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ABSTRACT

A great variety of complex systems ranging from user interactions

in communication networks to transactions in financial markets

can be modeled as temporal graphs, which consist of a set of vertices
and a series of timestamped and directed edges. Temporal motifs in
temporal graphs are generalized from subgraph patterns in static

graphs which take into account edge orderings and durations in

addition to structures. Counting the number of occurrences of

temporal motifs is a fundamental problem for temporal network

analysis. However, existingmethods either cannot support temporal

motifs or suffer from performance issues. In this paper, we focus

on approximate temporal motif counting via random sampling. We

first propose a generic edge sampling (ES) algorithm for estimating

the number of instances of any temporal motif. Furthermore, we

devise an improved EWS algorithm that hybridizes edge sampling

with wedge sampling for counting temporal motifs with 3 vertices

and 3 edges. We provide comprehensive analyses of the theoretical

bounds and complexities of our proposed algorithms. Finally, we

conduct extensive experiments on several real-world datasets, and

the results show that our ES and EWS algorithms have higher

efficiency, better accuracy, and greater scalability than the state-of-

the-art sampling method for temporal motif counting.
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1 INTRODUCTION

Graphs are one of the most fundamental data structures that are

widely used for modeling complex systems across diverse domains

from bioinformatics [30], to neuroscience [38], to social sciences [5].

Modern graph datasets increasingly incorporate temporal informa-

tion to describe the dynamics of relations over time. Such graphs

are referred to as temporal graphs [11] and typically represented by

a set of vertices and a sequence of timestamped and directed edges

between vertices called temporal edges. For example, a communi-

cation network [9, 46–48, 50] can be denoted by a temporal graph

where each person is a vertex and each message sent from one

person to another is a temporal edge. Similarly, computer networks

and financial transactions can also be modeled as temporal graphs.

Due to the ubiquitousness of temporal graphs, they have attracted

much attention [6, 8, 9, 20, 25, 27, 32, 50] recently.

One fundamental problem in temporal graphs with wide real-

world applications such as network characterization [27], structure

prediction [22], and fraud detection [18], is to count the number

of occurrences of small (connected) subgraph patterns (i.e., mo-
tifs [24]). To capture the temporal dynamics in network analysis,

the notion of motif [16, 17, 22, 27] in temporal graphs is more gen-

eral than its counterpart in static graphs. It takes into account not

only the subgraph structure (i.e., subgraph isomorphism [7, 36]) but

also the temporal information including edge ordering and motif

duration. As an illustrative example,𝑀 and𝑀 ′ in Figure 1 are dif-

ferent temporal motifs. Though 𝑀 and𝑀 ′ have exactly the same

structure, they are different in the ordering of edges. Consequently,

although there has been a considerable amount of work on sub-

graph counting in static graphs [2, 4, 14, 15, 29, 34, 35, 42, 43, 45],

they cannot be used for temporal motif counting directly.

Generally, it is a challenging task to count temporal motifs.

Firstly, the problem is at least as hard as subgraph counting in

static graphs, whose time complexity increases exponentially with
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Figure 1: Examples for temporal motifs

the number of edges in the query subgraph. Secondly, it becomes

even more computationally difficult because the temporal informa-

tion is considered. For example, counting the number of instances

of 𝑘-stars is simple in static graphs; however, counting temporal

𝑘-stars is proven to be NP-hard [22] due to the combinatorial nature

of edge ordering. Thirdly, temporal graphs are a kind of multigraph
that is permitted to have multiple edges between the same two

vertices at different timestamps. As a result, there may exist many

different instances of a temporal motif within the same set of ver-

tices, which leads to more challenges for counting problems. There

have been a few methods for exact temporal motif counting [27]

or enumeration [18, 23]. However, they suffer from efficiency is-

sues and often cannot scale well in massive temporal graphs with

hundreds of millions of edges [22].

In many scenarios, it is not necessary to count motifs exactly,

and finding an approximate number is sufficient for practical use. A

recent work [22] has proposed a sampling method for approximate

temporal motif counting. It partitions a temporal graph into equal-

time intervals, utilizes an exact algorithm [23] to count the number

of motif instances in a subset of intervals, and computes an estimate

from the per-interval counts. However, this method still cannot

achieve satisfactory performance in massive datasets. On the one

hand, it fails to provide an accurate estimate when the sampling rate

and length of intervals are small. On the other hand, its efficiency

does not significantly improve upon that of exact methods when

the sampling rate and length of intervals are too large.

Our Contributions: In this paper, we propose more efficient and

accurate sampling algorithms for approximate temporalmotif count-

ing. First of all, we propose a generic Edge Sampling (ES) algorithm

to estimate the number of instances of any 𝑘-vertex 𝑙-edge temporal

motif in a temporal graph. The basic idea of our ES algorithm is to

first uniformly draw a set of random edges from the temporal graph,

then exactly count the number of local motif instances that contain

each sampled edge by enumerating them, and finally compute the

global motif count from local counts. The ES algorithm exploits the

BackTracking (BT) algorithm [23, 36] for subgraph isomorphism

to enumerate local motif instances. We devise simple heuristics to

determine the matching order of a motif for the BT algorithm to

reduce the search space.

Furthermore, temporal motifs with 3 vertices and 3 edges (i.e.,

triadic patterns) are one of the most important classes of motifs,

whose distribution is an indicator to characterize temporal net-

works [5, 15, 27, 37]. Therefore, we propose an improved Edge-

Wedge Sampling (EWS) algorithm that combines edge sampling
with wedge sampling [15, 35] specialized for counting any 3-vertex

3-edge temporal motif. Instead of enumerating all instances con-

taining a sampled edge, the EWS algorithm generates a sample

of temporal wedges (i.e., 3-vertex 2-edge motifs) and estimates the

number of local instances by counting how many edges can match

the query motif together with each sampled temporal wedge. In

this way, EWS avoids the computationally intensive enumeration

and greatly improves the efficiency upon ES. Moreover, we analyze

the theoretical bounds and complexities of both ES and EWS.

Finally, we test our algorithms on several real-world datasets.

The experimental results confirm the efficiency and effectiveness

of our algorithms: ES and EWS can provide estimates with relative

errors less than 1% and 2% in 37.5 and 2.3 seconds on a temporal

graph with over 100M edges, respectively. In addition, they run

up to 10.3 and 48.5 times faster than the state-of-the-art sampling

method while having lower estimation errors.

Organization: The remainder of this paper is organized as fol-

lows. Section 2 reviews the related work. Section 3 introduces the

background and formulation of temporal motif counting. Section 4

presents the ES and EWS algorithms for temporal motif count-

ing and analyzes them theoretically. Section 5 describes the setup

and results of the experiments. Finally, Section 6 provides some

concluding remarks.

2 RELATEDWORK

Random Sampling for Motif Counting: In recent years, there

have been great efforts to (approximately) count the number of

occurrences of a motif in a large graph via random sampling. First

of all, many sampling methods such as subgraph sampling [33],

edge sampling [1, 21, 44], color sampling [26], neighborhood sam-

pling [28], wedge sampling [13, 15, 34, 35], and reservoir sam-

pling [3], were proposed for approximate triangle counting (see [49]

for an experimental analysis). Moreover, sampling methods were

also used for estimating more complex motifs, e.g., 4-vertex mo-

tifs [14, 31], 5-vertex motifs [29, 42, 43, 45], motifs with 6 or more

vertices [2], and 𝑘-cliques [12]. However, all above methods were

proposed for static graphs and did not consider the temporal infor-

mation and ordering of edges. Thus, they could not be applied to

temporal motif counting directly.

Motifs in Temporal Networks: Prior studies have considered

different types of temporal network motifs. Viard et al. [39, 40] and

Himmel et al. [10] extended the notion of maximal clique to tempo-

ral networks and proposed efficient algorithms for maximal clique

enumeration. Li et al. [20] proposed the notion of (\, 𝜏)-persistent
𝑘-core to capture the persistence of a community in temporal net-

works. However, these notions of temporal motifs were different

from ours since they did not take edge ordering into account. Zhao

et al. [50] and Gurukar et al. [9] studied the communication motifs,
which are frequent subgraphs to characterize the patterns of in-

formation propagation in social networks. Kovanen et al. [17] and

Kosyfaki et al. [16] defined the flow motifs to model flow transfer

among a set of vertices within a time window in temporal net-

works. Although both definitions accounted for edge ordering, they

were more restrictive than ours because the former assumed any

two adjacent edges must occur within a fixed time span while the

latter assumed edges in a motif must be consecutive events for a

vertex [27].

Temporal Motif Counting & Enumeration: There have been

several existing studies on counting and enumerating temporal

motifs. Paranjape et al. [27] first formally defined the notion of tem-
poral motifs we use in this paper. They proposed exact algorithms

for counting temporal motifs based on subgraph enumeration in
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static graphs and timestamp-based pruning. Kumar and Calders [18]

proposed an efficient algorithm called 2SCENT to enumerate all

simple temporal cycles in a directed interaction network. Although

2SCENT was shown to be effective for cycles, it could not be used

for enumerating temporal motifs of any other type. Mackey et

al. [23] proposed an efficient BackTracking algorithm for tempo-

ral subgraph isomorphism. The algorithm could count temporal

motifs exactly by enumerating all of them. Liu et al. [22] proposed

an interval-based sampling framework for counting temporal mo-

tifs. To the best of our knowledge, this is the only existing work on

approximate temporal motif counting via sampling. In this paper,

we present two improved sampling algorithms for temporal motif

counting and compare them with the algorithms in [18, 22, 23, 27]

for evaluation.

3 PRELIMINARIES

In this section, we formally define temporal graphs, temporal motifs,
and the problem of temporal motif counting on a temporal graph.

Here, we follow the definition of temporal motifs in [22, 23, 27] for

its simplicity and generality. Other types of temporal motifs have

been discussed in Section 2.

Temporal Graph: A temporal graph 𝑇 = (𝑉𝑇 , 𝐸𝑇 ) is defined by a

set 𝑉𝑇 of 𝑛 vertices and a sequence 𝐸𝑇 of𝑚 temporal edges among

vertices in 𝑉𝑇 . Each temporal edge 𝑒 = (𝑢, 𝑣, 𝑡) where 𝑢, 𝑣 ∈ 𝑉𝑇 and

𝑡 ∈ R+ is a timestamped directed edge from 𝑢 to 𝑣 at time 𝑡 . There

may be many temporal edges from 𝑢 to 𝑣 at different timestamps

(e.g., a user can comment on the posts of another user many times

on Reddit). For ease of presentation, we assume the timestamp 𝑡 of

each temporal edge 𝑒 is unique so that the temporal edges in 𝐸𝑇
are strictly ordered. Note that our algorithms can also handle the

case when timestamps are non-unique by using any consistent rule

to break ties.

Temporal Motif:We formalize the notion of temporal motifs [22,
27] in the following definition.

Definition 3.1 (Temporal Motif). A temporal motif 𝑀 = (𝑉𝑀 ,

𝐸𝑀 , 𝜎) consists of a (connected) graph with a set of 𝑘 vertices 𝑉𝑀
and a set of 𝑙 edges 𝐸𝑀 , and an ordering 𝜎 on the edges in 𝐸𝑀 .

Intuitively, a temporal motif𝑀 can be represented as an ordered

sequence of edges ⟨𝑒 ′
1
= (𝑢 ′

1
, 𝑣 ′

1
), . . . , 𝑒 ′

𝑙
= (𝑢 ′

𝑙
, 𝑣 ′
𝑙
)⟩. Given a tem-

poral motif 𝑀 as a template pattern, we aim to count how many

times this pattern appears in a temporal graph 𝑇 . Furthermore, we

only consider the instances where the pattern is formed within

a short time span. For example, an instance formed in an hour is

more interesting than one formed accidentally in one year on a

communication network [9, 27, 50]. Therefore, given a temporal

graph 𝑇 and a temporal motif𝑀 , our goal is to find a sequence of

edges 𝑆 ⊆ 𝐸𝑇 such that (1) 𝑆 exactly matches (i.e., is isomorphic
to)𝑀 , (2) 𝑆 is in the same order as specified by 𝜎 , and (3) all edges

in 𝑆 occur within a time span of at most 𝛿 . We call such an edge

sequence 𝑆 as a 𝛿-instance [22, 27] of𝑀 and the difference between

𝑡𝑙 and 𝑡1 as the duration Δ(𝑆) of instance 𝑆 . The formal definition

is given in the following.

Definition 3.2 (Motif 𝛿-instance). A sequence of 𝑙 edges 𝑆 =

⟨(𝑤1, 𝑥1, 𝑡1), . . . , (𝑤𝑙 , 𝑥𝑙 , 𝑡𝑙 )⟩ (𝑡1 < . . . < 𝑡𝑙 ) from a temporal graph

𝑇 is a 𝛿-instance of a temporal motif 𝑀 = ⟨(𝑢 ′
1
, 𝑣 ′

1
), . . . , (𝑢 ′

𝑙
, 𝑣 ′
𝑙
)⟩ if

a b
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(b) Temporal motifs
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Figure 2: Example for temporal graph and motifs

(1) there exists a bijection 𝑓 between the vertex sets of 𝑆 and 𝑀

such that 𝑓 (𝑤𝑖 ) = 𝑢 ′
𝑖
and 𝑓 (𝑥𝑖 ) = 𝑣 ′

𝑖
for 𝑖 = 1, . . . , 𝑙 ; and (2) the

duration Δ(𝑆) is at most 𝛿 , i.e., 𝑡𝑙 − 𝑡1 ≤ 𝛿 .

Example 3.3. In Figure 2(a), we illustrate a temporal graph with

4 vertices and 13 temporal edges. Let us consider the problem of

finding all 𝛿-instances (𝛿 = 10) of temporal motif𝑀1 in Figure 2(b).

As shown in Figure 2(c), there are 4 valid 10-instances of𝑀1 found.

These instances can match𝑀1 in terms of both structure and edge

ordering and their durations are within 10. In addition, we also give

2 invalid instances of𝑀1, which are isomorphic to𝑀1 but violate

either the edge ordering or duration constraint.

Temporal Motif Counting: According to the above notions, we

present the temporal motif counting problem studied in this paper.

Definition 3.4 (Temporal Motif Counting). For a temporal graph𝑇 ,

a temporal motif𝑀 , and a time span 𝛿 , the temporal motif counting

problem returns the number𝐶𝑀 of 𝛿-instances of𝑀 appeared in𝑇 .

The temporal motif counting problem has proven to be NP-hard

for very simple motifs, e.g. 𝑘-stars [22], because the edge ordering

is taken into account. According to previous results [22], although

there is a simple polynomial algorithm to count the number of

𝑘-stars on a static graph, it is NP-hard to exactly count the number

of temporal 𝑘-stars. Typically, counting temporal motifs exactly

on massive graphs with millions or even billions of edges is a

computationally intensive task [22, 27]. Therefore, we focus on

designing efficient and scalable sampling algorithms for estimating

the number of temporal motifs approximately in Section 4. The

frequently used notations are summarized in Table 1.

4 OUR ALGORITHMS

In this section, we present our proposed algorithms for approximate

temporal motif counting in detail. We first describe our generic

Edge Sampling (ES) algorithm in Section 4.1. Then, we introduce

our improved EWS algorithm specific for counting 3-vertex 3-edge

temporal motifs in Section 4.2. In addition, we theoretically analyze

the expected values and variances of the estimates returned by both

algorithms. Finally, we discuss the streaming implementation of

our algorithms in Section 4.3.

4.1 The Generic Edge Sampling Algorithm

The Edge Sampling (ES) algorithm is motivated by an exact sub-

graph counting algorithm called edge iterator [49]. Given a temporal
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Table 1: Frequently used notations

Symbol Description

𝑇 Temporal graph

𝑉𝑇 , 𝐸𝑇 Set of vertices and edges in𝑇

𝑛,𝑚 Number of vertices and edges in𝑇

𝑀 Temporal motif

𝑉𝑀 , 𝐸𝑀 Set of vertices and edges in𝑀

𝑘, 𝑙 Number of vertices and edges in𝑀

𝛿 Maximum time span of a motif instance

𝑆 Motif 𝛿-instance

𝐶𝑀 Number of 𝛿-instances of𝑀 in𝑇

𝐶𝑀 Unbiased estimator of𝐶𝑀

𝑝 Probability of edge sampling

𝐸𝑇 Set of sampled edges from 𝐸𝑇

[ (𝑒) Number of 𝛿-instances of𝑀 containing edge 𝑒

[ 𝑗 (𝑒) Number of 𝛿-instances of𝑀 when 𝑒 is mapped to 𝑒′
𝑗

𝑞 Probability of wedge sampling

𝑊 Temporal wedge

[ (𝑊 ) Number of 𝛿-instances of𝑀 containing𝑊

𝑊 ′
𝑗

Temporal wedge pattern for𝑀 when 𝑒 is mapped to 𝑒′
𝑗

Ŵ𝑗 (𝑒) Set of sampled 𝛿-instances of𝑊 ′
𝑗

[̂ 𝑗 (𝑒) Unbiased estimator of [ 𝑗 (𝑒)

graph 𝑇 , a temporal motif 𝑀 , and a time span 𝛿 , we use [ (𝑒) to
denote the number of local 𝛿-instances of𝑀 containing an edge 𝑒 .

To count all 𝛿-instances of𝑀 in𝑇 exactly, we can simply count [ (𝑒)
for each 𝑒 ∈ 𝐸𝑇 and then sum them up. In this way, each instance

is counted 𝑙 times and the total number of instances is equal to the

sum divided by 𝑙 , i.e., 𝐶𝑀 = 1

𝑙

∑
𝑒∈𝐸𝑇 [ (𝑒).

Based on the above idea, we propose the ES algorithm for es-

timating 𝐶𝑀 : For each edge 𝑒 ∈ 𝐸𝑇 , we randomly sample it and

compute [ (𝑒) with fixed probability 𝑝 . Then, we obtain an unbiased

estimator𝐶𝑀 of𝐶𝑀 by adding up [ (𝑒) for each sampled edge 𝑒 and

scaling the sum by a factor of
1

𝑝𝑙
, i.e., 𝐶𝑀 = 1

𝑝𝑙

∑
𝑒∈𝐸𝑇 [ (𝑒) where

𝐸𝑇 is the set of sampled edges.

Now the remaining problem becomes how to compute [ (𝑒) for
an edge 𝑒 . The ES algorithm adopts the well-known BackTracking

algorithm [23, 36] to enumerate all 𝛿-instances that contain an edge

𝑒 for computing [ (𝑒). Specifically, the BackTracking algorithm

runs 𝑙 times for each edge 𝑒; in the 𝑗 th run, it first maps edge 𝑒 to

the 𝑗 th edge 𝑒 ′
𝑗
of𝑀 and then uses a tree search to find all different

combinations of the remaining 𝑙 −1 edges that can form 𝛿-instances

of 𝑀 with edge 𝑒 . Let [ 𝑗 (𝑒) be the number of 𝛿-instances of 𝑀

where 𝑒 is mapped to 𝑒 ′
𝑗
. It is obvious that [ (𝑒) is equal to the sum

of [ 𝑗 (𝑒) for 𝑗 = 1, . . . , 𝑙 , i.e., [ (𝑒) = ∑𝑙
𝑗=1 [ 𝑗 (𝑒).

We depict the procedure of our ES algorithm in Algorithm 1.

The first step of ES is to generate a random sample 𝐸𝑇 of edges

from the edge set 𝐸𝑇 where the probability of adding any edge is

𝑝 (Lines 1–5). Then, in the second step (Lines 6–11), it counts the

number [ (𝑒) of local 𝛿-instances of𝑀 for each sampled edge 𝑒 by

running the BackTracking algorithm to enumerate each instance

𝑆 𝑗 (𝑒) that is a 𝛿-instance of 𝑀 and maps 𝑒 to 𝑒 ′
𝑗
for 𝑗 = 1, . . . , 𝑙 .

Note that BackTracking (BT) runs on a subset 𝐸𝑇 [𝑡 − 𝛿, 𝑡 + 𝛿] of
𝐸𝑇 which consists of all edges with timestamps from 𝑡 − 𝛿 to 𝑡 + 𝛿
for edge 𝑒 = (𝑢, 𝑣, 𝑡) since it is safe to ignore any other edge due to

the duration constraint. Here, we omit the detailed procedure of the

Algorithm 1: Edge Sampling

Input: Temporal graph𝑇 , temporal motif𝑀 , time span 𝛿 , edge

sampling probability 𝑝 .

Output: Estimator𝐶𝑀 of the number of 𝛿-instances of𝑀 in𝑇

1 Initialize 𝐸𝑇 ← ∅;
2 foreach 𝑒 ∈ 𝐸𝑇 do

3 Toss a biased coin with success probability 𝑝 ;

4 if success then
5 𝐸𝑇 ← 𝐸𝑇 ∪ {𝑒 };

6 foreach 𝑒 = (𝑢, 𝑣, 𝑡 ) ∈ 𝐸𝑇 do

7 Set [ (𝑒) ← 0;

8 for 𝑗 ∈ 1, . . . , 𝑙 do
9 Generate an initial instance 𝑆

(1)
𝑗

by mapping 𝑒 to 𝑒′
𝑗
;

10 Run BackTracking on 𝐸𝑇 [𝑡 − 𝛿, 𝑡 + 𝛿 ] starting from 𝑆
(1)
𝑗

to find the set S𝑗 (𝑒) = {𝑆 𝑗 (𝑒) : 𝑆 𝑗 (𝑒) is a 𝛿-instance of
𝑀 where 𝑒 is mapped to 𝑒′

𝑗
};

11 Set [ 𝑗 (𝑒) ← |S𝑗 (𝑒) | and [ (𝑒) ← [ (𝑒) + [ 𝑗 (𝑒) ;

12 return𝐶𝑀 ← 1

𝑝𝑙

∑
𝑒∈𝐸𝑇

[ (𝑒) ;

BT algorithm because it generally follows an existing algorithm for

subgraph isomorphism in temporal graphs [23]. Themain difference

between our algorithm and the one in [23] lies in the matching

order, which will be discussed later. After counting [ (𝑒) for each
sampled edge 𝑒 , it finally returns an estimate 𝐶𝑀 of 𝐶𝑀 (Line 12).

Matching Order for BackTracking: Now we discuss how to

determine thematching order of a temporal motif. The BT algorithm

in [23] adopts a time-first matching order: it always matches the

edges of𝑀 in order of ⟨𝑒 ′
1
, . . . , 𝑒 ′

𝑙
⟩. The advantage of this matching

order is that it best exploits the temporal information for search

space pruning. For a partial instance 𝑆 ( 𝑗) = ⟨(𝑤1, 𝑥1, 𝑡1), . . . , (𝑤 𝑗 ,

𝑥 𝑗 , 𝑡 𝑗 )⟩ after 𝑒 ′𝑗 is mapped, the search space for mapping 𝑒 ′
𝑗+1 is

restricted to 𝐸𝑇 [𝑡 𝑗 , 𝑡1 + 𝛿]. However, the time-first matching order

may not work well in the ES algorithm. First, it does not consider

the connectivity of the matching order: If 𝑒 ′
𝑗+1 is not connected with

any prior edge, it has to be mapped to all edges in 𝐸𝑇 [𝑡 𝑗 , 𝑡1 + 𝛿],
which may lead to a large number of redundant partial matchings.

Second, the time-first order is violated by Line 9 of Algorithm 1

when 𝑗 > 1 since it first maps 𝑒 to 𝑒 ′
𝑗
.

In order to overcome the above two drawbacks, we propose

two heuristics to determine the matching order of a given motif

𝑀 for reducing the search space, and generate 𝑙 matching orders

for𝑀 , in each of which 𝑒 ′
𝑗
( 𝑗 = 1, . . . , 𝑙 ) is placed first: (1) enforcing

connectivity: For each 𝑖 = 2, . . . , 𝑙 , the 𝑖th edge in the matching order

must be adjacent to at least one prior edge that has been matched;

(2) boundary edge first: If there are multiple unmatched edges that

satisfy the connectivity constraint, the boundary edge (i.e., the first

or last unmatched edge in the ordering 𝜎 of 𝑀) will be matched

first. The first rule can avoid redundant partial matchings and the

second rule can restrict the temporal range of tree search, both of

which are effective for search space pruning.

Example 4.1. We consider how to decide the matching orders

of 𝑀2 (i.e., 4-simple temporal cycle) in Figure 2(b). When 𝑒 ′
1
is

placed first, we can select 𝑒 ′
2
or 𝑒 ′

4
as the second edge according to
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𝑏, 𝑎, 16 ⇔ 𝑒1
′

𝑏, 𝑑, 24 ⇔ 𝑒3
′

𝑏, 𝑑, 22 ⇔ 𝑒3
′

𝑏, 𝑎, 16 ⇔ 𝑒2
′ 𝑑, 𝑎, 15 ⇔ 𝑒1

′

𝑑, 𝑏, 25 ⇔ 𝑒3
′

𝑑, 𝑏, 20 ⇔ 𝑒3
′

𝑑, 𝑏, 18 ⇔ 𝑒3
′

𝑏, 𝑎, 16 ⇔ 𝑒3
′

𝑏,∗, 17,26

𝑏,∗, 6,15

∗, 𝑎, 6,15

𝑑, 𝑎, 17,21

𝑑, 𝑎, 17,24

𝑑, 𝑏, 17,25

✖

✖

✔

✔

✔✖

Figure 3: Example of enumerating 𝛿-instances (𝛿 = 10) of𝑀1

for edge (𝑏, 𝑎, 16) in Figure 2 using BackTracking

the enforcing connectivity rule; and 𝑒 ′
4
is selected according to the

boundary edge first rule. Then, either 𝑒 ′
2
or 𝑒 ′

3
can be selected as

the next edge since they both satisfy two rules. Therefore, either

⟨𝑒 ′
1
, 𝑒 ′
4
, 𝑒 ′
2
, 𝑒 ′
3
⟩ or ⟨𝑒 ′

1
, 𝑒 ′
4
, 𝑒 ′
3
, 𝑒 ′
2
⟩ is a validmatching order. Accordingly,

⟨𝑒 ′
2
, 𝑒 ′
1
, 𝑒 ′
4
, 𝑒 ′
3
⟩, ⟨𝑒 ′

3
, 𝑒 ′
4
, 𝑒 ′
1
, 𝑒 ′
2
⟩, and ⟨𝑒 ′

4
, 𝑒 ′
1
, 𝑒 ′
2
, 𝑒 ′
3
⟩ are valid matching

orders when 𝑒 ′
2
, 𝑒 ′

3
, and 𝑒 ′

4
in𝑀2 are placed first, respectively.

Example 4.2. In Figure 3, we show how to use Backtracking

to enumerate 𝛿-instances of 𝑀1 (𝛿 = 10) for 𝑒 = (𝑏, 𝑎, 16) in Fig-

ure 2. There are three tree search procedures in each of which 𝑒

is mapped to 𝑒 ′
1
, 𝑒 ′

2
, and 𝑒 ′

3
, respectively. The condition of each

mapping step is given in form of (𝑣𝑠 , 𝑣𝑡 , [𝑡𝑠 , 𝑡𝑡 ]) where 𝑣𝑠 and 𝑣𝑡
are the starting and ending vertices and [𝑡𝑠 , 𝑡𝑡 ] is the range of

timestamps. Here, “∗” means that it can be mapped to an arbitrary

unmapped vertex. Moreover, we use ‘✓’ and ‘✕’ to denote a suc-

cessful matching and a failed partial matching, respectively. We find

three 10-instances of𝑀1 and thus [ (𝑒) = 3. When we run ES with

𝑝 = 0.25 and 𝐸𝑇 = {(𝑑, 𝑐, 4), (𝑏, 𝑎, 16), (𝑏, 𝑑, 24)}, since the numbers

of 10-instances containing (𝑑, 𝑐, 4) and (𝑏, 𝑑, 24) are respectively 0

and 1, we can compute 𝐶𝑀 = 3+0+1
0.25×3 ≈ 5.33.

Theoretical Analysis:Next, we analyze the estimate𝐶𝑀 returned

by Algorithm 1 theoretically.

We first prove that 𝐶𝑀 is an unbiased estimator of 𝐶𝑀 in Theo-

rem 4.3. The variance of 𝐶𝑀 is given in Theorem 4.4. The proofs of

Theorems 4.3–4.5 are provided in the extended version [41].

Theorem 4.3. The expected value E[𝐶𝑀 ] of 𝐶𝑀 returned by Al-
gorithm 1 is 𝐶𝑀 .

Theorem 4.4. The variance Val[𝐶𝑀 ] of 𝐶𝑀 returned by Algo-
rithm 1 is at most 1−𝑝

𝑝 ·𝐶
2

𝑀
.

Finally, we can derive Theorem 4.5 by applying Chebyshev’s

inequality to the result of Theorem 4.4.

Theorem 4.5. Pr[|𝐶𝑀 −𝐶𝑀 | ≥ Y ·𝐶𝑀 ] ≤
1−𝑝
𝑝Y2

According to Theorem 4.5, we can say𝐶𝑀 is an (Y,𝛾)-estimator of

𝐶𝑀 for parameters Y,𝛾 ∈ (0, 1), i.e., Pr[|𝐶𝑀 −𝐶𝑀 | < Y ·𝐶𝑀 ] > 1−𝛾 ,
when 𝑝 = 1

1+𝛾Y2 .

Time Complexity:We first analyze the time complexity of com-

puting [ (𝑒) for an edge 𝑒 . For BackTracking, the search space of

each matching step is at most the number of (in-/out-)edges within

range [𝑡−𝛿, 𝑡] or [𝑡, 𝑡+𝛿] connected with a vertex 𝑣 . Here, we use𝑑𝛿
to denote the maximum number of (in-/out-)edges connected with

one vertex within any 𝛿-length time interval. The time complexity

1 2 1 1 2

W1 W2 W3 W4

2 1 2

(a) Temporal wedges

3

1,2

2

1

3

1 2

2

1 33

(b) Temporal (3,3)-stars (c) Temporal triangles

M12M11 M21 M22

Figure 4: Temporal wedges, (3, 3)-stars, and triangles

of BackTracking is𝑂 (𝑑𝑙−1
𝛿
) and thus the time complexity of com-

puting [ (𝑒) is 𝑂 (𝑙𝑑𝑙−1
𝛿
). Therefore, ES provides an (Y,𝛾)-estimator

of 𝐶𝑀 in 𝑂 (𝑚𝑙𝑑𝑙−1
𝛿

1+𝛾Y2 ) time.

4.2 The Improved EWS Algorithm

The ES algorithm in Section 4.1 is generic and able to count any

connected temporal motif. Nevertheless, there are still opportunities

to further reduce the computational overhead of ES when the query

motif is limited to 3-vertex 3-edge temporal motifs (i.e., triadic

patterns), which are one of the most important classes of motifs to

characterize temporal networks [5, 15, 27, 37]. In this section, we

propose an improved Edge-Wedge Sampling (EWS) algorithm that

combines edge sampling with wedge sampling for counting 3-vertex
3-edge temporal motifs.

Wedge sampling [15, 34, 35, 49] is a widely used method for

triangle counting. Its basic idea is to draw a sample of wedges (i.e.,

3-vertex 2-edge subgraph patterns) uniformly from a graph and

check the ratio of “closed wedges” (i.e., form a triangle in the graph)

to estimate the number of triangles. However, traditional wedge-

sampling methods are proposed for undirected static graphs and

cannot be directly used on temporal graphs. First, they consider

that all wedges are isomorphic and treat them equally. But there are

four temporal wedge patterns with different edge directions and

orderings as illustrated in Figure 4(a). Second, they are designed

for simple graphs where one wedge can form at most one triangle.

However, since temporal graphs are multigraphs and there may

exist multiple edges between the same two vertices, one temporal

wedge can participate in more than one instance of a temporal

motif. Therefore, in the EWS algorithm, we extend wedge sampling
for temporal motif counting by addressing both issues.

The detailed procedure of EWS is presented in Algorithm 2. First

of all, it uses the same method as ES to sample a set 𝐸𝑇 of edges

(Line 1). For each sampled edge 𝑒 ∈ 𝐸𝑇 and 𝑗 = 1, 2, 3, it also maps 𝑒

to 𝑒 ′
𝑗
for computing [ 𝑗 (𝑒) (Line 4), i.e., the number of 𝛿-instances of

𝑀 where 𝑒 is mapped to 𝑒 ′
𝑗
. But, instead of running BackTracking

to compute [ 𝑗 (𝑒) exactly, it utilizes temporal wedge sampling to

estimate [ 𝑗 (𝑒) approximately without full enumeration (Lines 5–

15), which is divided into two subroutines as discussed later. At last,

it obtains an estimate 𝐶𝑀 of 𝐶𝑀 from each estimate [̂ 𝑗 (𝑒) of [ 𝑗 (𝑒)
using a similar method to ES (Line 16).

Sample Temporal Wedges (Lines 5–12): The first step of tempo-
ral wedge sampling is to determine which temporal wedge pattern

is to be matched according to the query motif𝑀 and the mapping
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Algorithm 2: Edge-Wedge Sampling

Input: Temporal graph𝑇 , temporal motif𝑀 , time span 𝛿 , edge

sampling probability 𝑝 , wedge sampling probability 𝑞.

Output: Estimator𝐶𝑀 of the number of 𝛿-instances of𝑀 in𝑇

1 Generate 𝐸𝑇 using Line 1–5 of Algorithm 1;

2 foreach 𝑒 = (𝑢, 𝑣, 𝑡 ) ∈ 𝐸𝑇 do

3 for 𝑗 ← 1, 2, 3 do

4 Map edge 𝑒 to 𝑒′
𝑗
;

5 Initialize [̂ 𝑗 (𝑒) ← 0 and Ŵ𝑗 (𝑒) ← ∅;
6 if 𝑀 is a temporal (3, 3)-star then
7 Select𝑊 ′

𝑗
including 𝑒′

𝑗
centered at the center of𝑀 ;

8 else if 𝑀 is a temporal triangle then
9 Select𝑊 ′

𝑗
including 𝑒′

𝑗
centered at the vertex mapped

to the one with a lower degree in 𝑢 and 𝑣;

10 𝐸 𝑗 (𝑒) ← all edges that form 𝛿-instances of𝑊 ′
𝑗
with 𝑒 ;

11 foreach 𝑔 ∈ 𝐸 𝑗 (𝑒) do

12 Add a 𝛿-instance𝑊 of𝑊 ′
𝑗
comprising 𝑒 and 𝑔 to

Ŵ𝑗 (𝑒) with probability 𝑞;

13 foreach𝑊 ∈ Ŵ𝑗 (𝑒) do

14 Let [ (𝑊 ) be the number of edges that form

𝛿-instances of𝑀 together with𝑊 ;

15 [̂ 𝑗 (𝑒) ← [̂ 𝑗 (𝑒) + [ (𝑊 )
𝑞

;

16 return𝐶𝑀 ← 1

3𝑝

∑
𝑒∈𝐸𝑇

∑
3

𝑗=1 [̂ 𝑗 (𝑒) ;

from 𝑒 to 𝑒 ′
𝑗
. Specifically, we categorize 3-vertex 3-edge temporal

motifs into two types, i.e., temporal (3, 3)-stars and temporal tri-
angles as shown in Figure 4, based on whether they are closed.

Interested readers may refer to [27] for a full list of all 3-vertex

3-edge temporal motifs. For a star or wedge pattern, the vertex

connected with all edges is its center. Given that 𝑒 = (𝑢, 𝑣, 𝑡) has
been mapped to 𝑒 ′

𝑗
, EWS should find a temporal wedge pattern𝑊 ′

𝑗

containing 𝑒 ′
𝑗
from 𝑀 for sampling. Here, different strategies are

adopted to determine𝑊 ′
𝑗
for star and triangle motifs (Lines 6–9): If

𝑀 is a temporal (3, 3)-star, it must select𝑊 ′
𝑗
that contains 𝑒 ′

𝑗
and

has the same center as𝑀 ; If𝑀 is a temporal triangle, it may use the

vertex mapped to either 𝑢 or 𝑣 as the center to generate a wedge

pattern. In this case, the center of𝑊 ′
𝑗
will be mapped to the vertex

with a lower degree between 𝑢 and 𝑣 for search space reduction.

After deciding𝑊 ′
𝑗
, it enumerates all edges that form a 𝛿-instance of

𝑊 ′
𝑗
together with 𝑒 as 𝐸 𝑗 (𝑒) from the adjacency list of the central

vertex (Line 10). By selecting each edge 𝑔 ∈ 𝐸 𝑗 (𝑒) with probability

𝑞, it generates a sample Ŵ𝑗 (𝑒) of 𝛿-instances of𝑊 ′𝑗 (Lines 11—12).
Estimate [ 𝑗 (𝑒) (Lines 13–15): Now, it estimates [ 𝑗 (𝑒) from the

set Ŵ𝑗 (𝑒) of sampled temporal wedges. For each 𝑊 ∈ Ŵ𝑗 (𝑒),
it counts the number [ (𝑊 ) of 𝛿-instances of 𝑀 that contain𝑊

(Line 14). Specifically, after matching𝑊 with𝑊 ′
𝑗
, it can determine

the starting and ending vertices as well as the temporal range for the

mapping of the third edge of𝑀 . For the fast computation of [ (𝑊 ),
EWS maintains a hash table that uses an ordered combination

⟨𝑢, 𝑣⟩ (𝑢, 𝑣 ∈ 𝑉𝑇 ) as the key and a sorted list of the timestamps

of all edges from 𝑢 to 𝑣 as the value on the edge set 𝐸𝑇 of 𝑇 . In

this way, [ (𝑊 ) can be computed by a hash search followed by at

d a

b

d b

c

26 33

18
23𝑎, 𝑏, 23 ⇔ 𝑒3

′

𝑐, 𝑑, 26 ⇔ 𝑒2
′

20

𝜂 𝑊21 = 1

d a

b
20

23

𝜂 𝑊22 = 0

25

𝜂 𝑊41 = 1

Ƹ𝜂2 𝑐, 𝑑, 26 = 1

Ƹ𝜂3 𝑎, 𝑏, 23 = 1

(1) M11, 𝑗 = 3

(2) M21, 𝑗 = 2

Figure 5: Examples for the EWS algorithm

most two binary searches on the sorted list. Finally, [ 𝑗 (𝑒) can be

estimated by summing up [ (𝑊 ) for each𝑊 ∈ Ŵ𝑗 (𝑒) (Line 15), i.e.,
[̂ 𝑗 (𝑒) = 1

𝑞

∑
𝑊 ∈Ŵ𝑗 (𝑒)

[ (𝑊 ) .

Example 4.6. In Figure 5, we show how to compute [̂ 𝑗 (𝑒) using
EWS on the temporal graph in Figure 2. In this example, 𝑞 is set

to 1, i.e., all temporal wedges found are sampled. When (𝑎, 𝑏, 23)
is mapped to 𝑒 ′

3
of 𝑀11 in Figure 4, we have𝑊 ′

3
=𝑊 2 and find 2

instances 𝑊 21 and 𝑊 22 of 𝑊 2. Then, we get [ (𝑊 21) = 1 and

[ (𝑊 22) = 0 and thus [̂3 ((𝑎, 𝑏, 23)) = 1. For an edge (𝑐, 𝑑, 26)
mapped to 𝑒 ′

2
of 𝑀21 in Figure 4, 𝑐 is used as the central vertex

since 𝑑𝑒𝑔(𝑐) = 3 < 𝑑𝑒𝑔(𝑑) = 5. Then, we have𝑊 ′
2
=𝑊 4 and there

is only one instance𝑊 41 of𝑊 4 found. As [ (𝑊 41) = 1, we get

[̂2 ((𝑐, 𝑑, 26)) = 1 accordingly.

Theoretical Analysis:Next, we analyze the estimate𝐶𝑀 returned

by Algorithm 2 theoretically. We prove the unbiasedness and vari-

ances of𝐶𝑀 in Theorem 4.7 and Theorem 4.8, respectively. Detailed

proofs are also provided in the extended version [41].

Theorem 4.7. The expected value E[𝐶𝑀 ] of 𝐶𝑀 returned by Al-
gorithm 2 is 𝐶𝑀 .

Theorem 4.8. The variance Val[𝐶𝑀 ] of 𝐶𝑀 returned by Algo-
rithm 2 is at most 1−𝑝𝑞

𝑝𝑞 ·𝐶
2

𝑀
.

According to the result of Theorem 4.8 and Chebyshev’s in-

equality, we have Pr[|𝐶𝑀 −𝐶𝑀 | ≥ Y · 𝐶𝑀 ] ≤
1−𝑝𝑞
𝑝𝑞Y2

and 𝐶𝑀 is an

(Y,𝛾)-estimator of𝐶𝑀 for parameters Y,𝛾 ∈ (0, 1) when 𝑝𝑞 = 1

1+𝛾Y2 .

Time Complexity: We first analyze the time to compute [̂ 𝑗 (𝑒).
First, |𝐸 𝑗 (𝑒) | is bounded by the maximum number of (in-/out-)edges

connected with one vertex within any 𝛿-length time interval, i.e.,

𝑑𝛿 . Second, the time to compute [ (𝑊 ) using a hash table is𝑂 (logℎ)
whereℎ is the maximum number of edges between any two vertices.

Therefore, the time complexity per edge in EWS is𝑂 (𝑑𝛿 logℎ). This
is lower than 𝑂 (𝑑2

𝛿
) time per edge in ES (𝑘 = 𝑙 = 3). Finally, EWS

provides an (Y,𝛾)-estimator of 𝐶𝑀 in 𝑂 (𝑚𝑑𝛿 logℎ

1+𝛾Y2 ) time.

4.3 Streaming Implementation

To deal with a dataset that is too large to fit in memory or generated

in a streaming manner, it is possible to adapt our algorithms to a

streaming setting. Assuming that all edges are sorted in chronologi-

cal order, our algorithms can determine whether to sample an edge

or not when it arrives. Then, for each sampled edge 𝑒 = (𝑢, 𝑣, 𝑡), we
only need the edges with timestamps in [𝑡 − 𝛿, 𝑡 + 𝛿] to compute its

local count [ (𝑒) or [̂ (𝑒). After a one-pass scan over the temporal

graph stream, we can obtain an estimate of the number of a tem-

poral motif in the stream. Generally, our algorithms can process
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Table 2: Statistics of datasets

Dataset |𝑉𝑇 | |𝐸 | |𝐸𝑇 | Time span

AU 157, 222 544, 621 726, 639 7.16 years

SU 192, 409 854, 377 1, 108, 716 7.60 years

SO 2, 584, 164 34, 875, 684 47, 902, 865 7.60 years

BC 48, 098, 591 86, 798, 226 113, 100, 979 7.08 years

RC 5, 688, 164 329, 485, 956 399, 523, 749 7.44 years

any temporal graph stream in one pass by always maintaining the

edges in the most recent time interval of length 2𝛿 while having

the same theoretical bounds as in the batch setting.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the empirical performance of our pro-

posed algorithms on real-world datasets. We first introduce the

experimental setup in Section 5.1. The experimental results are

presented in Section 5.2.

5.1 Experimental Setup

Experimental Environment: All experiments were conducted

on a server running Ubuntu 18.04.1 LTS with an Intel
®
Xeon

®
Gold

6140 2.30GHz processor and 250GB RAM. All datasets and our code

are publicly available
1
. We downloaded the code

2,3,4
of baselines

published by the authors and followed the compilation and usage

instructions. All algorithms were implemented in C++11 compiled

by GCC v7.4 with -O3 optimizations, and ran on a single thread.

Datasets: We used five different real-world datasets in our experi-

ments including AskUbuntu (AU), SuperUser (SU), StackOverflow

(SO), BitCoin (BC), and RedditComments (RC). All datasets were

downloaded from publicly available sources like the SNAP reposi-

tory [19]. Each dataset is a sequence of temporal edges in chrono-

logical order. We report the statistics of these datasets in Table 2,

where |𝑉𝑇 | is the number of vertices, |𝐸 | is the number of (static)

edges, |𝐸𝑇 | is the number of temporal edges, and time span is the

overall time span of the entire dataset.

Algorithms: The algorithms compared are listed as follows.

• EX: An exact algorithm for temporal motif counting in [27].

The available implementation is applicable only to 3-edge

motifs and cannot support motifs with 4 or more edges

(e.g., Q5 in Figure 6).

• 2SCENT: An algorithm for simple temporal cycle (e.g., Q4

and Q5 in Figure 6) enumeration in [18].

• BT: A BackTracking algorithm for temporal subgraph iso-

morphism in [23]. It provides the exact count of any temporal

motif by enumerating all of them.

• IS-BT: An interval-based sampling algorithm for temporal

motif counting in [22]. BT [23] is used as a subroutine for

any motif with more than 2 vertices.

• ES: Our generic edge sampling algorithm for temporal motif

counting in Section 4.1.

1
https://github.com/jingjing-hnu/Temporal-Motif-Counting

2
http://snap.stanford.edu/temporal-motifs/

3
https://github.com/rohit13k/CycleDetection

4
https://gitlab.com/paul.liu.ubc/sampling-temporal-motifs

3

1,2

2

1

3

1 2

2

1 3 1
4

2

33

Q1 Q2 Q3 Q4 Q5

Figure 6: Query motifs

• EWS: Our improved algorithm that combines edge sampling

with wedge sampling for counting temporal motifs with 3

vertices and 3 edges (e.g. Q1–Q4 in Figure 6) in Section 4.2.

Queries: The five query motifs we use in the experiments are listed

in Figure 6. Since different algorithms specialize in different types

of motifs, we select a few motifs that can best represent the special-

izations of all algorithms. As discussed above, an algorithm may

not be applicable to some of the motifs. In this case, the algorithm

is ignored in the experiments on these motifs.

Performance Measures: The efficiency is measured by the CPU

time (in seconds) of an algorithm to count a query motif in a tempo-

ral graph. The accuracy of a sampling algorithm is measured by the

relative error
|𝑥−𝑥 |
𝑥 where 𝑥 is the exact number of instances of a

query motif in a temporal graph and 𝑥 is an estimate of 𝑥 returned

by an algorithm. In each experiment, we run all algorithms 10 times

and use the average CPU time and relative errors for comparison.

5.2 Experimental Results

The overall performance of each algorithm is reported in Table 3.

Here, the time span 𝛿 is set to 86400 seconds (i.e., one day) on AU

and SU, and 3600 seconds (i.e., one hour) on SO, BC, and RC (Note

that we use the same values of 𝛿 across all experiments, unless

specified). For IS-BT, we report the results in the default setting as

indicated in [22], i.e., we fix the interval length to 30𝛿 and present

the result for the smallest interval sampling probability that can

guarantee the relative error is at most 5%. For ES and EWS, we

report the results when 𝑝 = 0.01 by default; in a few cases when

the numbers of motif instances are too small or their distribution

is highly skewed among edges, we report the results when 𝑝 = 0.1

(marked with “*” in Table 3) because ES and EWS cannot provide

accurate estimates when 𝑝 = 0.01. In addition, we set 𝑞 to 1 on AU

and SU, and 0.1 on SO, BC, and RC for EWS.

First of all, the efficiencies of EX and 2SCENT are lower than

the other algorithms. This is because they use an algorithm for

subgraph isomorphism or cycle detection in static graphs for can-

didate generation without considering temporal information. As a

result, a large number of redundant candidates are generated and

lead to the degradation in performance. Second, on medium-sized

datasets (i.e., AU and SU), ES runs faster than IS-BT in most cases;

and meanwhile, their relative errors are close to each other. On

large datasets (i.e, SO, BC, and RC), ES demonstrates both much

higher efficiency (up to 10.3x speedup) and lower estimation errors

(2.42% vs. 4.61%) than IS-BT. Third, EWS runs 1.7x–19.6x faster

than ES due to its lower computational cost per edge. The relative

errors of ES and EWS are the same on AU and SU because 𝑞 = 1.

When 𝑞 = 0.1, EWS achieves further speedups at the expense of

higher relative errors. A more detailed analysis of the effect of 𝑞 is

provided in the following paragraph.
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Table 3: Running time (in seconds) and average errors (%) of all algorithms on each dataset. We use “—” and “✕” to denote

“motif not supported” and “running out of memory”, respectively. For IS-BT, ES, and EWS, we show their speedup ratios over

BT for comparison. We use “*” to mark the results of ES and EWS for 𝑝 = 0.1 instead of 𝑝 = 0.01.

Dataset Motif

EX 2SCENT BT IS-BT ES EWS

time (s) time (s) time (s) error time (s) error time (s) error time (s)

AU

Q1

1.8

—

0.758 4.84% 0.402/1.9x 4.32% 0.059/12.8x 4.32% 0.027/28.1x

Q2 1.104 4.16% 0.434/2.5x 4.57% 0.048/23.0x 4.57% 0.029/38.1x

Q3

2.3

0.884 3.97% 0.50/1.8x *3.73% *0.605/1.5x *3.73% *0.183/4.8x

Q4

23.68

1.038 4.67% 0.492/2.1x *4.63% *0.628/1.7x *4.63% *0.173/6x

Q5 — 1.262 3.98% 0.536/2.4x *4.62% *0.322/3.9x —

SU

Q1

3.26

—

1.499 3.99% 0.620/2.4x 3.06% 0.102/14.7x 3.06% 0.052/28.8x

Q2 1.650 3.23% 0.671/2.5x 2.47% 0.083/19.9x 2.47% 0.046/35.9x

Q3

4.6

1.506 4.85% 0.723/2.1x 4.66% 0.113/13.3x 4.66% 0.030/50.2x

Q4

46.0

1.434 3.79% 0.725/2.0x 4.63% 0.128/11.2x 4.63% 0.042/34.1x

Q5 — 1.521 4.55% 0.759/2.0x *4.52% *0.453/3.4x —

SO

Q1

169

—

105.8 4.82% 8.626/12.3x 0.97% 4.419/23.9x 1.22% 1.528/69.2x

Q2 110.7 4.82% 27.48/4.0x 0.20% 3.985/27.8x 0.89% 1.514/73.1x

Q3

466

107.4 4.30% 25.70/4.2x 1.36% 4.031/26.6x 3.6% 1.235/87x

Q4

243.7

105.5 4.90% 6.775/15.6x 1.78% 3.936/26.8x 3.31% 1.153/91.5x

Q5 — 91.83 4.91% 9.451/9.7x 3.48% 1.505/61.0x —

BC

Q1

8143

—

220.0 4.75% 50.02/4.4x 0.64% 59.12/3.7x 0.67% 9.463/23.2x

Q2 399.8 4.90% 125.1/3.2x 1.11% 34.74/11.5x 1.16% 8.126/49.2x

Q3

8116

396.8 3.89% 90.19/4.4x 1.49% 41.49/9.6x 3.02% 2.121/187x

Q4

473.7

473.4 4.93% 95.47/5.0x 0.83% 37.43/12.6x 1.91% 2.262/209x

Q5 — 596.4 4.83% 319.7/1.9x 2.92% 20.47/29.1x —

RC

Q1

2799

—

1966 4.76% 840.5/2.3x 3.27% 257.4/7.6x 3.36% 31.49/62.4x

Q2 2113 4.67% 428/4.9x 0.63% 120.6/17.5x 0.6% 30.57/69.1x

Q3

✕
2069 4.61% 784.4/2.6x 2.42% 76.09/27.2x 2.27% 16.17/128x

Q4

2245

1897 4.86% 683/2.8x 3.47% 68.60/27.7x 4.57% 15.91/119x

Q5 — 1613 4.41% 706.6/2.3x *4.32% *120.3/13.4x —
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Figure 7: Comparison of the performance of EWS when 𝑞 = 0.1 and 1

Effect of 𝑞 for EWS: In Figure 7, we compare the relative errors

and running time of EWS for 𝑞 = 1 and 0.1 when 𝑝 is fixed to 0.01.

We observe different effects of 𝑞 on medium-sized (e.g., SU) and

large (e.g., BC) datasets. On the SU dataset, the benefit of smaller𝑞 is

marginal: the running time decreases slightly but the errors become

obviously higher. But on the BC dataset, by setting 𝑞 = 0.1, EWS

achieves 2x–3x speedups without affecting the accuracy seriously.

These results imply that temporal wedge sampling is more effective

on larger datasets. Therefore, we set 𝑞 = 1 on AU and SU, and

𝑞 = 0.1 on SO, BC, and RC for EWS in the remaining experiments.

Accuracy vs. Efficiency: Figure 8 demonstrates the trade-offs be-

tween relative error and running time of three sampling algorithms,

namely IS-BT, ES, and EWS. For IS-BT, we fix the interval length

to 30𝛿 and vary the interval sampling probability from 0.01 to 1.

For ES and EWS, we vary the edge sampling probability 𝑝 from

0.0001 to 0.25. First of all, ES and EWS consistently achieve better

trade-offs between accuracy and efficiency than IS-BT in almost

all experiments. Specifically, ES and EWS can run up to 60x and

330x faster than IS-BT when the relative errors are at the same

level. Meanwhile, in the same elapsed time, ES and EWS are up to

10.4x and 16.5x more accurate than IS-BT, respectively. Further-

more, EWS can outperform ES in all datasets except SO because

of lower computational overhead. But on the SO dataset, since the

distribution of motif instances is highly skewed among edges and

thus the temporal wedge sampling leads to large errors in estima-

tion, the performance of EWS degrades significantly and is close

to or even worse than that of ES. Nevertheless, the effectiveness

of temporal wedge sampling for EWS can still be confirmed by the

results on the BC and RC datasets.

Scalability:We evaluate the scalability of different algorithms with

varying the time span 𝛿 and dataset size𝑚. In both experiments,

we use the same parameter settings as used for the same motif on

the same dataset in Table 3. We test the effect of 𝛿 for𝑄3 on the BC

dataset by varying 𝛿 from 1h to 24h. As shown in Figure 9(a), the
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Figure 8: Relative error (%) vs. running time (seconds) with varying sampling probability

running time of all algorithms increases near-linearly w.r.t. 𝛿 . BT

runs out of memory when 𝛿 > 10h. The relative errors of ES and

EWS keep steady for different 𝛿 but the accuracy of IS-BT degrades

seriously when 𝛿 increases. This is owing to the increase in cross-

interval instances and the skewness of instances among intervals.

Meanwhile, ES and EWS run up to 2.2x and 180x faster than IS-BT,

respectively, while always having smaller errors. The results for𝑄2

on the RC dataset with varying𝑚 are presented in Figure 9(b). Here,

we vary𝑚 from 50M to near 400Mby extracting the first𝑚 temporal

edges of the RC dataset. The running time of all algorithms grows

near-linearly w.r.t.𝑚. The fluctuations of relative errors of IS-BT

explicate that it is sensitive to the skewness of instances among

intervals. ES and EWS always significantly outperform IS-BT for

different𝑚: they run much faster, have smaller relative errors, and

provide more stable estimates than IS-BT.

6 CONCLUSION

In this paper, we studied the problem of approximately counting a

temporal motif in a temporal graph via random sampling. We first

proposed a generic Edge Sampling (ES) algorithm to estimate the

number of any 𝑘-vertex 𝑙-edge temporal motif in a temporal graph.

Furthermore, we improved the ES algorithm by combining edge

sampling with wedge sampling and devised the EWS algorithm for

counting 3-vertex 3-edge temporal motifs. We provided compre-

hensive theoretical analyses on the unbiasedness, variances, and

complexities of our algorithms. Extensive experiments on several

real-world temporal graphs demonstrated the accuracy, efficiency,

and scalability of our algorithms. Specifically, ES and EWS ran up

to 10.3x and 48.5x faster than the state-of-the-art sampling method

while having lower estimation errors.
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Figure 9: Scalability tests with varying time span 𝛿 and number of temporal edges𝑚
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