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Abstract—With the increasing popularity of geo-positioning
technologies and mobile Internet, spatial keyword data services
have attracted growing interest from both the industrial and
academic communities in recent years. Meanwhile, a massive
amount of data is increasingly being outsourced to cloud in the
encrypted form for enjoying the advantages of cloud computing
while without compromising data privacy. Most existing works
primarily focus on the privacy-preserving schemes for either
spatial or keyword queries, and they cannot be directly applied
to solve the spatial keyword query problem over encrypted data.
In this paper, we study the challenging problem of Privacy-
preserving Boolean Range Query (PBRQ) over encrypted spatial
databases. In particular, we propose two novel PBRQ schemes.
Firstly, we present a scheme with linear search complexity based
on the space-filling curve code and Symmetric-key Hidden Vector
Encryption (SHVE). Then, we use tree structures to achieve
faster-than-linear search complexity. Thorough security analysis
shows that data security and query privacy can be guaranteed
during the query process. Experimental results using real-world
datasets show that the proposed schemes are efficient and feasible
for practical applications, which is at least 70× faster than
existing techniques in the literature.

Index Terms—privacy-preserving, Boolean range queries, en-
crypted spatial data.

I. INTRODUCTION

Spatial keyword search has extensive applications in
location-based services, social networks, epidemic preven-
tion, geosciences, etc., and Boolean Range Query (PBR) are
fundamental search functionalities over spatial datasets. The
PBR problem is, given a set of spatio-textual objects, and a
geometric query range R associated with a set of keywords
W ∗, a search user aims to retrieve all objects inside R each
of which contains all keywords in the W ∗. For example, a
user can find friends with the same interests in an area; a
medical researcher can predict whether a specific virus in a
specific area is at risk of an outbreak by searching patients
inside the area. Many companies outsource the spatial data to
public clouds to manage their data and provide spatial keyword
queries services to users. However, due to the potential threats
of inside attackers and hackers, the privacy of spatial datasets
in public clouds should be carefully taken care of, particularly
in location-based and medical applications.

Unfortunately, existing studies primarily focus on the
privacy-preserving schemes for either spatial or keyword

queries, which cannot be directly applied to solve the PBRQ
problem. Obviously, we can simply perform secure geometric
range queries and keyword Boolean queries over the same
spatial data, and take intersections of their results to obtain
BRQ results. However, such an approach produces a lot of
useless intermediate results, resulting in a large amount of
additional communication and computational overhead. For
example, a facebook user may find thousands of persons in
his town but only three of them share the same interests with
him. Therefore, we need to construct a tight structure, which
can effectively reduce the search space, to support BRQ over
encrypted spatial data.

A. Related Work and Challenges

Geometric range queries over encrypted spatial data.
In textual keyword searchable encryption schemes [6]–[10],
a server needs to perform equality checking for Boolean
queries or comparisons for range queries. Different from the
above schemes, a geometric range query over spatial databases
requires compute-then-compare operations. For example, to
decide whether a point is inside a circle, we calculate a
distance from this point to the center of a circle, and then
compare this distance with the radius of the circle. In principle,
Homomorphic Encryption (HE) [11] could securely evaluate
compute-then-compare operations. However, the evaluation
with HE does not directly reveal search decisions (such as
inside or outside) over encrypted data, which limits its usage
in search. To achieve a secure circle range query, Zhu et. al [2]
calculated the distance using BGN [12] scheme and evaluate
the results range by hash tables, however, their solution is
computationally expensive due to the homomorphic opera-
tion. To avoid expensive HE, Wang et. al proposed several
schemes [1], [3], [4] based on the Shen-Shi-Waters (SSW)
encryption [13]. The SSW encryption can evaluate whether the
inner product of two vectors is zero without leaking privacy.
In [1], Wang et. al generated a number of concentric circles
covering all the possible points inside a queried circle range
and evaluated the points in the encrypted databases using SSW.
This scheme incurs huge communication costs and cannot
support arbitrary geometric range queries. In [3], Wang et.
al represented each data point and generated geometric range



TABLE I
COMPARISON WITH PRIOR WORKS.

Scheme CRSE [1] SRQC [2] GRSE [3] FastGeo [4] EGRQ [5] Our PBRQ-L Our PBRQ-Q

Faster-than-linear % % ! ! ! % !

Performance Low Very low Low High Very High High Very High
Search Method Circle Circle Geometric Geometric Geometric Geometric and BRQ Geometric and BRQ

Security IND-SCPA IND-CPA IND-SCPA IND-SCPA KBA IND-SCPA IND-SCPA

query as a Bloom filter, thus the result of an inner product of
these two Bloom filters correctly indicates whether a point
is inside a geometric area. However, as data or searching
scope increases, a huge Bloom filter should be generated to
cover all possible points in a specific querying range, which
increases storage and computational cost. Then, to improve the
query efficiency and accuracy, they converted spatial data and
geometric range queries to equality-vector form, and leveraged
a two-level search scheme to verify whether a point is inside
a geometric range [4].

Unfortunately, due to the large number of pairing operations
used in SSW, the performance of [4] is still limited. In
addition, Xu et. al [5] achieved efficient geometric range
queries based on secure kNN [14] and polynomial fitting
technique. However, their scheme is only secure to resist
Known Background Attacks (KBA), which is too weak to cope
with attacks in many real-world scenarios.

Challenge: How to achieve efficient secure geometric range
queries over encrypted spatial data?
Spatial keyword queries over spatial data. Spatial keyword
queries have been studied for several years with the increasing
popularity of geo-positioning technologies and location-based
services. For the first time, Zhou et al. [15] used a hybrid
index structure that integrates inverted files and R-trees to
support both textual keywords and location-aware queries. The
IR2-tree [16] is another hybrid index that combines an R-
tree with superimposed textual keywords signatures to support
spatial keyword queries. Each node of the IR-tree [17], [18] is
augmented with inverted files to support the ranking of objects
based on a weighted sum of the text relevancy and spatial
distance. Rocha-Junior et al. [19] proposed a novel index to
improve the performance of top-k spatial keyword queries
named Spatial Inverted Index (S2I) which maps each keyword
to a distinct aggregated R-tree. In addition, IL-Quadtree [20] is
designed based on the inverted index and the linear Quadtree
to exploit both spatial and keyword based pruning techniques
to effectively reduce the search space. However, none of the
above schemes takes into account the problem of search over
encrypted data.

Challenge: How to support secure Boolean range queries
over encrypted spatial data?

B. Our Contributions

In this paper, we aim to solve the above challenging
problems. The main contributions of the paper are summarized
below:

1) We explore the problem of Privacy-preserving Boolean
Range Query over encrypted spatial data (PBRQ), and
formulate its privacy requirements.

2) We propose a basic PBRQ scheme based on Symmetric-
key Hiden Vector Encryption (SHVE) [21] and space-
filling curve code. Specifically, we encode the spatio-
textual objects by Gray code [22] and bitmap, and make
secure vector matches over them using SHVE to obtain
BRQ results over encrypted spatial data efficiently.

3) To further improve the performance of PBRQ over large-
scale datasets, we design a novel index structure called
Bitmap Quadtree (BQ-tree) and propose an efficient
secure prune algorithm, such that search complexity
of PBRQ achieves faster-than-linear. In addition, we
further discuss the efficiency improvement of proposed
PBRQ schemes.

4) We implement the proposed schemes in JAVA, and
evaluate them using various real-world datasets. The
experimental results show that our schemes are practical
over large-scale datasets. Especially, our final scheme is
at least 70× faster than other existing works.

To the best of our knowledge, our schemes are the first to
support Boolean range queries over encrypted spatial data with
strong security. A comparison of our PBRQ schemes with prior
works is shown in TABLE I.

II. PRELIMINARIES

In this section, we review some background knowledge used
in our work, including Quadtree [23], Gray code [22], and
Symmetric-key Hidden Vector Encryption (SHVE) [21].

A. Quadtree and Gray Code

A Quadtree [23] is a space partitioning tree construct which
can improve the search efficiency of spatial queries. In a
Quadtree, the leaf nodes are data objects and each none-leaf
node is recursively subdivided into 2d regions, where d is the
dimension of the space. Given a geometric range, the search
process of Quadtree is described as follows.

1) Starting from the root node, for each child node of the
current node, if the geometric range intersects with a
non-leaf node, moving to search its children nodes.

2) When traverse to a leaf node (i.e., spatial data object), if
the point of this leaf node insides the geometric range,
add this object into the results set.

Each node of Quadtree can be encoded by Gray code [22].
A one-dimensional Gray code is denoted as follows, where ‘|’
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Fig. 1. An example of query over Quadtree and Grade code

is the concatenation operator and Gµ is the vector of a Gray
code instance at step µ.

G1 = (0, 1), Gµ = (g1, g2, ..., g2µ),

Gµ+1 = (0|g1, 0|g2, ..., 0|gg2µ , 1|gg2µ ..., 1|gg2 , 1|gg1).

For µ = 3, the Gray code is

G1 = (0, 1), G2 = (00, 01, 11, 10),

G3 = (000, 001, 011, 010, 110, 111, 101, 100).

Given a T ×T grid, the length of the required Gray code to
represent all cells is 2dlog2 Te. For a spatial point p, we denote
gp ← Gray(p) as the Gray code of p. As shown in Fig. 1,
given a spatial dataset, we can build a Quadtree and encode
all data points using Gray code. To find the point inside cell
1101 from the database, the server can traverse the Quadtree
as described above or traverse all points using vector match.

B. Symmetric-key Hidden Vector Encryption

Symmetric-key Hidden Vector Encryption (SHVE) [21] is
a predicate encryption scheme that supports conjunctive on
encrypted data. Let Γ ∈ {0, 1} be a finite set of attributes and
‘∗’ be a wildcard symbol not in Γ, Γ∗ = Γ∪{∗}. A SHVE is
defined as the following four Probabilistic Polynomial-Time
(PPT) algorithms:

• SHVE.Setup(1λ)→ msk: Input a security parameter λ,
this algorithm returns a master secret key msk, and the
massage space M.

• SHVE.KeyGen(msk,v∈ Γd∗) → s: Input a predicate
vector v= {v1, ..., vd} ∈ Γd∗ and a master secret key
msk, this algorithm returns a decryption key s.

• SHVE.Enc(msk, µ ∈M, x∈ Γd)→ c: Input a message
µ, an index vector x= {x1, ..., xd} ∈ Γd, and a master
secret key msk, this algorithm returns the ciphertext c
associated with (x, µ).

• SHVE.Query(c, s) → µ(⊥): Given a ciphertext c cor-
responding to the index vector x and a decryption key
s corresponding to the predicate vector v, this algorithm
returns µ if PSHVE

v (x) = 1; otherwise returns ⊥.

File EDB

Index EDB

Search UserData Owner

Search tokens

Encrypted

indexes

Encrypted

files

Search

results

Cloud Server Provider

Access control

Fig. 2. System model of our schemes.

For each v∈ Γd∗, x∈ Γd, we have:

PSHVE
v (x) =

{
1 ∀ 1 ≤ i ≤ d, (vi = xi or vi = ∗)
0 otherwise

Correctness. A SHVE scheme is correct if for all
security parameter λ, (µ,x)∈ M × Γd, and all
predicate vectors v∈ Γd∗, msk ← SHVE.Setup(1λ), s←
SHVE.KeyGen(msk,v), c← SHVE.Enc(msk, µ,x), if
PSHVE
v (x)= 1, then SHVE.Query(c, s) = µ; otherwise

Pr[SHVE.Query(c, s) = ⊥] = 1− negl(λ).

III. PROBLEM FORMULATION

A. System Model and Threat Model

As shown in Fig. 2, our PBRQ consists of three main
entities, namely Data Owners (DO), Cloud Service Provider
(CSP) and Search Users (SU).

• DO encrypts privacy spatial data via symmetric encryp-
tion (i.e., AES) to protect data security and generates
corresponding indexes for search according to system
parameters, then he/she sends encrypted files and indexes
to the CSP (Step 1©).

• CSP has unlimited storage space and computation abil-
ities that can provide data store, query, and computing
services for DO or SU.

• SU receives system parameters from DO (Step 2©), then
he/she generates the trapdoor for his query using the
parameters and sends the trapdoor to CSP (Step 3©).
After receiving the search results from CSP (Step 4©),
SU decrypts the results via the symmetric key.

Threat Model. In our schemes, DO and SU are considered
to be fully trusted. CSP is a semi-honest (i.e., honest-but-
curious) entity [1], [3]–[5], [13], [24]–[26] that provides
reliable services, but it will try to learn the private information
about data objects and Boolean range queries. To preserve
private information leakage, DO only stores the encrypted
spatial data on CSP, and a client (SU or DO) only submits
the encrypted Boolean range queries to CSP.
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B. Definitions of PBRQ

Based on the above models, we now describe the defini-
tion of a Privacy-preserving Boolean Range Query (PBRQ)
scheme. In a PBRQ scheme, the private files of DO are
encrypted via symmetric encryption (i.e., AES) with secret key
sk and the search process is performed using index encrypted
by the master key msk. An authorized SU can generate search
queries using msk to obtain search results and decrypt the
search results by sk. In the rest of this paper, we no longer
describe the encryption and decryption process of private files
but focus on how to generate indexes and complete the query
process securely.

Definition 1 (PBRQ). A PBRQ scheme Π consists of four
algorithms as follows:

• Setup(1λ) → msk: Given a security parameter λ, this
algorithm returns a master secret key msk.

• IndexBuild(msk,DB) → EDB: Given a master secret
key msk and a spatial database DB, this algorithm
returns the encrypted database EDB.

• TrapGen(msk,Q) → TQ: Given a master key msk,
a search query Q, this algorithm returns the search
trapdoor TQ.

• Query(EDB, TQ) → R: Given a master key msk, an
encrypted database EDB, and a search trapdoor TQ, this
algorithm returns the search results R.

Correctness. Let BRQ(DB, Q) → Rq be the BRQ query
results of a search query Q over a spatial database DB. We
say that the above PBRQ scheme Π is correct if for all
encrypted database EDB output by IndexBuild, all search
trapdoor TQ output by TrapGen, if BRQ(DB, Q)→ Rq , then
Query(EDB, TQ)→ R = Rq .

C. Security of PBRQ

The main security requirements of PBRQ are to preserve
both data privacy and query privacy from untrusted CSP, which
can be informally explained as below:
• Data Privacy. Given the ciphertexts of two database DB0

and DB1, an adversary (e.g., an honest-but-curious cloud)
cannot distinguish these two databases.

• Query Privacy. Given the search trapdoors of two queries
Q0 and Q1, an adversary cannot distinguish these two
queries.

The rigorous definitions of our data privacy and query
privacy with indistinguishability under Selective Chosen-
Plaintext Attacks (IND-SCPA), and its corresponding leakage
function are presented in Section V-A.

IV. PROPOSED PBRQ SCHEMES

In this section, we first present a PBRQ scheme with linear
complexity based on Gray code and SHVE, namely PBRQ-
L. Then, we design a novel index structure called Bitmap
Quadtree (BQ-tree) and propose the corresponding secure
prune algorithm to reduce the search complexity of PBRQ.
Finally, we further discuss how to improve the efficiency of
proposed PBRQ schemes using Bloom filter.

A. PBRQ-L: Linear PBRQ Scheme

Main Idea. The Boolean range queries require both geometric
range queries for spatial data and Boolean keyword queries for
textual keywords. The geometric range queries over plaintext
spatial database requires to carry out compute-then-compare
operations. As we described in Section I-A, the encryption
primitives (i.e., HE) supporting this type of operation are too
expensive. To achieve efficient geometric range queries over
encrypted spatial databases, we encode the spatial point p as
Gray code gp ← Gray(p). Then, we design a new geometric
range queries algorithm adapts to existing lightweight encryp-
tion primitives, where only SHVE is needed for the evaluation
over encrypted databases. Our new geometric range queries
algorithm is based on the Gray code of the queried spatial
area: Given a geometric range query, we can generate all cells
inside the range as search tokens and match all spatial points
in the database. If the Gray code of a spatial point matches
anyone of search tokens, it falls inside the geometric range;
otherwise, it is not inside the geometric range. Particularly, if
the code of two cells differs in just one bit, then a wildcard
‘∗’ can be used instead of that bit to minimize the number
of search tokens. Fig. 3(a) shows some examples of token
generation, for example, to query all objects inside cells (0011,
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0010, 0101, 0111, 0110), the SU generate search tokens as
tk1 = 0011∨0010∨0101∨0111∨0110 = 0∗1∗, tk2 = 0101,
such that all cells are in consideration. In this way, the
compute-then-compare operations are translated into vector
match operations, which are available for SHVE. In addition,
we encode keyword set W of each spatial object as a bitmap,
such that Boolean keyword queries can also be achieved using
vector match. Let KW be the textual keyword dictionary
contained in the database and |KW | be the size of KW . As
shown in Fig. 3(b), the textual keywords contained in each
object can be represented using a bitmap of size |KW |, with
‘1’ indicating its existence in the objects and a ‘0’ otherwise.
For example, a bitmap b = 01011010 reveals that there are
eight keywords in the database and the current object only
contains the keywords in the second, fourth, fifth and seventh
positions of the bitmap. To query keywords w4, w7, the SU
generates the query as b′ = ∗ ∗ ∗1 ∗ ∗1∗.

Therefore, to construct an efficient PBRQ scheme, for each
spatial objects Di = {p,W} ∈ DB, we encode the spatial
point p as Gray code gp ← Gray(p) and the keywords W as
bitmap bW . Then, we generate the index vector of each spatial
objects as gp|bW and encrypt it by SHVE.Enc. To perform
Boolean range queries over EDB, the SU first generates
search tokens according to Gray code and bitmap, and then
encrypts the tokens by SHVE.KeyGen. The query process is
the vector match of index and tokens, which performed by
SHVE.Query.
Scheme Details. Based on the above idea, we describe the
details of our PBRQ-L scheme as follows.
• Setup(1λ) → msk: Given a security parameter λ, DO

computes and outputs a master key

msk ← SHVE.Setup(1λ).

• IndexBuild(msk,DB): Given a master key msk and a
spatial database DB = {D1, ..., Di, ..., Dn}(1 ≤ i ≤ n),
where Di = {p,W},p ∈ ∆d

T ,W ∈ KW , T is the
plaintext space of spatial data, and d is the dimension of
spatial data. For each Di = {p,W} ∈ DB, DO encodes
the p as gp ← Gray(p)1 and generates the bitmap of W

1In our scheme, we divide the d-dimensional plaintext space into T d grid
to cover all integer spatial points.

as bW . Then, DO calculates

ED← SHVE.Enc(msk, ture, gp|bW ).

• TrapGen(msk,Q): Given a master key msk and a search
query Q = {R,W ∗}, where R is a geometric range and
W ∗ is a queried keywords set. SU first generates the
bitmap of W ∗ as bW∗ and encodes the R into vector
tokens as described above. Then, for each token tki, SU
generates the search trapdoor as

TKi ← SHVE.KeyGen(msk, tki|bW∗).

Finally, SU sends the set of search trapdoors TQ =
{TK1, ...,TKk} to CSP, where k depends on the scope
of the query range.

• Query(EDB, TQ): Upon receiving the trapdoors TQ, for
each spatial object ED ∈ EDB and search token TKi ∈
TQ, the CSP performs

Flagi ← SHVE.Query(ED,TKi).

If ∃Flagi = ture, adds ED into results set R. Finally, the
CSP returns R to SU.

B. PBRQ-Q: BQ-tree based PBRQ Scheme

As described above, the PBRQ-L is a linear search scheme
regarding the number of data objects in a database, which is
difficult to cope with the requirement of large-scale databases.
Here, we design a tree structure called Bitmap Quadtree (BQ-
tree) and a corresponding pruning algorithm to reduce the
search complexity to faster-than-linear. A BQ-tree is a hybrid
index structure based on bitmap and Quadtree. In particular,
each node of BQ-tree contains both spatial and keyword
information. Each leaf node (i.e., spatial object) of BQ-tree
contains a vector of Gray code for spatial point and bitmap
for the keywords as described in PBRQ-L. Each non-leaf node
of BQ-tree contains four bound points that denote its bounding
area, and each bound point also contains a vector of Gray code
and bitmap. It is worth noting that the bitmap of the bound
point is the superimposition (OR-ing) of all the bitmaps of its
children nodes. Thus a bitmap of a node is equivalent for all
the objects in its subtree. Given a Boolean geometric range,
the search process of BQ-ree is described as follows.



• Setup(1λ) → msk: Given a security parameter λ, DO
computes and outputs a master key

msk ← SHVE.Setup(1λ).

• IndexBuild(msk,DB): Given a master key msk and a spatial
database DB, DO first generates a BQ-tree T according to DB.
Let N = {p1, p2, p3, p4, bN , BN} be a non-leaf node of T ,
where pj(1 ≤ j ≤ 4) is a bound point of bounding area BN ,
bN is the bitmap of the current node. Let tk be the tokens of
bounding area BN a, the non-leaf node N is encrypted as

ENpj ← SHVE.Enc(msk,Gray(pj)),
ENbN ← SHVE.Enc(msk, bN ),

ENtk← SHVE.KeyGen(msk, tk).

For each leaf node Di = {p,W} ∈ DB of T , DO encodes the
p as gp ← Gray(p) and generates the bitmap of W as bW .
Then, DO encrypts the node as

EDp← SHVE.Enc(msk, gp),

EDb← SHVE.Enc(msk, bW ).

• TrapGen(msk,Q): Given a master key msk and a search
query Q = {R,W ∗}, where R is a geometric range and W ∗

is a query keywords set. SU first generates the bitmap of W ∗

as bW∗ and encodes the R into tokens {tki}ki=1. Let c be the
center point of R, SU generates the search trapdoors as

TKi ← SHVE.KeyGen(msk, tki),

EbW∗ ← SHVE.KeyGen(msk, bW∗),
Ec← SHVE.Enc(msk, c).

Finally, SU sends the set of search trapdoors TQ =
{TK1, ...,TKk,EbW∗ ,Ec} to CSP.

• Query(EDB, TQ): Upon receiving TQ, starting from the root
node of T , CSP performs the search process as:

1) For each child node of the current node, performs

Flagb ← SHVE.Query(ENbN ,EbW∗).

If Flagb = true, then performs

Flagc ← SHVE.Query(Ec,ENtk),
Flagpij

← SHVE.Query(ENpj ,TKi),

If ∃Flagc = true or ∃Flagpij
= ture, moving to search

its children nodes.
2) When traverse to a leaf node (i.e., spatial object ED),

CSP performs

Flagb ← SHVE.Query(EbW∗ ,EDb),
Flagpi

← SHVE.Query(EDp,TKi),

If Flagb = ture and anyone of Flagpi
is true, add ED

into results set R.
Finally, CSP returns results set R to SU.

aDue to the construction of Quadtree, the bounding area of each non-leaf node can be encoded into a single token.

Fig. 5. Details of PBRQ-Q

1) Starting from the root node, for each child node of the
current node, if the geometric range intersects with a
non-leaf node and the bitmap match, moving to search
its children nodes.

2) When traversing to a leaf node (i.e., spatial object), if
the point of this leaf node insides the geometric range
and the bitmap match, add this object into the results
set.

In order to achieve the above search algorithm over en-
crypted databases, the key part is to check whether a query
intersects with a rectangle (i.e., bounding area of a non-leaf
node) at a non-leaf node and also verify whether a point is
inside a query at a leaf node in the ciphertext domain. It is
obvious to see that we can still leverage the same method
in our proposed PBRQ-L to check whether a point is inside
a query over encrypted data and whether the bitmaps are
matched. As for check whether a query intersects with a
rectangle at a non-leaf node, we can also use a similar method.
As shown in Fig. 4(b), if a bound point of the non-leaf node
insides a query or the center point of the query insides the
non-leaf node, the query intersects with the non-leaf node.

Therefore, each non-leaf node can be generated as bound
points and a bounding area. The Gray code of bound points
and the bounding area are encrypted by SHVE.KeyGen,
SHVE.Enc, respectively. The query range is generated as
a center point and queried area, where the center point is
encrypted by SHVE.Enc and the query range is encrypted by

Fig. 6. An example of Bloom filter

SHVE.KeyGen. In this way, CSP is able to check whether
a query range intersects with a rectangle at a non-leaf node.
The detail of PBRQ-Q is shown in Fig. 5

Performance Improvement. In the above schemes, bitmaps
are stored in each non-leaf node and spatial object for fast
pruning and keywords match. However, it is a challenge in
large-scale data applications that the length of the bitmap
increases as the number of keywords contained in the data
set increases, which incurs increasing storage, search, and
communication cost. To address this issue, we further improve
the proposed schemes using the Bloom Filter (BF). A BF
is an efficient probabilistic (indexing) data structure to store
information about the existence of an item in a dataset [27].
It is constructed from a set of t independent hash functions
hi(·). Each hash function produces a uniformly distributed bit
location in the range [0,m−1] for a given message, where m is



the bit-length of hash function’s output. To map an keyword
set W to a Bloom filter B, calculate H1 = h1(W ), H2 =
h2(W ), ...,Ht = ht(W ) and set B[Hi] = 1, where i ∈ [1, t].
As shown in Fig. 6, to check whether “key” or “test” is in the
dataset, a search user generates BF using h1, ..., ht. Each “1”
bit of “key” matches the corresponding bit of dataset’s BF, the
“key” probably exists; two “1” bits of “test” does not match
the corresponding bit of dataset’s BF, it does not exist. The
probability for false positives of a BF is computed as

f = (1− (1− 1

m
)|W |t)t ≈ (1− e−|W |t/m)t,

where |W | is the number of keywords in BF, m is the length
of BF, and t is the number of hash functions. We can use
Bloom filter instead of the bitmap in each non-leaf node and
spatial object of BQ-tree. Thus, each spatial object stores a
Gray code vector of spatial position and a Bloom filter B of
textual keywords contained in the current object. As for each
non-leaf node of the index tree, it stores the token vectors of
its bounding area and a Bloom filter B of all textual keywords
contained in its children, which can be calculated by the “OR”
operation of all its children’s Bloom filter.

V. SECURITY ANALYSIS

A. Security Definitions

Before presenting the formal security definition of PBRQ,
we first define four leakage functions:
• Size Pattern: CSP knows both the total number of

indexes stored on itself and the total number of range
queries (i.e., trapdoor) has been submitted by SU.

• Access Pattern: CSP reveals the identifier of each en-
crypted data returned for specific range query (i.e., trap-
door).

• Search Pattern: CSP can learn whether an encrypted
spatial data is queried by two different trapdoors.

• Path Pattern: CSP can learn how the search algorithm
traverse in the tree structure2.

These leaked information are default in most searchable en-
cryption schemes [1], [3]–[5], [28]. Given a database DB and
a query Q, we denote the above leakages as L(DB, Q).

Definition 2 (IND-SCPA Data Privacy of PBRQ). Let
Π = (Setup, IndexBuining, TrapGen, Query) be a PBRQ
scheme over security parameter λ. The security game between
a challenger C and an adversary A is defined as:
• Init: The adversary A submits two databases DB0 =
{D0,1, ..., D0,n} and DB1 = {D1,1, ..., D1,n} with the
same number of data objects to the challenger C, where
D0,i, D1,i ∈ ∆d

T (1 ≤ i ≤ n).
• Setup: The challenger C runs Setup(1λ) to generate a

master secret key msk and it keeps msk private.
• Phase 1: The adversary A adaptively submits a number

of requests, where each requests is one of the two
following types:

2This leakage function only works on the PBRQ-Q scheme because of
PBRQ-L does not use tree structure.

Ciphertext: On the j-th ciphertext request, A outputs
a dataset DB′j , where DB′j = {D′j,1, ..., D′i,n}, D′j,i ∈
∆d
T (1 ≤ i ≤ n). Challenger C responses with an

encrypted database EDBj ← IndexBuild(msk,DBj).
Trapdoor: On the j-th trapdoor request, A outputs a
Boolean geometric range query Qj = {Rj ,W ∗j }, where
R ∈ ∆d

T ,W
∗
j ∈ W . Challenger C responses with a

search trapdoor TQj ← TrapGen(msk,Qj), where Qj
is subject to L(EDB0, Qj) = L(EDB1, Qj).

• Challenge: With DB0,DB1 selected in Init, challenger
C flips a coin b ∈ {0, 1}, computes EDBb ←
IndexBuild(msk,DBb) to adversary A.

• Phase 2: The adversary A continues to adaptively submit
a number of requests, which are still subjected to the same
restrictions in Phase 1.

• Guess: The adversary takes a guess b′ of b.

We say that Π is secure against Selective Chosen-Plaintext
Attacks on data privacy if for any polynomial-time adversary
in the above game, it has at most a negligible advantage

AdvIND-SCPA-Data
Π,A (1λ) = |Pr[b′ == b]− 1

2
| ≤ negl(λ).

Definition 3 (IND-SCPA Query Privacy of PBRQ). Let
Π = (Setup, IndexBuild, TrapGen, Query) be a PBRQ
scheme over security parameter λ. The security game between
a challenger C and an adversary A is defined as:

• Init: The adversary A submits two distinct Boolean geo-
metric range queries Q0 = {R0,W

∗
0 }, Q1 = {R1,W

∗
1 },

where R0, R1 ∈ ∆d
T ,W

∗
0 ,W

∗
1 ∈W .

• Setup: The challenger C runs Setup(1λ) to generate a
master secret key msk and it keeps msk private.

• Phase 1: The adversary A adaptively submits a number
of requests, where each requests is one of the two
following types:
Ciphertext: On the j-th ciphertext request, the ad-
versary A outputs a dataset DB′j , where DB′j =
{D′j,1, ..., D′i,n}, D′j,i ∈ ∆d

T (1 ≤ i ≤ n). Challenger
C responses with an encrypted database EDBj ←
IndexBuild(msk,DBj), where EDBj is subject to
L(EDBj , Q0) == L(EDBj , Q1).
Trapdoor: On the j-th trapdoor request, A outputs a
Boolean geometric range query Qj = {Rj ,W ∗j }, where
R ∈ ∆d

T ,W
∗
j ∈ W . Challenger C responses with a

search trapdoor TQj ← TrapGen(msk,Qj).
• Challenge: With Q0, Q1 selected in Init, challenger
C flips a coin b ∈ {0, 1}, computes TQb ←
TrapGen(msk,Qb) to adversary A.

• Phase 2: The adversary A continues to adaptively submit
a number of requests, which are still subjected to the same
restrictions in Phase 1.

• Guess: The adversary takes a guess b′ of b.

We say that Π is secure against Selective Chosen-Plaintext
Attacks on query privacy if for any polynomial-time adversary



TABLE II
COMPARISON OF COMPUTATIONAL COMPLEXITY.

Scheme IndexBuild TrapGen Query
GRSE O(n)(6M + 2)Te 8MTe O(n)(2M + 2)Tp

GRSE-tree O(n+ n′)(6M + 2)Te 8MTe O(logn)(2M + 2)Tp
FastGeo O(τ)((6T + 2)Te + TPRF) O(τ ′)(8TTe + TPRF) O(τ ′)(2T + 2)Tp
PBRQ-L O(n)(2dlog2 Te +m)TPRF O(k)((2dlog2 Te +m)TPRF + TEnc) O(kn)((2dlog2 Te+m)TXOR+TDec)

PBRQ-Q O(n)(2dlog2 Te +m))TPRF +
O(n′)(2dlog2 Te(5TPRF+TXOR)+TEnc+mTPRF)

(O(k)2dlog2 Te +m)(TPRF + TXOR) +
(O(k) + 1)TEnc +mTPRF

O(k logn)((2dlog2 Te +m)TXOR +
TDec)

in the above game, it has at most a negligible advantage

AdvIND-SCPA-Query
Π,A (1λ) = |Pr[b′ == b]− 1

2
| ≤ negl(λ).

B. Security of Proposed Schemes

Theorem 1 (Data privacy of PBRQ). Our PBRQ schemes are
IND-SCPA data secure if the SHVE is IND-SCPA secure.

Proof. To prove the IND-SCPA data privacy of our PBRQ, we
simulate the security game defined in Def. 2 with an adversary
A′ from the ideal security game of the SHVE. And then we
demonstrate that compromising the IND-SCPA data privacy
of our PBRQ is equivalent to compromise the IND-SCPA of
SHVE, which contradicts the assumption that SHVE is IND-
SCPA secure proved in [21]. Specifically, by following Def. 2,
the security game of our PBRQ is essentially simulated by q
instances of SHVE, where q is the total number of SHVE
instances needed in the game. As a result, the adversary A′
could distinguish the two databases DB0 and DB1 as long as it
could distinguish any pair of two vectors in the security game
of SHVE. Then, we have

AdvIND-SCPA-Query
Π,A (1λ) ≤ AdvIND-SCPA

SHVE,A′ (1λ) ≤ q · negl(λ)

which proves the IND-SCPA data privacy of our PBRQ.

Theorem 2 (Query privacy of PBRQ). Our PBRQ schemes
are IND-SCPA query secure if the SHVE is IND-SCPA secure.

Proof. The query privacy of our PBRQ can be proved in a
similar way as the proof of the data privacy analyzed above.
We skip further details due to space limitations.

VI. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the proposed
schemes theoretically and experimentally.

A. Theoretical Analysis

The notations used in theoretical analysis are described in
TABLE III. Let ω be the size of a vector, then the computa-
tional cost of SHVE.Enc, SHVE.KeyGen, and SHVE.Query
are ωTPRF, ω(TPRF + TXOR) + TEnc, and ωTXOR + TDec,
respectively. In PBRQ-L, each data object is encrypted by
SHVE.Enc as a vector gp|bW in IndexBuild, which costs
(2dlog2 Te + m)TPRF. Each query is generated into k tokens
and encrypted by SHVE.KeyGen in TrapGen, which costs
k((2dlog2 Te+m)TPRF+TEnc). In Query, for each data object,
the computational cost is k((2dlog2 Te+m)TXOR+TDec). As for
PBRQ-Q, each non-leaf node of BQ-tree is generated as four

TABLE III
NOTATIONS FOR COMPARISON ANALYSIS

Notations Meaning
n size of dababase
n′ number of non-leaf nodes in index tree
m size of bitmap in our schemes
M size of BF in GRSE [3]
τ total number of spatial vector instances in the database
τ ′ number of index instances the server needs to evaluate
k number of range tokens
Tp time taken to compute a pairing
Te time taken to compute a exponentiation

TPRF time taken to compute a PRF
TXOR time taken to perform an exclusive-or operation over λ
TEnc time taken to perform a symmetric encryption
TDec time taken to perform a symmetric decryption

2dlog2 Te-bits bounding points (encrypted by SHVE.Enc), a
2dlog2 Te-bits bounding area token (encrypted by SHVE.Enc),
and a m-bits BF (encrypted by SHVE.KeyGen); each leaf
node of BQ-tree is generated as a 2dlog2 Te-bits spatial point
and a m-bits BF. Each search query in PBRQ-Q is generated as
k 2dlog2 Te-bits range tokens (encrypted by SHVE.KeyGen),
a 2dlog2 Te-bits center point (encrypted by SHVE.Enc), and a
m-bits BF (encrypted by SHVE.KeyGen). In Query, for each
data object, the computational cost is k((2dlog2 Te+m)TXOR +
TDec).

In TABLE II, we compare the computational cost of our
schemes with existing works. Note that the GRSE [3], GRSE-
tree [3], and FastGeo [4] are presented based on pairing-based
encryption SSW [13], while our PBRQ schemes are based
on symmetric key encryption SHVE. Therefore, the computa-
tional cost of the above three schemes is significantly higher
than that of our two PBRQ schemes because our schemes
avoid expensive pairing and exponentiation operations. We
will evaluate the performance of these schemes using the real-
world datasets in Section VI-B.

B. Experimental Evaluations

Setup and Implementation. We implement our schemes in
JAVA, where the code of SHVE is from [21]. Specifically,
the security parameter is λ = 128. For comparison, we also
implement the GRSE [3], GRSE-tree [3] and FastGeo [4] using
the JAVA Pairing-Based Cryptography (JPBC) library 3, where
the pairing operations are evaluated on super-singular curve
y2 = x3 + x. In our PBRQ-Q, the maximum capacity of

3http://gas.dia.unisa.it/projects/jpbc/
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Fig. 7. Actual experimental results of proposed schemes. (a), (b) The computational cost of IndexBuild; (c), (d) The computational cost of TrapGen; (e),
(f) The computational cost of Query.

deepest non-leaf nodes in BQ-tree is set to 16. In GRSE-tree,
the maximum capacity of each node in R-tree is also set as 16.
We leverage the Gowalla dataset4, which contains 6,442,890
location check-in data objects collected from 196,591 users, to
demonstrate the performance of our schemes. We preprocess
the original dataset before we apply it to our experiments.
Since the objects in Gowalla dataset do not contain textual
keywords, we randomly select a document from the Enron
dataset5 to extract 16 textual keywords for each object. We
set the size of BF in our PBRQ schemes as m = 256, t = 16,
such that the false positive is f ≤ (1 − e(−16×16)/256)16 ≈
4.2×10−7. We test our schemes over this dataset with different
data sizes. The experiments are conducted on a machine
running Ubuntu 14.04 with 16 Intel Xeon v2 CPU, 30GB
RAM.
Experimental Results. In our evaluation, each experiment
result is the average running time of 10 tests. In Fig. 7(a),
we plot the running time of IndexBuild in different size of
plaintext space T , where dataset size n = 10,000. We can
see that the running time of both schemes increases with
the size of plaintext space. This is because a larger T leads
to a longer Gray code of spatial point, which increases the
computational cost of SHVE.Enc and SHVE.KeyGen. In
addition, the running time of PBRQ-Q is longer than that of
PBRQ-L, which is caused by additional tree nodes. Fig. 7(b)
shows that the running time of IndexBuild in both schemes
linearly increases with the dataset size, where T =10,000.
It is worth noting that the running time only reflects the
computational cost of spatial data and index tree encryption to
focus on the core performance of the schemes, which ignores
the spatial point encoding and index tree building process.

4http://snap.stanford.edu/data/loc-Gowalla.html
5http://www.cs.cmu.edu/∼enron/

Fig. 7(c) plots the running time of TrapGen in different size
of T , where the number of range tokens k = 1. The same
as IndexBuild, the running time of both schemes increases
with the size of plaintext space because of the computational
cost of SHVE.Enc and SHVE.KeyGen increases with the
bit-length of the Gray code. We can also see from Fig. 7(d)
that the running time of TrapGen is linear increases with k,
since every range tokens need to be encrypted. The running
time of Query in different situations is shown in Fig. 7(e)
and Fig. 7(e). The search query is a 64×64 square associated
with three keywords. We can observe from Fig. 7(e) that
the running time of Query increases rapidly with T where
n = 10,000, k = 1, because the computational cost of
SHVE.Query is also increasing with the bit-length of the Gray
code. Fig. 7(f) shows that the search complexity of PBRQ-Q
is fast-than-linear and the running time of Query in PBRQ-Q
over million data objects is 92.7s, which is about 86× faster
than that of PBRQ-L.

TABLE IV
QUERY TIME COMPARISON AMONG SCHEMES

n 2× 104 4× 104 6× 104 8× 104 1× 105

GRSE 4.36 h 9.12 h 13.67 h 17.32 h 20.96 h
GRSE-tree 0.73 h 1.45 h 2.32 h 2.84 h 3.13 h

FastGeo 76.33 s 132.62 s 218.16 s 286.28 s 320.21 s
PBRQ-L 10.64 s 22.51 s 32.33 s 43.21 s 52.93 s
PBRQ-Q 0.92 s 1.64 s 2.07 s 2.92 s 3.14 s

Notes. s: seconds;
h: hours;

Finally, we compare our PBRQ schemes with two previous
schemes over our test dataset, where the plaintext space T =
1,000 and the dataset size n from 2×104 to 1×105. The size
of BF in two GRSE schemes is set as M = 1,000. The range



query is a 64× 64 square and the keyword set contains three
keywords. As we can observe from TABLE IV, our schemes
are extremely efficient. Even the query time of PBRQ-L is
faster than the most efficient previous scheme FastGeo, and
PBRQ-Q is at least 70× faster compared to FastGeo.

VII. CONCLUSION

In this paper, we proposed two privacy-preserving Boolean
range queries schemes over encrypted spatial databases for the
first time. Firstly, we designed a basic PBRQ scheme using
SHVE, bitmap, and Gray code. Then, we presented a novel
index structure called Bitmap Quadtree (BQ-tree) to reduce the
search complexity of the basic PBRQ scheme. In addition, we
rigorously analyzed the security of our schemes under IND-
SCPA. Finally, we implemented and evaluated our schemes
using real-world datasets, and showed that our schemes are
more efficient than existing schemes.
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