequently
future fixes. IFIX is evaluated on 43 concurrent programs, and
through a user study with 30 programmers. The experiment
results and user feedback show that IFIX is efficient, accurate
and user-friendly.

Keywords—concurrency; bug fix; locking policy;

I. INTRODUCTION

With the development of multi-core processors and the

emerging requirements on high-performance tasks, multi-

threaded programming is ubiquitous nowadays. Concurrency

bugs (of multi-threaded programs) are known to be hard to

debug and fix [1]. Firstly, it is challenging to identify and/or

replay concurrency bugs due to the difficulty in manipulating

thread interleaving. Secondly, fixing a concurrency bug is

highly non-trivial due to the large number of steps and context

switches in the test execution, most of which are irrelevant to

the bug. Thirdly, it is challenging to conjecture a fix that avoids

the bug with all possible thread interleaving.

There have been many proposals on identifying concurrency

bugs (e.g., through testing [2], [3], [4], [5] or static analysis [6],

[7]), replaying buggy traces [8], [9], understanding the cause

*Shuang Liu is the corresponding author.

of concurrency bugs [10], [11] and lastly fixing concurrency

bugs [12], [13], [14], [15]. It is important to notice that

existing approaches on fixing concurrency bugs are far from

perfect. They focus on either atomicity violations [12], [16],

[17], [18], deadlocks [19], [20], or data races [21]. Roughly

speaking, these approaches design their fixes based on concrete

execution traces which are either obtained from user-provided

bug reports [12], [16] or runtime monitoring [18], [17],

[21], or memory access patterns based on concrete execution

traces [22], and provide no guarantee that the fix applies to

unseen thread interleaving.

We argue that it is too late to debug concurrency bugs

after programming is done. Instead, we propose to proactively

identify and fix concurrency bugs while they are introduced.

A key component of our approach is the locking policies, i.e.,

a function f from shared variables to locks such that f(v) = l
means lock l is consistently used to protect variable v. As

stated by Peierls et al [23]., the key to reduce concurrency bugs
and ensure thread-safety is to design a locking policy accord-
ing to the program specification. That is, programmers ought

to properly design a locking policy before implementing it so

that concurrency bugs are avoided in the first place. We remark

that a properly documented locking policy would be extremely

helpful. For instance, concurrency bugs can be identified by

checking if the locking policy is consistently implemented; the

cause of a concurrency bug can be understood in terms of how

a locking policy is ill-designed; and a concurrency bug can be

fixed by either fixing the locking policy or the implementation

if it deviates from the locking policy.

In this work, we propose IFIX which promotes the design

and documentation of locking policies without requiring a
non-trivial amount of effort from programmers. IFIX requires

minimum user inputs and is designed to capture concurrency

bugs when they are introduced. That is, IFIX silently scans the

program for potential concurrency bugs based on static analy-

sis. It automatically conjectures what the intended locking pol-

155

2020 25th International Conference on Engineering of Complex Computer Systems (ICECCS)

978-1-7281-8558-3/20/$31.00 ©2020 IEEE
DOI 10.1109/ICECCS51672.2020.00025

icy is based on the program and generates recommended fixes

accordingly. By law of parsimony, IFIX always conjectures

a locking policy that is the most consistent with the current

implementation and thus requires minimum modification of

the program. Furthermore, IFIX learns from the programmer’s

selection to improve the accuracy of future recommendations.

Lastly, the conjectured locking policy is automatically inserted

into the program (in the form of annotations), which can

be reviewed by the programmer and used for debugging

concurrency bugs afterward if it is necessary.

IFIX has been implemented as an Intellij IDEA plu-

gin for Java programs and is open-source at github.com/
iFixConcurrency/iFix. To evaluate its usefulness, we conduct

a simulated experiment and a user study. In the simulated

experiment, we collect a set of 43 concurrent programs with

bugs and conduct multiple experiments to check whether IFIX

can be applied to eliminate the bugs. The results show that

IFIX detects concurrency bugs, generates the locking policy

and recommends fixes correctly and efficiently. In the user

study, we recruited 30 programmers to conduct non-trivial

programming tasks and evaluate whether IFIX is helpful in

fixing concurrency bugs. All the programmers in the study

agree that IFIX captures mistakes timely, recommends fixes

efficiently and correctly, and the generated locking policy

always matches the intended one in their mind.

In summary, we make the following contributions. First,

we propose a method to conjecture locking policies based on

static analysis and MAX-SAT solving. Secondly, we develop a

method and a tool IFIX for preventing concurrency bugs when

they are introduced. Thirdly, we conduct multiple experiments

to show the effectiveness of using locking polices to prevent

and fix concurrency bugs.

II. AN ILLUSTRATIVE EXAMPLE

In this section, we use an example to illustrate how

IFIX works step-by-step. Fig. 1 shows a concurrent program

adopted from [24]. Object mlst is shared among all threads

and if two builders (defined at line 25) call function addLast
at the same time. Function insert is invoked by the two threads

where p. current represents the same object. Consequently,

there is a data race on a variable between line 7 and line 9

in the MyLinkedList class, i.e., multiple threads might access

the same object p. current at the same time. To avoid the

data race, line 7 and line 9 should be executed atomically.

Furthermore, there is a subtle race between these lines and

line 15 as well, where p. current.next is accessed through

itr.next (since p. current and itr could be alias). Therefore,

a consistent locking policy must be implemented to protect

the shared object consistently throughout the program.

Given the program, IFIX performs standard aliasing analy-

sis, based on facilities offered by the D4 framework [25] for

each shared variable. Afterward, a static happens-before graph

is systematically built which allows us to detect data races.

In this example, p. current. next is accessed at line 7 and

9, whereas itr. next is accessed at line 15. Aliasing analysis

1 public class MyLinkedList {
2 ...
3 public void insert(Object x, MyLinkedListItr p) {
4 if (p != null && p._current != null) {
5 MyListNode tmp;
6 synchronized (this) {
7 tmp = new MyListNode(x, p._current._next);
8 //- } commented by iFix
9 p._current._next = tmp;

10 } // + add by iFix
11 }}
12 public void addLast(Object x) {
13 MyListNode itr = this._header;
14 synchronized(this){ // + add by iFix
15 while (itr._next != null) itr = itr._next;
16 } // + add by iFix
17 insert(x, new MyLinkedListItr(itr));}}
18 class MyLinkedListItr{
19 public MyListNode _current; // Current position
20 MyLinkedListItr(MyListNode theNode){
21 this._current = theNode;}}
22 public class Main{
23 public static void main(String[] args){
24 Thread[] threads = new Thread[builders];
25 MyLinkedList mlst = new MyLinkedList(maxsize);
26 MyListBuilder mlistBuilder = null;
27 for (int i = 0; i < builders; i++) {
28 mlistBuilder = new MyListBuilder(
29 mlst,i*step,(i+1)*step,true);
30 new Thread(mlistBuilder).start();}}}
31 public class MyListBuilder implements Runnable{
32 public void run(){
33 for (int i = this._bound1; i < this._bound2 ;i++

){
34 ((MyLinkedList)_list).addLast(new

Integer(i));}}}

Fig. 1: An illustrative example

shows that p. current and itr are potentially alias and thus

these three lines race with each other.

Once data races are identified, IFIX checks whether there

is certain locking policy that the programmer attempts to

implement (but fails to do so correctly). In this example,

since the race is on variable p. current. next, IFIX identifies

all locks that are used to protect p. current. next through

static analysis. In particular, IFIX traverses through the static

happens-before graph to generate operation sequences on

variable p. current. next. For instance, the following is an

operation sequence which represents line 6 to 8.

(lock(this), 6), (read(p. current. next), 7) (1)

(write(tmp), 7), (unlock(this), 8)

where each event in the sequence represents an access of a

variable or a locking/unlocking event at a certain line. The

above sequence of operations shows that (at least sometimes)

p. current. next is protected with a lock on this.

Based on the above analysis results, IFIX then generates a

set of constraints that capture the information on the currently

implemented locking policy based on two rules. First, if a

variable x is protected by a lock l in some operation sequence,

we generate a constraint lock(x) = l. Second, if variable

x and y are protected by the same lock, we generate a

constraint lock(x) = lock(y). In this example, the constraints

generated based on the above-mentioned operation sequence

are lock(next) = this.

156

After obtaining all constraints, IFIX conjecture the intended

locking policy based on the principle of Occam’s razor, i.e.,

the intended locking policy should be minimally different

from what has been programmed. A locking policy should

protect each shared variable (e.g., p. current. next) with a

lock. In this example, the lock could be either this or a freshly

created lock say μlock. Using MAX-SAT solving techniques,

we then identify a locking policy that maximally satisfies

the above-collected constraints. In this example, protecting

p. current. next with a lock on this is a better locking policy

since it satisfies all of the constraints, whereas protecting it

with μlock satisfies none of the constraints.

We remark that constraint solving in this example is straight-

forward as there is only one shared variable. In general, there

may be multiple shared variables and locks and thus constraint

solving is non-trivial. After constraint solving, we retain the

top-K locking policies which satisfy the most constraints and

generate one fix recommendation in an interactive window

for programmers to select. In this example, the conjectured

locking policy is to protect p. current. next with a lock on

this and the recommended fix is to expand the synchronized
block at line 6 to include line 9 and enclose line 15 with a

synchronized block. Figure 1 shows the program after IFIX

automatically applies the fix.

III. IFIX

In this section, we present the details of IFIX. There are

four main steps. First, IFIX conducts static analysis to detect

data races. Secondly, IFIX conjectures a locking policy that

is minimally different from the current program. Thirdly, a

fix recommendation is generated based on the conjectured

locking policy. Lastly, IFIX automatically applies the fix. In

the following, we present details of each step.

A. Static Race Detection

IFIX relies on D4 [25] for static race detection, which is

a static analysis framework that can be used to detect data

races. We briefly summarize the D4 concurrency bug detection

techniques that are relevant to our bug fixing techniques. We

refer readers to the D4 [26] for more details. Note that our

main contribution is on interactively generating fixes based on

conjectured locking policies.

In general, data races are detected based on constructing

a point assignment graph (PAG) and a static happens-before

(SHB) graph. The PAG provides a mapping from variable

names to memory locations called point-to set (pts), i.e., a set

of memory locations. Aliases can be identified systematically

by comparing the pts. The SHB graph captures the happens-

before relations between control locations in different threads.

Fig. 2 shows the SHB graph constructed from the program

shown in Fig. 1.

With the SHB graph, IFIX systematically identifies pairs

of memory-accessing statements that can be executed con-

currently (i.e., there are no chains of happens-before relation

between the two statements). With the PAG graph, IFIX then

determines whether such pairs of statements access the same

Main Thread

Thread 1

Thread 2

Fig. 2: Example SHB graph

Algorithm 1: Locking Policy Conjecture

1 initialize lp and lowerbound;
2 generatePolicy(lockList);
3 Function generatePolicy(lockList)
4 calculate bestPossibleScore;
5 if bestPossibleScore is smaller than lowerbound then
6 return; // cut branch

7 if A lockList is complete then
8 calculate the score for lockList;
9 if score is greater than lowerbound then

10 update lowerbound and lp;

11 return;

12 for lock in Lock(x) where x is the next variable do
13 lockList.append(lock);
14 generatePolicy(lockList);
15 lockList.removeLast();

16 return;

memory location (and one of the statements writes to the mem-

ory location). In other words, data races are systematically

identified. For instance, as shown in Fig. 2, line 7 and 15

may execute concurrently by the two threads since there is no

happens-before relation between them. Furthermore, the PAG

graph shows that p. current. next and itr. next may point-to

the same memory address. As a result, IFIX concludes that

there is a data race between line 7 and 15.

Note that a sequence of statements can be generated based

on the SHB graph as the evidence of the data race. We remark

that both the PAG graph and the SHB graph are constructed

based on static analysis and thus the graphs could be not accu-

rate, i.e., the PAG graph typically over-approximates whereas

the SHB graph typically under-approximates (due to missing

certain subtle happens-before relation). As a result, there might

be false alarms or false negatives in the race detection results.

B. Locking Policy Conjecture

Once potential data races are identified, the next step is

to generate fix recommendations. Existing approaches often

introduce new locks (to protect the racing statements) [27],

[16], [28], [29] and thus result in excessive locks when there

are many races. A more systematic approach, as promoted

in [30], is that “to design a locking policy according to the

157

program specification”. That is, data races are the result of

ill-designed/implemented locking policies. IFIX is designed

to infer the intended locking policy automatically during the

programming phase and gather user feedback based on the fix

recommendations (e.g., which recommendation is selected) to

refine the inference results. Furthermore, generating fix recom-

mendations based on the inferred locking policy often allows

us to reuse existing locks and avoid introducing redundant

locks.

Formally, a locking policy is a function lockP : V → L
where V is the set of shared variables and L is the set of

locks. It is a function as a shared variable must be guarded

by exactly one lock following [30]. We use lock(x) = l to

denote that variable x is protected by lock l. A locking policy

is consistently implemented if and only if every access to

variable x is guarded by a lock on l throughout the program.

Identifying the set of shared variables is straightforward

based on the PAG graph and the SHB graph. To infer what is

the intended locking policy, IFIX systematically analyzes the

program to check whether there are existing protections by

traversing the SHB graph and obtain operation sequences on

the shared variables. An operation sequence is a sequence of

read/write and lock/unlock operations. Based on the operation

sequences, we can identify where locking and unlocking take

place. For the example shown in Fig. 1, the operation sequence

corresponding to line 6 − 10 is shown in the list (1) in

Section II, which suggests that the programmer intends to

protect variable p. current. next with a lock on this.

Furthermore, given there are data races, the locks are likely

not used consistently, i.e., some operation sequences may

protect the same shared variable with different locks or no

lock at all. To conjecture what the intended locking policy

is, IFIX takes a global view of all operation sequences and

gathers the information in the form of constraints. For every

operation sequence with a pair of locking and unlocking, IFIX

generates two kinds of constraints.

• Type I: If a variable x is accessed in between lock(l)
and unlock(l), IFIX generates a constraint lock(x) = l,
indicating that the programmer intends to protect x with

lock l.
• Type II: If two variables x and y are accessed in be-

tween lock(l) and unlock(l), IFIX generates a constraint

lock(x) = lock(y), i.e., it seems possible that the two

variables are related and the programmer intends to

protect both variables using the same lock.

For example, given the operation sequence of line 6-10

in the original program (list (1) in Section II), we obtain

constraint lock(next) = this based on the first rule and

lock(p. current) = lock(p) based on the second rule. Note

that because there is no race on variable p, the second

constraint is discarded.

C. Locking Policy Generation

After the last step, we have collected a set of constraints

that capture the existing locking policy. Since the current

1 method1() { synchronized (a) { a.update(); }}
2 method2() { synchronized (a) { a.update(); c.update(); }}
3 method3() { synchronized (b) { a.update(); b.update(); }}
4 method4() { synchronized (b) { b.update(); }}
5 method5() { synchronized (a) { c.update(); }}

Fig. 3: An example for lock policy generation

Has already been in the initial LockPL

Initial LockPL is {[a, b, a], [a, a, a]}
lower bound is 6

Fig. 4: An example illustrating Algorithm 1

implementation is buggy, the existing locking policy is ill-

designed/implemented, e.g., the same variable is not always

protected by the same lock or related variables are not always

protected by the same lock. For the example shown in Fig. 1,

the reason for the data race is that line 7 and 9 both access

the same variable whereas line 9 is not protected by lock this.

The existing locking policy thus needs to be replaced with

one which systematically protects the shared variables. Rather

than generating a new locking policy from scratch, we aim

to generate one which would fix the data races whilst being

minimally different from the existing one.

We first identify a set of candidate locks for protecting each

shared variable. For each variable x, if there is a constraint

lock(x) = l, lock l is a natural candidate. Furthermore, any

existing global objects are candidates as well (In Java, any

reference-type object can serve as a lock). In addition, we

assume that the candidate lock could be ⊥, a special value

denoting no protection, or a newly created fresh lock μ.

Next, we apply the principle of Occam’s razor [31] to find a

locking policy that maximally satisfies the constraints that we

have collected, i.e., we apply MAX-SAT solving techniques

to identify a locking policy that satisfies a maximum number

of the collected constraints.

Algorithm 1 shows details on how IFIX generates the

locking policy. It is a branch-and-bound algorithm for solving

MAX-SAT problem which works reasonably efficiently in our

setting. Note that we do not call existing MAX-SAT solvers

due to the large overhead in starting and communicating with

such solvers. The inputs are the set of shared variables Var,

the set of candidate locks Lock(x) for each variable x, and the

set of constraints Con. The output is a locking policy which

satisfies the most number of constraints.

We maintain two variables, i.e., lp and lowerbound which

are the current best locking policy and the number of con-

straints that it satisfies. It is known that branch-and-bound

works better if the initial “guess” is near-optimal. We thus

initialize lp heuristically as follows. For each variable x, and

158

TABLE I: Satisfied constraints of program in Fig. 3

LP
Constraints Satisfied

2 1 2 2 1 1
I II #Sum

(a,a) (a,b) (b,b) (c,a) (a,c) (a,b)

[a,a,a] Y Y Y Y 4 2 6

[a,a,b] Y Y 2 1 3

[a,b,a] Y Y Y Y 6 1 7

[a,b,b] Y Y 4 0 4

[b,a,a] Y Y 3 0 3

[b,a,b] Y Y 1 1 2

[b,b,a] Y Y Y Y 5 1 6

[b,b,b] Y Y Y Y 3 2 5

each candidate lock l for x, we count the number of times a

constraint of the form lock(x) = l is in Con, i.e., the number

of times l is used to protect x. lp is then set such that each

variable x is to be protected by lock l such that lock(x) = l
occurs the most. Then lowerbound is set to the number of

constraints satisfied by this lp.

A recursively defined function generatePolicy is then used

to systematically enumerate locking policies. Assume there

is a fixed order on the variables in V ar. The parameter of

the function lockList is a partial locking policy, which is

represented in the form of a sequence of locks where the first

lock is assigned to the first variable, the second lock is assigned

to the second variable and so on. Initially, lockList is an

empty list. Function generatePolicy then gradually completes

lockList, one assignment at a time.

In particular, in line 5, we calculate the maximum number

of constraints that are possibly satisfied by lockList, i.e., the

number of constraints satisfied by the assigned variables in

lockList plus the number of constraints on the unassigned

variables. If the result is smaller than lowerbound, the current

lockList is abandoned without ever completing it since it

cannot be a locking policy better than lp. Otherwise, at line 7,

if lockList is complete (i.e., every variable is assigned with

a lock), we check how many constraints that it satisfies and

update lowerbound and lp accordingly if lockList is better

than lp. Otherwise, the loop from line 12 to 15 tries assigning

every candidate lock to the next unassigned variable and makes

a recursive function call.

Note that the above generates the locking policy that satis-

fies the maximum number of constraints. To generate the top-

K locking policies, a naive approach is to repeat the algorithm

K times each time discard the previously identified one. A

better approach is to amend Algorithm 1 slightly to record the

top-K locking policies along the way. We skip the details for

the sake of the presentation and instead discuss how it works

with the example below.

In the following, we show how Algorithm 1 works using

the example shown in Fig. 3, where a, b and c are three shared

mutable objects and all the methods can possibly execute

concurrently. Column ‘Constraints’ in Table I shows the con-

straints collected from the program. (c,a) represents the lock

for variable c is a, and the circled number 2 represents that

the corresponding constraint appears twice, i.e., at line 2 and

5 of Fig. 3, respectively. Table I enumerates all the possible

locking policies and the number of constraints satisfied by

each locking policy. The first column shows the details of

each locking policy ([a,b,a] means the corresponding lock for

variable a, b and c respectively) and the last column shows

how many constraints each locking policy satisfies.

Assume that we would like to identify the top-2 locking

polices. We first initialize LockPL as {[a, b, a], [b, b, a]} where

[a, b, a] denotes the locking policy {lock(a) = a, lock(b) =
b, lock(c) = a}. These two locking policies are obtained by

counting on the total number of constraints of type I. For

instance, we initialize lock(a) = a in the locking policy

[a, b, a] because there are a maximum of 4 constraints of the

form lock(a) = a as show in Table I; and a maximum of 2

lock(b) = b and a maximum of 2 lock(c) = a. While this

heuristic does not guarantee that the generated locking policy

is optimal, it is often near optimal in practice. For instance,

the locking policy [a, b, a] turns out to be the optimal one in

this example (see the third locking policy in Table I).

Fig. 4 shows the detailed step of Algorithm 1 for this exam-

ple. Each node represents the current state, i.e., the value of

lockList, lowerbound (in blue) and the bestPossibleScore
(in red). Note that a value ε in lockList means that no lock

is assigned to the variable yet. The solid red arrows show

the searching direction and the dashed red arrows show the

backtracking direction. The grey colored nodes and edges are

not explored due to line 5 and 6 in Algorithm 1. Initially, the

top-2 locking policies are {[a, b, a], [b, b, a]} and lowerbound
is 6, i.e., the number of constraints satisfied by [b, b, a]. Then,

IFIX calls function generatePolicy with parameters lockList
[ε, ε, ε]. First, lockList is set to [a, ε, ε]. After a recursive

call, lockList is set to be [a, a, ε]. Since the best possible

score of this partial locking policy is 6, which is no larger

than lowerbound. We backtrack and try [a, b, ε] next instead.

Repeating the same steps for multiple times, we obtain the

final top-2 locking policy as [a, b, a] (satisfying 7 constraints)

and [a, a, a] (satisfying 6 constraints). This example shows

that with a good “guess” on the initial bound, the branch-and-

bound approach works efficiently.

D. Fix Recommendation and Application

After conjecturing the locking policy, IFIX generates fix

recommendations accordingly. For instance, for the exam-

ple shown in Fig. 4, with the locking policy [a, b, a], IFIX

recommends to additionally protect statement a.update() in

method3() with a lock on a. The fix recommendations are

shown in a popup window once the programmer clicks on the

exclamation mark which highlights a data race in the program

and will be applied automatically.

Automatically applying a fix requires us to refactor the

program by introducing locking/unlocking statements at the

right place. We may encounter two scenarios. One is that the

statement is not protected by any locks. The other is that it

is already protected by some locks. In the former case, IFIX

simply introduces a new synchronized statement. In the latter

case, IFIX checks whether the existing lock is consistent with

the conjectured locking policy. If not, IFIX first wraps the

statement with a synchronized block with the intended lock

and then checks whether the existing lock protects some other

159

statements. For the example shown in Fig. 4, if the program-

mer selects the fix recommendation generated based on the

locking policy [a, a, a], IFIX first introduces a synchronized(a)
block around the two statements in method3(). Afterward, it

checks whether to remove synchronzied(b) in method3().
According to the locking policy, lock b is no longer useful

and thus the statement synchronized(b) in method3() is

redundant and removed. Note that IFIX does not actually

delete statement. Rather it comments out statements that are

no longer needed.

IFIX also considers user feedback for improving future fix

recommendations. When the user selects a certain fix, the

choice is recorded and the locking policy preferred by the

programmer previously will be given priority when new fix

recommendations are generated. We remark that compared to

existing approaches that fix programs after programming is

done [28], [12], [16], [27], IFIX presents the fix recommenda-

tion timely during the programming phase. The advantage is

that the intended locking policy is still fresh and thus the pro-

grammers can easily confirm whether our fix recommendation

meets their expectation.

IV. EVALUATION

IFIX is a self-contained toolkit built on top of existing pro-

gram analysis tools for Java, including D4 [25], WALA [32],

Akka [33] and Eclipse AST [34]. In particular, IFIX relies

on D4, which is implemented based on WALA and Akka, to

detect data races. Eclipse AST is a part of Eclipse JDT which

is used to parse the Java programs into abstract syntax trees.

IFIX is fully integrated with the Intellij IDEA IDE and is open-

source at github.com/iFixConcurrency/iFix and has a total

of 7, 498 lines of code. In the following, we systematically

evaluate IFIX to answer four research questions (RQ).

• RQ1: Is IFIX sufficiently efficient to provide instant
feedback to programmers?

• RQ2: how accurate are the races detected by IFIX?
• RQ3: how accurate are the fix recommended by IFIX?
• RQ4: would real users recommend IFIX?

A. Automated Experiments

To answer RQ1, RQ2, and RQ3, we conduct automated

experiments on 43 programs collected from existing bench-

marks including [35], [36], [24], [37], [38]. These programs

are known to have concurrency bugs and are the subjects

of various research. Relevant details of these programs are

shown in Table II, where the second column shows the

total number of non-comment-non-space lines of code in the

program (without counting those in the invoked library).

To answer RQ1, we systematically apply IFIX to every pro-

gram and measure the time taken by IFIX to identify the races.

In particular, we measure the time taken to detect the bugs,

the time to conjecture the locking policy (including constraint

solving) and the time to apply the fix. IFIX is applied to each

program 10 times and the average time is taken as the final

measure. The results are shown in the fourth to sixth columns

of Table II. All experiments are conducted on a PC with 16GB

RAM, i7-6700 CPU, Windows 10 and JDK 1.8.0 191.

IFIX performs steadily time-wise to detect concurrency

bugs, i.e., it takes about 2 seconds for most of the pro-

grams. One exception is the JGFMolDyn program, which

takes around 9.3 seconds. The reason is that the program

contains 51 shared variables and there are 144,621 pairs of

potentially racing statements from different threads, which are

time-consuming to check using the happens-before relations.

The time taken for conjecturing the locking policy is negligible

(i.e., less than 50 ms) for almost all the programs. The time

for locking policy conjecturing mainly depends on the number

of shared variables as well as the number of locks. The time

for applying the fix is mostly negligible, although it has a

wider range (i.e., from less than 50 milliseconds to around 1.8
seconds). The time varies because it mostly depends on the

number of files to be modified. On average, it takes IFIX 2.410,

0.013 and 0.218 seconds to detect bug, conjecture locking

policy and apply the fix, respectively.

Overall, the results show that iFix typically takes a few

seconds to detect bugs and suggest fixes. Given that IFIX

works in background and programmers often take a longer

time to program, we believe such a delay is tolerable and thus

iFix is sufficiently efficient.

To answer RQ2, we measure the number of bugs identified by

IFIX as well as the number of false alarms for each program.

For each program, we manually check the bugs reported to see

whether it is an actual bug or it is a bug duplicating another or

it is a false alarm. Note that two bugs are considered duplicate

if they result in the same exception at the same line or they

results in a race on the same variable by the same instructions.

The results are shown in column ‘Detect Acc’ of Table II.

We can observe that in 34 (out of 43) cases, IFIX reports

the bugs with 100% accuracy. In the remaining 9 cases, the

number of false alarms varies from 1 to a maximum of 37

(in the case of elevator). A close investigation shows the false

alarms are the result of imprecise static analysis. For instance,

the pts may conservatively include variables which are not

alias (e.g., newly initialized object) due to the limited precision

of static aliasing analysis. Note that 2 programs have no data

races (but rather bugs known as high-level races).

To answer RQ3, we manually check the correctness of the

top-1 recommended fix for each actual bug in each program.

A bug is considered fixed if the data race is successfully

eliminated without introducing new bugs. Note that we use

the actual fix for these programs as a golden standard. The

results are shown in column ‘Fix Acc’ of Table II. As we can

see from the results, IFIX correctly fixes all the detected bugs

with its top-1 recommended fix. Furthermore, our fixes are

generated based on conjecturing what is the intended locking

policy and thus are consistent with existing implementations.

For instance, for the example shown in Fig. 1, IFIX fixes the

program by simply expanding an existing synchronized block

at line 8 - 10, without introducing a new lock.

B. User Study

IFIX is designed for the programmers, i.e., offers recom-

mendations and collects feedback. Thus, RQ4 can only be

160

TABLE II: Automated experiment results

program name

Detect D L F # Fix
LOC Acc time time time Lock Acc

(s) (s) (s)

accountsubtype 129 1 / 1 2.002 0.005 0.493 5 1 / 1

airlinetickets 83 1 / 2 1.813 0.013 0.056 3 1 / 1

alarmclock 190 2 / 2 2.049 0.015 0.153 11 2 / 2

allocationvector 199 1 / 1 2.157 0.007 0.057 4 1 / 1

array 31 1 / 1 1.794 0.003 0.012 1 1 / 1

atmoerror 44 2 / 2 2.001 0.006 0.178 4 2 / 2

bakery 86 3 / 3 1.979 0.005 0.087 6 3 / 3

boundedbuffer 334 2 / 7 2.138 0.016 0.348 11 2 / 2

bubblesort 274 1 / 1 1.998 0.007 0.303 6 1 / 1

bufwriter 199 2 / 3 2.132 0.011 0.308 2 2 / 2

buggyprogram 161 2 / 2 1.843 0.005 0.040 3 2 / 2

bugsimplified 46 1 / 1 1.991 0.009 0.034 2 1 / 1

checkfield 39 1 / 1 2.196 0.009 0.048 2 1 / 1

consistency 28 1 / 1 1.987 0.003 0.052 1 1 / 1

critical 57 1 / 1 2.008 0.003 0.074 6 1 / 1

cyclicDemo 40 1 / 1 1.948 0.003 0.214 2 1 / 1

datarace 90 1 / 1 2.424 0.004 0.046 2 1 / 1

dekker 89 4 / 4 2.401 0.001 0.079 2 4 / 4

elevator 1155 7 /44 3.994 0.139 1.768 73 7 / 7

even 49 1 / 1 2.068 0.007 0.006 1 1 / 1

hashcodetest 987 2 / 2 2.084 0.012 0.172 3 2 / 2

JGFMolDyn 1010 3 / 8 9.329 0.055 1.290 17 3 / 3

JGFMonteCarlo 1478 0 /24 2.146 0.010 1.462 42 0 / 0

JGFRayTracer 1000 1 /11 2.427 0.023 1.099 29 1 / 1

lamport 126 5 / 5 5.291 0.044 0.074 4 5 / 5

linkedlist 175 1 / 1 2.332 0.009 0.006 2 1 / 1

mergesort 255 2 / 2 2.388 0.007 0.099 10 2 / 2

mix0 43 1 / 1 1.974 0.004 0.021 2 1 / 1

mix1 66 3 / 5 2.272 0.007 0.040 4 3 / 3

omcr 146 3 / 3 4.024 0.005 0.037 3 3 / 3

peterson 66 4 / 4 2.354 0.016 0.035 2 4 / 4

pingpong 117 1 / 1 2.241 0.006 0.032 3 1 / 1

pipeline 75 2 / 2 1.925 0.005 0.035 4 2 / 2

producerConsumer 134 1 / 1 2.108 0.003 0.024 2 1 / 1

rax 52 1 / 1 1.837 0.007 0.039 5 1 / 1

reorder1 67 1 / 1 2.014 0.010 0.017 2 1 / 1

sharedobject 45 1 / 1 2.039 0.006 0.024 2 1 / 1

store 43 1 / 1 1.816 0.003 0.006 1 1 / 1

stringbuffer 361 0 / 3 2.263 0.014 0.378 9 0 / 0

testArray 37 1 / 1 1.834 0.005 0.029 2 1 / 1

tso 33 1 / 1 1.656 0.026 0.038 2 1 / 1

wrongLock1 71 1 / 1 2.040 0.019 0.030 1 1 / 1

wrongLock2 36 1 / 1 2.308 0.008 0.052 1 1 / 1
* Detect Acc: the number of actual bugs / the number of reported bugs. D time is the

detection time. L time is the time to conjecture the locking policy. F time is the time
for fixing. Fix Acc: the number of correct fixes / the number of bugs.

answered by programmers and thus a user study is conducted.

First, we identify a group of 30 volunteers through multiple

channels (e.g., advertisement among students, researchers, and

our industrial collaborators). The volunteers are then catego-

rized into 3 levels based on their programming experience.

L1 volunteers (18 in total) are undergraduate students with

limited programing experience. L2 volunteers (6 in total) are

postgraduate students with around one year of Java devel-

opment experience. L3 volunteers (6 in total) are industry

programmers or postgraduate students with more than 3 years

of Java concurrency programming experience. The volunteers

are randomly divided into two groups, the experiment group

and the control group with a balance of levels.

Given the difficulty in identifying concurrency bugs, we

develop a version of IFIX (hereafter IFI) which only highlights

the data races without providing any fix recommendations.

Volunteers in the control group are provided with a tutorial

on IFI. For each program, the volunteer starts with reading

the program and clicks a button to highlight the data races.

TABLE III: Survey questions

ID Question
Answer
options

1 How difficult is the task? 1-5
2 How timely is the bug detection? 1-5
3 How accurate is the bug detection? 1-5
4 How user-friendly is the bug detection? 1-5
5 How helpful is the bug detection? 1-5

6* How timely is the fix recommendation? 1-5
7* How accurate is the fix recommendation? 1-5
8* How user-friendly is the fix recommendation? 1-5
9* How helpful is the fix recommendation? 1-5
10 Have you used static detection tools before? Yes/No
11* Have you used repairing tools before? Yes/No
12* Will you choose IFIX (over other tools you used)? Yes/No
13 How useful is IFIX? 1-5
14 Any other comments or suggestions? -

Afterward, the volunteer analyzes the program and fix the

program. Volunteers in the experiment group are provided with

a tutorial on IFIX. The difference is they have recommended

fixes after clicking the button. Afterward, the volunteer selects

the recommended fix if he/she believes that the fix is correct,

or modifies the program directly otherwise. There is no time

limit for both groups. The time used for each stage of fixing

and the fixing results are automatically recorded.

All volunteers are given three programs selected from the

benchmark programs with different levels of difficulty. After

finishing the task, the volunteers are required to fill in a

questionnaire as shown in Table III. Both groups are asked

whether the bug detection is efficient, accurate, useful and

easy to use. The experiment group is asked the same set of

questions on the bug fixing functionality. For questions 1− 9
and question 13, the options range from 1 to 5, where 1 means

‘the least’ and 5 means ‘the most’. The result of the user study

is summarized in Table IV. Column 4-6 are the total time each

program takes on average. The last column shows whether the

volunteer successfully fixes all three programs or not.

Considering that bug detection is an important step in IFIX

which has great impact on the overall user experience, and that

the control group can only access the bug detection results,

we design survey questions to check users’ experience on bug

detection and bug fixing separately.

Efficiency of IFIX. We survey users’ experience on the effi-

ciency of bug detection (Q2) and bug fixing (Q6) separately.

The survey results show that almost all volunteers agree that

IFIX both identifies bugs efficiently (average score 4.7 out

of 5) and fixes bug efficiently (average score 4.7 out of 5).

We further interview the volunteers who gave a score less

than 4. Volunteer-1 rates 2 on question Q2, as he expects

IFIX to start working without requiring the programmer to

click a button. The request is reasonable. However, there may

be multiple entrances in a project and IFIX would require

additional knowledge on which entrance to start with.

Accuracy of IFIX We survey users’ experience on the ac-

curacy of bug detection (Q3) and bug fixing (Q7) separately.

Almost all volunteers agree that IFIX detects bugs accurately

(average score of 4.6) and fixes bugs accurately (average

score of 4.4). Volunteer-7 rates 3 for Q3. He agrees that the

161

TABLE IV: User study results

group ID Level
P A P B P C

Fix Result
time / s time / s time / s

A

1

1

522.60 488.39 786.63 Y
2 543.81 423.45 909.51 Y
3 455.18 539.56 613.77 Y
4 311.63 349.09 499.32 Y
5 287.17 703.00 1294.06 Y
6 209.99 404.30 551.24 N
7 748.38 1032.03 888.97 N
8 445.54 455.17 927.85 Y
9

2
223.45 244.98 566.36 Y

10 459.12 483.35 538.52 Y
11 234.40 336.34 428.90 Y
12

3
241.05 255.00 503.94 Y

13 395.18 361.59 461.16 Y
14 206.93 320.73 497.47 Y

B

15

1

453.19 307.99 789.65 Y
16 612.98 547.90 700.00 Y
17 679.60 498.24 934.72 Y
18 314.89 312.66 846.44 Y
19 637.21 324.07 816.58 Y
20 461.68 352.32 1394.49 Y
21 338.19 300.40 480.17 Y
22 361.20 286.23 1031.97 Y
23 221.08 264.58 403.35 Y
24 147.37 258.92 726.60 Y
25

2
237.75 201.76 460.14 Y

26 213.46 271.53 400.52 Y
27 315.13 227.02 662.04 Y
28

3
173.24 102.23 315.23 Y

29 214.66 252.51 408.09 Y
30 176.62 162.30 298.16 Y

* A is the control group; B is the experiment group. ID is the volunteer id. Level
indicates the level (1-3) of the volunteer. Fix Results shows whether the volunteer
successfully fixes all three programs or not.

detection results are accurate, but aruges that the information

is insufficient to locate the bug. We remark that identifying the

root cause of a bug is not the focus of this work. Volunteer-23

and 27 thought the fixs generated by iFix could be improved

(and yet fail to demonstrate better fixes during the experiment).

Usefulness of IFIX. Questions Q4 and Q8 ask whether IFIX

is user-friendly for bug detection (Q4) and for bug fixing

(Q8). The survey results show that IFIX is user-friendly in

both bug detection (average score of 4.3) and bug fix (average

score of 4.6). 6 volunteers (2 from control group and 4 from

experiment group) give low rate on Q4. 5 of them suggest that

IFIX should start detection automatically without user clicking

a button and the remaining one has concerns on whether all

Java features like reflection are supported by IFIX. Questions

Q5 and Q9 are designed to check whether IFIX is helpful in

detecting and fixing bugs. The results show that IFIX helps

reduce the time to detect (average score of 4.5) or fix a bug

(average score of 4.6). For Q5, volunteer-10 and 21 think the

bug detection part of IFIX is not useful as they found the bugs

before clicking the button. This is because they take a long

time to read and understand the program. For Q9, volunteer-

21 and 29 think IFIX did not reduce the time to fix bugs.

In particular, volunteer-22 explains that he found the bugs

before IFIX is applied. Volunteer-27 responses even if a fix

is automatically generated and applied, he still needs to check

whether the fix is correct and does not introduce new bugs.

Comparing experiment group with control group Columns

4-6 show the the time spent on analyzing and fixing each

program. The experiment group spent 5.79 minutes on average

to fix Program-A which is 30 seconds (8%) less than the

time spent by control group. For Program-B, experiment group

spent 4.87 minutes on average to complete the job and is 2.75
minutes (36.11%) less than that spent by the control group. For

the last program, The experiment group took 11.11 minutes

on average and is 10 seconds (1.41%) less than the control

group. For program-C, the average improvement is not very

significant, this is because there are two volunteers (20 and

26) in the control group who take a long time to understand

and analyse the program logic. They also take longer time

to verify the fix patch provided by IFIX. On average, the

total time taken by the control group is 25.18 min, where

that of the experiment group is 21.77 min. On average, the

experiment group take about 3.4 minutes (13.5%) less than

the control group to complete the task. The results show that

IFIX effectively reduces time for the program with a moderate

difficulty level and not so much for the difficult program. One

interpretation is that it takes much longer to understand the

difficult program and validate the recommended fix. We further

compare the time used for volunteers of different levels and

find that the reduction in the total time (218.4, 175.35 and

380.01 seconds respectively for level-1, level-2, and level-3)

are consistent across programmers at different levels.

Other findings. From the answers to Q1, we conclude that

the volunteers’ evaluation of the difficulty levels on the three

programs is consistent with our evaluation. In particular, the

easy, moderate, difficult program has a difficulty score of 1.63,

2.53 and 3.90, respectively. Questions Q10 and Q11 check

the volunteers on whether they have prior experience of using

similar tools and whether they would prefer IFIX (than the

other similar tools). The answers suggest there is a lack of

similar tools in practice. Only volunteer-24, 28 and volunteer-

30 have experience with concurrency bug detection tools and

only volunteer-28 has used concurrency program repair tools.

They both prefer to use IFIX. The other volunteers also prefer

to use IFIX (than not using). For Q13, most volunteers give

high ratings (average score of 4.48) for the usefulness of IFIX.

The user study suggests that IFIX is useful. All 16 vol-

unteers in the experiment group successfully fix the bugs,

whereas 2 Level 1 volunteers in the control group fail to fix

the bug in the most difficult program. This seems to suggest

that IFIX is helpful for programmers with limited concurrency

programming experience. In terms of the fixing quality, 3

volunteers in the control group add the synchronized keyword

to every method in the program, which locks the entire method

body. As a result, the degree of parallelism is significantly

reduced and so is efficiency. On the contrary, most volunteers

in the experiment group take the fixes recommended by IFIX,

which have a fine-granularity of locking, i.e., only statements

accessing the relevant shared variables are protected. Volunteer

15, 19, 22 and 27 modify the applied fixes. They synchronize

the whole method using a different lock. For instance, given

program in Fig. 1, volunteer-15, 19, 22 fix the bug by

synchronizing the whole addLast method and do not expand

the lock scope at line 8− 10. Volunteer-27 keeps the changes

at line 8 − 10 but expands the lock scope to whole method

(line 15− 17). Although all these 4 volunteers have fixed the

162

bugs for the program, their fixes are less than ideal.

Threats to Validity Our evaluation may suffer from the follow-

ing threats to validity. First, not all programs in our benchmark

have clearly identified bugs and corresponding fix solutions.

We run D4 on the fixed program and also conduct manual

checking on the evaluation results to make sure the programs

are fixed properly. Second, there are 43 programs in our

benchmark, which are adopted from concurrency debugging

and fixing related research. We tried our best to collect

concurrency program benchmarks available. Experiments on

larger projects could provide more confidence on the usability

of IFIX. Last, the user study is conducted with 30 users

of different programming experience. We study their survey

results to evaluate the effectiveness and efficiency of IFIX.

Although their fixing results and feedback on IFIX are con-

sistent and representative, the number of volunteers could be

further increased to make the results more convincing.

V. RELATED WORK

Concurrency Bug Fixing. Approaches have been proposed

to fix concurrency bugs effectively and efficiently. Ap-

proaches [28], [12], [16], [27] fix concurrency bugs by elim-

inating erroneous interleaving patterns. Huang et al. [27]

propose to fix concurrency bugs by inserting synchronization.

For fixing atomicity violation bugs, AFix [12] takes the CTrig-

ger’s [3] output as input and adds a mutex lock to the program

to fix concurrency bugs. CFix [16] fixes concurrency bugs due

to order violation based on AFix. CFix also enforces mutual

exclusion with the same method. Axis [28] fixes atomicity

violations by adding mutual exclusion locks and synchroniza-

tion measures. Axis additionally takes efforts to reduce the

possibility of introducing deadlocks. AlphaFixer [29] fixes

atomicity violations by analyzing the lock acquisitions. It fine-

tunes the locking so that it is possible to reduce the possibility

of introducing deadlocks. HFix [13] fixes strategies guided

by a survey of 77 manual patches of real-world concurrency

bugs. HFix can also use the create and join operations of

threads, while modifying the original locks to achieve the

purpose of fix. PFix [22] proposes to fix concurrency bugs

based on memory access patterns, which is the root cause

of the concurrency bugs. PFIX is able to fix order violations,

atomic violations, data races, which involve multiple variables.

These approaches on concurrency bug fixing do not consider

interactive fixing during the programming phase, which is

important for programmers to design correct locking policies.

Our work proposes to fix concurrency bugs interactively during

the programming phase, which enables us to provide instant

feedback to programmers while the program design is still

fresh in their minds.

Concurrency Bug Detection and Localization. Our work

is related to the work on bug detection and localization.

Extensive research has been conducted on localizing bugs with

different strategies for both sequential programs [39], [40],

[41], [42], [43], [44], [45] and multi-threaded programs [46],

[5], [47], [48], [49]. CSight [46] generates a communicating

finite state machine (CFSM) model by mining program ex-

ecution logs. For race detection, IteRace [6] conducts static

race detection in Java parallel loops. RaceMob [7] combines

static and dynamic bug detection. During the static phase, it

uses a static data race detector to find potential data races and

updates a list of data races to developers. There are several

approaches [2], [3], [4], [5] trying to expose concurrent bugs

by inserting random disturbances, with the aim to increase

the probability of triggering the rare interleaving executions

where the bugs may be hidden. However, inserting random

delay disturbance may cause high-performance overhead.

User Feedback Guided Debugging. There are several ap-

proaches which rely on user interaction to obtain feedback,

most of the feedback is used to detect false alarms. BinGo [50]

guides programs to find the true alarms leveraging user

feedback. It converts Datalog derivation graphs into Bayesian

networks and then computes alarm confidences based on

feedback. Isil [51] presents a technique to help users classify

error reports. It interacts with user with queries which capture

missing facts. Users are required to answer those queries to

provide feedback. Woosuk [52] clusters false alarms reported

by static analyzers. Interactive techniques are used to reduce

false alarms. URSA [53] uses user interaction to combine im-

precise analysis with precise but unsound heuristics and then,

it will pose questions to users to find the root cause. Different

from previous works, our approach relies on static analysis

techniques to detect data races and fix bugs interactively based

on conjecturing the intended locking policy.

VI. CONCLUSION

We propose IFIX which facilitates interactive program fix on

concurrency bugs during the programming phase. IFIX auto-

matically detects data races and suggests fixes by conjecturing

the intended locking policies. We conduct experiments with

43 concurrency programs and user studies on IFIX and the

results show that IFIX is efficient, accurate and user-friendly.

For future work, we plan to improve IFIX by supporting all

Java features (including for instance, reflection) and other

concurrency bugs such as high-level data races.

VII. ACKNOWLEDGEMENT

This work was partially supported by the National Natural

Science Foundation of China under Grant No. 61872263,

U1836214 and 61802275, Key-Area Research and Devel-

opment Program of Guangdong Province under Grant No.

2018B010107004, Intelligent Manufacturing Special Fund of

Tianjin under Grant No. 20191012, 20193155, Innovation

Research Project of Tianjin University under Grant No.

2020XZC-0042, 2020XRG-0022.

REFERENCES

[1] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram, “How
do fixes become bugs?” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, 2011, pp. 26–36.

[2] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, “Maple: A coverage-
driven testing tool for multithreaded programs,” Acm Sigplan Notices,
vol. 47, pp. 485–502, 2012.

163

[3] S. Park, S. Lu, and Y. Zhou, “Ctrigger: exposing atomicity violation
bugs from their hiding places,” Acm Sigplan Notices, vol. 44, 2009.

[4] L. Chew and D. Lie, “Kivati: fast detection and prevention of atomicity
violations,” in European Conference on Computer Systems, Proceedings
of the European Conference on Computer Systems, EUROSYS 2010,
Paris, France, April, 2010, pp. 307–320.

[5] O. Inverso, T. L. Nguyen, B. Fischer, S. La Torre, and G. Parlato,
“Lazy-cseq: A context-bounded model checking tool for multi-threaded
c-programs,” Automated Software Engineering, pp. 807–812, 2015.

[6] C. Radoi and D. Dig, “Effective techniques for static race detection
in java parallel loops,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 24, no. 4, pp. 24:1–24:30, September 2015.

[7] B. Kasikci, C. Zamfir, and G. Candea, “Racemob: Crowdsourced data
race detection,” in Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles, 2013, pp. 406–422.

[8] Y. Cai and W. K. Chan, “Magicfuzzer: scalable deadlock detection
for large-scale applications,” in International Conference on Software
Engineering, 2012, pp. 606–616.

[9] Y. Cai, J. Zhang, L. Cao, and J. Liu, “A deployable sampling strategy
for data race detection,” in Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE
2016, Seattle, WA, USA, November 13-18, 2016, 2016, pp. 810–821.
[Online]. Available: http://doi.acm.org/10.1145/2950290.2950310

[10] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai, “Have things
changed now? an empirical study of bug characteristics in modern open
source software,” in Proceedings of the 1st workshop on Architectural
and system support for improving software dependability, 2006.

[11] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics,”
in Proceedings of the 13th international conference on Architectural
support for programming languages and operating systems, 2008.

[12] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Automated atomicity-
violation fixing,” Acm Sigplan Notices, vol. 46, pp. 389–400, 2011.

[13] H. Liu, Y. Chen, and S. Lu, “Understanding and generating high quality
patches for concurrency bugs,” in The International Symposium on the
Foundations of Software Engineering, 2016.

[14] S. Khoshnood, M. Kusano, and C. Wang, “Concbugassist: Constraint
solving for diagnosis and repair of concurrency bugs,” in Proceedings
of the 2015 International Symposium on Software Testing and Analysis.
ACM, 2015, pp. 165–176.

[15] P. Liu, O. Tripp, and C. Zhang, “Grail: context-aware fixing of concur-
rency bugs,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2014.

[16] G. Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu, “Automated
concurrency-bug fixing,” in Usenix Conference on Operating Systems
Design and Implementation, 2012, pp. 221–236.

[17] P. Liu, J. Dolby, and C. Zhang, “Finding incorrect compositions of
atomicity,” In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, pp. 158–168, 2013.

[18] Y. Cai, L. Cao, and J. Zhao, “Adaptively generating high quality fixes
for atomicity violations,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017, 2017, pp. 303–314.

[19] Y. Wang, S. Lafortune, T. Kelly, M. Kudlur, and S. Mahlke, “The theory
of deadlock avoidance via discrete control,” In ACM SIGPLAN Notices,
vol. 44, no. 1, pp. 252–263, 2009.

[20] Y. Cai and L. Cao, “Fixing deadlocks via lock pre-acquisitions,” in Pro-
ceedings of the 38th International Conference on Software Engineering,
ICSE 2016, Austin, TX, USA, May 14-22, 2016, 2016, pp. 1109–1120.

[21] K. Sen, “Race directed random testing of concurrent programs,” ACM
Sigplan Notices, vol. 43, no. 6, pp. 11–21, 2008.

[22] H. Lin, Z. Wang, S. Liu, J. Sun, D. Zhang, and G. Wei, “Pfix: fixing
concurrency bugs based on memory access patterns,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 2018, 2018, pp. 589–600.

[23] T. Peierls, B. Goetz, J. Bloch, J. Bowbeer, D. Lea, and D. Holmes, Java
Concurrency in Practice. Addison-Wesley Professional, 2005.

[24] “Software-artifact infrastructure repository,” https://sir.csc.ncsu.edu.

[25] “D4,” https://github.com/parasol-aser/D4, 2018.

[26] B. Liu and J. Huang, “D4: fast concurrency debugging with parallel
differential analysis,” in Proceedings of the 39th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. ACM,
2018, 2018, pp. 359–373.

[27] J. Huang and C. Zhang, “Execution privatization for scheduler-oblivious
concurrent programs,” in ACM International Conference on Object
Oriented Programming Systems Languages and Applications, 2012.

[28] P. Liu and C. Zhang, “Axis: Automatically fixing atomicity violations
through solving control constraints,” in Proceedings of the 34th inter-
national conference on software engineering. IEEE Press, 2012.

[29] Y. Cai, L. Cao, and J. Zhao, “Adaptively generating high quality fixes
for atomicity violations,” In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, pp. 303–314, 2017.

[30] B. Goetz, T. Peierls, D. Lea, J. Bloch, J. Bowbeer, and D. Holmes, Java
concurrency in practice. Pearson Education, 2006.

[31] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, “Occam’s
razor,” Readings in machine learning, pp. 201–204, 1990.

[32] “Wala,” https://github.com/wala/WALA, 2006.
[33] “Akka,” https://akka.io/, 2011.
[34] “Abstract syntax tree,” http://www.eclipse.org/articles/article.php?file=

Article-JavaCodeManipulation AST/index.html, 2018.
[35] “The mcr github,” https://github.com/parasol-aser/JMCR, 2016.
[36] “The rvpredict official website,” http://fsl.cs.illinois.edu/rvpredict/, 2014.
[37] “Pecan benchmarks,” http://www.cse.ust.hk/prism/pecan/\#Experiment.
[38] “The comrade github,” https://github.com/buptsseGJ/ComRaDe, 2018.
[39] D. Hao, L. Zhang, T. Xie, H. Mei, and J.-S. Sun, “Interactive fault

localization using test information,” Journal of Computer Science and
Technology, vol. 24, no. 5, pp. 962–974, 2009.

[40] D. Hao, T. Xie, L. Zhang, X. Wang, J. Sun, and H. Mei, “Test input
reduction for result inspection to facilitate fault localization,” Automated
Software Engineering Journal, vol. 17, no. 1, pp. 5–31, March 2010.

[41] S. Wang, D. Lo, L. Jiang, Lucia, and H. C. Lau, “Search-based fault
localization,” in Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering, no. 4. IEEE Computer
Society, 2011, pp. 556–559.

[42] F. S. Ocariza Jr., K. Pattabiraman, and A. Mesbah, “Autoflox: An
automatic fault localizer for client-side javascript,” in Proceedings of
the 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation, no. 10. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 31–40.

[43] Q. Wang, C. Parnin, and A. Orso, “Evaluating the usefulness of ir-based
fault localization techniques,” in Proceedings of the 2015 International
Symposium on Software Testing and Analysis, no. 11. New York, NY,
USA: ACM, 2015, pp. 1–11.

[44] X. Li, M. D’Amorim, and A. Orso, “Iterative user-driven fault lo-
calization,” in Hardware and Software: Verification and Testing: 12th
International Haifa Verification Conference, HVC 2016, Haifa, Israel,
November 14-17, 2016, Proceedings, 2016.

[45] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
in Proceedings of the International Conference on Software Engineering
(ICSE), 2017.

[46] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy, “Inferring
models of concurrent systems from logs of their behavior with csight,”
in Proceedings of the 36th International Conference on Software Engi-
neering. ACM, 2014, pp. 468–479.

[47] B. Lucia, B. P. Wood, and L. Ceze, “Isolating and understanding con-
currency errors using reconstructed execution fragments,” Acm Sigplan
Notices, vol. 46, pp. 378–388, 2011.

[48] S. Liu, G. Bai, J. Sun, and J. S. Dong, “Towards using concurrent java
api correctly,” in Engineering of Complex Computer Systems (ICECCS),
2016 21st International Conference on. IEEE, 2016, pp. 219–222.

[49] Z. Lin, H. Zhong, Y. Chen, and J. Zhao, “Lockpeeker: detecting latent
locks in java apis,” in 2016 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2016, pp. 368–378.

[50] R. Mukund, K. Sulekha, H. Kihong, and N. Mayur, “User-guided
program reasoning using bayesian inference,” in Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 2018, 2018, pp. 722–735.

[51] I. Dillig, T. Dillig, and A. Aiken, “Automated error diagnosis using
abductive inference,” in ACM SIGPLAN Notices, vol. 47. ACM, 2012.

[52] W. Lee, W. Lee, and K. Yi, “Sound non-statistical clustering of static
analysis alarms,” in International Workshop on Verification, Model
Checking, and Abstract Interpretation. Springer, 2012, pp. 299–314.

[53] X. Zhang, R. Grigore, X. Si, and M. Naik, “Effective interactive resolu-
tion of static analysis alarms,” Proceedings of the ACM on Programming
Languages, vol. 1, no. OOPSLA, p. 57, 2017.

164

	IFIX: Fixing concurrency bugs while they are introduced
	Author

	iFix: Fixing Concurrency Bugs While They Are Introduced

