
i

A SOFTWARE DEVELOPMENT METHODOLOGY FOR SOLO SOFTWARE

DEVELOPERS: LEVERAGING THE PRODUCT QUALITY OF INDEPENDENT

DEVELOPERS

BY

SIBONILE MOYO

submitted in accordance with the requirements for

the degree of

DOCTOR OF PHILOSOPHY

in the subject

COMPUTER SCIENCE

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR

PROFESSOR E. MNKANDLA

February 2020

II

1 DECLARATION

Name: __________________________Sibonile Moyo _______________________________

Student number: ______________61514780___________________________________

Degree: ____________Doctor of Philosophy in Computer Science_________________

A Software Development Methodology for Solo Software Developers: Leveraging the

Product Quality of Independent Developers

I declare that the above thesis is my own work and that all the sources that I have used or quoted

have been indicated and acknowledged by means of complete references.

__ ________________ __ February 2020_______

SIGNATURE DATE

III

2 ABSTRACT

Software security for agile methods, particularly for those designed for individual developers,

is still a major concern. With most software products deployed over the Internet, security as a

key component of software quality has become a major problem. In addressing this problem,

this research proposes a solo software development methodology (SSDM) that uses as

minimum resources as possible, at the same time conforming to the best practice for delivering

secure and high-quality software products.

Agile methods have excelled on delivering timely and quality software. At the same time

research also shows that most agile methods do not address the problem of security in the

developed software. A metasynthesis of SSDMs conducted in this thesis confirmed the lack

practices that promote security in the developed software product. On the other hand, some

researchers have demonstrated the feasibility of incorporating existing lightweight security

practices into agile methods.

This research uses Design Science Research (DSR) to build, demonstrate and evaluate a

lightweight SSDM. Using an algorithm adapted for the purpose, the research systematically

integrates lightweight security and quality practices to produce an agile secure-solo software

development methodology (Secure-SSDM). A multiple-case study in an academic and industry

setting is conducted to demonstrate and evaluate the utility of the methodology. This

demonstration and evaluation thereof, indicates the applicability of the methodology in

building high-quality and secure software products. Theoretical evaluation of the agility of the

Secure-SSDM using the four-dimensional analytical tool (4-DAT) shows satisfactory

compliance of the methodology with agile principles.

The main contributions in this thesis are: the Secure-SSDM, which entails description of the

concepts, modelling languages, stages, tasks, tools and techniques; generation of a quality

theory on practices that promote quality in a solo software development environment;

adaptation of Keramati and Mirian-Hosseinabadi’s algorithm for the purposes of integrating

quality and security practices. This research would be of value to researchers as it introduces

the security component of software quality into a solo software development environment,

probing more research in the area. To software developers the research has provided a

lightweight methodology that builds quality and security into the product using minimum

resources.

IV

Keywords: agile methods; agility degree; design science research; industry developers,

software development methodology; software product quality; software quality; software

security; solo software development.

V

3 ACKNOWLEDGEMENTS

First and foremost, I wish to thank my supervisor, Professor Ernest Mnkandla for his dedication

in supervising this research. He has patiently guided and empowered me to do and complete

my research. He promptly gave feedback and direction whenever there was need to and showed

me the direction towards success. In the same vein, I wish to thank the UNISA School of

Computing for various forms of support given to this research.

I also thank my family for giving me the time to concentrate on this research. In particular, I

express my greatest gratitude to my husband Mahubo Moyo for taking care of the family while

I dedicated my time to this research. I thank my lovely daughters Thubelihle, Nomakhosi and

Nomqhele Moyo for looking after themselves while I concentrated on this work.

My greatest appreciation also goes the National University of Science and Technology

(NUST), Zimbabwe, for sponsoring my PhD studies. Apart from providing the financial

support needed to complete the study, the institution also funded my travel to conferences that

were key to the success of this study. Further, I wish to thank the NUST gate keeper, the

registrar for clearing me to conduct this research in the institution. Last but not least, I wish to

thank all the participants who took part in the demonstration and evaluation part of this

methodology. These include the Computer Science Part II class of 2018 from NUST, and the

three expert developers from industry. These participants helped to shape the Secure-SSDM to

be what it is in this thesis.

i

Table of Contents

DECLARATION... II

ABSTRACT ... III

ACKNOWLEDGEMENTS ... V

LIST OF FIGURES .. V

LIST OF TABLES .. VI

ACRONYMS AND ABBREVIATIONS .. VIII

PUBLICATIONS FROM THIS THESIS ... IX

CHAPTER 1 INTRODUCTION .. 1

1.1 Background .. 1

1.2 Software Quality .. 2

1.3 The Solo Software Development Environment ... 3

1.4 Problem Statement... 7

1.5 Research Aim ... 7

1.6 Research Questions .. 8

1.7 Research Objectives ... 9

1.8 Research Methodology .. 10

1.9 Ethical Considerations .. 11

1.10 Justification of the Research ... 11

1.11 Limitations of the Study .. 12

1.12 Chapter Summary and Thesis Outline .. 13

CHAPTER 2 THE SOFTWARE DEVELOPMENT LANDSCAPE 15

2.1 Introduction .. 15

2.2 Milestones in Software Development ... 17

2.3 Very Small-scale Software Development ... 19

2.4 Software Quality .. 22

2.4.1 Software Quality Models .. 24

2.5 Review of the Solo Software Development Environment ... 27

2.5.1 SSDM Meta-synthesis ... 28

2.5.2 Conducting the meta-ethnography .. 29

2.5.3 The Secure-SSDM Primary framework .. 44

2.5.4 Threats to validity.. 52

2.6 Exposing the gap in SSDMs .. 55

2.7 Tools for Methodology Design .. 57

2.8 Chapter Summary ... 57

II

CHAPTER 3 RESEARCH METHODOLOGY .. 58

3.1 Introduction .. 58

3.2 Research Paradigm .. 59

3.3 DSR Research Methodology (DSRM) .. 64

3.3.1 Identifying the problem ... 66

3.3.2 Defining solution objectives.. 68

3.3.3 Designing and developing the proposed artefact .. 69

3.3.4 Demonstrating the utility of the artefact ... 70

3.3.5 Evaluation.. 71

3.3.6 Communicating the results of DSR research .. 76

3.4 Conclusion .. 77

3.5 Chapter Summary ... 79

CHAPTER 4 SECURE-SSDM REQUIREMENTS ANALYSIS 80

4.1 Introduction .. 80

4.2 Requirements.. 81

4.3 Analysis of the Existing Lightweight SSDMs .. 81

4.3.1 Freelance as a Team (Faat).. 82

4.3.2 Personal Extreme Programming (PXP1)... 84

4.3.3 Personal Extreme Programming (PXP2)... 86

4.3.4 Government -Scrum (Go – Scrum) ... 87

4.3.5 Scrum solo ... 89

4.3.6 DeSoftIn .. 91

4.3.7 Initial Software Development Method (MIDS) Adaptation 92

4.4 Analysis of secure software development practices. ... 94

4.4.1 Security standards adoption .. 95

4.4.2 Conducting security awareness programs ... 96

4.4.3 Misuse case identification and creation .. 96

4.4.4 Security test definition .. 98

4.4.5 Misuse case design .. 98

4.4.6 Source code security reviews .. 99

4.4.7 Security tests ... 99

4.5 Secure-SSDM Requirements... 106

4.5.1 Lightweight methodology ... 106

4.5.2 High Quality .. 109

4.6 Chapter Summary ... 112

III

CHAPTER 5 SECURE-SSDM DESIGN ... 114

5.1 Introduction .. 114

5.2 Secure-SSDM Design ... 115

5.2.1 Embedding security practices into Agile methods .. 116

5.2.2 Integrating quality and security practices.. 118

5.3 The Secure-SSDM .. 128

5.3.1 Management Buy-in and Standards Adoption .. 130

5.3.2 Functional and Security Requirements Elicitation .. 131

5.3.3 Release and Sprint planning .. 134

5.3.4 Development with code and security review .. 135

5.3.5 Sprint review and close ... 136

5.3.6 Evaluation.. 136

5.3.7 Modelling the Secure-SSDM .. 138

5.4 Secure-SSDM demonstration .. 140

5.5 Chapter Summary ... 142

CHAPTER 6 SECURE-SSDM DEMONSTRATION .. 143

6.1 Introduction .. 143

6.2 Demonstrating the utility of the Secure-SSDM ... 144

6.2.1 Conceptualising the ICS .. 145

6.2.2 ICS functional and security requirements elicitation .. 146

6.2.3 Release and sprint planning... 149

6.2.4 Development with Code review .. 155

6.2.5 Sprint close and review ... 156

6.2.6 Evaluation.. 156

6.3 Academic Case study ... 157

6.3.1 Objectives of the Academic case study ... 160

6.3.2 Case study design .. 160

6.3.3 Case study theory .. 160

6.3.4 Data collection... 162

6.3.5 Focus group discussion results .. 163

6.3.6 Focus Group discussion data analysis ... 166

6.3.7 Document data analysis ... 167

6.4 Industry Developers Case Study .. 171

6.4.1 Participants demographic data .. 171

6.4.2 Case study software projects overview ... 172

IV

6.4.3 Results of the industry case study ... 172

6.5 Cross Case Study Results Analysis ... 177

6.5.1 Requirements ... 180

6.5.2 Developer .. 181

6.5.3 Customer ... 181

6.5.4 Secure-SSDM Practices .. 182

6.5.5 Product .. 183

6.6 Threats to Validity ... 184

6.7 Theoretical Evaluation of the Secure-SSDM ... 185

6.7.1 Evaluating the Secure-SSDM using the 4-DAT model .. 186

6.7.2 Theoretical Evaluation Discussion .. 195

6.8 Chapter Summary ... 196

CHAPTER 7 CONCLUSION ... 197

7.1 Introduction .. 197

7.2 Answering the Research Questions .. 197

7.3 Unexpected findings from this research .. 203

7.4 Knowledge Contributions ... 204

7.4.1 The Secure-SSDM... 204

7.4.2 Framework of quality practices in the SSD environment. .. 204

7.4.3 Adapted algorithm for integrating quality and security practices. 205

7.4.4 Research Publications ... 205

7.5 Limitations of the study ... 205

7.6 Research Implications ... 206

7.7 Recommendations for further work... 207

REFERENCES ... 208

APPENDICES .. 228

V

4 LIST OF FIGURES

Figure 2.1 Ten-year interval software development landscape (Boehm 2006) 18

Figure 2.2 : ISO/IEC 25010 quality practices (ISO 2010)... 26

Figure 2.3 : Grouping practices in the SSDM framework ... 44

Figure 2.4: Product quality theory ... 51

Figure 2.5: General software quality theory .. 52

Figure 2.6 : Mapping quality practices to ISO/IEC 25010 quality model 56

Figure 3.1: Knowledge flows in DSR (Vaishnavi, Kuechler & Petter 2017) 67

Figure 3.2: Using DSRM to design the Secure-SSDM (Adapted from Peffers et al. 2009) ... 78

Figure 5.1: Secure-SSDM practices integration process ... 129

Figure 5.2: Customer login use case/misuse case .. 132

Figure 5.3: Secure-SSDM stages summary ... 137

Figure 5.4: Secure-SSDM stages definition in EPF Composer ... 139

Figure 5.5: Defining prioritised product backlog in Secure-SSDM 140

Figure 6.1: ICS use case diagram .. 148

Figure 6.2: Denied post request sequence diagram for an authentic user 151

Figure 6.3: Message posting by user with rights (courtesy of Participant A)........................ 152

Figure 6.4: Creating a user by an admin with rights to create users (courtesy of Participant A)

.. 153

Figure 6.5: Unauthorised user attempt to register a user (courtesy of Participant A) 154

Figure 6.6: Activity diagram for posting a message .. 155

Figure 6.7: Summary of evaluation of the Secure-SSDM using the 4 DAT-Framework 194
Figure 7.1: Answers to the research questions ... 202

file:///C:/Users/HP/Desktop/Mum/Moyo%20Thesis%2061514780%20Corrected.docx%23_Toc49429923
file:///C:/Users/HP/Desktop/Mum/Moyo%20Thesis%2061514780%20Corrected.docx%23_Toc49429925
file:///C:/Users/HP/Desktop/Mum/Moyo%20Thesis%2061514780%20Corrected.docx%23_Toc49429926
file:///C:/Users/HP/Desktop/Mum/Moyo%20Thesis%2061514780%20Corrected.docx%23_Toc49429929
file:///C:/Users/HP/Desktop/Mum/Moyo%20Thesis%2061514780%20Corrected.docx%23_Toc49429930
file:///C:/Users/HP/Desktop/Mum/Moyo%20Thesis%2061514780%20Corrected.docx%23_Toc49429932
file:///C:/Users/HP/Desktop/Mum/Moyo%20Thesis%2061514780%20Corrected.docx%23_Toc49429933
file:///C:/Users/HP/Desktop/Mum/Moyo%20Thesis%2061514780%20Corrected.docx%23_Toc49429934
file:///C:/Users/HP/Desktop/Mum/Moyo%20Thesis%2061514780%20Corrected.docx%23_Toc49429941
file:///C:/Users/HP/Desktop/Mum/Moyo%20Thesis%2061514780%20Corrected.docx%23_Toc49429942

VI

5 LIST OF TABLES

Table 2.1: Top ten development priority list (Laporte, April & Renault 2006) 20

Table 2.2: Database search results ... 32

Table 2.3: Data extraction template ... 33

Table 2.4: Translation of studies .. 41

Table 3.1: Research paradigms and their dimensions: adapted from Wahyuni (2012, p.25);

Vaishnavi, Kuechler and Petter (2017, p.25) ... 63

Table 3.2: Quality practices, associated product quality characteristics and sub-characteristics

.. 74

Table 4.1: MIDS adaptation practices (adapted from León-sigg et al. 2018) 93

Table 4.2: Quality and security promoting practices ... 101

Table 5.1: Computing SSDM core practices degrees of agility... 120

Table 5.2: Computing agility degrees of security practices ... 122

Table 5.3: SSDM and security practices compatibility matrix .. 124

Table 5.4: Secure-SSDM activities, tools and techniques ... 126

Table 5.5: Embedding misuse case into use case description .. 133

Table 6.1: Template for capturing user requirements .. 147

Table 6.2: Test cases for each ICS component .. 150

Table 6.3: Case study theory .. 161

Table 6.4: Focus group discussion general comments... 163

Table 6.5: Secure-SSDM phase by phase analysis .. 165

Table 6.6: Suggestions for improvement ... 166

Table 6.7: Focus group data analysis ... 166

Table 6.8: Project distribution according to application areas ... 168

Table 6.9: Types of application systems developed .. 168

Table 6.10: Intermediate models produced by student participants 169

Table 6.11: Industry participants demographic data .. 171

Table 6.12: General comments by industry participants ... 173

Table 6.13: Industry developers’ phase by phase perception of the Secure-SSDM 176

Table 6.14: Cross-case data analysis ... 178

Table 6.15: Secure-SSDM method scope evaluation .. 188

Table 6.16: Evaluating the Secure-SSDM phases degrees of agility 189

Table 6.17: Evaluating the Secure-SSDM practices degrees of agility 190

Table 6.18: Comparing the agility of the Secure-SSDM to that of DeSoftIn 191

Table 6.19: Evaluating the Secure-SSDM support for agile values 192

VII

Table 6.20: Secure-SSDM characterisation using the 4-DAT Framework 193

VIII

6 ACRONYMS AND ABBREVIATIONS

4-DAT 4-Dimensional Analytical Tool

C Compatible

ICS Internal communication system

ICTS Information communication services

NC Not compatible

NUST National University of Science and Technology

PXP1 Personal eXtreme Programming developed by Agarwal and Umphress

PXP2 Personal eXtreme Programming by Dzhurov, Krasteva, and Ilieva

OOSCD Object oriented software concepts and development

QA Quality assurance

SAD Systems Analysis and Design

SDM Software development methodology

Secure-SSDM Secure solo software development methodology

SSD Solo software development

SSDM Solo software development methodology

VSD Very small-scale development

IX

7 PUBLICATIONS FROM THIS THESIS

Moyo, S. & Mnkandla, E. (2019). A Metasynthesis of Solo Software Development

Methodologies. IEEE International Multidisciplinary Information Technology and

Engineering Conference (IEEE-IMITEC 2019), Vanderbijlpark, South Africa.

Moyo, S. & Mnkandla, E. (2020) ‘A Novel Lightweight Solo Software Development

Methodology with Optimum Security Practices’, IEEE Access, 8, pp. 33735–33747. doi:

10.1109/ACCESS.2020.297100.

1

1 CHAPTER 1 INTRODUCTION

1.1 Background

The main aim of software engineering is to develop methods so as to inform and improve

practice (Dittrich 2016, p.221). Software development methodologies (SDMs) as part of

software engineering research, seek to achieve this aim through improving the analysis,

design, testing, implementation and maintenance of software. A high-quality SDM produces

a high-quality software product (Sommerville 2011; Pressman & Maxim 2015).

Several definitions of SDMs exist. An SDM is a systematic approach to software development

that incorporates system models, notations, rules, and design advice towards the production

of high-quality software (Sommerville 2011). Terms such as method, software process model

and software development process are at times used interchangeably with SDM. Defined as

a method, an SDM is an explicit description of an approach to software development

specifying stages, tasks, products, roles and actions associated with the development process

(Dittrich 2016, p.226). Pressman and Maxim (2015, p.40) define a software process model as

a set of activities and tasks, together with their organisation to deliver quality software. In a

way, a software development methodology organises the software development process so

that it produces high-quality software.

Two broad classes of SDMs exist. These are traditional and agile methods. Traditional

methods emerged as a solution to the software crisis (Naur & Randell 1968). Designed to

bring order into the software development process, these tend to be prescriptive, heavyweight

and associated with a lot of documentation. The documentation guides and ensures that

software developers systematically navigate the systems development life cycle (SDLC).

Developers’ activities are recorded in prescribed documents and in a particular format.

Examples of such methodologies include the Waterfall model, the V-model and, the Spiral

model just to name a few. Agile methods on the other hand are less prescriptive and

lightweight. These have since gained popularity due to their ability to deal with the changing

development environment, reduced development costs and reduced time to market (Nurdiani

et al. 2019, p.1). Popular representatives of agile methods include eXtreme Programming (XP)

(Beck & Andres 2004), Scrum (Schwaber 1997), and the Crystal family (Cockburn 2004).

2

SDMs are further classified as either personal or team-based. Personal SDMs support

independent developers in their quest for producing quality software. Activities in these

methods are organised such that the various roles in the development process are played by

an individual working alone. They are designed to address the unique needs of a solo

developer. A seminal example of Personal SDMs is the Personal Software Process (PSP)

(Humphrey 1995). Team-based SDMs on the other hand are targeted at coordinating various

roles in a software project. These define different roles and responsibilities in the team. Focus

here is made on defining communication channels among team members and coordination of

the various members towards the delivery of high-quality software. This thesis focuses on

personal SDMs.

Most research on SDMs has focussed on team-based methods at the expense of methods

designed for individuals (Agarwal & Umphress 2008; Bernabé, Navia & García-Peñalvo

2015, Dzhurov, Krasteva & Ilieva 2009; Kruchten 2002). These individuals, also known as

solo developers or freelancers, have the sole responsibility of delivering quality software. The

delivered product is usually small to medium size, and in some cases, a component of a larger

product. Solo developers contribute remarkably to the design of software in the market today.

Their contribution can be seen both in the open source community and commercial software.

Section 1.3 elaborates on this contribution and shows why it is necessary for researchers to

focus on this lot of developers as well.

1.2 Software Quality

Software quality is a core component of a successful software development project. Many

definitions of software quality exist (Sfetsos & Stamelos 2010, p.44; García-Mireles et al.

2012, p.134). García-Mireles et al. (2015, p.150) define software quality from a software

product and software process perspective. The software process perspective considers the

capability of a process to deliver quality software. This perspective upholds that a high-quality

process produces a high-quality software product. Methods, activities, tools and techniques

are defined within the development process to support product quality (Fuggetta 2000).

The software product perspective considers software quality to be the expected quality

characteristics of a product, derived from a particular quality model (García-Mireles et al.

2015, p.150). These characteristics form part of the non-functional requirements of the

software product (Nistala et al. 2016, p. 134). The quality model in this case serves as a basis

3

for evaluating the product quality. A quality product is therefore expected to portray in

addition to functional requirements, these non-functional requirements (Kadi et al. 2016).

According to Nistala et al. (2016 p.134), software quality is simply the ability of a software

product to meet (both stated and implied) requirements. For those requirements, identified and

agreed upon by project stakeholders, appropriate practices for developing the product are

enacted and monitored to attain the required quality. In most cases, a separate quality

assurance team is set to monitor the development team’s adherence to the expectations.

Separating the development team from the quality assurance team is a traditional approach to

software quality assurance (Marchewka 2015 pp.242-246). Agile methods have a different

approach to assuring software quality. Quality assurance (QA) techniques in agile methods

are normally embedded in the software development process (Mnkandla & Dwolatzky 2007,

pp.8-9; Sfetsos & Stamelos 2010, p.44; Janus et al. 2012, p.12). Embedding quality practices

in the software development method transfers the responsibility of QA to the software

development team (Janus et al. 2012, pp. 11-12). Agile methods empower development teams

to both establish software requirements and to ensure that quality is built into the resulting

software product. This team empowerment is most ideal for solo development environments

where the developer has to play both the development and quality assurance roles.

This research adopts the agile approach to building quality into the designed software product.

A generic agile SSDM that embeds quality and security practices and techniques to promote

building of high-quality software products is proposed. The proposed Secure-SSDM is

designed to be lightweight to address the unique characteristics of the solo development

environment. The solo development environment is characterised by limited resources

(human, financial and technical) (Basri & O’Connor 2010). Besides the limited resources, the

solo development environment is also associated with fast development speed and

multitasking as developers often have to work on several projects at the same time. Further,

in a solo development environment, peer review, which is an important component of quality,

is not readily available. Section 1.3 details the characteristics of the solo software development

environment.

1.3 The Solo Software Development Environment

In a solo software project, one person takes on the full responsibility of the development

process in the project. The success of the development effort is heavily dependent on the solo

4

developer. The developer is responsible for every technical aspect of the software project and

the resulting product. Usually the developer assumes various roles during the software

development process, which in most cases requires self-criticism to ensure quality in both the

process and the resulting product. Solo developers have to work closely with the users as these

are their only source of readily available peer review.

Solo software development (SSD) dates back to the 1960s. This is the code and fix era of

individual (cowboy) programmers who could spend the whole night fixing errors in code

(Boehm 2006, p.14). These cowboys’ success at fixing the errors would then be celebrated

by the rest of the team after development resumes during the day. While cowboys in that era

were part of a team, the cowboy approach to software development has since evolved to

freelance software development. Instead of being part of a team, most freelancers develop

software as individuals.

Freelance (solo) software development is a growing industry, particularly in developing

countries as it addresses the problems of unemployment and those of high transportation costs

(Haq et al. 2018). The growth in freelance software development is seen in the upsurge of

freelancers in the mobile applications industry (Hsieh & Hsieh 2013, p.309). Developers in

this industry contribute a number of innovative solutions such as gaming applications, health

management, and business management applications, among others. Further, the increase in

the numbers of websites that advertise these is another indicator of the popularity of this

industry (Ahmed & Hoven 2010, p.416). Global examples of websites advertising software

development freelancers include Toptal, Upwork, Guru and Freelancer (Steiner 2015), just to

name a few.

South Africa like all developing countries has also seen a remarkable growth in the freelance

software industry. This is evident from the number of websites linking freelancers with

prospective clients. South African websites engaged in freelance business include but are not

limited to: Hire a programmer; Toptal South Africa; and Payperproject. Hire a programmer

classifies developers into Web (450 profiles), App (180 profiles), Database (480 profiles) and

Desktop (450 profiles) developers (Hap 2020). While these numbers of profiles are not

necessary mutually exclusive, (as most desktop developers would also qualify as database

developers) this website indicates a viable industry. Toptal South Africa, like its global

counterpart emphasizes in providing top talent programmers to clients locally and globally.

Most developers advertising their skills in this site indicate whether they are available

5

remotely or onsite. This is the favourable characteristic of freelancing as it means developers

can be employed from anywhere.

As developers engage in a global market, it is important that these freelancers are equipped

with skills that enhance their competitiveness in this market. Most freelance websites provide

a rating facility that reflects customer satisfaction on the services provided by the developer.

The freelancer’s rating increases their chances of being hired. Solo developers adopting the

necessary quality and secure software development skills improve the quality of their software

products. This in turn improves customer satisfaction and developer rating. This thesis

proposes a secure software development methodology, that can be adopted by freelance

developers seeking to improve the quality and security of their software products, at the same

time enabling them to gain a competitive advantage in the software development industry.

The solo development environment unlike the team environment has its unique characteristics

that impact on the quality of the developed software products (Laporte et al. 2006, p.3;

ISO/IEC 2014, p1) :-

i. Limited resources – where the developer is the sole owner of the development house,

resources tend to be limited (Wongsai et al. 2015, p.14; Keshta & Morgan 2017,

p.24163). The little resources are therefore solely used to support activities directly

linked to the development of the product (Coleman & O’Connor 2008¸ p.773; Basri &

O’Connor 2010, p.1457).

ii. Minimal knowledge management on the development process – Software

development is heavily dependent on knowledge management. Knowledge from past

projects inform decisions on current projects. Due to limited resources coupled with

fast development speed, solo developers may not have the capacity and time to

maintain a database of past projects (Paternoster et al. 2014, p.2).

iii. Fast development time – The current software development environment demands fast

software product delivery. Apart from dealing with fast development speed that

characterises today’s software industry in general, solo developers need to deal with

the execution of simultaneous projects for survival in the market (Bernabé, Navia &

García-Peñalvo 2015, p. 687).

These unique features of this environment are the main reason why there is need to develop

methods tailored for such an environment.

6

Several researchers have tackled the problem of developing methods for such an environment.

Both heavyweight and lightweight methods have been designed for the purpose. As indicated

in Section 1.1, PSP is a well-established process, designed to support independent developers

working on individual sized software modules. Developers using PSP perform design and

code reviews, with the aim of removing most of the defects before software testing. In doing

so, developers record their data on identified defects on logs, which are then used to plan

future development efforts (Humphrey 2000). Various studies have confirmed the utility of

PSP in designing quality software products (Abrahamsson et al. 2002; Pressman & Maxim

2015).

While PSP’s utility in developing quality software products has been empirically established,

its main disadvantage is that it is document heavy. Due to its heavy documentation processes,

its complexity, lengthy training sessions and high training costs, PSP has not been widely

adopted in industry (Pressman & Maxim 2015). Further, PSP is designed to prepare

developers to fit into a Team software process (TSP) environment, and not necessarily to

continue in a solo environment. In response to the short comings of PSP, some researchers

(Agarwal & Umphress 2008; Dzhurov, Krasteva & Ilieva 2009; Bernabé, Navia & García-

Peñalvo 2015; González-Sanabria, Morente-Molinera & Castro-Romero 2017) have

developed agile SSDMs. Developing agile SSDMs is a growing research interest as is evident

from the cited publications. However, while this research area is attracting a number of

researchers, research efforts on SSDMs have not fully addressed the problem of developing

quality software. One of the quality aspects that have not been fully addressed by these

methods is that of security.

Most agile methods lack features designed to build security into the software product (Ayalew,

Kidane & Carlsson 2013; Firdaus, Ghani & Jeong 2014; Ghani, Azham & Jeong 2014;

Othmane et al. 2014; Rafi et al. 2015). From the literature reviewed in this thesis, no research

has tackled the problem of incorporating security practices into the development process in an

SSDM context. With the increase in the adoption of agile methods in the software

development practice, the lack of security in agile methods becomes a great concern. This is

further fuelled by the increase in both the numbers and complexity of security threats to

individual and organisational assets. With most services deployed over the Internet, security

consideration becomes a must in the software development process.

7

This research utilises existing lightweight SSDMs to derive best practices in developing

software in the solo development environment. The research posits that, using an appropriate

methodology, the quality practices in the SSDM knowledge base can be synthesised to

produce a higher quality SSDM (Peffers et al. 2008, p.49). Having shown using a

metasynthesis conducted in Chapter 2 that existing SSDMs lack security practices, the

research draws lightweight security practices from secure software development methods. The

identified security practices are systematically integrated with the quality practices from the

SSDMs to design the proposed Secure-SSDM.

1.4 Problem Statement

Software development methodology research has focused on large and small scale

development at the expense of individual (solo) software development (Hollar 2006; Bernabé,

Navia & García-Peñalvo 2015; Agarwal & Umphress 2008; Dzhurov, Krasteva & Ilieva

2009). Further, the few existing lightweight SSDMs do not address the security aspect of the

developed software. This lack of security promoting practices in agile methods in general, is

corroborated by a number of researchers (Beznosov & Kruchten 2004; Ghani, Azham & Jeong

2014; Baca et al. 2015; Aguda 2016). Insecure software development methodologies build

insecure software products (Homaei & Shahriari 2019).

In trying to address the problem of insecure software development, this research proposes an

agile Secure-SSDM, designed to improve the quality and security of software developed by

solo developers. Using the DSR methodology, lightweight quality and security practices are

identified from the SSDM and secure software development literature respectively. The

identified practices are used to create a higher quality methodology with practices that

promote quality and security in the developed software. Keramati and Mirian-Hosseinabadi’s

algorithm is adapted for the purposes of slyly integrating core quality practices with security

practices while maintaining the agility of the resulting practices.

1.5 Research Aim

The aim of this research is to design and implement a secure-solo software development

methodology (Secure-SSDM) that covers the complete SDLC. The methodology is designed

through the identification and integration of quality with security promoting practices, tools

and techniques from existing SSDMs and secure software processes respectively. A satisficing

design of the proposed Secure-SSDM is produced to meet the solo developers’ requirements.

8

The main contribution of this thesis is the Secure-SSDM which entails description of the

concepts, modelling languages, stages, tasks, tools and techniques (Dittrich 2016). The

designed methodology is unique for the solo environment in that it incorporates security

promoting practices which are not present in the current SSDMs. The second contribution is

the generation of the theory on how the methodology promotes quality in the developed

software (Hevner et al. 2004). A third contribution is the adaptation of an existing algorithm

to systematically integrate quality practices with lightweight security practices. In integrating

the two types of practices, care is taken not to compromise the agility of the resulting

methodology. These contributions are elaborated in Chapter 7.

1.6 Research Questions

In order to address the foregoing problem, the research provides answers to the following

research question (RQ): -

RQ. How can a lightweight solo software development methodology be designed to use

as minimum resources as possible, at the same time conforming to the best practice for

delivering secure, high-quality software products?

A Secure-SSDM was developed through integrating quality practices extracted from existing

SSDMs with lightweight security practices extracted from secure software development

methodologies. A multiple-case study and the 4-DAT framework were used to evaluate the

utility and agility of the methodology.

To answer the main question, the following sub-questions were pursued: -

SQ1. What methodologies exist for lightweight solo software development?

SQ2. What software development strategies and techniques in the identified methodologies

promote quality in the developed software?

SQ3. What lightweight practices and techniques in the software development life cycle

promote security in the developed software?

SQ4. How can quality and security practices from lightweight software development

methodologies be synthesised into a solo software development methodology that promotes

quality and security in the developed software?

SQ5. How can the resulting methodology be evaluated?

9

1.7 Research Objectives

Motivated by the questions raised in Section 1.6, the objectives of this study can be

summarised as follows:

i. To explore the existing lightweight solo development methodologies.

A systematic literature review of lightweight solo software development methods was

conducted. This facilitates the understanding of the current methodologies and their focus.

The literature was used to fully expose the gap to be filled by this research. Processes,

practices, techniques and tools for software development were explored. Approaches to

methodology design and development were reviewed for the production of a high-quality

methodology. The literature survey is discussed in Chapter 2.

ii. To analyse existing methodologies’ practices designed to enable quality in the

developed software

Using metasynthesis, quality practices from lightweight SSDMs were identified, analysed and

organised into a framework for solo software development. The ISO/IEC 25010 quality model

was used to assess the quality of the resulting framework. The framework has been iteratively

refined to produce a desirable base for the formulation of the Secure-SSDM. The analysis is

performed in Chapters 2 and 4.

iii. To identify lightweight security practices from existing lightweight methodologies

Secure software development literature was reviewed to identify security promoting practices

for possible integration with quality practices in the framework from (ii). A systematic

literature review by Rindell, Hyrynsalmi and Leppänen (2017) was used as a source to identify

literature discussing secure software development together with associated security practices.

The security practices are analysed in Chapter 4.

iv.To synthesise the lightweight quality and security practices to produce secure quality

software development practices.

Using Keramati and Mirian-Hosseinabadi’s adapted algorithm, quality and security practices

were synthesised into secure-quality practices to produce the secure-software development

methodology. A comprehensive description of the methodology was provided, together with

guidelines on methodology application. Techniques, tools and deliverables from the

10

methodology stages were fully documented. The synthesis of the practices is performed in

Chapter 5.

v. To evaluate the utility of the resulting methodology through the development of

software products in an industry setting.

The Secure-SSDM was theoretically evaluated using the 4-DAT framework, and naturally

evaluated using a multiple-case study. The theoretical evaluation focused on assessing the

agility of the artefact while the natural evaluation focused on the utility of the method. The

first case study was conducted in an academic setting, with the second one conducted in an

industry setting with solo software developers in and around Bulawayo, Zimbabwe. Solo

developers in these two settings were asked to use the methodology to develop software

products. Qualitative data on the perceptions of solo developers using the methodology was

collected and analysed qualitatively. Results from the study show that the Secure-SSDM can

be used to develop high-quality and secure software products. The evaluation is performed in

Chapter 6.

1.8 Research Methodology

A research methodology provides a systematic means for undertaking the research. A research

methodology is premised on the research paradigm adopted for the research. In this thesis

DSR was adopted as the overarching paradigm. DSR was used to identify the problem,

propose and evaluate the solution for its utility. DSR was complemented by the Interpretivist

paradigm for the purposes of dealing with the perceptions of the freelance developers at the

conception and evaluations stages of the research.

Following closely the DSR methodology, the Secure-SSDM was designed incrementally and

iteratively, with every iteration constituting methodology refinement. First, quality and

security practices were separately drawn from the existing SSDMs and small-scale SDMs

knowledge bases respectively. These were then integrated using an algorithm adopted and

adapted for the purpose. The Secure-SSDM was then applied in an academic setting. A focus

group discussion and document analysis were used to collect the perceptions of the student

developers on the methodology. Data was analysed qualitatively. Feedback obtained from

participants’ views on the utility of the methodology in building quality and secure software

was used to refine the Secure-SSDM.

11

The refined version of the Secure-SSDM was applied in an industry setting. Three developers

used the methodology in developing software products of their choice. Interviews were then

held with the developers to collect their perceptions on the methodology. Individual member

checking of the collected data was conducted through electronic mail. This was done to ensure

the reliability of the findings of the study. Feedback from the participants was analysed

qualitatively. At the conclusion of the research, a feedback meeting was held with the three

expert developers. This was done to minimise researcher bias and to improve the accuracy of

the interpretation of the participants’ perceptions (Santos, Magalhãe & da Silva 2017, p. 188).

The Interpretivist approach guided the data collection and analysis during the evaluation of

the primary and final versions of the Secure-SSDM. A theoretical evaluation was also

performed to assess conformance of the methodology with agile principles. This provided for

the rigour that is characteristic of DSR.

1.9 Ethical Considerations

The Secure-SSDM’s utility and quality were evaluated both theoretically and empirically. For

the empirical evaluation, the methodology was used by developers to design software products

in a multiple-case study. Interviews and focus group discussions were conducted to obtain the

developers’ perceptions on the utility of the methodology. For the academic case study,

clearance was sought with the university gate keeper before conducting the research. Further,

an informed consent from each of the industry developers was obtained. Using the university

gate keeper’s letter and the informed consent letters from the developers, an ethical clearance

with UNISA was obtained. The gate keeper letter of clearance and the UNISA ethical

clearance are attached in appendix A.

1.10 Justification of the Research

As software continues to penetrate various aspects of human life, product quality becomes of

paramount importance to both its users and business. High-quality and secure software has a

positive impact on its users, and the business environment. Software developers are therefore

indebted to deliver high-quality software to their users and business if this positive impact is

to be achieved. SDMs enhance the quality of software products through incorporating

practices for building quality and security into the resulting software product. In this research,

such practices are referred to as, quality promoting practices.

12

The advent of mobile and web-based applications has led to an increase in the solo

development environment. Due to their size, these applications can easily be handled by an

individual working alone. At the same time research shows that a number of design flaws

during web applications development contribute remarkably to security breaches in web

applications (OWASP 2006, 2017; Hakim, Sellami & Abdallah 2016). Security breaches on

websites result in loss of assets and has a negative impact on both individuals and business

(Hakim, Sellami & Abdallah 2016, p.182). As the mobile and web applications industries

continue to grow, so will the need for solo software development methods. The arguments

raised in this paragraph point to the need of developing methods that can be used by individual

developers in enhancing the quality and particularly the security of their software products.

Besides the mobile and web applications development environment, particular open source

environments such as the Ruby on Rails community, thrive on contributions of software

components (gems) from solo developers known as lone wolves. Gems are a key component

of the Rails ecosystem as they are used as components in a number of software products. A

lone wolf in the Rails ecosystem is a solitary developer that has produced the most important

gems for the ecosystem, independent of other developers. An analysis of the Ruby software

development ecosystem by Kabbedijk and Jansen (2011, p.9), revealed that the ecosystem was

heavily dependent on five key lone wolves. The results of this analysis confirm the importance

of solo developers in software development. The key role played by lone wolves in this

community, and any other open source community using a similar approach, certainly calls

for a software development methodology for use by these developers. A high-quality software

development methodology would therefore enhance the quality of their software products and

ultimately those of the ecosystem.

1.11 Limitations of the Study

The SSDM quality framework on which the Secure-SSDM is premised is built on documents

obtained through an electronic search. The limitation of this approach is that some

unpublished documents or those indexed by databases that were not included in the literature

search might have been missed. The quality framework is therefore representative of only

those studies that were included in the systematic literature survey. Further, since the

methodology is tested through application by an autonomous developer (s), it is not possible

to separate the experience or capability of the developer from the quality of the methodology.

The quality of a software is dependent on the experience of the team, the methodology in use

13

and the project environment. Experienced developers can deliver a high-quality product with

minimal adherence to a development methodology. Another limitation is that this research did

not define any quantitative metrics for evaluating the impact of quality and security practices

on the application programmes designed using this methodology. This research used practices

that have been proved to be effective by other researchers, therefore proving each practice’s

effect on the quality of the software of the product is outside the scope of this research.

1.12 Chapter Summary and Thesis Outline

This chapter has highlighted the problem this research is meant to solve. Section 1.6

highlighted the research question and associated objectives, providing answers for each of

these. Section 1.7 highlighted the research objectives, showing how each objective was

addressed. Further, the chapter gave an overview of the work undertaken in this study. An

outline of the research methodology used to build the Secure-SSDM was presented, together

with the limitations of the research. The thesis outline is given in the subsequent paragraphs.

Chapter 2 discusses the software development landscape. Starting with the software

development history, various achievements in software development are overviewed. This is

followed by a discussion of small-scale software development, showing the uniqueness of this

environment. An in-depth study of the solo software development environment is undertaken

in that chapter to expose the research gap which this research seeks to fill.

Chapter 3 details the research paradigm, research methodology and the data collection

methods adopted for the study. Section 3.3 overviews the DSR methodology adopted for

undertaking this research. Details of the multiple case study designed to evaluate the utility of

the Secure-SSDM are discussed in Section 3.3.5. The theoretical framework used to cement

the evaluation of the artefact is also discussed in Section 3.3.5.

Chapter 4 gives an analysis of the SSDM environment, paving way for the formulation of

requirements for the Secure-SSDM. Sections 4.3 and 4.4 analyse identified quality and

security practices respectively. Section 4.5 discusses the proposed Secure-SSDM’s expected

quality and security requirements.

Chapter 5 presents the design of the Secure-SSDM. Section 5.2 details the design process as

guided by the adapted algorithm of Keramati and Mirian-Hosseinabadi. Section 5.3 gives the

details of the stages and activities emanating from the design process. The section concludes

by modelling the artefact using the Eclipse Process Framework (EPF) composer.

14

Chapter 6 discusses the demonstration and evaluation activities carried out to prove the utility

of the Secure-SSDM. Section 6.2 details the demonstration of the artefact, followed by the

presentation of the academic and industry case study results in Section 6.3 and 6.4

respectively. Section 6.5 gives the theoretical evaluation, followed by discussion of the results.

In Section 6.6 threat for validity is discussed.

Chapter 7 reviews the objectives set at the onset of the thesis, showing how these were met.

The chapter further gives recommendations for future research, suggesting how other

researchers could improve on the practices embedded in the Secure-SSDM.

15

2 CHAPTER 2 THE SOFTWARE DEVELOPMENT LANDSCAPE

2.1 Introduction

In Chapter 1, an overview of the work undertaken in this research was presented through

detailing the research background, the problem statement, the aim that the research seeks to

achieve, research questions and research objectives. In that same chapter, the research

methods used to achieve the set objectives and main contributions of the study were

overviewed. Justification and limitations of the study were also presented. The chapter

concluded by outlining the layout of this thesis.

This chapter provides an answer to the first research sub-question which was stated as:

“SQ1. What methodologies exist for lightweight solo software development?

In paving way to provide the answer to this question, a brief overview of the software

development landscape in general is given in Section 2.2. This is followed in Section 2.3 by a

detail of the very small-scale software development environment. The solo software

development draws its characteristics from the latter. Software quality which forms a

backbone of this research is discussed in Section 2.4. Reviewing software quality at this stage

paves way for the in-depth review of existing SSDMs in the subsequent subsections, where

quality practices from existing SSDMs are identified. Section 2.5 presents a systematic review

of related work on SSDMs. That section details a meta-synthesis conducted to generate quality

theory on existing quality practices on solo software development. In addition, the section

presents a quality framework in solo software development. Section 2.6 exposes the security

gap in SSDMs by comparing the quality framework derived from existing SSDMs to the

ISO/IEEE 25010 (ISO 2010) quality standard. Section 2.7 concludes the chapter by redefining

the research direction of the thesis.

Various definitions of software development methodology exist. Pressman and Maxim (2015,

p.31) define a software development methodology (SDM) as a systematic approach to

software development that guides developers in producing quality software products. These

authors use the term software process as a synonym for SDM. In González-Sanabria, Morente-

Molinera & Castro-Romero (2017, p.25), a software development methodology is defined as

a process organised into a set of phases which offer robust tools and techniques that enable

16

developers to deliver high-quality software within a defined deadline, and according to set

objectives. This definition pertains to an individual development methodology.

The quality of an SDM determines the quality of the resulting software product (Sommerville

2011¸ p.656; Magdaleno et al. 2012, p.1; Iqbal et al. 2016, p.998). Although there are other

factors like developer experience, development environment, resource availability, that

impact on software product quality, the use of a quality methodology contributes positively to

the development of quality products (Fuggetta 2000). To that effect, in pursuit of quality

software products, researchers and organisations continue to design high-quality SDMs.

An important dimension of software development is the classification of the development

process according to development scale. The scale used differs from country to country, from

author to author (Fayad et al. 2000, p.115) and also according to metrics used for the scaling.

Common metrics used for scale classification include project time frame, project cost, number

of lines of source code, number of requirements and team size (Dingsøyr et al. 2014, p.3).

These dimensions are also variable. For example, project costs vary with country while

number of requirements vary with type of software product, and number of lines of code vary

with programming style, programming language used, and definition of line of code

(Marchewka 2015, p.133). Even more, program code could be generated using automated

tools (Dingsøyr et al. 2014, p.2), making classification based on lines of code difficult and

unreliable.

One way to classify software projects, is to use the number of people in a project. Using this

approach, projects can be classified as: very small-scale development (VSD), comprising of

one to twenty-five persons; small and medium scale development with more than twenty-five

persons but less than two hundred and fifty persons; large scale development, with two

hundred and fifty or more persons (Laporte et al 2006, p.3;ISO/IEC 29110 2014, pp.1-3). A

broader classification considers fifty or less developers in a project as small scale, and more

than fifty, as large scale Fayad et al. (2000, p.115). This research adopts the classification by

ISO/IEC 29110 (2014, pp.1-3), since this is an international standard. In this research, the

interest is on VSD undertaken by one person. This is referred to as solo development (Pagotto

et al. 2016, p.2; Ramingwong, Ramingwong & Kusalaporn 2017, pp.342-343).

Studies on software development have concentrated on medium to large scale development,

at the expense of very small scale development (Al-Tarawneh et al. 2011, p.1; ISO/IEC 29110

2014¸ p.1; Laporte et al. 2008, pp. 129-130). The design of the ISO/IEC 29110 standard and

17

agile methods have sought to address this gap. Most agile methods are designed for use by

small teams (Boem & Turner 2009, p.28; Schwaber 1997, p.16; Schwaber & Sutherland 2013,

p.6). Research however, also shows that despite the focus on small teams by agile methods

and the ISO/IEC 29110 standard, very small teams are still using ad hoc processes for software

development (Raunak & Binkley 2017, p.3). Further, research also shows that very few studies

are focused on solo software methodology design (Dent 2008, p.1; Dzhurov, Krasteva & Ilieva

2009, p.250; Bernabé, Navia & García-Peñalvo 2015, p.687). This chapter investigates

research on very small-scale development and poses the following question:

What research has been undertaken in very small-scale and solo software development in

view of promoting the software product quality of independent developers?

Before investigating the SSDM environment, it is important to explore the history of software

development in general. The history will give the reader the various efforts that have been

undertaken in the field, and by so doing show the neglect of the solo development

environment. It also provides the reader with trends in the research area, at the same time

paving way for new innovations, by drawing ideas from lessons learnt. Reviewing history

helps designers to avoid past pitfalls at the same time adopting successes of the past. In the

following sub-section, the software development landscape is overviewed.

2.2 Milestones in Software Development

History and the current state of practice in a particular area is important in shaping research

efforts (Raunak & Binkley 2017, p.6). Boehm (2006, pp.13-25), provides a ten-year interval

starting from 1950 through to 2010. A summary of this progression is shown in Figure 2.1.

As shown in the figure, software development practices have evolved from hardware

engineering focus (1950s), through code and fix (1960s), through the structured programming

era (1970s) which was followed by object orientation (1980s). Object orientation was

precursor to agile methods which were introduced around the 1990s. The publication of the

Agile manifesto (Fowler & Highsmith 2001) saw the hype of agile methods. An important

aspect of this history is the code and fix era which ushered in cowboy programmers. Cowboy

(solo) programmers in the 1960s could spend the whole night fixing errors in computer

programs for recognition as super-heroes (Boehm 2006, p. 14). This is important in this thesis

as it gives us an idea of the origins and characteristics of the solo software development

environment. Solo programmers usually do all the development on their own.

18

Figure 2.1 Ten-year interval software development landscape (Boehm 2006)

Another highlight in this travelogue is the decade of the 1990s. This decade saw the

development of the Personal Software Process (PSP) (Humphrey 1995). Although not a

lightweight method itself, PSP is an example of an SSDM. This research derives a lot of

influence from PSP. The latter is designed to guide software engineers in the planning and

tracking of their development progress (Humphrey 2000, p. 1). Studies on the use of PSP

have demonstrated that it improves process and product quality of individual engineers, as

well as improve effort and size estimation accuracy (Wesslén 2000, p.122; Pressman &

Maxim 2015, p.59; Hayes & Over 1997, p.2). However, despite its positive impact on software

quality, its uptake both in industry and academia has been minimal, due to its lengthy training

sessions and high training costs (Pressman & Maxim 2015, p.59) as well as its heavy data

recording practices (Sison et al. 2005, p.687). These are some of the reasons of undertaking

this research.

The same decade saw the advent of agile methods. Agile methods were designed with a focus

on small teams (Boehm & Turner 2009, p.28; Schwaber & Sutherland 2013,p.6). Since its

origins in the 1990s, agile research and uptake has continued to grow beyond its use by small

teams, to large scale and distributed development (Albadarneh 2015, p.1). Raunak and

Binkley’s recent study shows that agile adoption and research on agile practices is still a

19

topical issue in industry today (Raunak & Binkley 2017, p.6). However, although having

started with a focus on small-scale development, agile research has turned towards large-scale

development and distributed agile research. This viewpoint is corroborated by Dingsøyr,

Faegri and Itkonen (2014, p.2). Such a move widens the gap between large-scale and very

small-scale, and in particular solo software development research. For this reason, this

research proposes an agile solo-software development methodology for high-quality software

development. In the next section, research on very small-scale development is detailed.

2.3 Very Small-scale Software Development

As cited in Section 2.1, a very small-scale development (VSD) team is made up of one to

twenty-five persons (Laporte et al. 2006¸ p.3; ISO 2014, p.1). VSD has been a neglected area

of research historically, with more emphasis given to large-scale development (Al-Tarawneh

et al. 2011, p.893; ISO 2014¸ p.1; Laporte et al. 2008, pp. 129-130). At the same time these

software development organisations contribute significantly to the economies of many

countries (Al-Tarawneh et al. 2011¸ p.893; ISO 2014, p.1; Laporte et al. 2017, p.2). Apart

from these organisations producing fully developed products, they also contribute important

components that are incorporated into large-scale development products (Larrucea et al. 2016,

p.85). These components eventually impact on the quality of software produced in large-scale

environments. It is important to design processes that promote quality of products created by

these organisations, both at component level and full product level (Ayalew & Motlhala 2014,

p.49).

The neglect of small-scale development environments (Richardson & Gresse 2007, p.18; Al-

Tarawneh Ali 2011, p.1) has led to developers in this environment adapting large-scale

methods for their software development projects. This adaptation of methods results in

compromised product quality (Pedreira et al. 2007, p.5). Method adaptation is a difficult task

that may lead to loss of detail in the adapted method (Ayalew & Motlhala 2014, p.49). Laporte

et al. (2006, p.3) demonstrate the difference between small-scale development and large-scale

development environments using their priorities in project development. The top ten priorities

for each environment are shown in Table 2.1. The colours used here for each practice are

meant to assist the reader to locate the priority of a practice in each environment. Priorities

that do not match have been left uncoloured (white).

20

Table 2.1: Top ten development priority list (Laporte, April & Renault 2006)

No. Small Organisations No. Medium to Large Organisations

1. Managing risks 1. Consistency among teams

2. Task estimation 2. Task estimation

3. Productivity 3. Productivity

4 New technology 4. Team communication

5 Software rework 5. Process adherence

6 Planning projects 6. Developing requirements

7 Tracking projects 7. Ensuring quality

8 Ensuring quality 8 Managing risks

9 Process adherence 9 Managing requirements

10 Maintaining software 10 Tracking projects

Table 2.1 illustrates the difference in priorities between these team sizes. Only six priorities

out of their top ten priorities in the list are the same. Although more than fifty percent of the

priorities of these team sizes are the same, their emphasis differ remarkably. Only two

priorities match at the same level (i.e. task estimation and productivity). Four priorities are

ranked differently in the two types of organisations. The medium to large teams’ number one

priority is consistency among teams. This is not surprising, as the more people in a project,

the more difficult it is to coordinate their efforts (Keshta & Morgan 2017, p.570). Knowledge

exchange becomes difficult due to the complex communication channels among team

members and project sub teams (Schwalbe 2012, p.413). The greater the number of people in

a project, the more communication channels needed, slowing down the communication

process. Large scale software development processes therefore focus on team coordination

21

and communication (Dingsøyr et al. 2018, pp.494-495). Team communication in smaller

teams is usually direct and therefore not a priority.

On the other hand, small teams’ number one priority is risk management. This priority is

implicitly addressed in the agile approach (whose target is small teams), where the methods

deal implicitly with risks through iteration, daily or weekly meetings as well as onsite

customer collaboration (Albadarneh et al. 2015, pp.3-4). While priorities two and three are

the same in the two approaches, the rest differ. For example, process adherence ranks as

number nine in small-scale development, while it is number five in large scale development.

These differences indicate the need for different development practices that address the

varying priorities accordingly.

Due to limited resources, small organisations are more concerned with product development

than establishing software development processes (Paternoster et al. 2014, p.2). Furthermore,

small organisations operate in rapidly changing environments. While the rapid change is not

unique to small organisations, such an environment requires that the software development

teams regularly undergo appropriate training to keep pace with the changes. Unfortunately

small organisations cannot afford regular training programmes due to financial constraints

(O’Connor & Laporte 2014¸ p.4; Almomani et al. 2016, p.443). As a result, most of these lose

business to highly competitive well-established large organisations (Paternoster et al. 2014,

p.1), as these have training programmes to keep their developers up to date with changes in

technology.

Over eighty-five percent of software organisations in most countries are small and medium

companies (Ayalew & Motlhala 2014¸p.49; Almomani et al. 2016, p.442; Larrucea et al. 2016,

p.86; Laporte et al. 2017, p.2). With such a high presence in the market, it is important that

these organisations deliver high-quality software in order to attract more customers and retain

those that they have (Solyman et al. 2015, p.123).

A number of researchers have explored the VSD environment (Basri & O’Connor 2010;

ISO/IEC 2014; Galvan et al. 2015; Wongsai et al. 2015; Larrucea et al. 2016; Laporte et al.

2017; Suteeca & Ramingwong 2017). A study conducted by Basri and O’Connor (2010) to

investigate the commitment by very small companies in Ireland to improve their software

development methods shows their willingness to the cause. The study also shows that most of

the companies participating in the study had adopted agile methods for their development

efforts (Basri & O’Connor 2010, p.1450).

22

Some researchers (Laukkanen et al. 2017; Wongsai et al. 2015) have explored barriers to

software process improvement (SPI) initiatives by very small organisations. Suggested as

barriers are deployment costs, resource prioritisation and business continuity, among others.

It should be noted however that very small organisations stand to enjoy higher financial

returns, market recognition, reduced product deployment time if they embraced SPIs such as

the ISO/IEC 29110 (Larrucea et al. 2016, p.88). Based on this argument it is important that

lightweight SDMs be designed to encourage uptake by very small organisations, in particular

solo developers.

In this research a synthesis of quality promoting practices is conducted to derive practices

from existing SSDMS to produce a high-quality software development methodology (Pardo

et al. 2011, p.95). The research derives quality practices from lightweight methods as these

are designed with the solo development environment in mind. Before detailing the derivation

of the quality practices from SSDMs, the concept of software quality as a core component of

this research is discussed. In the next section the software quality and associated software

quality standards are discussed.

2.4 Software Quality

To give a befitting grounding to this research, it is important to explore the subject of software

quality. Many definitions of software quality exist (Sfetsos & Stamelos 2010, p.44; García-

Mireles et al. 2012, p.134). According to IEEE Computer Society (2014, p.8); “software

quality is the degree to which a software product meets established requirements”. This

definition highlights the importance of stakeholder expectations from the software product,

and the importance of understanding those expectations by the developer.

García-Mireles et al. (2015, p.150) define software quality from a software product and

software development methodology perspective. From the software product perspective,

quality is the expected characteristics derived from a quality model to be portrayed by the

product, whereas from the software process perspective, quality is the ability of a software

development methodology to produce high-quality software products (García-Mireles et al.

2015, p.150). The software product quality perspective requires that with every development

effort, the software development team chooses appropriate quality characteristics from a

suitable quality model. These characteristics are then used to evaluate the quality of the

resulting product. In this case, the chosen quality characteristics form part of the non-

23

functional requirements of the software product (Nistala et al. 2016, p. 134). The non–

functional and functional requirements dictate the conditions of the acceptance of a software

product by the user (Kadi et al. 2016, p.1).

Nistala et al. (2016 p.134) define software quality as the ability of a software product to meet

user requirements. The assumption here is that user requirements can be determined in

advance. Once the requirements are defined, appropriate practices for developing the product

are enacted and monitored to attain the required quality. A separate quality assurance team is

usually set up to monitor the development team’s adherence to expectations. This is a

traditional approach to software quality assurance (Marchewka 2015 pp.242-246).

 Agile methods have a different approach to software quality. Quality assurance (QA)

techniques in agile methods are normally embedded in the software development process

(Mnkandla & Dwolatzky 2007, pp.8-9; Sfetsos & Stamelos 2010, p.44; Janus et al. 2012,

p.12). Embedding quality practices in the software development method transfers the

responsibility of QA to the software development team (Janus et al. 2012, pp. 11-12). This

practice ensures that quality aspects are dealt with earlier in the development process, as

opposed to validating quality at the end. Characteristically, agile methods shift the QA

responsibility to the developers (Huo et al. 2004, p.523). This way the software product is

continuously validated and verified as it is being built (Sfetsos & Stamelos 2010, pp.44-45).

The embedding of quality practices in the software development process is most favourable

for small scale development environments, in particular for solo development environments

as this serves as a cost cutting measure.

In pursuing the agile approach to software quality, this research proposes a generic lightweight

SSDM that embeds quality practices and techniques to ensure a high-quality software product.

A generic SSDM is flexible and can easily be adapted to develop various products (Sutton

2000, p.37). This is appropriate for a solo development environment where resources are

limited, and a training budget may not be available to deal with several methods (Basri &

O’Connor 2010, p.1456). The researcher defines within the software development process,

roles, techniques and practices that support product quality characteristics drawn from the

ISO/IEC 25010 product quality model (ISO 2010). It should be noted however that although

various roles are defined in the methodology, most of the roles are played by the solo

developer, except for the end user roles.

24

The choice of the ISO/IEC 25010 quality model as a reference point for product quality was

inspired by other researchers (such as Suryn 2014 p.51; García-Mireles et al. 2015, pp.150-

166; Kadi et al. 2016, pp.1-8; Nistala et al. 2016, pp.144-147; Idri et al. 2017, pp.262-267)

who have used the model as a quality reference in similar projects. Further, as an international

standard, the model facilitates benchmarking of the developer’s products with those of the rest

of the world (Galvan et al. 2015, p.189). By using comprehensive quality techniques to embed

quality in the SDM, the research eliminates the need for a project management methodology

and a separate quality assurance team. This is a cost cutting measure for a solo development

environment, where financial resources and resources in general are limited. The proposed

methodology therefore assists in cutting costs associated with the establishment of a separate

quality assurance team.

2.4.1 Software Quality Models

Software quality models offer a systematic approach to defining quality requirements,

building the required quality into the product and monitoring the quality process (Wagner et

al. 2015, pp.102-103). A software quality model provides a way of breaking down abstract

quality concepts into measurable concrete terms (Lew 2012, p.2). Quality models provide a

basis for specifying quality requirements of a product under development as well as evaluating

the specified quality (Suryn 2014, p.14). Traditionally, software quality models are tools used

to portray the interaction between various quality factors. These factors are usually grouped

into high and low-level factors. High level factors are abstract and what we desire to measure,

whereas low level factors are more concrete and understandable providing means for

measuring the high-level factors.

The first examples of quality models included those of McCall, Richards and Walters (1977),

Boehm’s model, the functionality, usability, reliability, performance, and supportability

(FURPS) model and the ISO/IEC 9126. With changes in the computing environment, the

ISO/IEC 9126 has since been revised to the ISO/IEC 25010 model, the chosen model for this

research. Figure 2.2 shows the ISO/IEC 25010 product quality model. The ISO/IEC 25010

quality model defines guidelines for defining and evaluating software quality requirements

(Kadi et al. 2016, p.1). As shown in Figure 2.2, the centre part illustrates the quality

characteristics defined by the model, while the extreme right shows the measurable sub -

characteristics of the product. To illustrate the interpretation of this figure, consider functional

suitability as a characteristic of quality. A functionally suitable software product should

25

portray functional completeness, correctness and appropriateness. These are the measurable

sub-characteristics. Based on the definition of these sub-characteristics, appropriate metrics

and ranges can be defined and used to measure these sub - characteristics which in turn give

measures for the characteristics.

The models highlighted here so far are known as definition models. Definition software

quality models describe quality characteristics to be portrayed by a quality product, but they

do not necessarily define how to build these characteristics into the product (García-Mireles

et al. 2015, p.150).

In this research, the ISO/IEC 25010 quality model was chosen as the model to base quality

on. The researcher concurs with García-Mireles et al. (2015, p.151) that this is a good model

to use as a base to develop software products. The model classifies quality into software

product quality and quality in use. The research identifies quality promoting practices in

existing SSDMs and maps these to quality characteristics defined in the model. In doing so

the research posits that, existing methodologies have quality practices that can promote the

building of quality characteristics defined in this model. These practices can be identified and

synthesised to design a higher quality software development methodology. A meta–synthesis

is conducted on existing SSDMs to identify those practices that support quality characteristics

defined in this model. This study is therefore similar to that of García-Mireles et al. (2015) in

that it determines the support of existing software development methods for the product

quality characteristics of the ISO/IEC 25010 model. It however differs in that whereas these

authors looked at software process improvement versus the quality model, here the researcher

looks at SDMs, in particular quality practices in SSDMs versus the quality model.

The synthesis of the quality practices from a number of SSDMs is considered important in

methodology design as it ensures that a higher quality methodology than the component

methodologies is produced (Pardo et al. 2011, p.95). To ensure a systematic mapping of the

practices extracted from the methodologies, to the characteristics of the ISO/IEC 25010

model, first the researcher identified themes from those practices in participating SSDMs, and

compared them with the model characteristics. The product quality characteristics used for

comparison are functional suitability, performance efficiency, compatibility, reliability,

usability, maintainability, security and portability (ISO 2010). Adopting a product focused

quality approach ensures quality practices are built into the methodology to deliver the product

quality defined in the model (Trienekens et al. 2002, p. 269). Modelling a methodology around

26

a quality model makes it flexible as developers should be able to implement relevant practices

based on the quality requirements of the software product at hand (Pedreira et al. 2007, p.1).

ISO/IEC 25010

Product Quality

Model

 Functional Suitability

Performance Efficiency

Compatibility

Usability

Maintainability

Reliability

Security

Functional completeness

Functional correctness

Functional appropriateness

Resource utilization

Portability

Capacity

Co -existence

Interoperability

Appropriateness

Learnability

Operability

User error protection

Maturity

User interface aesthetics

Accessibility

Availability

Fault tolerance

Recoverability

Confidentiality

Integrity

Non-repudiation

Accountability

Authenticity

Adaptability

Replaceability

Testability

Analysability

Modularity

Modifiability

Install ability

Time behaviour

Figure 2.2 : ISO/IEC 25010 quality practices (ISO 2010)

27

2.5 Review of the Solo Software Development Environment

As seen in section 2.2, Solo software development (SSD) dates back to the 1960s during the

code and fix era where cowboy programmers spent the whole night fixing errors in code

(Boehm 2006, p.14). The introduction of multiprocessing operating systems introduced team

development, shifting the focus to large-scale software development. This shift has side-lined

solo software development (Hollar 2006, p.1; Dent 2008, p.1; Dzhurov, Krasteva & Ilieva

2009, p.250; Abrahamsson et al. 2013, p.6). A large number of software products in the market

today is developed by micro teams. A micro-team is a team of one to two developers

(Ramingwog et al. 2017, p.342). To ensure high-quality products, these solo developers adopt

and adapt the available small-scale or large-scale methodologies for their development efforts.

Methodology adaptation if not properly done in some cases leads to loss of detail, thereby

compromising the quality of the resultant methodology (Pedreira et al. 2007, p.5; Ayalew &

Motlhala 2014, p.49). The solo development environment is unique in that it exhibits the

following characteristics , which are inherited from VSD (Laporte et al. 2006, p.3; ISO/IEC

2014, p1) :-

i. Limited resources – where the developer is the sole owner of the development house,

resources tend to be limited (Wongsai et al. 2015, p.14; Keshta & Morgan 2017,

p.24163). The available resources are channelled towards the actual development

effort, and rarely on software project support, such as training and documentation

(Coleman & O’Connor 2008¸ p.773; Basri & O’Connor 2010, p.1457).

ii. Lack of historical data – Due to limited resources, solo developers may not have the

capacity to maintain a database of past projects (Paternoster et al. 2014, p.2). This

makes effort and resource estimation a difficult process to execute in project

management (Sommerville 2011, p.636).

iii. Fast development time – The current software development environment demands fast

software product delivery. Apart from dealing with fast development speed that

characterises today’s software industry in general, solo developers need to deal with

the execution of simultaneous projects for survival in the market (Bernabé, Navia &

García-Peñalvo 2015, p. 687).

Such an environment requires the use of SDMs specifically designed to address these

characteristics (Coleman & O’Connor 2008, p773; Basri & O’Connor 2010, p.1457). Some

28

researchers (Humphrey 2000; Agarwal & Umphress 2008) have tackled this problem by

developing software processes specifically targeted at this environment. The Personal

Software Process (PSP) (Humphrey 2000) is widely accepted by both industrialists and

academics as an SDM designed for individual developers (Dzhurov, Krasteva & Ilieva p.252;

Abrahamsson et al. 2013, p.2; Pressman & Maxim 2015, p. 59). If properly applied, the model

helps engineers to systematically plan their work, using their personal data from previous

performance (Pressman & Maxim 2015, p. 60). PSP enables consistent improvement on

developer performance, as well as the production of quality software products through

identification and fixing of defects early in the software process (Humphrey 2000, p. 24;

Abrahamsson et al. 2013, p.3).

While PSP ensures that quality is built into the development process, and subsequently into

the product, its main problem is that it is document heavy. Developers using PSP spend so

much time collecting and documenting their progress, instead of developing the actual system

(Dzhurov, Krasteva & Ilieva 2009, p.252). Due to its heavy documentation, complexity,

lengthy training sessions and high training costs, PSP has not been widely adopted in industry.

In cases where PSP is used, just parts of the method are utilised (Pressman & Maxim 2015,

p.60). The excessive documentation associated with PSP and its high training costs, give this

study the urge to design a lightweight and low cost SSDM.

In designing the methodology, the few existing lightweight SSDMs are viewed as a

knowledge base of best practices designed to address the unique characteristics of the solo

development environment. Further, the research posits that, using an appropriate

methodology, the quality practices in this knowledge base can be synthesised to produce a

higher quality SSDM (Peffers et al. 2008, p.49). For this part of the literature review, the

research adopts a qualitative approach to identify and synthesise practices from published

research on SSDMs. The aim of the review is to derive a quality theory for solo software

development.

2.5.1 SSDM Meta-synthesis

Meta-synthesis is a systematic way of building knowledge from existing literature. It enables

the researcher to make use of existing knowledge in creating new knowledge. Meta-

ethnography (Noblit & Hare 1998) is one example of a knowledge synthesis approach used in

meta-synthesis to build theory from qualitative studies (Runeson et al. 2012, p.117). In this

29

review, meta-ethnography is used to synthesise the quality practices from existing SSDMs as

it systematically facilitates the derivation of theory from existing data. Meta-ethnography is

preferred as it enables a systematic study of the existing methods through comparing concepts

in and across the studies (Napoleão & Rodrigo 2018). Further, some researchers (such as Siau

& Long 2005; Napoleão & Rodrigo 2018), have used the method in deriving new methods

from existing ones.

Meta-ethnography enables the researcher to derive themes from existing methodologies so as

to build a stronger theory (Cruzes & Dybå, 2011, p.443). It also helps in identifying gaps in

the quality practices in SSDMs (Mohammed et al. 2016, p.696). With minimal published

research in SSD, meta-ethnography is the most appropriate as it does not necessarily need a

large number of studies for the synthesis (Noblit & Hare 1998, p. 111). Exploring the existing

SSDMs and the different practices that those methodology designers have integrated into their

methods provides an insight into the norms in methodology design (Stewart et al. 2012,

p.342). Sub-section 2.5.2 details how the guidelines given by Noblit and Hare (1998, pp.109-

113) and Mohammed et al. (2016, pp. 697-699), were used to conduct the meta-ethnography.

2.5.2 Conducting the meta-ethnography

In conducting the meta-ethnography, the following stages as defined by Noblit and Hare

(1998, pp. 109 – 113) were adopted: -

(1) Getting started - this entails choosing a topic of interest to the researcher (s) that could

benefit a set of practitioners. A research question is usually defined to represent the topic and

serve as a guide in the meta-ethnography process.

(2) Choosing the relevant studies – entails selecting studies that fall under the defined topic.

This is done through searching for the studies in relevant sources and defining inclusion and

exclusion criteria for selecting the studies.

 (3) Reading the studies – involves repeatedly reading the articles to understand the content of

the participating studies. Data extraction begins at this stage with researchers extracting the

main points from the studies.

(4) Determining studies relationships – this can be done through creating a list of the key

metaphors from each study. Once the metaphors from each study are created, tables or grids

can be used to determine the relationships among the key concepts.

30

(5) Translating the studies into each other – Metaphors from the participating studies are

compared to each other. This may be done through listing metaphors from the first study, and

comparing each of the metaphors in the participating studies with those of the first study.

(6) Synthesizing translations – involves grouping common metaphors and in some cases

subsuming metaphors in others. Diagrams may be used to represent the relationships among

the metaphors.

(7) Expressing the synthesis – at this stage appropriate channels are used to disseminate the

findings of the meta-ethnography to the intended audience.

The following paraphs detail how these steps were used in this meta-ethnography.

Step 1: Getting started

The researcher established the following research questions to guide the meta-synthesis:

Question: -

How do current Solo Software Development Methodologies enable quality in the developed

software?

The related sub-questions were:

1. What methodologies exist for solo software development?

2. What practices and techniques are used to ensure the production of high-quality

products in these methodologies?

3. How do the identified practices and techniques enable quality in the final product?

4. What theories emerge from current solo software development practices?

Step 2: Searching for relevant studies

The researcher conducted a search on databases and journals publishing Software Engineering

research. The search was conducted from December 2017 to April 2018. The list of databases

and journals chosen in this research indexes Software Engineering publications. The list has

also been used in part or in full by many researchers (for example, Dybå and Dingsøyr 2008,

p.6, Sfetsos and Stamelos 2010, p.45, Selleri Silva et al. 2015, p.23 and Zarour et al. 2015,

pp.181-182) on similar reviews. These sources are also suggested by Brereton et al. (2007,

pp.577-578) as appropriate for Software Engineering literature surveys. The sources are:

31

ACM Digital library; Scopus; ScienceDirect; INSPEC; ISI Web of Science; SpringerLink and

IEEE Xplore. Google Scholar was also used to search the World Wide Web to ensure all

articles describing solo software development methods were identified.

The search string used with each of the data sources was derived from the main research

question, and is given below. On searching each of the sources, the string was adjusted

according to the defined syntax in the database, taking care to maintain the meaning of the

string.

From the retrieved studies, selected studies for the synthesis were based on the following

inclusion criteria: -

a) Only papers published between January 2000 and December 2017 were included. This

period coincides with the hype of agile methods, whose focus is small scale development, and

are light weight.

b) Only publications written by the author of the methodology are included. This enabled the

researcher to get first-hand information from the publications.

c) Only publications describing lightweight solo development methods were included. This is

in line with Sandelowski, Docherty and Emden (1997, p. 368)’s advice to screen studies

according to “topical similarity.”

Exclusion criteria were as follows: -

a) Documents discussing a methodology of team size of more than one,

b) Documents by a second author describing another’s methodology

c) Documents comparing any software development methods and

d) Tools used to automate software development methodologies.

The retrieved number of articles according to database is shown in Table 2.2. For the purposes

of screening the articles, these were exported to Microsoft Excel so that the documents could

be easily processed.

(“software development methodology” OR “software process” OR “software process

model”) AND (“solo” OR “freelance” OR “independent developer” OR “autonomous”

OR “personal”) AND (“quality”).

32

Table 2.2: Database search results

Database Search Results

& Duplicate

Screening

Title Search

Elimination

Abstract

Elimination

Articles

Included

ACM Digital Library 2072 2056 14 2

IEEE Xplore 273 265 8 0

Scopus 67 63 1 3

Science Direct 812 809 3 0

ISI Web of Science 35 33 0 2

SpringerLink 202 201 0 1

INSPEC 245 242 3 0

As shown in Table 2.2, the search against the ACM digital library identified two thousand and

seventy-two studies published between 2000 and 2017. From this database, sixteen were

eliminated through duplicate screening, leaving two thousand and fifty-six studies. Duplicate

screening is easier in MS Excel through the use of the ‘Remove duplicates’ function. Two

thousand and forty-two were eliminated through title scrutiny, to remain with fourteen. After

reading the abstracts of the fourteen studies, twelve were eliminated leaving two studies. The

information from other databases is interpreted similarly. Five articles in total were found the

digital libraries. Three articles appeared in more than one digital library. Go-Scrum appeared

in Scopus and SpringerLink, while Faat appeared in Scopus and the ACM digital library.

Scrum Solo appeared in Scopus and ISI Web of Science. A search on Google Scholar led to

the identification of a sixth publication, DeSoftIn. The six articles that survived abstract

screening were deemed suitable for the synthesis. The six studies provided the answer to the

first research question:

1. What methodologies exist for solo software development?

The methodologies retrieved through our literature search are:

i. Freelance as a Team (Faat) (Bernabé, Navia & García-Peñalvo 2015),

ii. Personal Extreme Programming (PXP1) (Agarwal & Umphress 2008),

iii. Personal Extreme Programming (PXP2) (Dzhurov, Krasteva & Ilieva 2009)

iv. Go – Scrum (Ramingwong, Ramingwong & Kusalaporn 2017)

v. Scrum Solo(Pagotto et al. 2016) and

vi. DeSoftIn (González-Sanabria, Morente-Molinera & Castro-Romero 2017).

33

Numbers here were used to differentiate the two PXPs. It should be noted that this answer

helps this research to provide the answer to the first sub-question posed in this research posed

as:

SQ1. What methodologies exist for lightweight solo software development?

While a publication in the year 2000 of the PSP by Watts Humphrey was retrieved by the

search, it was not included in the analysis as it is a heavy weight methodology. It was excluded

using the inclusion and exclusion criteria.

Step 3: Reading and Re-reading the Selected Literature

All peer reviewed articles retrieved from the databases selected for this synthesis and meeting

the inclusion and exclusion criteria defined in step 2 were considered to be of acceptable

quality for this research (Sandelowski et al. 1997, p.368). All the six studies were included in

the synthesis. Using a pre-prepared extraction template (Table 2.3) premised on the studies

(Mohammed et al. 2016, p.697), the data from the publications was extracted. The table format

ensured that all concepts from the authors are extracted (Cahill et al. 2018, p. 133). Each

methodology name was captured together with the author and year of publication. The

methodology stages and quality practices of each stage were entered into the second column

of the table. The third column shows how each practice contributes towards quality in the

developed software. This is based on the interpretation of the author of the methodology.

During data extraction, the publications were read several times in full and the researcher

extracted the data during the reading. The researcher ensured data extraction accuracy by

iterating though the stages of the meta-ethnography process, checking extracted data against

original documents at every stage.

Table 2.3: Data extraction template

Title & Author Quality Practices/ Techniques Quality characteristic

promoted in the final product Stage (s) Technique(s)

1. Freelance as a

Team (Faat)

(Bernabé, Navia

& García-Peñalvo

2015, p.687-694)

STRATEGIC PRACTICES

Simplicity

Application of minimum viable product

and minimum marketable features

techniques

Promotes testability,

understandability, browsability

and, system explain ability (p.

687)

Reduces development time

34

Embrace Change

Establish points of stable code, fix bugs

early, use product versioning

Promotes code failure recovery

& product completeness

Making Decisions

Stick to specified requirements, avoid gold

plating

Reduces development time

DEVELOPMENT STAGES

F1. Knowledge and

Motivation

Learning the

methodology

“Equips developer with project

management processes.” (p.

691)

F2. Preparation of

backlog

Creation of a

product backlog

Promotes project & product

completeness

Enhances user acceptance
Formulation of

small tasks

Prioritisation of

tasks

F3. Creation of User

Stories

Generation of small

story cards

Promotes requirements

completeness & product

simplicity

F4. Estimation

(Iteration start)

Comparison of

actual & estimated

times at iteration

end

Promotes time estimation

accuracy

F5. Planning

User story

prioritisation

Promotes end user acceptance

Promotes product simplicity

Promotes system

understandability

Promotes developer motivation

“

Definition of

internal & external

deliveries to form

cycles

Refactoring of big

stories

Setting of short

iteration duration

(2 -3 weeks)

Respect of cycle

times

F6. Development Use of version

control for all code

Promotes code traceability

Promotes defect reduction

 “

Creation of test

cases for all code at

start of user stories

Documenting

tested code

F7. Review Performing of code

coverage tests

Promotes defect reduction &

code quality

Promotes code quality Review of

technical debt

35

Review of code

using a rubber duck

Enhances code quality

Promotes product

maintainability

Promotes design quality

Class dependency

& maintainability

checks

Performing

simplicity checks

F8. Iteration Close Use of version

control systems

Promotes code quality &product

compatibility;

Eases return to the last stable

code

F9. Evaluation

Continuous practice,

runs in parallel with

all the practices

Evaluation of

software quality

Allows for process improvement

and refinement

Improves system performance

Improves development

methodology quality

Promotes component reusability

Evaluation of

software

performance

Evaluation of

development

process

Identifying

processes for

automation

AUXILLARY PRACTICES

Refactoring Minimises code smells and anti

–patterns

Minimal documentation Reduces development time

Planned partial prototyping Promotes user requirements

clarity

Use of a dummy partner (rubber duck) Promotes code quality

Task automation Promotes task reuse &

eases development effort

2. Personal

Extreme

Programming

(Agarwal &

Umphress 2008)

P1.1 Start Adoption of a

coding standard

Promotes product consistency

P1.2Planning Requirements

statement using:

 -Metaphor

 -User stories

Promotes user requirements

understanding

Creation of features

from user stories

Promotes design simplicity

“

“

Creation of domain

design

Prioritisation of

features

Size & Time

estimation

Reduces schedule risk

Use of design

acceptance tests

Ensures focus on product

Creation of

iteration schedule

Promotes development speed

36

P1.3 Development Product feature

prioritisation

Promotes user participation &

acceptance

Breakdown of

features into tasks

Promotes development

simplicity

Creation of task

priority list

Promotes development speed

Creation of task

unit tests

Promotes product quality

Performing code

walkthrough

Enhances code quality

Practicing version

control

Promotes code consistency

“

“
Performing

acceptance tests

Code Integration

Use of iteration

releases

Promotes early product release

& user acceptance

P1.4 Post Mortem System acceptance

test

Promotes system acceptance &

product quality

3. Personal

Extreme

Programming

(Dzhurov,

Krasteva & Ilieva

2009)

P2.1 Requirements Adoption of design

and coding

standards

Promotes development

consistency

Creation of

requirements list

Promotes product completeness

P2.2 Planning Breakdown of

requirements into

tasks & subtasks

Promotes development

simplicity

Promotes development speed Categorisation of

subtasks

P2.3 Iteration

initialisation (1 – 3

weeks)

Task prioritisation Promotes early delivery of core

tasks

P2.4 Design Design of system

modules

Promotes product simplicity

 “ Design of classes

P2.5 Implementation Use of coding

standards

Promotes product quality

“

“
Testing of modules

(units)

Refactoring code

P2.6 System testing Checking system

against user

requirements

Promotes user acceptance

Promotes defect reduction Early fixing of

errors

P2.7 Retrospective Analysing

developer

Determines improvements on

performance

37

performance in

phases

Promotes estimation accuracy

Promotes timely delivery
Checking actual

against estimates

Release of product

in components

4. Go-Scrum

(Ramingwong,

Ramingwong &

Kusalaporn 2017)

G1. Management

Buy-in

Development

process explanation

Encourages user participation &

product acceptance

G2. Kick-Off

Meeting & Story

Discovery

Meeting with users Promotes user participation

Encourages requirements

understanding
Use of user story

cards

G3. Project

Planning

Creation of product

backlog

Promotes user acceptance

G4. Release &

Sprint Planning

Product backlog

prioritisation

Promotes development

transparency

Promotes development speed

 “

Product backlog

time estimation

Creation of a sprint

backlog

G5. Sprint Sprint review Encourages communication

between developer and users,

Promotes development speed

Sprint retrospection

Sprint planning

5. Scrum Solo

(Pagotto et al.

2016)

S1. Requirements

elicitation

Scope definition Promotes product completeness

Customer

identification

Promotes user acceptance

Promotes product completeness Creation of product

backlog (software

requirements)

Prototyping Facilitates user requirements

understanding

Use of a data

Repository (stores

scope, product

backlog and

product prototype)

Promotes communication with

users

S2. Management

(Overarching

activity, initiated at

Sprint onset)

Use of Gantt charts

in planning

Promotes development speed

Promotes product completeness

Promotes project management

Promotes development speed

“

Use of a WBS

Size & budget

estimation

Monitoring &

control of time

Review of project

progress

S3. Sprint (1 week)

Use of Sprint

backlog

Promotes product completeness

Creation of

development plan

Promotes development speed

38

Recording of time

and effort estimates

 “

Coding with code

review

Promotes defect reduction

Promotes code quality Testing

S4. Deployment Product validation Promotes user acceptance

6. DeSoftIn

(González-

Sanabria,

Morente-

Molinera &

Castro-Romero

2017)

D1. Planning and

analysis

Setting of project

scope

Promotes product completeness

Identifying

customer financial

capabilities

Enables definition of scope

Defining &

prioritising sprint

activities

Promotes development speed

Use of a colour

coded requirements

checklist

Promotes product completeness

&

Visualises development progress

Use of short

development

sprints (3 – 10

days)

Facilitates product changes &

development visibility; reduces

product risk

Taking breaks

between sprints

Promotes independent self-

criticism; facilitates knowledge

acquisition

Use of a diary (log

book)

Promotes progress tracking

D2. Design Use of design

modelling tools

Promotes understanding of

business environment

Creation of system

prototypes

Promotes product verification

Use of Class

responsibility

collaboration cards

Promotes design completeness

D3. Development Iterative delivery Promotes user acceptance &

development speed

Use of a colour

coded development

checklist

Promotes development

transparency & speed

Self-criticism Promotes product quality

D4. Implementation Module

implementation &

integration

Promotes product

maintainability

Module validation Promotes product quality

Module integration

testing

Promotes product quality

Use of quality &

security standards

Promotes product quality

39

Use of risk

management

strategies

Minimises project failure

D5. Evaluation Checking of

adherence to user

requirements

Promotes product acceptance

Meeting with

consultant

Enhances developer technical

knowledge/ skills & enhances

product quality

Table 2.3 provides the answer to the second and third questions posed for the literature review

as follows:

2. What practices and techniques are used to ensure the production of high- quality products

in these methodologies?

The practices and techniques in the third column of Table 2.3 promote quality in the developed

software. As shown in the table, the practices are organised to promote quality in each stage

of the development process as defined in the methodology. Using the last entry in the table,

developers adopting DeSoftIn as a methodology end with an evaluation stage. Quality

practices at this stage entail checking of developer adherence to user requirements and

arranging a meeting with the consultant.

Since DeSoftIn is designed for use in an academic setting, consultancy is readily available. At

the end of a development cycle, the academic supervisor sits with the student developer to

check adherence to the development process. Other practices in the table are interpreted

similarly.

3. How do the identified practices and techniques enable quality in the final product?

Similarly, to answer this question, using the same example of the last entry in DeSoftIn,

checking developer adherence to user requirements promotes user acceptance. At the same

time having a meeting with a consultant at this stage to evaluate the just ended sprint or project

enhances developer skills, which in turn improves product quality. The impact of the other

practices and techniques are also interpreted the same way.

Step 4: Determining Relationships among the Studies

The data extraction template in Table 2.3 was used to derive the relationship among the

methods through capturing of the key concepts (Mohammed et al. 2016, p.697). Stages of

40

each methodology were extracted together with quality practices in each of the stages.

Looking at the six methods, there are some common stages and practices among all the

methodologies. For example, all methodologies have a Planning, Development and

Evaluation stage. Although these are named differently in the various methods, the software

development activities in these are similar. All methodologies emphasise the creation of a

product backlog at the onset of development. In PXP2 (Dzhurov, Krasteva & Ilieva 2009, p.

254) this is called a requirements document, while this is termed a feature set in PXP1

(Agarwal & Umphress 2008, p.83). A closer look at the two PXP methods shows that they

share a lot in common as they are both hybrids of PSP and Extreme Programming (XP). The

difference between the two is that PXP2 assumes that requirements can be identified,

prioritised and fixed at the onset of the project, with changes in the environment calling for

change in task re-prioritisation. PXP1 and all the other methods accommodate requirements

change throughout the project.

Go - Scrum (Ramingwong, Ramingwong & Kusalaporn 2017) and Scrum Solo (Pagotto et al.

2016) also share a number of characteristics drawn from Scrum. Go – Scrum defines a stage,

Management Buy-in, to encourage methodology acceptance in a bureaucratic environment.

This is a unique feature of this method among the six methods considered in this study,

perhaps due to the fact that it was designed for use in a government environment

(Ramingwong, Ramingwong & Kusalaporn 2017, p. 343). Scrum Solo has a cross life cycle

activity, Management, with practices that can be used at any of its stages. Its Management

practices are similar to the Strategic practices in Faat in that they are applied on demand at

any of the methodology stages. Faat defines three stages Knowledge and motivation,

Implementation and Evaluation. Implementation is made up of a number of sub-stages

(Prepare product backlog, Creation of user stories, Estimation, Planning, Development,

Review and Iteration close) (Bernabé, Navia & García-Peñalvo 2015, p.691). These have been

indicated as stages in Table 2.3 to allow for ease of comparison with other methods. These six

methods have a lot in common enabling their translation into each other (Noblit & Hare 1998,

p.111).

Step5: Translating Studies into each other

Using recommended translation approaches (Noblit & Hare 1998, p.111; Mohammed et al.

2016, p.698), the six methodologies were translated to each other to facilitate the generation

of a quality theory. A template drawn from the data in the studies was used to produce the

41

translation depicted in Table 2.4. Faat was used as a template as it has the highest number of

stages (nine), and is more detailed. The ninth stage, Evaluation is a cross life cycle activity

executed simultaneously with each stage to assess methodology efficiency (Bernabé, Navia

& García-Peñalvo 2015, p.693). In translating the studies, each method was compared against

Faat, and similarities and differences noted. The first method considered is PXP1. PXP1 has

four stages, Start, Planning, Development and Post Mortem.

Table 2.4: Translation of studies

Stage Faat PXP1 PXP2 Go – Scrum Scrum Solo DeSoftIn

I. Knowledge

& Motivation

√ Start Requirements Management

Buy-in

II.

Preparation

of Product

backlog

√ Planning Requirements Kick –off

Meeting &

User story

Requirements Planning &

analysis

III. Creation

of User

Stories

√ Planning Planning Project

Planning

Management

Iteration

initiation

√ Planning √ Release &

Sprint

Planning

Sprint &

Management

Planning √ √ Design Design

IV.

Development

√ √ Implementation Sprint with

Inspection

Sprint &

Management

Development

V. Review √ System testing Implementation

Iteration

Close

√ System testing Sprint with

Inspection

Deployment

&

Management

VI.

Evaluation
√ Post

mortem

Retrospective Evaluation

The Planning stage in PXP1 consists of user story elicitation, creation of a feature list and

prioritisation of the list. This is similar to the Preparation of backlog, Creation of user stories,

Estimation, and Planning stages of Faat. Due to the similarities in these stages, they can be

translated into each other. The Development stages are the same, although Development in

PXP1 entails code review, acceptance testing and iteration release, which are activities pushed

down to a different stage called Review in Faat. These were therefore put in the appropriate

stage.

42

PXP2’s first stage, Requirements, is similar the first stage of PXP1 called Start, in that at both

stages the developer adopts design and coding standards for use in the development process.

The two methods map directly into Faat’s Knowledge and Motivation stage as here the

developer learns the methodology and all activities to go with the method. PXP2 is unique in

that it separates the stages Design and Implementation. This concept of PXP2 is similar to the

approach used in DeSoftIn. However if the developer upholds simplicity advocated for by

Bernabé, Navia and García-Peñalvo (2015, p.687) these two stages can be combined and be

executed as in Go – Scrum. The colour codes in Table 2.4 show how the different stages can

be mapped onto each other. Scrum Solo is the only methodology that does not suggest an

initial stage where the developer takes time to learn the methodology for use. The learning of

the methodology in DeSoftIn is suggested to be done during sprint breaks. Here the developer

is advised to consult an adviser in the field who can check the developer’s adherence to the

adopted methodology, and suggest means for improvements as necessary. This is a unique

feature of this methodology in that it assumes the availability of a ready consultant, since it is

developed for an academic setting. The other methods have the initial stage dedicated to

adoption of standards and understanding of the method.

The translation of the stages into each other has helped the researcher to discover the

underlying themes on quality practices from individual studies enabling the construction of a

comprehensive framework that advances knowledge in quality supporting techniques in solo

software development (Siau & Long 2005, 449). This framework, as an abstract model enables

the understanding of what is currently prevailing and serves as a basis for the formulation of

a richer method (Gherib et al. 2015, p. 420).

Step 6: Data Synthesis

In synthesising the data, this research uses the translations of the studies in step 5 to bring

together the identified themes so as to derive meaning from the data. The research used

guidelines for the translations as suggested by (Seaman 1999, p.568). The data from the

various methodologies was compared iteratively. First the quality concepts from Faat were

extracted as shown in Table 2.3. These concepts were analysed for quality promotion. Next

the concepts from PXP1 were compared to the concepts in Faat. Similarities and differences

among concepts were noted. Similar concepts were consolidated and different concepts from

PXP1 were added to the list of concepts drawn from Faat. Propositions were generated based

on the concepts from the two methods. Next the concepts from PXP2 were considered and

43

mapped against the concepts from the already existing propositions. New propositions were

added in cases where there were no matching propositions in place. In some cases,

propositions were modified to accommodate concepts from PXP2. The remaining three

methods were synthesised similarly. To enhance validity of the synthesis, and theory

generated thereafter, maximum effort was made to support all derived propositions from the

studies with references (Mohammed et al. 2016, p.698).

Since the main interest in this research is to use existing methods as a base for the proposed

methodology, the stages and practices in the methodologies were grouped into stages as shown

by the map in Table 2.4. Codes have been adopted for ease of illustration. As an example, the

stage codes S1, S2, S3 and S4 correspond the stages of Scrum Solo; Requirements elicitation,

Management, Sprint and Deployment respectively. Note that the stage, Management in this

methodology is a cross life cycle activity, since the developer reviews progress at every stage

of the development (Pagotto et al. 2016). Practices and techniques used in each of the stages

were analysed to establish the relationships among them. The synthesis was mapped to stages

so as to derive theories within the stages. Figure 2.3 illustrates the grouping of activities within

the stages to facilitate stage by stage theory derivation. The activities from the methodologies

were grouped into six stages representing the proposed developmental process. While the

interest of the synthesis is on identifying emerging theories on quality practices and how they

support quality in the ultimate product, the grouping of these practices into stages helps the

researcher to understand how these practices would support product quality in these stages.

The ultimate goal in this research was to build a solo software development methodology that

supports the delivery of high-quality products. Therefore, the grouping of activities into stages

enables this thesis to propose a framework for the development of a new methodology. The

framework is discussed in the following sub-section.

44

Figure 2.3 : Grouping practices in the SSDM framework

2.5.3 The Secure-SSDM Primary framework

The meta-synthesis enabled this research to formulate a primary framework for the proposed

methodology. The stages I to VI summarise the activities derived from the synthesis that

would subsequently promote quality in the developed software product.

Stage I: Management Buy-in and Standards Adoption

The first stage in the derived framework is a familiarisation stage, where the developer learns

the process and adopts appropriate software development standards. The concept of adoption

of standards at the onset of the project is drawn from the practices in the first stages of Faat

(Bernabé, Navia & García-Peñalvo 2015), PXP1 (Agarwal & Umphress 2008), PXP2

(Dzhurov, Krasteva & Ilieva 2009), and Go- Scrum (Ramingwong, Ramingwong &

Kusalaporn 2017). Go-Scrum includes a unique stage, Management Buy –In, with a practice

of educating the stakeholders on the method used to develop the software product. This

practice is very important in a solo environment and in software development in general. If

properly executed, it enhances user participation in the development process, as users get to

learn how software development will proceed at the onset of the project.

45

The practices have been added in the first stage of the framework since user participation in

general promotes user acceptance of the product at the end of the project (Ramingwog et al.

2017, p.344). This first stage of the framework has been termed Management Buy-in and

Standards Adoption. The standards adopted at this stage guide the developer towards the

development of a quality software product. Management Buy-in and Standards Adoption

captures all the practices related to the environmental management of the development

process.

Three propositions emerge from this stage:

i. Educating users on the methodology to be used in the development of the project, facilitates

user participation which enhances user acceptance of the software product (Ramingwog et

al. 2017, p.343).

ii. Adoption of developmental standards at project onset encourages development consistency

by the developer (Agarwal & Umphress 2008, p.85).

iii. Early user involvement promotes user participation and facilitates product acceptance

(Ramingwong, Ramingwong & Kusalaporn 2017).

Regarding the meeting held during the Management Buy-in (Go – Scrum), the authors

consider the practice as important since according to their view “this is to prepare the

management for acceptance of software and to get them to participate in the development

effort” (Ramingwog et al. 2017, p. 344).

Stage II: Requirements Elicitation. Two stages of Faat, Preparation of Product Backlog and

Evaluation were put in this stage. Evaluation in this case pertains to assessment of developer

performance at the end of each stage. The other stages included are part of the Planning stage

from PXP1 (activities here are eliciting user requirements and formulation of system

metaphors), Requirements stages from PXP2 and Scrum – Solo and part of the activities from

the Kick – off –Meeting and User story from Go – Scrum (the meeting activity). The Planning

and analysis stage of DeSoftIn also fits into this stage. Since DeSoftIn is designed for an

academic environment, an important practice at this point is the defining of a project and

product scope. Project scope refers to all the work to be undertaken in the project, while

product scope captures the functionality to be delivered by the product. While the scope is set

here, the method recommends its adjustment as per need as the project progresses.

Emerging theories:

46

i. The use of a prioritised product backlog helps to keep track of project progress and

promotes product completeness

In Bernabé, Navia and García-Peñalvo (2015, p.689), a product backlog is described as a tool

to capture and prioritise all tasks, keeping track of the executed and outstanding tasks.

González-Sanabria, Morente-Molinera and Castro-Romero (2017) recommend the use of a

checklist at this stage that links user requirements to user roles. Such a checklist enables the

developer to have full control over the development process as they know which user to

consult at each stage.

ii. Simple metaphors encourage product understandability and testability.

Metaphors are used to describe the system from the user’s perspective. Thus, if used for

system representation should facilitate understanding of the requirements (Agarwal &

Umphress 2008, p.84) by both the developer and the users.

iii. Task automation facilitates product reusability and timely product delivery.

Identified repeating tasks should be automated to allow for future use (Bernabé, Navia &

García-Peñalvo 2015, p.694). To deliver timely projects, the developer needs to automate

most of their work (Dzhurov, Krasteva & Ilieva 2009, p.253). Automation reduces developer

effort as it minimises rework associated with human error. All in all, developer productivity

is enhanced through automating recurring tasks.

Stage III: Release and Sprint Planning

Most of the activities in the methods analysed have been grouped into this stage. The stage

includes Creation of User stories, Iteration Initiation and Planning from Faat (Bernabé, Navia

& García-Peñalvo 2015), Planning from PXP1 (Agarwal & Umphress 2008) and PXP2

(Dzhurov, Krasteva & Ilieva 2009), Project Planning from Go-Scrum (Ramingwong,

Ramingwong & Kusalaporn 2017) and Management from Solo Scrum (Pagotto et al. 2016).

Part of Planning and analysis from DeSoftIn also falls into this stage. Most authors concur on

the creation of user stories to capture user requirements. User stories capture user requirements

in a simple and easy to use way.

Bernabé, Navia and García-Peñalv (2015, p. 688) recommend the use of the acronym INVEST

(Independent, Negotiable, Valuable, Estimable, Small, Testable) to ensure simplicity of user

stories. INVEST is an acronym popularised by most agile methods (Heck & Zaidman 2018,

47

p.143). Using this approach, user stories should be independent of each other to facilitate the

delivery of the product in components. They should be designed to be negotiable, so that at

any time the concerned stakeholders can request for changes in the deliverable associated with

the user story without affecting any components already running at the user’s site. All user

stories should add value to the system under development. Similarly, user stories should be

small enough to facilitate accurate resource and time estimation. User story testability is an

important part of iterative development. Each user story should enable the development team

to write acceptance tests used to test the software component associated with the user story at

iteration end. This importance of simplicity in user stories is supported by Ramingwog,

Ramingwog and Kusalaporn (2017, p. 345) and by Agarwal and Umphress (2008, p. 84) who

recommend the use of a metaphor simple enough to facilitate system understandability.

In González-Sanabria, Morente-Molinera & Castro-Romero (2017) a recommendation to plan

for risk management is given. The developer is encouraged to identify all those activities that

might pose risk to the quality of the software product or the time of project completion. A risk

management plan should be created indicating risk owners for each identified risk. This

enables the developer to quickly consult those concerned in the event that the risk materialises.

From the activities organised into this stage the following theories emerge:

i. Small user stories promote product simplicity.

In creating user stories: “...clarify everything the product will offer, to list all the operations

that users can perform,…., must be divided in smaller, simpler, achievable and estimable user

stories” (Bernabé, Navia & García-Peñalvo 2015, p.692).

ii. Product refactoring and use of simple story cards result in product simplicity (Bernabé,

Navia & García-Peñalvo 2015; Agarwal & Umphress 2008; Dzhurov, Krasteva & Ilieva

2009).

iii. Use of a work breakdown structure (WBS) in planning promotes product completeness

(Dzhurov, Krasteva & Ilieva 2009; Pagotto et al. 2016)

iv. Size and time estimation in planning reduces schedule slippage (Bernabé, Navia & García-

Peñalvo 2015; Agarwal & Umphress 2008).

Dzhurov, Krasteva and Ilieva (2009, p. 254) indicate that for first time projects, size and effort

estimation suffers from in-availability of data to base estimates, and might not produce

48

expected results. The developer is therefore recommended to review estimates at the end of

iterations to reflect the knowledge acquired during the development process.

v. Small milestones and releases encourage timely delivery (González-Sanabria, Morente-

Molinera & Castro-Romero 2017,p.28; Bernabé, Navia & García-Peñalvo 2015,p.689) .

Milestones and releases mark project progress. Developers using Faat should adhere to the

following advice; “milestones and releases should be maintained small enough to keep things

in perspective and not to take the risk of employing a lot of time on features that may not be

delivered on time” (Bernabé, Navia & García-Peñalvo 2015, p.689). In González-Sanabria,

Morente-Molinera & Castro-Romero (2017, p.28), the developer is advised to use release

iterations of three to ten days. This visualises the development process and helps to keep the

user informed about development progress. These theories form a guideline on the practices

in the Requirements and Elicitation stage.

Stage IV: Development with Review

At the development stage, the code for the software product is written. To enable the delivery

of quality code, most reviewed authors recommend constant review of one’s code before

integrating with the baseline code. The following stages from the studies reviewed have been

grouped to give the Development with Review stage:

Development and Review stages from Faat (Bernabé, Navia & García-Peñalvo 2015),

Development from PXP1 (Agarwal & Umphress 2008), Design and Implementation stages

from PXP2 (Dzhurov, Krasteva & Ilieva 2009), Release and Sprint Planning stage and Release

with Inspection stage from Go – Scrum (Ramingwong, Ramingwong & Kusalaporn 2017) and

the Sprint and Management stage from Scrum Solo (Pagatto et al. 2016). The Design and

Development stages of DeSoftIn also fall under this stage. An analysis of activities in this

stage gives the following themes:

i. Use of version control enhances product maintainability (Bernabé, Navia & García-Peñalvo

2015, p.690).

ii. Test driven development and unit testing enhances code quality (Dzhurov, Krasteva &

Ilieva 2009¸ p. 258 ; Bernabé, Navia & García-Peñalvo 2015, p. 690).

iii. Refactoring enhances system extensibility and maintainability (Dzhurov, Krasteva & Ilieva

2009¸ p. 258 ; Bernabé, Navia & García-Peñalvo 2015, p. 690).

49

iv. Prioritisation of tasks during development enhances user acceptance (González-Sanabria,

Morente-Molinera & Castro-Romero 2017, p.27).

v. Time estimation review improves future estimates and reduces development bottle necks

(Dzhurov, Krasteva & Ilieva 2009¸p. 256; Bernabé, Navia & García-Peñalvo 2015, p. 693).

vi. Frequent customer communication reduces required documentation (Agarwal &

Umphress 2008, p. 85).

vii. Use of a dummy programming partner and objective self-criticism improves code quality

(Bernabé, Navia & García-Peñalvo 2015, p.691; González-Sanabria, Morente-Molinera &

Castro-Romero 2017, p.27).

Most of the theories emerging from this stage are well established in software engineering.

Unique to solo software development is that explaining program code to a dummy object

facilitates the discovery of errors in the code. (Bernabé, Navia & García-Peñalvo 2015, p.

691). The recommendation is that as one explains one’s code to the dummy, one is likely to

uncover errors in one’s code. This concept is corroborated by González-Sanabria, Morente-

Molinera and Castro-Romero (2017), who recommend that the developer objectively practices

self-criticism on all development practices. If done carefully this is likely to improve the

quality of the delivered products.

Stage V. Sprint Review and Close

A sprint is designed to deliver functionality at the user’ site. At the end of each sprint the

delivered component should be assessed for compliance with the requirements. The following

stages from the component methodologies have been included; Iteration and Evaluation from

Faat, System testing from PXP2 (Dzhurov, Krasteva & Ilieva 2009), Management and

Deployment stages from Scrum Solo and Sprint from Go-Scrum. The following theories can

be derived from this stage:

i. Consistent sprint reviews encourage customer communication (Ramingwong, Ramingwong

& Kusalaporn 2017, p.3467).

ii. Early fixing of errors enhances product quality (Dzhurov, Krasteva & Ilieva 2009, p.256).

iv. Performing of acceptance tests promotes product correctness (Bernabé, Navia &

García-Peñalvo 2015, p. 690).

50

Stage VI. Evaluation

The last stage of the framework drawn from the studies is Evaluation. This consists of two

stages with the same name of Evaluation, drawn from Faat and DeSoftIn, Post Mortem from

PXP1 and Retrospective from PXP2. Evaluation performed during the development process

helps to improve developer productivity as well as refocus the development process. If

performed at the end of the project, it serves as a knowledge creation process for improvement

in future projects. Since the developer performs most of the development activities single

handed, they are encouraged to involve the customer in the evaluation process. DeSoftIn

recommends the involvement of a consultant (or supervisor) who assists the developer to

discover new ways of improving the development process.

Some activities from Go - Scrum and Scrum Solo are pushed down to this stage. These include

the Sprint Review meeting of Go – Scrum (Ramingwog et al. 2017, p. 345) and the Validation

activity of Scrum Solo (Pagotto et al. 2016)Validation is an important concept in software

development. It serves to confirm that the developer has built the right product for the

customer. From these activities, minimal data can be derived. The following theories are

deduced:

i. Correction of methodology practices early in the development cycle minimises project

failure (Dzhurov, Krasteva & Ilieva 2009, p. 256)

ii. Product validation before final deployment ensures software meets user requirements

(Pagotto et al. 2016, p.6; González-Sanabria, Morente-Molinera & Castro-Romero 2017,

p.27).

The synthesis of the concepts from the participating studies helps this research to derive a

quality theory for the resulting framework. A theory in this case is considered as a set of

relationships about constructs in a field of study (Gregor 2006, p.615). The derived

relationships can be expressed in the form of a conceptual model (Mohammed et al. 2016,

p.698) as shown in Figure 2.4 and Figure 2.5. Two broad theories emerge, the product and

general software development theories. Figure 2.4 shows the product quality theories, while

Figure 2.5 shows general software development theories.

51

Figure 2.4 shows that the adoption of development standards, use of small user stories and

tasks, automating code reviews, writing testable code and refactoring promote simplicity and

thus quality of product. At the same time the use of development standards and product

validation promote product consistency. Similarly, use of simple metaphors to capture user

requirements promote product understandability and code quality. The rest of the figure is

interpreted similarly.

Some general software quality theories describing the development process were also

observed from this synthesis. These practices do not directly impact the quality of the product,

but contribute to the success of the development effort. Figure 2.5 shows general theories

-Use of

development

standards

-Small user

stories &

tasks

-Automated

code review

-Refactoring

-Testable

code

Product Quality

Simplicity Consistency Understandability

& Code quality

Reusability Maintainability

& extensibility

Completeness

-Use of

development

standards

-Product

validation

-Simple

metaphors

-Test-driven

development

-Unit testing

-Use of a

dummy

partner

-Self-

criticism

-Task

automation

-Task

independence

-Test driven

development

-Refactoring

-Unit testing

-Version

control

system

-WBS

-Product

backlog

-User

requirements

checklist

Figure 2.4: Product quality theory

52

derived from the studies synthesised. From the figure it can be seen that user education on

methodology, early user involvement and task prioritisation promote user acceptance.

Step 7: Reporting the Study

This meta-ethnography has resulted in the formulation of two broad theories regarding the

development of high-quality software products in a solo development environment. The

product quality theory stipulates that simplicity, consistency, understandability, reusability,

maintainability and completeness promote high product quality. On the other hand, from a

general software development process, user acceptance, timely product delivery and reduced

development bottlenecks promote the general software development process resulting in high-

quality software. The generated theories form a guide for methodology designers and provide

a basis for the formulation of a high-quality methodology, which is the main reason for

conducting this review and carrying out this research.

2.5.4 Threats to validity

-User education on

methodology

-Early user

involvement

-Task prioritisation

General Software Quality

User Acceptance -Reduced development

bottlenecks

-Timely product

delivery

-Small milestones &

releases

-Focus on user

requirements

-Reduction in

documentation

overhead

-Time and size

estimates review

-Early revision of

methodology

practices

-Constant

consultation

Figure 2.5: General software quality theory

53

According to Runeson et al. (2012, pp. 70-72) the validity of a study determines the

acceptability of its results by the target community. From these authors’ perspective, four

kinds of validity need consideration in a qualitative study like this. These are construct,

internal, external, and reliability (p.71). Construct validity refers to the dependability of the

structuring of the study to answer the posed research questions. This means the study setup

should be such that, results obtained using the setting provide unbiased answers to the study

questions. Internal validity relates to the planned handling of unexpected interactions of

variables in causal relationships, which may falsify the findings of a study. Researchers should

make all the effort to identify such variables and plan to counter their influence on the results.

External validity pertains to the generalizability of the results of the study to other populations

outside the study. Reliability pertains to repeatability of the study by other researchers to get

similar results. The next paragraphs discuss how these four forms of validity were addressed

in this meta-ethnography.

In addressing the issue of construct validity, research questions on the meta-ethnography

were formulated to be confined to the SSDM environment. Only articles by first author

discussing the methodology were retrieved from research outlets publicising software

engineering research. The research restricted the articles to only those discussing quality

practices in SSDMs. To minimise missing some articles, the researcher also used Google

Scholar to search for solo software development publications. With all the efforts made, some

articles may not have been published in the outlets mentioned so far. To address this threat,

the researcher checked the references of the articles found using database searches to identify

any such sources. To ensure quality in the synthesis, the inclusion and exclusion criteria set at

the study onset were reviewed by the academic supervisor for consistency and coverage of the

articles of interest.

To deal with the internal validity threat, the researcher iteratively went through the stages of

the meta-synthesis, referring to the original data at every stage, and including quotes directly

from the source data to capture the concepts in the studies involved. In deriving the theory, a

systematic approach to compare and contrast concepts in the studies was adopted. The

resulting abstractions from the synthesis were submitted to the PhD supervisor for further

scrutiny so as to deal with bias due to the researcher’s interest. Further, as the quality of the

abstractions are dependent on the quality of the accounts included in the synthesis, the

54

researcher only used peer reviewed studies from recommended scholarly sources as primary

data sources (Sandelowski et al. 1997, p.368).

External validity in this case pertains to the generalisability of the synthesis results to all solo

development environments. The participating studies in the review are drawn from different

backgrounds, ranging from business, to academic. Since the research has included studies

discussing methodologies from varied environments, the quality theory results of this study

can be generalised to any solo development environment. While the quality theory pertains to

solo developers, this research does not rule out the applicability of the quality concepts cited

in this thesis to team environments. The theory’s applicability to teams needs proof through

empirical studies.

In a meta-ethnography, the main aim is to derive higher levels of data abstraction, based on

all the available primary studies. Researcher bias may impact on the quality of the abstractions

produced. To minimise researcher bias, transparency in data collection and analysis is

encouraged. In a bid to ensure reliability in this synthesis, guidelines from Noblit and Hare

(1998) supported by suggestions from Sandelowski et al. (1997) were used to perform the

meta-ethnography. As suggested by the latter, a template generated from the data was used to

extract and analyse the concepts of interest. The researcher made all efforts to support all

extracted concepts with quotes from the source data. The quality framework generated by the

meta-synthesis was subjected to peer review at a research seminar and presented at an

international conference (Moyo & Mnkandla 2019). Feedback obtained from the participants

in these cases was used to improve the quality theory generated from the synthesis.

While the measures above were put in place to deal with the threats to validity, there are

limitations in this study. One of the limitations is that non-electronic studies or those studies

published in databases not included in the study might have been missed. Further, the study

did not include those studies that were not formulated as methodologies. This would mean

quality practices in such studies were not included in the study. The data in this study is

therefore representative of only those studies participating in the meta-ethnography. The other

limitation is that some quality theories may not have been captured in this study due to

researcher bias, although efforts were made to subject the theory generation process to

different audiences.

55

2.6 Exposing the gap in SSDMs

The aim of this research was to design a solo software development methodology that embeds

practices which promote quality in the developed software product. Since quality is a complex

phenomenon, the product quality characteristics as defined in the ISO/ IEC 25010 model were

used as a benchmark against which to measure the software product quality. The model and

the reason for opting for it were discussed in Section 2.4.1. The model defines abstract quality

characteristics which are: compatibility, functional suitability, maintainability, performance

efficiency, portability, reliability, security and usability. The abstract characteristics in turn

are described by measurable concrete characteristics as shown in Figure 2.3. A mapping of

the quality theory generated by the meta-synthesis carried out in this thesis against the model

shows that some concepts of the theory appear at the abstract level while others appear at the

concrete level. This mapping is shown in Figure 2.6. The abstract characteristics that can be

mapped directly are maintainability and functional suitability (completeness). The other

characteristics such as usability, portability and reliability are supported by sub –

characteristics at the concrete level. It was noted that of the abstract characteristics supported

at the concrete levels, none is fully supported.

The mapping also shows that there are some abstract characteristics in this model that are not

supported. These are security, compatibility and performance efficiency. This mapping has

therefore exposed a gap in the existing methodologies regarding the promotion of quality

products as defined by the ISO/ IEC 25010 model. In progressing knowledge in the SSDM,

this research therefore sought to identify security promoting practices from existing

lightweight methodologies that are compatible with the existing quality practices. When

integrated with the quality practices in the derived framework, it was hoped that these would

build security into the developed software.

Software projects tend to be different in nature, due to varying team sizes, different

environments, different budgets and time frames (Pardo et al. 2011, p.94; Hughes & Cotterrell

2012, pp.61 - 67). This research focused on a team size of one. The uniqueness of solo

software development environment was discussed in Section 2.5. One unique feature of the

solo development environment is the limited resources, which impacts on budgets for training

(Coleman & O’Connor 2008, p.773; Basri & O’Connor 2010, p.1457).

56

Figure 2.6 : Mapping quality practices to ISO/IEC 25010 quality model

An ideal methodology for such an environment should therefore be adaptable, so that it can

be used in a number of projects with minimal adjustments. To achieve such flexibility, this

research proposes the definition of a method core (Keramati & Mirian-Hosseinabadi 2008, p.

751) that can easily be extended depending on the type of software product under

development.

Functional Suitability

Performance

Efficiency

Maintainability

ISO/IEC 25010

Product Quality

Model

Usability

Compatibility

Portability

Reliability

Security

Maintainability

& Extensibility

Understand-

ability

Consistency

User Acceptance

Timeliness

Reusability

Completeness

Simplicity

ISO/IEC 25010

Quality in Use

Model

Efficiency

Effectiveness

Satisfaction

Derived Quality Theory

ISO/IEC 25010 Quality Model

Full Support

Partial Support

Freedom from Risk

Context Coverage

Key: -

57

2.7 Tools for Methodology Design

The success of methodology design and implementation is heavily dependent on the tools

used for the purpose. A search of the literature reveals two popular frameworks for method

engineering. These are the Eclipse Process Framework (EPF) Composer and the Essence

Framework (Elvesæter et al. 2013, p. 1). The EPF Composer is the most preferred in software

engineering methodology creation as it is an open framework, has a number of plug ins and

supports several modelling and programming languages. Further, the framework supports

methodology flexibility and extensibility, as it enables the definition of activities and tasks

that are independent of each other. The latter promotes task reusability (Porres et al. 2013,

p.269). This is a favourable property of the framework for the methodology proposed in this

thesis as it addresses the issue of resource scarcity. Other researchers have also used the

framework in designing similar products. Elvesæter, Benguria and Ilieva (2013, p.1) used the

framework to develop and implement the agile REMICS methodology. Mtsweni (2013, p.

122) used EPF to design a framework for developing intelligent semantic services. This

research adopts the EPF composer as the main platform for method engineering as it is an

open platform, thus is readily available and can be used in the development of lightweight

methodologies. The use of the EPF Composer in implementing the Secure-SSDM is discussed

in Section 5.3

2.8 Chapter Summary

The literature review conducted in this chapter has provided this research with a background

and theory upon which to base the development of the proposed Secure-SSDM. The overview

of the software development landscape in general, and the in-depth analysis of the solo

software development environment in particular, provides a rich base for building the

proposed methodology. Having thoroughly analysed existing SSDMs, it has been possible to

explicitly show the gap that still exists in the solo software development environment. The

meta-synthesis performed on the former enabled this research to position this study in line

with what still needs to be done in order to progress knowledge in the field.

In Chapter 3, the approach used to develop the Secure-SSDM is deliberated on. The careful

setting of the methodology development is meant to promote the success of the project.

Careful formulation of the research roadmap also enables other researchers to give respect to

the resulting methodology at the same time enabling repeatability of the process.

58

3 CHAPTER 3 RESEARCH METHODOLOGY

3.1 Introduction

In Chapter 2, a review of the literature on the current landscape in small-scale and solo

software development was conducted. An in-depth literature review of existing SSDMs was

performed resulting in the preliminary design of an SSDM framework synthesised from these.

Preliminary quality theories were also derived from existing quality practices. A comparison

of the formulated quality theories with the ISO/IEC 25010 software quality model (ISO 2010)

revealed that, although the derived quality theories supported quality characteristics defined

in this model, there were no practices to support security, compatibility and performance

efficiency.

The absence of security practices in the reviewed SSDMs is consistent with the observation

by Mohammad, Alqatawna and Abushariah (2017, p.814). In their study, the authors conclude

that many software development methods do not support security in their phases of the

software development life cycle (SDLC). This is not surprising for lightweight methods, as

focus on improving software security is viewed as reducing productivity and increasing costs

(Baca & Carlsson 2011; Mohammad et al. 2017, p.817). Further, agile methods on which this

research focuses, have been shown to lack security promoting practices by a number of

researchers (Aguda 2016, p.6; Karim et al. 2016, p. 5334; Rafi et al. 2015, p.380; Wäyrynen

et al. 2004, p.127). Although security was not the only characteristic missing in the theory

generated by the literature review, in this Internet age where most applications are deployed

on the World Wide Web, the need to address the security issue of the derived framework is

compelling.

Besides revealing the quality gaps in existing SSDMs, the literature review further helped in

shaping this research as it clearly provided a direction of what questions to ask. Guided by the

literature review this research confidently poses the following question and sub-questions:

How can a secure-SSDM be developed to enable quality and security in the developed

software?

The following sub questions were further posed to help answer the main question:

1) What methodologies exist for solo software development?

59

2) What practices and techniques in the existing methodologies promote quality in the

developed software?

3) What lightweight practices and techniques in the software development life cycle

support software security?

4) How can the identified practices and techniques be integrated into a Secure-SSDM to

enable quality in the final software product?

5) How can the resulting methodology be evaluated?

The design and implementation of a methodology that incorporates security promoting

practices is viewed as one of the main contributions to knowledge of this research. This is the

reason for posing a separate question on security as a quality characteristic. This research

concurs with Al-amin et al. (2018, p.33) that incorporating security practices into the software

development process promotes security in the resulting product. However, integrating

lightweight quality and security practices is not an easy task (Ragunath et al. 2010; Rindell et

al. 2018; Sonia et al. 2014; Sonia & Singhal 2012; Keramati & Mirian-Hosseinabadi 2008).

There is need therefore, to develop a systematic approach for the purpose. To that effect it was

necessary to identify and adapt an established method to guide the integration process.

Searching the literature enabled this research to identify practices integration algorithm by

Keramati and Mirian-Hosseinabadi (2008). This was then adapted for the purpose. Using the

algorithm, lightweight security promoting practices were identified from existing secure

software development methods and incorporated into the framework derived in Chapter 2 to

build a novel high-quality Secure-SSDM.

Since the literature review had conclusively shown that existing SSDMs lack security

promoting practices, lightweight secure software development processes provided an

alternative source for identifying those security promoting practices that could be undertaken

by a single developer. The following sections discuss the research paradigm, the research

method and the tools used to design and implement the proposed Secure-SSDM.

3.2 Research Paradigm

A philosophical research paradigm is one’s perception about the world around them and how

one builds on those perceptions to create knowledge (Oates 2006, p. 282). A number of

research paradigms exist. Each paradigm is distinguished by the following dimensions:

60

ontology, epistemology, axiology and methodology. These paradigmatic dimensions

influence how one conducts and constructs knowledge from research. This section overviews

the main research paradigms showing their dimensions of ontology, epistemology

methodology and axiology. Exploring these is important for the purposes of identifying a

suitable paradigm in which to pursue this research. Taking a stance in which to approach

research helps to give credibility to the research, at the same time assisting stakeholders in

evaluating the quality of that research.

First, the dimensions used in differentiating the paradigms are outlined. The ontology of a

paradigm refers to the nature of reality in that paradigm. Reality can either be concrete or

abstract (Vaishnavi et al. 2017, p. 24). This means, reality can be dissected into what is

tangible and what is intangible. Ontology therefore, refers to one’s perception of reality around

them (Wahyuni 2012, p. 69). Researchers in the various paradigms perceive reality differently.

Epistemology on the other hand refers to the acceptable and effective ways in which

knowledge is generated and used in a paradigm. This dimension defines knowledge

dependencies and means of affirming the existence of knowledge. It defines the nature of

knowledge in a given paradigm. To be credible, research in a given paradigm should be

conducted according to what is accepted as the norm in that paradigm.

Axiology considers the acceptable roles a researcher can play in a researched environment. It

defines what is ethically acceptable, and that which is not. Vaishnavi et al. (2017, p.24) refers

to axiology as the values held by a researcher and the reasons for holding those values. The

axiology of a researcher determines the acceptable associations among what is researched and

the researcher.

Methodology as a dimension defines the approach of conducting research in a particular

paradigm. It provides a model for carrying out the research. The methodology standardises

the research process, enabling repeatability of research. These four dimensions distinguish

existing research paradigms and need careful consideration in any research. In deciding what

paradigm to adopt in conducting research, care should be taken to consider these dimensions,

and choose a befitting paradigm.

The four paradigms applicable in this thesis that need consideration before settling for an

appropriate one(s) are: positivism (reductionism), interpretivism (constructivism), critical

research and design science research (Hevner et al. 2004; Vaishnavi et al. 2017; Oates 2006;

61

Easterbrook et al. 2008). These differ based on their ontology, epistemology, axiology and

methodology. In the following paragraphs these differences are considered with the intention

of settling for a befitting paradigm (s) for this research.

Positivism axiologically upholds that concepts in the world exist independent of researchers.

This means that these concepts can be studied objectively without the researcher’s interference

(Oates 2006 p. 286-287). The epistemology of positivists is that knowledge is created through

logical inference of observable facts about the concepts and their surrounding world. In

creating knowledge, large concepts are usually broken down into smaller ones, so that if a fact

is proved to hold in the small isolated components, then it also holds in the larger concept

(Easterbrook et al. 2008, p.291). In this paradigm the objects of study are removed from their

original setting and studied in an artificial environment. This approach was deemed

inappropriate for studying a software development methodology whose success is heavily

dependent on the environment of application and the people using the methodology. What

makes the positivist approach inappropriate for this study is its dissociation of the object under

study from its environment, making it unsuitable for studying socio-technical artefacts like

software development methodologies and associated software products.

Interpretivists on the other hand create knowledge through meanings derived from observing

concepts in their surroundings. They formulate theories based on the meanings of what they

observe around them at that moment in time. Knowledge creation in this paradigm depends

on the researcher’s understanding of the environment. This knowledge is also time dependent.

From a computing perspective, Interpretivists study the way humans create computer systems,

how they are influenced by and how they influence these systems (Oates 2006, p.292).

Interpretivism presents a viable option for this research as it supports the design of a

methodology for a specific set of developers to address their needs in a specific setting. This

paradigm was deemed ideal for creating knowledge from the existing SSDMs, and for

deriving the developer’s perceptions of the utility of the Secure-SSDM. It enabled the studying

of software development and the associated SSDMs as social practices heavily influenced by

developers (Dittrich 2016, p.751).

A similar paradigm to interpretivism is critical research. Critical research like Interpretivism

subscribes to the influence of human perception in knowledge creation, but further seeks to

understand the systems that influence the creation of that knowledge (Oates 2006, p,296).

Critical researchers seek to bring balance into unbalanced situations by suggesting means of

62

empowering the disadvantaged in the research environment. The open source movement is an

example of critical research. Open source proponents aim at availing computing solutions to

the economically challenged (Easterbrook et al. 2008, p.292). This approach was rendered

inappropriate in this research as there are no situations of imbalances to be addressed by this

research.

The fourth paradigm of interest is Design Science Research (DSR). DSR as a paradigm,

acknowledges the existence of several world states. It focuses on creating innovative artefacts,

and evaluating these artefacts’ capabilities to move the world between these states (Hevner

et al. 2004, p.98; Vaishnavi et al. 2017, p.25). Epistemologically, researchers in this paradigm

build knowledge by designing and introducing novel artefacts into the world from which they

create new knowledge through circumscription. A researcher in this paradigm iteratively

introduces modified artefacts to an environment to bring about change to that environment.

Knowledge here is created by observing the artefact’s interactions with the environment. The

predictability of the artefact’s behaviour when introduced to an environment defines truth in

this paradigm.

Table 3.1 summarises the research perspectives discussed in the preceding paragraphs. It gives

a comparison of the four paradigms considered in this research in terms of the dimensions

explained above. As shown in the table, positivists believe in a single knowable reality, while

interpretivists subscribe to multiple realities, which are dependent on the environment. This

multiple-realities perspective is shared by critical realists, who further acknowledge the

influence of both the environment and external sources on these realities. Similarly, design

science researchers subscribe to multiple realities which are associated with different world

states. Such realities are brought about as artefacts are introduced to an environment, to move

realities from one state to the other. The best reality is that which achieves the expected results

in a given environment.

Using Table 3.1, and considering the problem at hand, this research adopts DSR as the main

paradigm. DSR is viewed as the best option, as it facilitates the building of an artefact that can

be iteratively refined until satisficing utility is obtained. At each iteration, as the artefact is

introduced to the environment, it is evaluated and refined until it exhibits the desired

characteristics that address the unique needs of solo developers. During the process of refining

the artefact, there is need to understand the utility of the artefact from the developers’

perspective. For this purpose, the interpretivist paradigm was adopted as a complementary

63

paradigm to enable the understanding of the perceptions of the developers on the utility of the

Secure-SSDM. The Interpretivist paradigm also influenced the formulation of the primary

framework for the artefact. At that stage, the researcher abstracted meaning of the quality

practices as perceived by the authors of the SSDMs participating in the meta-synthesis

performed in Chapter 2.

Table 3.1: Research paradigms and their dimensions: adapted from Wahyuni (2012, p.25);

Vaishnavi, Kuechler and Petter (2017, p.25)

Dimension Research Perspective

Positivist Interpretive Critical Research Design Science

Research

Ontology Single

knowable

reality;

probabilistic

Several

realities,

socially

constructed

Several realities,

constructed by the

environment and

external sources

Multiple,

contextually

situated

alternative

world- states.

Socio-

technologically

enabled

Epistemology Objective,

dispassionate

researcher

detached from

the environment

Subjective,

researcher-

participant

dependent

Dependent on

what can be seen,

Knowledge

created from

concepts and their

contexts

Knowing

through making:

objectively

constrained

construction

within a context.

Iterative

circumscription

reveals meaning

Methodology Observation;

quantitative,

statistical

Participation;

qualitative.

Hermeneutical,

dialectical

Can use both the

quantitative and

qualitative forms

Developmental.

Measure the

artefact’s

impacts on the

system, Uses

mixed methods

Axiology Truth: universal

and beautiful;

prediction

Understanding:

situated and

description

design

Researcher

background

influences

research outcomes

Control &

creation;

Researcher

values impacts

on outcomes

64

3.3 DSR Research Methodology (DSRM)

A research methodology provides an architectural guide to research in a given philosophical

paradigm (Wahyuni 2012, p. 72). A methodology’s purpose is to structure the study by laying

down the steps, activities and tools to be used for the research as well as providing means for

evaluating that research. Since DSR is the overarching paradigm in this thesis, there is need

to adopt a methodology in line with this paradigm.

Some researchers have proposed guidelines for conducting DSR. Hevner et al. (2004)

emphasize on a DSR methodology that promotes: the design of a valuable artefact to a given

audience; relevancy of the artefact to the problem being solved; rigour in the design of the

artefact; rigour in the evaluation of the utility of the artefact in the environment for which it is

designed; the utilisation of existing knowledge to build new knowledge in the field; and the

presentation of both the artefact and new knowledge generated to relevant stakeholders.

Taking a cue from these authors’ guidelines, Peffers et al. (2008) suggest a design Science

research methodology (DSRM) for undertaking research in this paradigm. Their methodology

provides a systematic approach to designing and evaluating the utility of the artefact under

design. Apart from providing the researcher (s) with an organised evaluation approach, it

guides research reviewers in judging the quality of a DSR endeavour. Peffers et al. (2008,

pp.52-56) DSRM can be summarised using the following steps:

1.Identifying the problem – At this stage, the researcher identifies the problem (or

opportunity) through discussions with people, observation of the world around them or review

of various forms of literature. At this stage, the significance of the solution is also identified

as it gives reason for pursuing the research.

2. Defining solution objectives – Based on the problem, the researcher proposes objectives

to be addressed by the solution in order to solve the defined problem. These solution objectives

are used to evaluate the artefact at the end of the study. Objectives determine the quality of

the artefact. They can either be formulated to be quantitative or qualitative showing how the

artefact will solve the identified problem. The objectives of the Secure-SSDM are detailed in

Chapter 4.

3. Designing and developing the proposed artefact – The artefact is produced at this stage.

Appropriate activities, tasks and rules are adopted to design, implement and document the

artefact. This is heavily dependent on the artefact to be produced. Activities carried out to

65

develop a model would be different from those executed to design a method. The artefact in

this study is a software development methodology. Chapter 5 discusses the methodology used

to design the Secure-SSDM.

4. Demonstrating the utility of the artefact –As suggested by Peffers et al. (2008, p.55),

this entails using the artefact to solve a representative problem in the area. Demonstrating the

utility of a software development methodology entails using the methodology to design and

develop quality and secure software products. This follows from the solution objectives. In

this thesis, a multiple case study was used for the purpose.

5. Evaluation – Evaluation measures the utility of the artefact based on its performance from

the demonstration stage. Various forms of measures can be used. Examples include qualitative

evaluation of the target audience perception of the utility of the artefact. Other forms of

evaluation include quantitative measures of the artefact’s performance, use of simulations, or

the use of satisfaction surveys (Peffers et al. 2008, p.56). Results obtained from the evaluation

process are used to determine whether to refine or release the artefact for use.

6. Communicating the results of DSR research – This involves the use of appropriate

channels to publicise the artefact, its design process, its evaluation process and the outcome

of the evaluation. Channels such as academic conferences, journals, book chapters or

magazines may be used for the purpose.

The following subsections detail how this DSRM was used to build the Secure-SSDM. In

using the methodology, suggestions by Vaishnavi, Kuechler and Petter (2017, p.11) to

generate new knowledge during design were utilised. While these authors’ original knowledge

generation cycle is based on Hevner et al. (2004)’s five stage DSR process, the similarities in

the two processes were used in this thesis to generate the knowledge flows. Figure 3.1

summarises DSRM steps and associated knowledge generation processes. As shown by the

circumscription and the SSDM knowledge arrows, DSRM is an iterative process.

Circumscription refers to the discovery of new knowledge when things do not work as

expected for the artefact under development, forcing the researcher to dig deeper into existing

knowledge in order to make the artefact work (Vaishnavi, Kuechler & Petter 2017). Just like

the design process, circumscription is an iterative process that generates new knowledge

during the iterations. Circumscription together with “abstraction and reflection” at the end of

the research help to contribute knowledge to the existing SSDM knowledge base, which is the

distinguishing feature of DSR.

66

In this research, the knowledge base contains SSDM practices, their relationship with quality

characteristics and development processes. Besides the artefact being the main contribution

in this research, knowledge contribution is another important contribution of this thesis. This

was achieved at various points of the design cycle. Knowledge contributions from this thesis

are summarised in Section 7.3.

As Figure 3.1 shows, knowledge generation starts during the design and development of the

artefact. As the researcher discovers that some processes obtained from the knowledge base

do not work, the latter is updated with those processes that do. The resulting artefact is then

demonstrated through application in an appropriate environment. Similarly, any new

discoveries from this application are added to the base. During the demonstration process, the

artefact is evaluated against the originally set objectives. Results from the evaluation process

are used to update the knowledge base. Once the researcher is satisfied that the artefact meets

its intended objective, the research stops. The new artefact may further stimulate new research

based on its performance in its intended area. The next section elaborates on the application

of DSR in this thesis.

3.3.1 Identifying the problem

The researcher’s academic background in software engineering stimulated interest in the area.

Having observed students adapt methodologies for use in their final year individual software

development projects inspired this research. Reviewing the literature over the years in search

of an appropriate method to guide students showed that minimal research exists in this area.

A systematic literature review on solo software development (SSD), conducted in this thesis

further proved that previous studies have ignored the SSD environment. The small number of

studies (seven in this case) published in mainstream software engineering outlets confirmed

this.

Apart from the small number of studies found, the synthesis of the retrieved SSDMs further

showed that existing methodologies’ support for the development of quality software products

is limited. Security as a quality characteristic is not supported by existing SSDMs. The

research efforts to improve SSDMs have not necessarily translated to improving quality of the

SSDMs, particularly in terms of secure software development. Section 2.5 demonstrated that

existing SSDMs have some quality promoting practices, but they do not fully support quality

characteristics as defined by the ISO/IEC 25010 (ISO 2010) quality standard.

67

Figure 3.1: Knowledge flows in DSR (Vaishnavi, Kuechler & Petter 2017)

 Knowledge Flows DSRM Process Flow (Peffers et al.2009)

C
ir

cu
m

sc
ri

p
ti

o
n

 N

ew
 K

n
o
w

le
d
g
e

Stop

Communication of

new SSDM

knowledge

Problem definition: (Low quality

& insecure SSDMs)

Secure -SSDM objectives

definition (Improved quality &

security of products)

Secure-SSDM utility

demonstration (Case study)

Secure-SSDM design &

development

Secure-SSDM evaluation;

(Multiple case study & 4-DAT)

68

The mapping of the quality theory derived from the meta-synthesis against the ISO/IEC 25010

quality model revealed partial support of the quality theory for the quality characteristics

defined by the standard. The derived quality theory was shown to fully support functional

suitability, maintainability and satisfaction, while it partially supports usability and reliability.

Performance efficiency, compatibility, security, effectiveness, portability and efficiency are

not supported. At the analysis stage in Chapter 4 of this research, those quality characteristics

that are supported by the SSDM framework are fully explained based on the definitions in the

ISO/IEC 25010 quality standard.

3.3.2 Defining solution objectives

This research proposes a higher quality SSDM that promotes quality and security in the

developed software product. The derived theory and literature review findings show that

existing SSDMs have limited support for quality, and have no support for product security.

The proposed SSDM should support both quality and security in the designed product. Using

existing SSDMs quality practices as a baseline, the proposed Secure-SSDM builds onto these

by incorporating security promoting practices derived from lightweight secure software

development methods.

To encourage its uptake among solo developers, the Secure-SSDM is designed to be an agile

method. This means that it is designed to be compliant with the twelve agile principles

(Fowler & Highsmith 2001; Beck et al. 2001).Thus it is designed to:

i. Satisfy the customer through early product delivery.

ii. Incorporate requirements change throughout the development process.

iii. Deliver working software frequently, preferably in short cycles.

iv. Promote continuous customer involvement.

v. Motivate and empower the development team.

vi. Uphold face-to-face communication among team members.

vii. Measure project progress using working software.

viii. Uphold a sustainable development process.

ix. Focus on technical and design excellence.

69

x. Ensure maximum simplicity.

xi. Encourage self - organisation of teams.

xii. Allow teams to reflect on performance and adjust processes accordingly.

It should be noted that the team size for the Secure-SSDM is one, excluding the customer.

This means the principles pertaining to team environments should be handled as such. The

main contribution in this thesis is promoting security in the developed software products.

Software security is an important quality characteristic expected of software products,

especially for those that are deployed on the World Wide Web (Uikey 2015, p.28).

3.3.3 Designing and developing the proposed artefact

In the adopted DSRM, an appropriate method is used to design the artefact at the design stage.

Based on the expression “Software processes are software too” (Osterweil 1997, pp.356 -357),

the Secure-SSDM was designed incrementally and iteratively, characteristic of agile design.

In the first iteration, quality practices drawn from existing SSDMs were used to form the

primary Secure-SSDM. The primary Secure-SSDM was designed through synthesizing

existing SSDMs giving the resulting methodology greater quality capabilities than the

existing methods (Cruzes & Dybå 2011, p.443). Peffers et al. (2008) used a similar approach

in designing the DSRM used in this thesis. In their case, method practices were extracted from

existing DSR methods to form the core method practices, thus giving the methodology a firm

grounding (Peffers et al. 2008, p.52).

The first iteration in designing the Secure-SSDM, was dedicated to formulating the primary

framework. This primary framework was initially presented at a postgraduate seminar, and

feedback from the participants was used to refine the methodology. Further, to ensure rigour

in the method design cycle, the process of building the framework, together with the resulting

framework were presented at an international peer-reviewed conference. This conference

publication is detailed in Moyo and Mnkandla (2019).

In the second iteration of the design cycle, lightweight security practices were derived from

secure software development processes. The latter provided the best alternative source as the

literature review had conclusively shown that existing SSDMs do not have security promoting

practices. An algorithm adapted for the purpose was used to integrate the security practices to

the primary SSDM.

70

3.3.4 Demonstrating the utility of the artefact

The Secure-SSDM is designed to build quality and security in the developed software.

Demonstrating its utility entails using the methodology to design and develop quality and

secure software products. A multiple case study was used for the purpose. The first case study

was carried out in an academic institution. Thirty-nine undergraduate students pursuing a

computer science degree participated in the study. To undertake the evaluative case-study, the

researcher first sought for and was granted ethical clearance by the participating students’

institution. In addition to the participants’ institution clearance, an overall ethical clearance

for the study was sought for and granted by UNISA. The ethical clearance and the clearance

letter from the university gate keeper are attached in Appendix A.

After receiving both clearances, an invitation to participate was extended to all Computer

Science second - year students. These were students enrolled at the National University of

Science and Technology (NUST), Zimbabwe for the 2018-2019 academic year. Thirty-nine

students opted to participate. Participants were asked to apply the Secure-SSDM in developing

individual sized software projects to address industry needs. Mini projects were undertaken in

the areas of Education, Business, Health, Environment and Government. This lot of students

was found suitable for this purpose due to the fact that the researcher had access to them.

Further, the students had undertaken courses necessary for software development. The

detailed description of the case study is given in Section 6.3.

At the onset of the case study, the roles, tasks and deliverables from the methodology were

explained to the participants. The expectations from the study were not explained so as to

minimise bias (Pohl & Hof 2015). While the use of the methodology by student participants

provided a means for formative evaluation, it further provided a means for eliciting method

requirements from a developer perspective. After the students had used the method, they were

asked to comment on the usability and appropriateness of the method for building quality and

secure software systems. Class discussions were conducted to obtain feedback from the

participants. Documentation to support the designed software products was reviewed to

establish methodology execution by the participants. The comments obtained from the

students after applying the methodology were used to generate knowledge in the

circumscription cycle.

The second case study involved industry developers applying the methodology to develop

web-based software applications of their choice. Development was however not restricted to

71

web applications only. The web-based applications were chosen to demonstrate the attainment

of quality characteristics expected of the software products built using the SSDM. Web-based

applications are expected to be secure, simple to use, consistent, understandable, reusable,

maintainable and complete (Sfetsos et al. 2016¸ pp.1-2; Uikey 2015, p.28). The web-based

applications were found to be ideal to cover all the expected product quality characteristics

developed using the Secure-SSDM. The demonstration section of Chapter 6 gives a detailed

description of an example case system designed to demonstrate the utility of the Secure-

SSDM.

3.3.5 Evaluation

Evaluation checks how well the designed artefact addresses the initial artefact objectives. It

is also a process of checking the usability, usefulness and efficiency of an artefact (Venable

et al. 2016, p.77). Evaluation is an important aspect of DSR, and rigorous methods should be

applied to evaluate the designed artefact (Hevner et al. 2004, p. 13; Venable et al. 2016, p.77).

To ensure rigour in the evaluation process, two forms of evaluation were applied in this thesis.

A theoretical evaluation was performed to check the compliance of the Secure-SSDM with

the requirements of agile methods as defined in the agile manifesto. The 4-DAT framework

(Qumer & Henderson-Sellers 2006; Qumer & Henderson-Sellers 2008) was found ideal for

the theoretical evaluation purpose. Other researchers (González-Sanabria, Morente-Molinera

& Castro-Romero 2017; Leppa 2013; Ghani et al. 2014) have also used the framework for the

same purpose, proving its utility for the purpose.

The four dimensions used to evaluate methodologies in this framework are method scope,

method agility, agile values characterisation, and software process characterisation. Method

scope considers the project and team sizes, development and coding styles, technology and

physical environments, and business and abstraction culture of the artefact. Method agility

evaluates the method practices and stages against the agile characteristics of flexibility, speed,

leanness, learning and responsiveness (Qumer & Henderson-Sellers 2006, p.504). Each of the

method practices and method stages is assessed for exhibiting these characteristics. A practice

is assigned a score out of five, depending on the presence or absence of these. The highest

score is five (5), if all are present and the lowest is zero (0), if none of these exist. Agile values

characterisation identifies those practices in the agile method that support agile values. The

authors define six values necessary for the purpose which are: individuals and interactions

over processes; working software over comprehensive documentation; customer collaboration

72

over contract negotiation; responding to change over following a plan; keeping the process

agile; and keeping the process cost effective (p.505). The evaluation process sought to identify

practices within the proposed methodology supporting these values. Lastly, method

characterisation identifies processes within the method that support: software process life

cycle coverage; project management support; software configuration management; and

process management support (p.506).

The main aim of this theoretical evaluation was to determine the agility of the methodology

using an established model. Since this thesis proposes a lightweight agile methodology for use

by solo developers, it was necessary to evaluate this characteristic of the Secure-SSDM. The

theoretical evaluation process is detailed in Section 6.7.1.

A multiple case study was also used to demonstrate the utility of the Secure-SSDM, as well

as to evaluate the usability, effectiveness and completeness of the designed methodology in

its intended environment. Oates (2006, p. 116), recommends that software engineering

artefacts be evaluated in a real- world environment. Case studies are appropriate for empirical

evaluation when the boundary between the artefact under study and its context are unclear

(p.142). This is true for software development methodologies whose success is influenced by

the people and the environment in which they are used (Runeson & Höst 2009, p. 137). In

DSR evaluation is a continuous process whose output feeds back to the design process

(Hevner et al. 2004). The application of the methodology in developing software products by

both student and industry developers served to demonstrate and evaluate the usability of

methodology by the target community.

Various measures were put in place to address threats to validity associated with case studies.

Threats to validity in case studies can be internal, external, and construct or can be threats due

to reliability (Baca & Carlsson 2011, p 152 - 153). Internal validity pertains to the unexpected

influence by another factor on the factor under investigation in causal relationships (Runeson

& Höst 2009, p.154). In this research this would mean an outside factor induces quality and

security in the software products, besides the practices embedded in the Secure-SSDM.

External validity pertains to the extent to which the results of the case study can be used in

similar cases. Construct validity refers to the extent to which metrics of measure evaluate the

aspects being considered in the case. Lastly, reliability refers to the repeatability of the study

to give similar results.

73

To deal with the threat to reliability, a case study protocol was designed to guide the study

and ensure data collection transparency (Yin 2015, p.198). In addressing external validity,

multiple case studies were conducted, the student case study and the industry cases. To address

the construct validity threat, for the academic case study, data was collected through focus

group discussion and document review of strategic models in the SSDM cycle. These catered

for data and method triangulation. An interview guide was also developed for use with the

industry participants. A theoretical framework describing causal relationships between quality

promoting practices and quality characteristics was used to deal with the internal validity

threat.

The development of web – based applications was considered a good representation of all the

other forms of software applications as it enabled the researcher to assess the capability of the

methodology to facilitate the development of a software product with all the targeted quality

characteristics. Web-based applications are expected to be secure, simple to use, consistent,

understandable, reusable, maintainable and complete (Sfetsos et al. 2016, pp.1-2; Uikey 2015,

p.28). The case study projects therefore test the capability of the methodology to develop

software with the characteristics set in the suggestion step. The study protocol given in the

following sub-section 3.3.5.1 explains how the case study was conducted.

Case Study Protocol (Plan)

To ensure a high quality case study, Runeson and Höst (2009 pp.138 - 140) suggest the

formulation of a plan with the following content: Objective; The case; Theory; Research

questions; Methods and Selection strategy. Yin (2015 p.199) refers to this plan as a case study

protocol. The objective spells out the reason for undertaking the case study. The theory defines

the context of the case study, and the researcher has adopted the quality theory derived from

this study for the purpose. The research questions help to shape the objective set for the case

study. The data collection methods define how data is collected from the case while the

selection strategy identifies points and sources of data collection.

Objective — The objective of this case study was to establish the perceptions of independent

(solo) developers on the usefulness of the quality practices embedded in the Secure-SSDM in

building quality and secure software.

The case —A multiple case study was conducted with solo developers. The first set of

developers was made up of thirty-nine student participants in a university setting. The second

74

set of participants consisted of three industry developers working independently in individual

sized projects. The independent developers were experts in solo software development, each

with an average of four years developing software independently.

 Theory— Based on the SSDM framework derived from the literature, and the security

practices drawn from secure software development methods, the Secure-SSDM has quality

practices that support the quality characteristics in the developed software product. Table 3.2

shows the quality and security practices built into the methodology and expected quality

characteristics in the resulting product. The quality practices shown in the table promote the

delivery of software products with quality characteristics defined in the corresponding

column. As an example, test driven development, refactoring, unit testing and use of a version

control system, promotes maintainability of the software product. According to the ISO/IEC

25010 quality model, a maintainable product is one that is modular, reusable, analysable,

modifiable and testable.

Table 3.2: Quality practices, associated product quality characteristics and sub-characteristics

Quality Practices Anticipated Impact on Product Quality

Characteristics

Use of Development standards

Use of Small user stories & tasks

Automated code review

Code refactoring

Design of testable code

Product simplicity

Adoption of developmental standards

Product validation

Consistency

Use of simple metaphors

Test driven development

Unit testing

Use of a dummy partner/ self-criticism

Understandability

Code quality

Simple module design

Test driven development

Refactoring

Unit testing

Task automation

Version control system

Maintainability

Use of a work break down structure

Creation of product backlog

Use of a product checklist

Product completeness

Security awareness training

Use of use misuse case diagrams

Adoption of security standards

Security test design

Security testing

Security

75

Research questions—research questions help to deliver the defined objectives. To that effect

the following questions guided the case study:

 What are the perceptions of solo developers regarding the use of practices and stages

of the Secure-SSDM in building quality and secure software?

 What are the perceptions of student and industry developers regarding the integration

of security practices into the Secure-SSDM?

 What improvements can solo developers suggest in each of the Secure-SSDM

methodology stages?

Data collection methods— In both the academic and industry case studies, more than one

method was used for data collection to obtain the perception of the developers on the utility

of the Secure-SSDM. To ensure reliability of the data collected from the student case study,

focus group discussions together with document analysis were used to triangulate the data

collection process (Yin 2015, pp. 197 - 198). At the end of the case study, a focus group

discussion with student participants was conducted to obtain their views on the utility of the

methodology in building quality information systems. The focus group was designed to fit

within the two-hour period allocated to the class sessions of the students.

In this case study the focus group discussion was deemed the most appropriate, compared to

interviewing the participants individually, due to the large number of students, and the short

duration of the semester. The focus group discussion also provided for checks and balances

on the views pertaining to the utility of the methodology from this set of participants (Runeson

et al. 2012). In a number of situations, the students helped clarify and correct each other’s

perceptions on some practices. Since the researcher was in charge of the class, it was also easy

to direct the group towards the most important aspects of the discussions, without interfering

with the outcome of the discussion. A teaching assistant helped with the data collection from

the discussions. The assistant provided some form of researcher triangulation. The focus

group guide used with participants is given in Appendix B, and the data collection template

for the focus group is given in Appendix D.

The student participants were also asked to submit documentation accompanying their

projects. This is a normal practice for all mini projects carried out in this academic

76

environment. The documents submitted were analysed for intermediate models expected with

each system component. They were used to confirm the students’ comments on the utility of

methodology. On the methodology section of project documents, students normally comment

or give reasons why they use a certain methodology in developing software. This section was

used to gather the perceptions of the student on the Secure-SSDM.

In the industry case study, face to face semi-structured interviews were used with two of the

participants. For the third participant, video-conferencing was used as the participant had

changed cities at the time of the interview. Member checking and feed-back were used to

confirm the data collection and interpretation of the participants’ opinions. Cross-case analysis

was used to analyse the data collected from the two case studies. This entailed first analysing

the data from the two case studies separately, after which the data from the two was analysed

through checking of similarities and differences.

Participants selection strategy

In the academic case study, student developers were selected intentionally (Runeson & Höst

2009, p. 140). The selected class had been taught requisite courses for software development.

Among the courses that the selected class of students had covered were: Systems Analysis

and Design; Object-oriented Software Concepts and Development; Software Design

Methodologies; Internet and Web Design; and Societal Computing. These five courses of the

second year of these participants, are highlighted in this thesis, due to their relevancy for this

case study. The detail of what is covered in each of the courses is discussed in Section 6.3.

For the industry case study, participant A was recruited by the researcher from their previous

interaction in solo development projects. The participant was a university employee, whom

the researcher had previously worked with in developing software for clients. During that

period, the participant had done several individual projects on a consultancy basis. While a

full-time developer at the university, during their free time, they worked on their independent

projects. This participant was selected for their expertise in software development, and in

particular on solo projects. Participant A was asked to refer other solo developers to the

project. Two other participants were identified through this snowballing process, bringing the

total to three industry developers. The full credentials of the developers who participated in

the industry case study is discussed in Section 6.4.

3.3.6 Communicating the results of DSR research

77

Communication adds knowledge to the SSDM and SSD environments. In this thesis two

academic seminars, one peer reviewed conference and one peer-reviewed journal were used

as channels to communicate the design process and the evaluation results of the Secure-

SSDM. Of the two post-graduate academic seminars, the first seminar was used to

communicate the proposal to develop the artefact, and the second seminar was used to

communicate the primary Secure-SSDM framework. Participants in both seminars gave

feedback that helped to shape the artefact. An international peer review conference was used

to communicate both the quality theory and the preliminary SSDM framework derived from

the existing SSDMs. These are discussed in Moyo and Mnkandla (2019). The design process

and the resulting final version of the Secure-SSDM was published in an international journal

(Moyo & Mnkandla 2020).

Figure 3.3 summarises activities of the DSRM as carried out in this research. Chapter 1 was

dedicated to defining and scoping the research problem. Chapter 2 reviewed the SSDM

literature helping to refine the research problem, and initiated the generation of the quality

theory, which is concretized in Chapter 4. Chapter 4 details the Secure-SSDM quality theory

and objectives, setting measures for evaluating the methodology. Chapter 5 discusses the

design and implementation of the proposed artefact using appropriate techniques and tools.

Chapter 6 demonstrates the utility of the Secure-SSDM in designing and implementing high-

quality and secure software products.

3.4 Conclusion

Subsections 3.1 to 3.3 have outlined the work done, how it was done and when it was done.

This outline is summarised in Figure 3.2. The paradigm that guided this research is DSR. This

was deemed applicable as it allowed the researcher to design the Secure-SSDM iteratively,

with each iteration improving on the quality of the methodology. The interpretivist philosophy

was also deemed appropriate as a complementary paradigm to enable the demonstration of the

methodology in a live environment. Software development methodologies are better studied

in their context as their success is influenced by humans and the environment in which they

are used. The designed methodology was evaluated theoretically using the 4-DAT framework

and empirically using case studies, both in academia and industry. Document sampling was

the main data collection method at the problem definition stage. Semi-structured interviews,

document sampling and informal observations were also carried out on the student participants

78

Secure -SSDM

objectives definition

Secure-SSDM design

& implementation

Problem definition

Evaluation

Secure-SSDM

demonstration

Communication

 (Chapter 5)

 Iterative development

 Keramati and Mirian-Hosseinabadi’s security

practices integration algorithm

 Definition of tasks, roles and deliverables from

phases using the EPF composer.

(Chapter 6)

 Multiple case study (academic and industry)

 Application of Secure-SSDM in individual sized

projects designing ICS

(Chapter 1 & Chapter 2)

 Observation of SSD environment

 In-depth literature review (meta-synthesis)

 Comparison of resulting framework with ISO/IEC

25010 quality model,

(Chapter 4)

 Requirements Analysis (agility & quality)

 SSDM quality theory

 Lightweight security practices.

 Seminar presentations of intermediate Secure-

SSDM deliverables

 Conference presentation of Secure-SSDM primary

framework.

 Journal publication of Secure-SSDM

 Thesis submission/ publication

(Chapter 6)

 Multiple case study (academic and industry)

 Use of 4-DAT framework to evaluate compliance

with agile principles

DSRM Stages (Peffers et al. 2009) Implementation in this thesis

Figure 3.2: Using DSRM to design the Secure-SSDM (Adapted from Peffers et al. 2009)

79

using the method. Data collected from the interviews and system documents was analysed

qualitatively.

3.5 Chapter Summary

This chapter outlined the research paradigm on which this research is premised. DSR is most

favourable for artefact design. For data collection, an interview guide was presented and data

analysis methods discussed. The next chapter gives and in-depth analysis of the Secure-SSDM

activities, tasks and roles. The chapter carries out an in-depth analysis of the existing SSDMs

with the aim of defining objectives for the Secure-SSDM.

80

Chapter 4 CHAPTER 4 SECURE-SSDM REQUIREMENTS ANALYSIS

4.1 Introduction

In Chapter 3 a research methodology was developed to guide this study. Two philosophical

paradigms were adopted, the design science research (DSR) and the Interpretivist paradigms.

The latter enabled the derivation of perceptions of the developers regarding the desired utility

of the software development methodology (SDM) under design. These perceptions were

collected from solo developers who participated in two different case studies designed to

evaluate the utility of the Secure-SSDM in a live environment. DSR was deemed appropriate

for the design of a satisficing artefact architecture to improve the quality and security of

software products of an identified community (Peffers et al. 2008). The target community in

this case, is the solo developers. From a Software Engineering perspective, artefacts can be in

the form of algorithms, methods or techniques (Wieringa & Daneva 2015), among others. The

term method here is used interchangeably with methodology.

The research methodology designed in Chapter 3 provided a scientific grounding (Mnkandla

2016, p.33) for this research, at the same time promoting research rigour in both the design

and evaluation of the resulting artefact (Hevner et al. 2004, p.83). Following closely the

research methodology steps presented in Section 3.3, this chapter presents an in-depth analysis

of the SSDMs identified from the literature, in view of creating requirements for the Secure-

SSDM. The chapter revisits the SSDMs identified in Chapter 2, and the derived framework to

analyse its suitability for building high-quality software.

Requirements discussed in this chapter are drawn from the literature and from solo developers

who participated during the formative evaluation of the methodology. The in-depth review of

the literature constitutes the rigour cycle of the DSR process (Hevner et al. 2004) meant to

position the Secure-SSDM within the present literature (Barafort et al. 2018, p.28). In DSR,

both the design process and the artefact under design evolve during the design and evaluation

processes (Hevner et al. 2004, p.78). The two case studies and the continued review of the

literature during these processes contribute to the evolution of both the SSDM knowledge base

and the Secure-SSDM.

The following sections detail the methodology requirements analysis process. Section 4.2

outlines requirements in general and their importance in artefact design. Section 4.3 analyses

the identified SSDMs, discussing their quality practices, and how these promote quality in the

81

developed product. Section 4.4 details the security promoting practices identified from the

literature. Section 4.5 outlines the Secure-SSDM requirements. Section 4.6 summarises the

requirements analysis, giving a summary of the objectives expected of the Secure-SSDM, and

characteristics expected thereof.

4.2 Requirements

Requirements are characteristics or capabilities to be portrayed by an object under

development (Garg 2017, p. 64). In DSR, requirements provide a means for evaluating the

usefulness, efficiency and quality of the artefact under design (Hevner et al. 2004, p.85). In

the context of the DSR methodology adopted in this research, requirements constitute solution

(or artefact) objectives. The aim of this research was to develop a lightweight, high-quality,

and secure software development methodology for use by solo (freelance) developers. The

resultant Secure-SSDM from this research should therefore exhibit characteristics in line with

this aim. This chapter elaborates these characteristics (system objectives) enabling the

formulation of a befitting design in Chapter 5. The methodology characteristics were drawn

from a systematic literature review of the lightweight SSDMs and the review of lightweight

secure software development methods. Identified methodologies and practices were reviewed

individually, focusing on each item’s promotion of quality in the developed software product.

These existing methodologies’ objectives helped to establish objectives for the methodology

under design.

4.3 Analysis of the Existing Lightweight SSDMs

Existing lightweight SSDMs form the knowledge base from which this study draws

methodology practices. They also helped to derive means for designing the proposed SSDM

(Hevner et al. 2004, p.80). Existing SSDMs therefore provided foundations on which the

proposed methodology is built. It is important therefore that this research consistently searches

this knowledge base for the purposes of identifying any updates or new tools and materials

released into this valuable source so that both the design process and artefact under

development are kept current. A revised search of the literature databases publishing software

engineering research conducted after the first search identified one more publication (León-

sigg et al. 2018) to bring the total complement to seven. The following is a comprehensive list

of solo software development methodologies identified by this research:

82

i. Freelance as a Team (Faat) (Bernabé, Navia & García-Peñalvo 2015),

ii. Personal Extreme Programming (PXP1) (Agarwal & Umphress 2008),

iii. Personal Extreme Programming (PXP2) (Dzhurov, Krasteva & Ilieva 2009),

iv. Go – Scrum (Ramingwong, Ramingwong & Kusalaporn 2017) ,

v. Scrum Solo (Pagotto et al. 2016),

vi. DeSoftIn (González-Sanabria, Morente-Molinera & Castro-Romero 2017) and

vii. MIDS Adaptation (León-sigg et al. 2018).

The publication dates of the SSDMs indicate that research in lightweight solo software

development is still ongoing. The last five years have seen the publication of the majority (five

out of seven) of the articles found. The research output in the areas is however still low. Due

to limited research in SSDMs, the literature search was extended to include studies that discuss

solo software development, even though the publications were not formulated as software

development methods. These include articles by these authors: Dent 2008; Hollar 2006;

Raymund et al. 2005; and Wesslén 2000. This was done to enrich the new SSDM with quality

practices from the existing peer reviewed literature (Nwasra et al. 2016, p.70). In the

following subsections the analysis of the identified publications is presented in the order of

their listing.

4.3.1 Freelance as a Team (Faat)

Faat is an agile methodology introduced by Bernabé, Navia and García-Peñalvo (2015). The

methodology integrates agile practices ideal for individual development. Drawn from eXtreme

Programming (XP) (Beck 2000) and Scrum (Schwaber 1997), the practices in Faat are divided

into strategic, workflow and auxiliary practices.

Strategic practices equip the developer with skills to make the best option when faced with

several options during the development cycle. These can be summed up as simplicity, embrace

change and make decisions (Bernabé, Navia & García-Peñalvo 2015, pp.687-688). Simplicity

according to these authors means that the developer should always choose the simplest option

when faced with a decision. This minimises exerting effort on activities which might require

later changes as developers respond to user preferences. At the same time while accepting

83

change, the developer is encouraged to make necessary decisions when decision making calls,

so as to avoid doing work outside the project.

Workflow practices describe developmental activities with their associated deliverables. They

constitute: User stories; Estimation; Planning; Development; Review and Iteration close

(Bernabé, Navia & García-Peñalvo 2015). The initial practice is dedicated to the creation of

user stories. User stories describe expectations of users from the system (Bernabé, Navia &

García-Peñalvo 2015), and are a popular feature of agile methods. They are a simpler way of

defining functional requirements. Each identified user is expected to specify their expected

functionality from the software product, together with the value obtained from that

functionality. Using the INVEST acronym, user stories are formulated to be independent of

each other, to be negotiable, to be of value to the user, to be estimable and small enough to be

tested independently (Bernabé, Navia & García-Peñalvo 2015; Lucassen et al. 2016). The

INVEST acronym enables effective communication of software requirements between the

developer and the users (Wake 2003). A fully formulated user story should have a unique

identity, title and description, associated acceptance criteria, priority and should belong to an

appropriate class (Bernabé, Navia & García-Peñalvo 2015, p.688) .

Most authors (Agarwal & Umphress 2008; Bernabé, Navia & García-Peñalvo 2015;

Ramingwong, Ramingwong & Kusalaporn 2017) from the reviewed literature concur on the

effectiveness of user stories as a requirements elicitation technique. User stories are an ideal

practice to incorporate into the methodology under development. The INVEST acronym

provides a means of building portability into the designed software.

Continuing with the analysis of Faat, once the user stories are identified, their estimated

duration, together with the required resources, are projected. For a lone developer, estimation

is recommended to be done in hours. Projecting completion time in hours ensures that the

tasks are kept small enough to enable exact estimation. Estimation is expected to be a

continuous process which improves with time as the developer compares the exact time of

completing tasks with the projected, and adjusts future tasks accordingly.

Using information obtained so far, the next practice creates a prioritised list of user stories

indicating the time in hours, value to be obtained from each story, and condition (s) for

acceptance of the user stories. This prioritised list is known as a product backlog. Tasks that

deliver defined value from each user story (or a collection of stories) are then organised into

a sprint. A sprint duration of thirty-two to thirty-five hours (at most two weeks) is

84

recommended to deliver value to the user. Functionality to be delivered by the sprint

determines the objective of that sprint.

A developer using Faat adopts a version control system to manage their source code during

the development phase. A version control system helps to keep track of changes in code,

enabling the developer to fall back to the last stable code in the event that a change results in

unstable code. In addition, test driven development is the recommended approach, together

with refactoring for large systems. Once a user story passes the test, the developer is advised

to compare the estimated time against the planned, and use that to revise estimates for

remaining user stories. This is a practice also recommended by other authors (Agarwal &

Umphress 2008; Dzhurov, Krasteva & Ilieva 2009). The review follows development. Here

the developer looks back at the work done in the sprint and evaluates this against the planned.

Automated tools such as integrated development environments (IDEs) can be used to check

for code quality and corrections done accordingly (Bernabé, Navia & García-Peñalvo 2015,

p.693).

Iteration close marks the end of the sprint. A working module is integrated to the system under

development using the version control system, and set ready for installation at the customer’s

site. If it is the last sprint, then this marks the end of the project.

4.3.2 Personal Extreme Programming (PXP1)

PXP1 is a scaled down version of eXtreme Programming (XP) that has been hybridized with

the Personal Software Process (PSP). The literature search conducted in this research found

two publications by different authors with the same name. This study uses numbers to

distinguish the two methods. PXP1 discussed in this session is the publication by Agarwal and

Umphress (2008), while PXP2 discussed in Section 4.3.3 is the publication by Dzhurov,

Krasteva and Ilieva (2009). PXP1 is an incremental, iterative process which incorporates

quality practices from the two methodologies that it is based on. It exhibits most of the quality

practices of XP. These are: the use of metaphors and user stories; use of small system releases;

simple designs; test driven development; refactoring; continuous integration and the

adherence to appropriate coding standards (Agarwal & Umphress 2008, p. 85). Its stages of

Planning, Development and Post-mortem ensure simplicity of the process. Activities and

associated quality practices executed in these three stages are summarised below;

85

Planning – The developer begins the project by establishing system requirements. This is done

through the creation of a system metaphor easy enough to be understood by the developer. At

the same time user stories are acquired and written on small cards. Each card carries the story

described in simple language, its associated priority and cost. Some authors (Lucia & Qusef

2010; Sillitti & Succi 2006), recommend the use of the customer’s language for simplicity.

Prioritisation of user stories is a key feature in agility (Heck & Zaidman 2018). It ensures that

the most important functionality to the user is delivered first. User stories are then broken into

features which are organised into feature sets, after which a design is created for each feature

set. Planning culminates in an iteration schedule indicating how the feature sets will be

implemented.

Development – During development, the developer works on the feature set, starting with high

priority features. From features, tasks are created which are then sorted according to priority.

The developer picks tasks from the priority list, formulates unit tests for each task and writes

the code for the task under development. This is a concept of test-driven development. The

concept is a well-supported practice of software quality (Crispin 2006; Abrantes & Travassos

2011; Fitzgerald & Stol 2017; Rafique et al. 2013; Sfetsos & Stamelos 2010) . Test-driven

development and unit testing enhance code quality, while refactoring promotes system

extensibility and maintainability (Bernabé, Navia & García-Peñalvo 2015, p.690; Dzhurov,

Krasteva & Ilieva 2009, p.258).

To further improve code quality, the developer performs code walk-throughs for each task,

before unit testing. Unit testing is followed by successive acceptance and integration testing,

after which the successfully implemented task is integrated into production code. Where the

developer is also the customer, Agarwal and Umphress (2008) recommend that the developer

carries out dialogue with himself during acceptance testing. This is true for systems that are

developed for personal use or for general purpose. The practice of self-dialogue is similar to

that of the use of a dummy companion to review code (Bernabé, Navia & García-Peñalvo

2015). It mimics the practice of peer-review which is missing from a solo development

environment. Throughout the development process, versions of code are maintained to enable

a smooth fall-back to the last stable state of the system. The developer maintains development,

refactor and production code baselines to enable high-quality code (Agarwal & Umphress

2008).

86

Post-Mortem- During this stage the main aim is to perform acceptance testing of the system

as a whole. The tested code is integrated into the production baseline code. Two brief stages

complete PXP1; the Entry stage where the developer adopts appropriate coding standards for

the system under development and the Exit stage, where the output is a fully tested system

integrated into the production code baseline.

4.3.3 Personal Extreme Programming (PXP2)

Like the PXP1 discussed in Section 4.3.2, PXP2 is a hybrid of XP and PSP. The aim in PXP2

is to improve the product quality of autonomous developers at the same time improving their

development performance in the software market (Dzhurov, Krasteva & Ilieva 2009). In

hybridising PSP with XP, the authors’ intention was to reduce documentation associated with

PSP and thus produce a methodology that could readily be adopted by solo developers.

Designed to be iterative, PXP2 facilitates response to changes throughout the software

development process. At the core of PXP2 is automation of recurring processes to improve

developer productivity.

A PXP2 project begins with the stage Requirements. Presented as an optional phase in the

methodology, the developer establishes both forms of the system requirements, functional and

non-functional requirements. The assumption made is that requirements are static, and that in

the case of any changes, these should be reflected in the requirements list, and planning

revisited (Dzhurov, Krasteva & Ilieva 2009).

Once requirements have been established, Planning is carried out for the whole project based

on the requirements established in the previous stage. The developer starts the planning phase

by adopting a development language and a platform appropriate for the product under

development. From the requirements list, the developer then derives tasks to be undertaken.

Identified tasks are categorised, at the same time providing time and cost estimates for these,

based on previous estimates of similar task categories (Dzhurov, Krasteva & Ilieva 2009).

Tasks are recommended to be small enough to facilitate accurate estimates.

Scheduled to last for one to three weeks, the stage Iteration Initialisation follows planning. An

iteration is designed to deliver a version of the product developed from tasks selected for the

iteration. Bernabé, Navia and García-Peñalvo (2015) recommend a similar period for iteration

duration of not more than two weeks. These authors (Bernabé, Navia & García-Peñalvo 2015;

Dzhurov, Krasteva & Ilieva 2009; González-Sanabria, Morente-Molinera & Castro-Romero

87

2017) from the reviewed methodologies concur in keeping the iteration period short enough

to keep the developer focused.

During the subsequent phase of Design, the developer creates a design appropriate for the

requirements under development. Simple designs are recommended to avoid the developer

working on tasks that do not add value to the current tasks under development. To ensure

simplicity in design the developer may make use of tools familiar to them.

Implementation translates the design into a deliverable. For each task, unit tests are carried

out on developed code, identified defects removed before integration and acceptance testing.

The authors recommend the use of automated development tools to perform quality tests such

as code coverage of unit tests.

At the System Testing phase, developers test the whole system for adequacy in meeting user

requirements. This is a key feature in software quality. Any defects identified are fixed and

recorded. The defects record serves as reference for future projects, and gives hints on sources

of defects. The last stage, Retrospective, serves as a point of knowledge management in the

development process. The developer is advised to collect data associated with the process for

future use. Data collected at this stage enable more accurate estimates in coming cycles or

projects.

This study noted a lot of similarities in the two PXPs. This is not surprising as the two methods,

though designed by different authors, both draw their core practices from XP and PSP. It is

also interesting to note the emphasis of these methods on keeping the development iterations

short as a means of encouraging productivity. Besides encouraging productivity from the

developer, short iterations enable development process visibility, subsequently encouraging

product acceptability. In the following section, a slightly different methodology, Go-Scrum,

is detailed. Go-Scrum differs from these in that it is based on Scrum practices (Schwaber

1997).

4.3.4 Government -Scrum (Go – Scrum)

Go-Scrum, also known as Solo-Scrum, is a scaled down version of Scrum, comprising of those

practices that are executable by a single developer (Ramingwong, Ramingwong & Kusalaporn

2017). Go-Scrum is designed for use in bureaucratic organisations such as government

departments. Quality practices in Go-Scrum include: the use of a kick-off meeting at project

onset; the use of story cards to capture user requirements; creation of a product backlog in

88

collaboration with the user; and the use of a work break down structure to capture product

components; just to mention a few. The stages in Go-Scrum are overviewed in the following

paragraphs:

Management Buy -in – This stage is dedicated to educating the users on the development

process. In this methodology educating users on the development process is viewed as a means

of encouraging their participation on the development process. It is unique for this

methodology, perhaps meant to address the bureaucracy associated with large organisations.

Apart from educating them on the development process, users are informed of the product

components and deliverables associated with the development process. This provides check

points for both the developers and project stakeholders.

Kick-off Meeting and Story Discovery – Stakeholders of the software under development

meet to discuss requirements of the system. Meetings arranged early in the development cycle

help to shape project progress (Heck & Zaidman 2018). In the meeting, each stakeholder

submits their requirements in the form of user stories captured on small story cards. The

success of the kick-off meeting and the associated requirements discovery, is heavily

dependent on the ability of the developer to encourage participation among all stakeholders

so as not to miss any requirements.

Project Planning – Based on user requirements collected in the previous stage, the developer

creates a prioritised product backlog with the help of the user. The product backlog is a key

artefact in Scrum. A backlog from the view of Scrum is a product functionality, defect, bug

or any aspect of the software that is outstanding (Schwaber 1997, p. 15). To some extent a

product backlog shows work still to be done in the project. All reviewed methodologies

emphasise the creation of a product backlog at the onset of development, although this may

change during the course of the development and have different terms in each methodology.

In PXP2 (Dzhurov, Krasteva & Ilieva 2009, p.254) this is called a requirements document,

while this is termed a feature set in PXP1 (Agarwal & Umphress 2008, p.83). This indicates

the significance of this practice in developing quality products.

Release and Sprint Planning – A release results in the installation of a viable component at the

customer’s site or developer’s machine. A prioritised sprint backlog is created from the

product backlog. A number of authors (Bernabé, Navia & García-Peñalvo 2015; Pagotto et al.

2016; Ramingwong, Ramingwong & Kusalaporn 2017) concur on the importance of backlog

prioritisation or on the prioritisation of user requirements (Agarwal & Umphress 2008;

89

González-Sanabria, Morente-Molinera & Castro-Romero 2017). Go-Scrum recommends the

use of function points as an estimation technique to gauge effort required in any sprint. In

function point estimates the developer considers such aspects as the input, output, processing,

and sizes of files associated with the required component under estimation. This information

can be derived from a quick sketch of the relationship of the component under consideration

with the rest of the software components.

Sprint – A simple design is created for tasks in the sprint to get the sprint rolling. For the tasks

under development, burn down charts are used to show task progress. These indicate work

performed, work in progress and work to be performed for a task. This helps the developer

not to miss any task functionality at the same time visualizing development progress. To check

progress with users, the developer holds at least two meetings per sprint, in place of daily

meetings as per the Scrum methodology. This serves to keep users interested, particularly in

a bureaucratic environment. Each sprint culminates in a sprint review that captures data on

sprint progress. A sprint delivers functionality that is tested for acceptance by users. The sprint

review also serves to confirm requirements to be delivered in the next sprint before embarking

on the sprint.

It is clear that Go-Scrum borrows all of its practices from Scrum. Like Scrum it is developed

to be flexible, constantly adhering to changes in the environment, with its success premised

user involvement. If properly followed the methodology improves the quality of software

products. A similar methodology to Go-Scrum is Scrum solo. The latter is detailed in Sub-

section 4.3.5.

4.3.5 Scrum solo

Scrum solo (Pagotto et al. 2016) is a hybrid of Scrum and PSP. It is an iterative process that

delivers the software product in increments. The methodology shares a number of

characteristics with Solo scrum and the following paragraphs gives an overview of the phases

of Scrum solo.

Requirements – At project onset, the developer collects system requirements from the

customer. Requirements define the scope of the software product. From the requirements a

product backlog is generated with the customer’s assistance. The product backlog should

indicate a list of features to be implemented, together with their dates of entry into the backlog

(Pagotto et al. 2016). To fully understand the requirements, it is recommended that the

90

developer creates a prototype that can be used to verify the requirements. The prototype should

capture all product backlog items, with each item represented in its screen in the prototype.

Prototypes are an acceptable traditional way of understanding user requirements, particularly

for complex products. In this methodology they serve as a requirements elicitation tool.

Sprint – The sprint selects priority tasks from the product backlog that are used to create a

deliverable for the current sprint. The sprint backlog stores information similar to the product

backlog, only that these items in the sprint backlog are those that contribute to the functionality

to be delivered in the current sprint. Artefacts for the current sprint can be represented using

appropriate unified modelling language (UML) diagrams. These include diagrams such as:

the use case diagrams, that capture functionality to be delivered in the current sprint; sequence

diagrams, to capture the flow of events in delivering the functionality; as well as class

diagrams to capture the relationships among components modules designed to deliver the

functionality. For data-based applications the methodology recommends the use of entity

relationship diagrams, to capture and model the relationship among objects about which data

is stored. The developer should use the right diagrams to indicate the type of detail in the

sprint. A project repository should be created to store these diagrams. Further, sprint items

should indicate date of entry into the sprint backlog, estimated development time and cost of

developing the items. In consultation with the user, the developer uses the prototype created

in the requirements stage to create a development plan that enables the delivery of the

functionality for the current sprint. Each sprint is also associated with minutes to document

agreements between the developer and the user.

Deployment – This stage avails the product or product component to the user, through the

execution of the development plan formulated at the Sprint stage. The developed product or

product increment is validated with the stakeholders. The validation process is minuted to

enable fall back in future. Solo Scrum includes a lot of documentation, mainly inherited from

PSP.

Management – This is a cross life cycle activity used to plan for the project execution. It

provides for quality reviews at the end of each phase. If sprints are short and equally spaced,

then consistency in product delivery is enhanced (Agarwal & Umphress 2008; Pagotto et al.

2016; González-Sanabria, Morente-Molinera & Castro-Romero 2017).

The methodologies discussed so far share a number of characteristics, perhaps due to the fact

that they are targeted at improving the quality of software and developer productivity in an

91

industry setting. The case studies to evaluate the utility of most of the methodologies were

carried out in industry, although Scrum solo is cited to be in use in an academic setting to

develop individual-sized students’ software projects. In the following section, DeSoftIn, a

methodology specifically designed for use in an academic setting is discussed.

4.3.6 DeSoftIn

DeSoftIn is an agile methodology designed for use by students working on individual software

projects in an academic environment (González-Sanabria, Morente-Molinera & Castro-

Romero 2017, p.25). Derived from existing agile methods it prescribes phases, practices, tools

and techniques to be used by students to deliver quality software products. The phases are

summarised as follows: -

The phase, Planning and analysis initiates the development process. At project onset, users

and user roles in the system under development should be identified. Using a checklist that

links system functionalities to user roles, the developer captures and prioritises customer

requirements on this checklist. These requirements determine project scope. Once the scope

is established, the developer carries out a risk analysis for each requirement to determine

project feasibility. Requirements are normally identified in advance but may change with

project progress. This feature is similar to that in Agarwal and Umphress (2008), where

requirements are identified in advance and fixed. If users later request for any changes in

these, they are advised to trade in the old requirements for the new. This enables discipline in

an academic environment where the project deadline is strict and is set at the beginning of the

academic year.

During the Design phase, the authors recommend the use of business process model notation,

to create high level design of the software so as to incorporate each of the prioritised

requirements. The notation facilitates the representation of business processes in a manner

that makes it possible for both the user and developer to understand the main processes to be

supported by the software (Object Management Group Inc. 2011, p.22). Prototypes may also

be developed to help understand complex requirements. DeSoftIn concurs with Scrum solo

on the use of a prototype in capturing user requirements.

At the Development phase, the developer creates software code for each functionality, using

the prioritised checklist. Programming is done in sprints, so that each functionality is delivered

at the end of a sprint. A ten-day sprint is recommended to enable progress tracking. This is

92

consistent with the recommendation from Bernabé, Navia & García-Peñalvo (2015,p.693), to

execute development in sprints lasting for at most two weeks. Colour coding on the checklist

can be performed to indicate functionalities outstanding, in progress, under review and

approved. A matrix with requirements and user roles is created to log requirements progress

against user roles using the colour codes. This is similar to the list in MIDS Adaptation (León-

sigg et al. 2018, p.37).

Once the development is complete, Implementation follows. During this phase the developer

puts the fully tested software to use. It is recommended that the product be evaluated using

quality standards such as ISO/IEC 15504 and ISO 27 000 (González-Sanabria, Morente-

Molinera & Castro-Romero 2017, p.27). ISO 27000 is a standard that is used for general

information systems management (ISO/IEC 2018, p. 1), while ISO/IEC 15504 also known as

Software Process Improvement and Capability dEtermination (SPICE) is a software process

model that defines processes to be evaluated during any software development project to

determine the capability of a software process. This is the only methodology that recommends

the evaluation of the product using quality standards, particularly for security. However, the

authors do not give practices to build security into the product. This research aims to extend

this recommendation by proposing practices to be embedded into the methodology in order to

promote security. During this phase, the developer also performs risk analysis of the

development process. Risk management practices are recommended to handle any identified

risks.

Evaluation – At the close of each sprint, the developer meets with the customer to evaluate

the work just completed. Since this method is developed for an academic setting, a meeting

with the supervisor is also recommended to measure progress so far. The results of the

evaluation enable the development team (developer, customer and supervisor) to make

adjustments on the items on the checklist, based on current progress.

4.3.7 Initial Software Development Method (MIDS) Adaptation

MIDS Adaptation is developed as a “balanced” software development methodology for use

by novice developers (León-sigg et al. 2018). The balance seeks to bring about an equilibrium

between the agile methods and traditional methods. The original MIDS is designed to support

small teams of average size of four persons (León-sigg et al. 2018, p.35). MIDS adaptation is

a scaled down version of MIDS that seeks to improve the productivity of solo developers, at

93

the same time enhancing the quality of their software products. MIDS practices are divided

into social, management and development practices. Social practices prescribe how the

developer interacts with the users during the development process, and how they capture

progress of the development process. Management practices spell out the project management

activities to be executed by the developer in a bid to deliver the software product on time,

within budget and expected functionality. Development practices spell out the technical

activities, tools and techniques for use in each of the stages. This methodology is given special

attention in this chapter, since it was not reviewed in Chapter 2 in the meta-synthesis. The

social, management and development practices in MIDS Adaptation are summarised in Table

4.1. The tabulation of the practices facilitates an in-depth understanding of the quality

practices embedded in this methodology.

Table 4.1: MIDS adaptation practices (adapted from León-sigg et al. 2018)

 Adapted MIDS Social, Management, and Development Practices

Social Management Development

Team Composition

-Problem statement &

formulation

Project Planning

-Creation of a software

project plan

Software Requirements

-Use of use case diagrams to

document user requirements

-Definition of functional &

non-functional requirements

-Creation of prototypes

Team communication

- Definition of team

communication and

feedback mechanisms

Iteration Planning

-Use of a simple Kanban

board with the columns: To

do; Doing; Completed.

-Kanban board used for

product deliverable scoping.

Software Design

-Software architecture

definition

-Software component

definition

Creation of personal

repository

-Definition of

documentation standards

Project Planning &

Execution

-Execution of project with

the following the Kanban

board

Software Construction

-Software development

planning

-Creation and testing of

code for each user

functionality

Project retrospective

-Documentation of lessons

learnt

Iteration Assessment and

control

-Use of Kanban board to

control progress

Software Integration Tests

-Software Integration

-Testing of integrations

-Documentation of test

results

 Iteration Close

-Review of work covered in

the iteration

94

-Delivering of iteration

product

-Review of project

repositories

Project Close

-Delivery of expected

product

As shown in the table, social practices include team composition, team communication,

creation of personal repository and project retrospective. Management practices include

project planning, iteration planning, project planning and execution, iteration assessment and

control and iteration close. Development entails establishing user requirements, software

design, software construction, and performing software integration tests. Activities in each of

these practices are summarised in the table.

The review of the foregoing methodologies has proved the feasibility (Peffers et al. 2008,

p.55) of building an SSDM to support product quality in a solo development environment.

However, a closer look at the practices in these methods shows that none of the reviewed

SSDMs discuss security promoting practices, apart from González-Sanabria, Morente-

Molinera and Castro-Romero (2017). The latter limit their discussion to recommending the

evaluation of the delivered software product against an appropriate security standard. With

this limitation, this research reviewed secure software development literature to identify

security practices.

In searching the literature on secure software development, a systematic literature review by

Rindell, Hyrynsalmi and Leppänen (2017) was identified. Using the reference section of this

publication, more sources discussing secure software development were identified. Section

4.4 below discusses secure software development and identified practices to support software

security in the developed software.

4.4 Analysis of secure software development practices.

A number of software security breaches emanate from flaws in the software development

process (Ghani, Azham & Jeong 2014; Othmane et al. 2014; Mohammad, Alqatawna &

Abushariah 2017). Most software development processes and software development

organisations do not put the same emphasis on security requirements elicitation as they do on

functional requirements (Viega 2005, pp.1-2). As a result, the software development process

is inclined towards addressing the functional requirements. Agile methods have excelled in

95

dealing with the quality of software but not necessarily dealing with the security aspect of

software.

On the other hand, research shows that embedding security practices in the software

development life cycle improves the security of the resulting software product (Davis 2013;

Ghani, Azham & Jeong 2014; Othmane et al. 2014). Embedding security practices in the

SDLC results in a secure software development life cycle and secure software (McGraw

2005). The Comprehensive, Lightweight Application Security Process (CLASP) (OWASP

2006) is one example process that provides a rich source of practices that can be used to build

security into the SDLC. It describes a flexible set of practices that can be applied on demand.

Independent developers wishing to build security into their software products can freely

access these resources from this pool or from its newer version, the Software Assurance

Maturity Model (SAMM)(OWASP 2017).

In this research the aim is to identify lightweight security practices for the purposes of

embedding these into the software life cycle to build the proposed methodology. Using the

systematic literature review conducted by Rindell, Hyrynsalmi and Leppänen (2017) as a

starting point, this section identifies lightweight practices that can be incorporated into the

primary SSDM framework derived in Chapter 2. These authors’ systematic review was found

appropriate for this purpose as it organises identified practices according to the SDLC which

corresponds to the primary SSDM. The reference section of these authors was used to identify

sources discussing these practices so as to fully understand how they promote security in the

developed software. The following sub-sections detail the identified security development

practices.

4.4.1 Security standards adoption

Security standards, just like quality standards help to build consistency in the development

environment. They help the developer to keep track of the implemented desired security

activities during software design. A lone developer may benefit from adopting security

standards as those discussed in CLASP (Viega 2005). Example security standards include

those for file handling, user authentication, input and output handling and coding and testing

standards just to name a few. Standards adopted should be commensurate with the software

under development. To enhance productivity, a lone developer should continuously review

the available security standards in their line of software applications and create a security

96

repository of these. Standards reviews can be done in between projects. On undertaking a

particular project, these should serve as a baseline for security, and should be updated to meet

the current project requirements. Only those standards pertaining to the application at hand

need to be considered during a project. To enhance productivity in standards adherence,

automated tools may be used.

4.4.2 Conducting security awareness programs

Every developer needs some basic level of training in the development environment. For a

secure software development project, training entails acquiring knowledge in secure software

development and related practices (Rindell, Hyrynsalmi & Leppänen 2018). Knowledge of

secure software development may be obtained through the review of development processes

such as CLASP, SAMM (OWASP 2017) and the Microsoft Development Cycle (Microsoft

2008). A solo developer engaging in secure software development may also spend time

reading texts such as, 24 Deadly Sins of Software Security: Programming Flaws and How to

Fix Them (Howard, LeBlanc & Viega 2010). Here the authors have grouped the twenty-four

“sins” into web applications, implementation, cryptographic and networking. Developers

wishing to embark on projects with a focus on security, should concentrate on the areas

pertinent to their project.

 Freely available training manuals and online videos from reputable organisations such

OWASP and Microsoft can also be used for training purposes. The developer should seek to

acquire basic technical skills such as those for security requirements modelling, secure design,

secure coding and secure testing. Such skills enable the developer to handle the multiple roles

associated with a solo development environment.

Knowledge acquired on security should be shared with project stakeholders so that they can

participate in the identification of threats in their operating environment. User education on

security should concentrate on basic security issues pertaining to user roles in the operating

environment (OWASP 2017, p.34). Training users on security enables them to actively

participate in the identification of misuse cases during the security requirements elicitation

process.

4.4.3 Misuse case identification and creation

97

Misuse cases are an example of threat analysis and modelling tools. Other threat modelling

tools include attack trees and the Spoofing, Tampering, Repudiation, Information Disclosure,

Denial of Service, and Elevation of Privileges (STRIDE) (Microsoft 2008) approach among

others. Threat modelling assists the developer to visualise and keep track of identified security

threats so as to design measures to mitigate these. This research concentrates on misuse cases

as they are deemed easy to design. This is so, as they mimic use cases used for modelling

functional requirements. Identifying misuse cases using abuser stories eases the process, as

these can be considered to be the opposite of user stories normally associated with

requirements engineering in the agile development approach.

A misuse case portrays a set of unwanted events in a system that cause harm to that system

(Sindre & Opdahl 2005, p.34). It represents a hostile actor’s actions against a system

(Alexander 2003). An actor in this case can be human or any other object that can disturb the

smooth operations of a system. Modelling security requirements using misuse cases provides

a systematic way of capturing and modelling threats to a system under development. Misuse

cases can safely be viewed as use cases from an intruder’s point of view of the system. It

should be noted that an intruder can launch both a planned or unplanned event. Combining

use cases and misuse cases help to communicate security related aspects of the system to

stakeholders in an easy to understand way (Alexander 2003; Sindre & Opdahl 2005; OWASP

2017).

End users play a significant part in identifying misuse cases. To help users contribute in the

process, the developer can create example misuse cases using known cases in the area of

application. This gives the stakeholders examples of what misuse cases are, and encourages

users to think widely of what could happen in their environment leading to system

unavailability. To simplify the creation process, one can use a top down approach, where one

starts by identifying high level threats. As development proceeds, the high level modules can

be broken down into their components to identify the finer forms of threats to the system

(Alexander 2003).

A systematic process of identifying misuse cases is proposed by Sindre and Opdahl (2005) as:

i. Identify the most important assets of the system (e.g. data, memory or critical

processes in the system)

ii. Set goals to secure each identified asset,

98

iii. Identify threats against each set goal in (ii),

iv. Perform risk analysis on each identified threat,

v. Set goals to mitigate the risks perceived as critical.

To keep the process lightweight, qualitative risk analysis using low, medium, and high (Sindre

& Opdahl 2005, p. 36) can be used as this does not need much resources and time. Since it is

not possible to deal with all the identified threats, developers usually concentrate on mitigating

high risk threats. Properly formulated use and misuse cases serve as a basis for designing

security and quality test cases.

Misuse cases can be used to represent the abstract view of system security. This means that

some misuse cases that are generic for a number of systems such as illegal login, illegal view

of customer details can be reused in future, thus promoting reusability and enhancing

productivity. Generic misuse cases like these can be used to form the security repository

suggested by Rindell, Hyrynsalmi and Leppänen (2017, p.8). The repository can be

continuously refined as the developer discovers new threats and learns how to mitigate these.

4.4.4 Security test definition

Security tests are best defined based on the misuse cases identified during the requirements

process. These define a system’s attack surface. A system’s attack surface is the set of possible

threats associated with the system under development (Pressman & Maxim 2015, p.596).

Developers start by identifying a system’ s attack surface in order to build adequate test cases.

All defined tests should be traceable to the threat model used to identify the threats (Maxim

& Kessentini 2016, p.30). Possible misuse cases logic paths and expected system behaviour

from these should be specified together with associated responses.

Due to resource limitations, solo developers should concentrate on defining test cases for those

threats posing high risks on the system. These are those risks ranked as posing as high risk in

the threat analysis activity.

4.4.5 Misuse case design

As seen in sub-section 4.4.3, a properly formulated misuse case serves as a basis for both test

designs and creating a good system architecture. Design addresses each misuse case logic

concentrating on the flow of events to accomplish the misuse case. A good security design

99

should show how each identified threat in the system is dealt with in the design (OWASP

2017). Models such as sequence diagrams, activity diagrams and class diagrams may be used

for the purpose.

In a solo development environment, the design should be simple enough to accommodate

future changes. Developers are encouraged to use tools or models they are familiar with. For

example, sequence diagrams are used in mainstream software engineering to show the flow

of events leading to the fulfilment of a use case. Misuse case sequence can also be modelled

similarly showing where the use case is made to fail.

4.4.6 Source code security reviews

Source code security review is an important practice of secure code development. The latter

involves the adoption of secure coding standards at the beginning of the software development

project. Secure coding standards define practices such as those designed to deal with threats

like SQL injection attacks. Examples of practices include user input validation, compiling

queries before execution and identifying and avoiding special characters in the input (Palsetia

et al. 2016, p.95). Security source code review concentrates on high risk modules as modelled

using the misuse case diagrams or appropriate threat model (Pressman & Maxim 2015, p.596).

Target modules include those receiving data from the outside, interfaces with other systems

and access control points (OWASP 2017, p.53).

Solo developers can benefit from automated source code review tools. Automated tools should

be used to complement manual reviews for critical points in the system. Tools enhance

developer productivity. Trusted open source tools may be used to minimise costs. Code review

if automated may be integrated with the development environment as a plugin and set to run

at desired intervals.

4.4.7 Security tests

Security testing is a means of establishing that the design and implementation of the system

addresses the threats identified during the security requirements stage (Microsoft 2008;

OWASP 2017). In test driven development, developers aim to ensure that their code passes

all the test cases set. Automation security test tools can be set to run appropriate tests based

on the attack surface of the software product (Belk et al. 2011).

100

Various forms of security tests exist, and these are carried out dependent on the threats

identified for the software products and the associated impact if that threat happens. In fuzz

testing the software product is run with illegal input data to test its behaviour under these

conditions. Automated fuzz testing tools can be used where possible to increase productivity

as this is normally a lengthy process and would rather conflict with agility, which is key in

this thesis. Penetration testing is another form of test that can be used with misuse cases.

Penetration testing is defined as a means of simulating an identified attack against a software

product (Microsoft 2008). In this case the penetration test seeks to establish whether what has

been defined to be a failure point in a misuse case, does certainly fail in the implementation

(Belk et al. 2011, p.41). A penetration test can be carried out for each critical misuse case

identified. Whatever tests are used, the solo developer should opt for lightweight tests.

The in-depth analysis of the reviewed SSDMs and the review of secure software development

literature enables the derivation of the quality practices synthesised in Table 4.2 below. The

table shows the quality concepts (indicated in the first column), associated quality practices

(indicated in the second column) and the quality impact conferred on the developed software

product (shown in the third column). The fourth column indicates the authors that discuss the

quality concepts identified. Table 4.2 shows that several authors concur on a number of quality

practices confirming their effectiveness in software product quality support. These

publications and concepts constitute the knowledge base (Hevner et al. 2004, p.80; Peffers et

al. 2019,p .49) from which quality practices are drawn to formulate a higher-quality (Cruzes

& Dybå 2011, p. 342) SSDM.

Table 4.2, for example, shows that in the first phase Management Buy-in and Standards

adoption, Standards adoption and adherence is the first quality concept. The associated quality

practices are adoption of coding standards, adoption of design and documentation standards,

user education and adoption of security standards. Adoption of coding standards promotes

development consistency and this is a practice drawn from Agarwal and Umphress. Adoption

of design and document standards is corroborated by these authors (Agarwal &Umphress

2008; Ramingwong, Ramingwong & Kusalaporn 2017; León-sigg et al. 2018). Adoption of

security standards is a recommendation from Rindell, Hyrynsalmi and Leppänen (2017) and

Viega (2005). Security practices are italicised to distinguish them from quality practices. The

rest of the table is interpreted similarly.

101

Table 4.2: Quality and security promoting practices

Quality Concepts Quality Practices Impact on

Software Quality

Source

I. Management Buy-in and Standards adoption

Quality standards Adoption of coding

standards

Maintains code

consistency

(Agarwal &

Umphress 2008)

Adoption of design &

documentation standards

Standardises

design &

documentation

processes

(Agarwal &

Umphress 2008;

Ramingwong

et.al. 2017;

León-sigg et al.

2018)

Adoption of security

standards

Enhances product

security

(Viega 2005;

Rindell,

Hyrynsalmi &

Leppänen 2017)

Education Educating users on

methodology

Prepares users to

participate in

development;

Enhances user

acceptance

(González-

Sanabria,

Morente-Molinera

& Castro-Romero

2017;

Ramingwong,

Ramingwong &

Kusalaporn 2017)

Institution of security

awareness programs

Enables users to

participate in

identifying misuse

cases

(Microsoft 2008;

OWASP 2017;

Rindell,

Hyrynsalmi &

Leppänen 2017)

II. Requirements Elicitation

User requirements

identification

Creation of user stories

using the INVEST

acronym

Facilitates

approximate time

estimation

(Bernabé, Navia

& García-Peñalvo

2015)

Keeping user stories

simple enough

Enhances

requirements

understandability

(Agarwal &

Umphress, 2008;

Bernabé, Navia &

García-Peñalvo

2015)

Use of simple metaphors -Enhances

requirements

understandability

-Enhance product

testability

(Agarwal &

Umphress 2008)

Use of small story cards to

capture requirements

Simplifies user

requirements

(Ramingwong,

Ramingwong &

Kusalaporn 2017)

102

Creation of a requirements

checklist linked to system

roles

Identifies and

addresses all user

requirements

(González-

Sanabria,

Morente-Molinera

& Castro-Romero

2017)

Creation of Use cases (Bernabé, Navia

& García-Peñalvo

2015; Pagotto et

al. 2016; León-

sigg et al. 2018)

Creation of misuse cases

for each use case

Enables focus on

countering

security threats.

(Alexander 2003;

Sindre & Opdahl

2005; Rindell,

Hyrynsalmi &

Leppänen 2017)

Creation of prototypes Clarifies user

requirements

(Bernabé, Navia

& García-Peñalvo

2015; Pagotto et

al. 2016;

González-

Sanabria,

Morente-Molinera

& Castro-Romero

2017)

Creation of product

backlog

Captures and

prioritises user

requirements;

Controls

development

status

(Bernabé, Navia

& García-Peñalvo

2015; Pagotto et

al. 2016;

González-

Sanabria,

Morente-Molinera

& Castro-Romero

2017)

Scope Definition Use of epic stories Abstracts product

functionality

Bernabé, Navia &

García-Peñalvo

2015)

Creation of Work

breakdown structure

(WBS)

Captures all work

to be done

(Pagotto et al.

2016)

Creation of Product

breakdown structure (PBS)

Shows all product

components

(Pagotto et al.

2016)

III. Release and Sprint Planning

Development

productivity

Definition of sprint

objective

Keeps developer

and user focused

(Bernabé, Navia

& García-Peñalvo

2015)

Development of unit tests Focuses

development effort

(Agarwal &

Umphress 2008;

Pagotto et al.

2016; González-

Use of short sprints (3 to

14 days)

103

Sanabria,

Morente-Molinera

& Castro-Romero

2017)

Risk Analysis Reduces negative

impact on

identified risks

(González-

Sanabria,

Morente-Molinera

& Castro-Romero

2017)

Enhancing

security

Definition of security

acceptance tests for each

use case

Prepares user and

developer for

product delivery

(Rindell,

Hyrynsalmi &

Leppänen 2017)

Design of misuse cases Builds security

into the rest of the

system

architecture

(Alexander 2003;

Sindre & Opdahl

2005; Rindell,

Hyrynsalmi

&Leppänen 2017)

IV. Development with Review

1 Development

transparency

Development time

estimation in hours

Speeds up

development

progress

(González-

Sanabria,

Morente-Molinera

& Castro-Romero

2017)

Prioritised product backlog Ensures Product

completeness

(Bernabé, Navia

& García-Peñalvo

2015; Pagotto et

al. 2016;

Ramingwong,

Ramingwong &

Kusalaporn 2017)

Prioritised sprint backlog Requirements

addressed

according to the

user’s priority

(Bernabé, Navia

& García-Peñalvo

2015; Pagotto et

al. 2016;

Ramingwong,

Ramingwong &

Kusalaporn 2017)

Use of equally spaced

milestones

Deliver

components

regularly

(Bernabé, Navia

& García-Peñalvo

2015)

Burndown charts Visualise progress (Ramingwong,

Ramingwong &

Kusalaporn 2017)

Coded/colour Kanban

board/digital

dashboards/logbook/logfile

Visualise product

backlog progress

(Dzhurov,

Krasteva & Ilieva

2009; González-

Sanabria,

Morente-Molinera

104

& Castro-Romero

2017;

León-sigg et al.

2018)

Ensuring Code

Quality

Explanation of code to

dummy partner/ Self-

dialogue

Reduces code

defects

(Agarwal

&Umphress 2008;

Bernabé, Navia &

García-Peñalvo

2015)

Unit testing (Agarwal &

Umphress 2008;

Dzhurov,

Krasteva & Ilieva

2009; León-sigg

et al. 2018)

Performing of source code

level security reviews

Identifies security

flaws in code

(Palsetia et al.

2016; OWASP

2017; Rindell,

Hyrynsalmi &

Leppänen 2017)

Enhancing

development

productivity

Task automation Reduces time

taken to

implement task

(Bernabé, Navia

& García-Peñalvo

2015)

Automated code review Enhances defect

identification

(Dzhurov,

Krasteva & Ilieva

2009; Pagotto et

al. 2016)

Simplifying

product design

Use of CRC cards Shows class

relationships

(González-

Sanabria,

Morente-Molinera

& Castro-Romero

2017)

Creation of simple product

architecture

Focus on core

product

functionality

(Dzhurov,

Krasteva & Ilieva

2009; León-sigg

et al. 2018)

V. Sprint Review and Close

Ensuring code

quality

Code Refactoring Reduces risk of

defects

(Agarwal

&Umphress 2008)

Improved code

quality

(Agarwal

&Umphress 2008;

Dzhurov,

Krasteva & Ilieva

2009; Bernabé,

Navia & García-

Peñalvo 2015)

105

Use of test suites to

implement test driven

development

Speeds up unit

testing

(Agarwal &

Umphress 2008)

Use of version control

systems

Enhances product

maintainability

(Agarwal &

Umphress 2008;

Bernabé, Navia &

García-Peñalvo

2015)

Performance of code

walkthroughs

Reduce code

defects

(Agarwal &

Umphress 2008)

Code coverage tests Reduces code

defects

(Dzhurov,

Krasteva & Ilieva

2009)

Implementing security tests

Reduces security

flaws in code

(Maxim &

Kessentini 2016;

Rindell,

Hyrynsalmi &

Leppänen 2017)

Continuous code

integration

Reduces deviation

from main code

base

(Agarwal &

Umphress 2008;

Dzhurov,

Krasteva & Ilieva

2009; Bernabé et

al. 2015;

González-

Sanabria,

Morente-Molinera

& Castro-Romero

2017)

Performance of integration

test

Reduces system

defects

(Agarwal &

Umphress 2008;

Dzhurov,

Krasteva & Ilieva

2009; Bernabé,

Navia & García-

Peñalvo 2015;

González-

Sanabria,

Morente-Molinera

& Castro-

Romero.2017)

Frequent sprint breaks Reduces developer

burnout

(González-

Sanabria,

Morente-Molinera

& Castro-Romero

2017)

VI. Evaluation

106

Table 4.2 has shown that there are practices in the existing literature that can be used to

promote both quality and security in a solo development environment. Section 4.5 presents

the requirements of the Secure-SSDM.

4.5 Secure-SSDM Requirements

As specified in the aim, and to encourage its uptake, the Secure-SSDM is designed to be

lightweight. The lightweight characteristics of the methodology were drawn from the agile

manifesto and existing agile solo software development methods reviewed at the beginning of

this chapter. Only those principles from the manifesto that apply to a solo environment were

deemed important.

4.5.1 Lightweight methodology

Acceptance Use of Acceptance tests Enhance user

acceptance

(Agarwal &

Umphress 2008;

Bernabé, Navia &

García-Peñalvo

2015)

Communication Use of a system metaphor Enhances

requirements

understanding

(Agarwal &

Umphress 2008)

Use of acceptance register Enhances user

participation

(León-sigg et al.

2018)

Delivery

frequency

Continuous delivery -Allows for

developmental

control

-Enhances user

participation

(Agarwal &

Umphress 2008;

Bernabé, Navia &

García-Peñalvo

2015; González-

Sanabria,

Morente-Molinera

& Castro-Romero

2017; León-sigg

et al. 2018)

Use of small milestones Ensure frequent

component

delivery

(Agarwal &

Umphress 2008;

González-

Sanabria,

Morente-Molinera

& Castro-Romero

2017; León-sigg

et al. 2018)

107

The following agile principles were deemed important for the Secure-SSDM:

i. Satisfy the customer through early product delivery

This is a risk mitigatory measure. As the solo developer delivers the product in prioritised

increments, those product components that the customer considers of high priority are

delivered first. This gives the customer the opportunity to test and accept the components as

they are being developed without having to wait for the whole product at the end of the project.

Secure-SSDM should support early and incremental delivery of software.

ii. Incorporate requirements change throughout the development process

Incorporating changes throughout the development cycle ensures that the developer keeps

pace with the user’s preferences during the course of the project. This is a principle that guards

against the delivery of a product that no longer serves the desired purpose. However, to avoid

scope leap, change should be controlled and developers should use version control systems to

track changes. Further, developers should weigh and make decisions on whether or not

changes should be implemented at any point in time (Bernabé, Navia & García-Peñalvo 2015,

p.688).

iii. Deliver working software frequently, preferably in short cycles

This principle is linked to that of satisfying the customer early in the development cycle. The

methodology should facilitate timely delivery of working software to the customer, preferably

in increments. The recommended incremental durations from the reviewed solo software

development publications is two to four weeks (Bernabé, Navia & García-Peñalvo 2015;

Pagotto et al. 2016).

iv. Continuous customer involvement

In solo development environments, the quality of the software rests on the developer and their

interaction with the user. User involvement in the development process enhances software

product acceptability by the customer. Practices that support continuous customer

involvement should be evident from the methodology.

v. Measure project progress using working software

For a solo developer this practice gives them impetus to continue with the development as

they see tangible results at the user’s site. This also helps to gauge the required time and

108

resources to complete the project (González-Sanabria, Morente-Molinera & Castro-Romero

2017). Further, measuring progress through working software gives assurance to the user that

the developer has capacity to deliver as promised. Measuring progress here entails evaluating

how much functionality has been delivered together at the same time testing whether the

delivered components meet expected security requirements.

vi. Uphold a sustainable development process

The methodology should enable maximum discipline in the developers. It should facilitate

tracking of developer progress (Ramingwong, Ramingwong & Kusalaporn 2017, p. 345).

Further, it should ease the measuring of developer’s speed of progress enabling the

computation of outstanding project work and the time required to complete the work (Amjad

et al. 2017, p.5825). Provision for visualising progress is key to a sustainable development

process (Amjad et al. 2017, p. 5825; León-sigg et al. 2018, p. 38). This was also established

to be a key requirement from students that participated in the academic case study to evaluate

the Secure-SSDM.

vi. Focus on technical and design excellence

Product quality is heavily dependent on design excellence, which is a core concept of agility

(Doyle et al. 2014). Design excellence in agile methods like XP is achieved through making

the design simple enough to allow for change in case it is required in future (Fioravanti 2011).

vii. Ensure maximum simplicity

Keeping the design simple from a solo development perspective ensures that the developer

does not waste time on complex designs that may not deliver expected functionality. The two

PXPs reviewed in this thesis advocate for design simplicity. The Secure-SSDM should enable

the production of simple designs, simple enough so that modules can be tested independently,

easy to understand, supporting ease of navigation to locate desired components, and easily

understood by other developers (Pagotto et al. 2016, p.687). As an independent developer

there may be no other developer to understand your code, but if there is need to maintain your

code in future, simplicity makes the maintenance process much easier.

viii. Allow developers to reflect on performance and adjust processes accordingly.

109

Secure-SSDM is designed for solo developers, therefore support for adjustment of their

processes is very important. Process adjustment is also upheld by some of the authors

reviewed in this chapter(Dzhurov, Krasteva & Ilieva 2009; Pagotto et al. 2016).

4.5.2 High Quality

Software process quality is the ability of a software development methodology to produce

high-quality software products (García-Mireles et al. 2015, p.150). As defined in the ISO/IEC

25010 quality model, a software product is of high quality if it displays: functional suitability,

performance efficiency, compatibility, usability, reliability, security, maintainability and

portability (ISO 2010). These are high level characteristics with sub-characteristics. The sub-

characteristics at the concrete level of this model provide a means for measuring high level

characteristics. Sub-characteristics provide a measure for one or more characteristics at the

high level. A comparison of the quality characteristics derived from existing solo software

development methodologies (SSDMs) with this model showed that activities in the derived

framework fully support maintainability and functional suitability which are abstract

characteristics. Characteristics such as usability and reliability were seen to be partially

supported. Performance efficiency, compatibility, security and portability were not supported.

This research proposes to close this gap by incorporating security promoting practices in the

primary SSDM. The resulting methodology should therefore provide support for usability,

reliability, maintainability, functional suitability and security.

The main knowledge contributions in this research can be summarised as: -

i. The design and evaluation of a Secure-SSDM with quality practices that build quality

into the resulting software products, and

ii. The addition of security promoting practices into the solo software development body

of knowledge.

The following paragraphs discuss the characteristics required of the methodology to enable

the building of the quality into the resulting software product.

Support for Product Maintainability

Product maintainability refers to the ease with which a software product can be adapted to

address changes in the environment (Nistala et al. 2016, p. 138). From the existing methods,

the research established that test driven development, refactoring and unit testing enhance

110

code quality at the same time promoting product maintainability (Dzhurov, Krasteva & Ilieva

2009¸ p. 258 ; Bernabé, Navia & García-Peñalvo 2015, p. 690). Similarly, the use of version

control systems during software development was seen to enhance product maintainability (

Bernabé, Navia & García-Peñalvo 2015, p.690). A version control software like Git can be

helpful to a solo developer as it enables the developer to track changes in their code (Driessen

2010; Bernabé, Navia & García-Peñalvo 2015). Driessen (2018) discusses a set of tools in Git

that can be used by a developer to keep track of changes. These include tools for accessing

recently modified code, making corrections on erroneously committed code and making

amends on committed code.

Support for Product Functional Suitability

Functional suitability is a measure of how far a delivered product meets user requirements.

This can also be viewed as product functionality. It is defined as “the degree to which a product

or system provides functions that meet stated and implied needs when used under specified

conditions” (Nistala et al. 2016, p.138). Functional suitability of a software product is

determined by completeness, correctness and appropriateness at the concrete level (ISO 2010).

Completeness refers to the extent to which users’ objectives have been met by the product,

correctness measures the exactness of the expected results, while appropriateness gives a

measure of how the delivered product is able to support the tasks at hand. The derived

framework supports completeness and correctness.

From the derived framework, the use of a product backlog during requirements elicitation

(Bernabé, Navia & García-Peñalvo 2015, p.689) and the use of a work breakdown structure

during release and sprint planning was touted to promote product completeness (Dzhurov,

Krasteva & Ilieva 2009). A product backlog is a set of features expected by the user from a

software product. This is normally created at project start. A work breakdown structure created

from the product backlog helps the developer to get a full understanding of the customer

product.

Support for Product Usability

Usability measures the utility of the software to the intended user. It is defined as “the extent

to which a product can be used by specific users to achieve specific goals with effectiveness,

efficiency and satisfaction in a specific context of use” (ISO 2010; Nistala et al. 2016, p. 138).

111

The quality theory derived from the reviewed SSDMs shows that usability is promoted by

simplicity and understandability at the concrete level. In turn, simplicity was shown to be

promoted by the adoption of development standards, use of small user stories and small tasks,

practicing automated code reviews, refactoring large user stories and components and the

production of testable code. These practices should therefore be incorporated in the proposed

methodology.

Support for Product Security

Product security is defined as the degree to which a product or system protects information

and data so that persons or other products or systems are afforded the degree of data access

appropriate to their types and levels of authorisation (ISO 2010). As defined in the ISO/IEC

25010 Quality model, product security has the following sub characteristics: confidentiality,

integrity, non-repudiation, accountability and authenticity. These sub-characteristics deserve

special attention as they constitute a major contribution in this thesis.

 Confidentiality measures the degree to which data access is restricted to authorised users

(ISO/IEC 2018, p.2). This is an important functionality for software products handling

business and personal data. Software products handling customer details and data should

ensure that these are only accessed by those users with access rights. Integrity measures the

degree to which a software product prevents unauthorised changes to data and information as

a means of maintaining data accuracy (ISO/IEC 2018, p.5). A software development

methodology seeking to promote data integrity should incorporate practices that restrict access

and modifications to data to authorised users only. Data should always hold the meaning it

was originally meant to convey. Non- repudiation pertains to the capability of a system to

notice the occurrence of activities performed against the data and the system (ISO/IEC 2018,

p.6), at the same time tying users to their actions. Accountability gauges the ability of the

system to successfully identify the user who accesses a system component, so that they have

no room to deny the act (ISO 2010). Authenticity pertains to the assurance that the object

claiming access to data or parts of a system is what it says it is (ISO/IEC 2018, p.2).

Security promoting practices are the main contribution in this research. This research concurs

with Maxim and Kessentini (2016, p. 29) that security should concern all those developers

seeking to deliver quality software. Clients of web-based systems in particular require

maximum security on their websites (Haq et al. 2018). At the evaluation stage of this research,

the Secure-SSDM is used in a multiple case study to design and develop web-based

112

applications so as to evaluate its utility (Hevner et al. 2004) in building secure software

products.

Whereas focusing on product security has been viewed as contradicting agility, several

researchers have explored the concept of incorporating security promoting practices into agile

methods without necessarily compromising the agility of the resultant methodology. Rindell,

Hyrynsalmi and Leppänen (2017) refuted the contradiction between agile practices and

security practices. They did this through outlining a set of secure agile practices that cover the

software development cycle, drawn from the extant literature. This has been elaborated in

Sub-section 4.4 where an analysis of the suggested security practices is detailed. Pohl and Hof

(2015) confirm the refutation through the development and evaluation of a secure version of

Scrum, which they called Secure-Scrum.

The foregoing paragraphs detail the requirements to be satisfied by the Secure-SSDM. The

requirements were deemed essential based on the reviewed literature. Further requirements

were collected from the developers who applied the methodology in designing application

products. This was done through eliciting their perceptions on the utility of the methodology,

as well as suggestions for improvement. Using DSR (Peffers et al. 2008) these requirements

serve as an evaluation benchmark to test the developed artefact at the end of the research. The

next chapter, Chapter 5 discusses the design and implementation of the Secure-SSDM.

4.6 Chapter Summary

This chapter presented an in-depth analysis of the quality promoting practices in existing

SSDMs. A further analysis of lightweight security practices was performed. Following the

DSR (Peffers et al. 2008, p. 55), this chapter served to define the objectives to be fulfilled by

the Secure-SSDM in enhancing the quality of software products designed by solo developers.

Quality practices as defined by the authors of the reviewed literature in solo software

development literature were extracted, together with the authors’ views on how they produce

the desired impacts on the resulting product. A case study with undergraduate students at the

National University of Science and Technology (NUST), Zimbabwe was used to refine the

artefact objectives so as to address the peculiar needs of solo developers. A similar case study

conducted with three developers from industry served to further perfect the requirements.

The extant literature on SSDM and associated literature on secure software development, aids

the classification of the Secure-SSDM objectives into two broad categories. The two

113

categories are methodology agility, and that for support in delivering high-quality products.

To be deemed agile, the Secure-SSDM should facilitate: satisfaction of the customer through

early product delivery; incorporation of requirements change throughout the development

process; frequent delivery of working software, preferably in short cycles; continuous

customer involvement; measuring of project progress using working software; upholding of a

sustainable development process; focus on technical and design excellence as well as ensuring

maximum simplicity. These are agile principles drawn from the Agile manifesto (Beck et al.

2001; Fowler & Highsmith 2001).

On the other hand, support for quality is demonstrated by support for product maintainability,

usability, functional suitability and security. Chapter 5 presents a detailed design of the

Secure-SSDM and demonstrates how design rigour (Hevner et al. 2004, p.84) was applied in

building the artefact.

114

5 CHAPTER 5 SECURE-SSDM DESIGN

5.1 Introduction

In Chapter 4 an in-depth analysis of the solo software development (SSD) environment was

conducted enabling the derivation of requirements for the secure solo software development

methodology (Secure-SSDM). The analysis of practices derived from the existing methods

formed a basis for the methodology requirements. Further, the investigation of security

promoting practices from existing secure software development methodologies served to

complete the high-level methodology requirements. The high-level requirements for the

methodology under design are that it should support software development agility, at the same

time promoting quality in the developed software. To support agility the Secure-SSDM should

promote: satisfaction of the customer through early product delivery; incorporation of

requirements change throughout the development process; frequent delivery of working

software, preferably in short cycles; continuous customer involvement; measuring of project

progress using working software; upholding of a sustainable development process; and focus

on technical and design excellence while promoting maximum simplicity. Section 4.4.1 of

Chapter 4 explains these agile concepts. To promote the delivery of quality software products,

the methodology should enable maintainability, usability, functional suitability and security

in the developed software.

In this chapter, a befitting design towards fulfilling the enlisted requirements is discussed.

Chapter 5 provides an answer to the fourth research question posed in this thesis thus:

SQ4. How can quality and security practices from lightweight software development

methodologies be synthesised into a solo software development methodology that

promotes quality and security in the developed software?

The Secure-SSDM is designed iteratively following the Design science research (DSR) cycle

of : (1) Problem identification; (2) Definition of solution objectives; (3) Design and

development; (4) Solution demonstration; (5) Solution evaluation; and (6) Results

communication (Peffers et al. 2008, p. 53). The iteration during the design phase achieves the

rigour necessary for DSR projects. Sections 5.2 and 5.3 of this chapter discuss the design and

development of the methodology artefact, after the problem identification and objectives

formulation were dealt with in Chapter 2 and Chapter 4 respectively. The utility of the

resulting artefact from the first design iteration was demonstrated through soliciting for

115

criticism and feedback from participants at a Computing research seminar. This was followed

by the presentation of the primary SSDM framework at a peer-reviewed international

conference. Comments on the utility of the framework were used to refine the artefact. A case

study with undergraduate students studying towards a Bachelor of Science Honours Degree

in Computer Science served to further demonstrate and evaluate the utility of the

methodology. The student participants were asked to use the Secure-SSDM to develop

individual sized projects. This demonstration of the utility of the methodology is detailed in

section 5.4, and serves to prove that the Secure-SSDM can be used to develop high-quality

and secure software products (Peffers et al. 2008, p.55). Feedback obtained from the students

after the case study was used to further refine the artefact. To deal with the case of external

validity, industry developers were solicited to further prove the artefact’s utility in an industry

case study. Three industry developers, each with a minimum qualification of a degree in

Computing (Computer Science & Information Technology) and an average of four years

software development experience participated in the case study. These two case studies

constitute the solution demonstration and evaluation stages of the DSR. The evaluation part

and its results are discussed in Chapter 6.

5.2 Secure-SSDM Design

Design is a wicked problem, particularly in software engineering where the process involves

the building of complex artefacts with human and technical components whose functional

and quality characteristics are inseparable (Baskerville et al. 2018, p.362). The artefact under

design in this research is an agile software development methodology. The methodology is

designed for use by solo (freelance) developers in building quality and security into their

software products. As indicated in Section 5.1, the Secure-SSDM is designed to embed quality

and security promoting practices in its life cycle stages. The assumption here is that, the

embedded security and quality practices promote the development of high-quality and secure

software products. This section shows how the security promoting practices are integrated

with the methodology’s core quality promoting practices to give the methodology’s expected

properties. Selected security practices from the agile security framework of Rindell,

Hyrynsalmi and Leppänen (2017) and the reviewed related security literature are integrated

into the six-stage SSDM framework derived from the literature in Chapter 2 to produce the

Secure-SSDM. The chosen security framework was found appropriate as its security practices

are organised into six stages of the SDLC which neatly fit into the six stages of the primary

116

SSDM. It was therefore possible to identify practices appropriate for each SSDM stage. Only

those security practices that could be executed by an individual were identified and

incorporated into the development stages, taking care not to compromise the agility of the

methodology. At this stage, the following specific design related question is posed:

How can existing secure software development practices be integrated into the SSDM

framework to build a secure SSDM without compromising the resulting methodology’s

agility?

To answer this design question, literature discussing the integration of security practices into

agile software development processes was reviewed. Section 5.2.1 discusses the reviewed

literature and the method that is subsequently defined for the integration process.

5.2.1 Embedding security practices into Agile methods

Embedding security promoting practices into software development methods is a cost cutting

measure as this eliminates the need for an external security resource. Such a move enhances

software quality, at the same time promoting the production of secure software products

(Sonia & Singhal 2012). However, embedding secure software development practices into

agile methods is not an easy task (Keramati & Mirian-Hosseinabadi 2008; Sonia & Singhal

2012; Sonia et al. 2014; Oueslati et al. 2015; Rindell et al. 2018). Adding available security

promoting practices to agile methods may compromise the agility of the resultant method if

appropriate measures are not taken. A need therefore arises to methodically integrate security

practices into agile methods without reducing the agile characteristics of the final artefact.

Several researchers (Beznosov & Kruchten 2004; Keramati & Mirian-Hosseinabadi 2008;

Sonia & Singhal 2012; Sonia et al. 2014; Rindell et al.2018) have tackled the problem of

introducing security practices into lightweight methods. Beznosov and Kruchten analysed the

compatibility of traditional security promoting practices with agile methods. They produced

a list of compatible, independent, partially automatable and mismatch practices. Compatible

and independent security practices could readily be integrated with existing agile practices.

The problem was dealing with partially automatable and mismatch practices. They

recommended automation supported by knowledge management for partially automatable

practices, and either designing new agile compatible security practices or applying traditional

security practices, at least two times within the agile development process, for the mismatch

lot (Beznosov & Kruchten 2004, p.51). The authors concluded by posing a question on how

117

to seamlessly integrate security practices into the agile development environment without

compromising the agility of the resulting method.

Progressing knowledge in this area of research, Keramati and Mirian-Hosseinabadi (2008)

designed an algorithm for the identification and integration of security practices with existing

agile practices, taking care to maintain agility in the resulting practices. The algorithm

computes an agility degree for the identified security practice, after which the practice is

integrated if and only if, it meets a certain agility threshold. In this case, the project team, or

organisation wishing to introduce security practices into its agile environment, determines the

agility threshold. This approach to threshold determination works in a project specific

environment or organisational setting, but may not be suitable for a generic environment such

as the one for this research where the aim is to design a secure methodology for use in any

project environment. Nevertheless, the idea of a set threshold may be useful in controlling the

integration process.

Sonia, Singhal and Banati (2014) designed Fisa-XP, a secure agile framework. This is a

security practices integration framework designed through combining XP practices with

secure software development practices drawn from Open Web Application Security Project

(OWASP)’s Comprehensive Lightweight Application Security Process (CLASP). The

researchers use a modified version of Keramati and Mirian-Hosseinabadi (2008)’s algorithm

to identify appropriate security practices from CLASP which they integrate with XP practices.

An automated tool, Tisa-XP, is used to compute the agility degrees of identified security

practices. This automated tool helps to ease the integration process. Further, the tool is

designed to provide guidance on how to implement the security practices recommended for

integration with agile practices. The inbuilt tutorial on practice execution is most applicable

in solo environments, where developers may not have the necessary security expertise and

have no one to consult for assistance.

The examples above, show how researchers have separately, either proved the possibility of

integrating security practices with agile methods or demonstrated their successful integration

at the same time maintaining the agility of the resulting process or methodology. In this

research, Keramati and Mirian-Hosseinabadi (2008)’s algorithm is adapted to identify a list

of security practices from Rindell, Hyrynsalmi and Leppänen (2017)’ s security development

framework and related literature. Only those practices that can be performed by an individual

were identified for integration with the SSDM framework designed in Chapter 2 to produce

118

the Secure-SSDM. In the following subsection, the identification and integration processes

are discussed.

5.2.2 Integrating quality and security practices

Keramati and Mirian-Hosseinabadi’s algorithm is most suitable for an organisational setting,

where a security team scans the environment for security practices that can possibly be

integrated with agile practices within that organisation. The algorithm works with a list of

agile practices and a list of security practices, both with independently computed agility

degrees. Keramati and Mirian-Hosseinabadi (2008)’s algorithm can be summarised using the

following steps:

1) Select a security practice with the highest agility degree from the security practices

list.

2) Scan the list of agile practices to be integrated with security practices to identify all

those that can be integrated with that practice. Choose the one with the least agility

degree for integration, if none exists, delete the security practice from the list and stop

(go to 6). There is need to create an agile and security practices compatibility matrix

in order to execute this stage.

3) Generate a new secure agile activity through integrating the agile activity and the

security activity, compute its agility degree as min (a, b) where a is the agility degree

of the agile practice and b, the agility degree of the security practice.

4) Check if original agility degree of the agile practice + ART >= new secure agile

activity’s agility degree and integrate the two, otherwise integration is deemed

impossible.

5) Remove security practice from the list.

6) Stop or go back to 1 if security practices still exist.

The main adaptation in this algorithm is in step 4, on the threshold value. In that step, ART is

the agility reduction threshold meant to control the integration of the two practices, and is

based on the project team’s capabilities to absorb the security practice, as well as the

organisational practices and culture. In this research the ART parameter is inapplicable,

therefore this is adapted so that only activities with a resulting agility degree >= 0.5 after

119

integration are integrated. This is in line with the recommendation by Qumer and Henderson-

Sellers (2008, p. 281) to consider any practice or methodology with an agility degree >= 0.5,

as agile.

In this case, the research therefore adopts the agility values of 0 to 1 as suggested by these

authors. This is important for the nature of the methodology under development. Since the

methodology under development is generic, the use of a generic value is most appropriate.

Before the adapted algorithm can be applied to the design process, there is need to identify

the core development practices of the SSDM framework. Those practices with high

occurrences (confirmed by three or more authors) among the SSDMs participating in the meta-

synthesis of Chapter 2, were chosen. Thus, the Secure-SSDM is built on development

practices generally accepted in the SSDM community (Peffers et al. 2008, p.52). The rest of

the practices become optional practices which are executed on demand, depending on the type

of product under development. It should be noted that the Secure-SSDM does not restrict

developers from adopting any agile practice in a bid to improve the quality of the product.

Developers are encouraged to practice good knowledge management so that they can keep

those practices that work for their environments, and replace those that do not with new ones

that do. Table 5.1 shows the core practices of the framework obtained through publication

consensus. SSDM core practices and security practices can only be integrated if they are

compatible (Keramati & Mirian-Hosseinabadi 2008; Sonia et al. 2014). Two practices are

compatible if the developer can execute the two simultaneously with minimal effort. A

compatibility matrix (Table 5.3) derived mainly from the literature and close analysis of the

practices, was created for the purpose.

In computing degrees of agility of the core practices, this research adopts Qumer and

Henderson-Sellers (2006b, p.505)’s definition of agility thus: “Agility is a persistent

behaviour or ability of a sensitive entity that exhibits flexibility to accommodate expected or

unexpected changes rapidly, follows the shortest time span, uses economical, simple and

quality instruments in a dynamic environment and applies updated prior knowledge and

experience to learn from the internal and external environment". From this definition, these

authors further define five agility features, which are flexibility, swiftness, leanness,

responsiveness and learning. These five features are then used to derive the agility degree of

an object. In this research a sixth feature, simplicity, was added to the five features as it was

deemed important for the Secure-SSDM under development. These six features were used to

120

compute the agility degree of each of the SSDM’s development core practice as suggested in

Keramati & Mirian-Hosseinabadi (2008). Each core practice was analysed to check whether

it exhibits the six agility features. The presence of a feature is signified by a 1 (present),

absence by a 0 (not present). These contribute to the agility values of the practice, so that a

practice exhibiting all the six features has an agility degree of 6/6 = 1. In computing the agility

values of the agile practices in the SSDM, reference was also made to the works of Qumer

and Henderson-Sellers (2006; 2006b) where the agility values of Scrum and XP are computed.

This research is similar to these authors’ in that most of the SSDM practices were drawn from

existing SSDMs which in turn draw their practices from XP and Scrum. An example

illustrating the computation of the agility degree of the User identification development

practice is explained in the next paragraph.

First, there is need to check whether the practice exhibits any of the agility features, where the

existence of a feature is signified by a 1 and the inexistence by a 0. User identification in the

SSDM framework is a flexible process. Users can be added and removed from the process

depending on their needs, therefore a 1 is assigned for this feature. User identification can also

be done quickly, resulting in another 1 being assigned for speed, although it involves some

documentation, hence it is not a lean process. A 0 is assigned for leanness. This is a flexible

process, (a 1 is assigned for flexibility), since users can be added and removed as per

customer’s need, hence it is also a responsive practice, and a 1 is assigned for responsiveness.

Lastly, this is a simple process and in turn simplifies the development process, therefore, a 1

is assigned for simplicity. This information is illustrated in the first row of Table 5.1. The

values assigned to this activity when summed up, over the total possible sum give: 5/6 = 0.83.

The degree of agility for this practice is therefore 0.83. The rest of the degrees of agility for

each of the practices were computed in a similar manner and are given in Table 5.1.

Table 5.1: Computing SSDM core practices degrees of agility

 Feature

SSDM

practice

F
le

x
ib

il
it

y

S
p

ee
d

L
ea

n
n

es
s

L
ea

rn
in

g

R
es

p
o
n

si
v
e
-

n
es

s

S
im

p
li

ci
ty

D
eg

re
e

o
f

a
g
il

it
y

I. Management Buy-in and Standards Adoption

User

identification

1 1 0 1 1 1 5/6 = 0.83

121

User education 1 0 0 1 1 1 4/6 = 0.67

Standards

Adoption

1 1 0 1 1 1 5/6 = 0.83

High-level user

requirements

identification

1 1 0 1 1 1 5/6= 0.83

II. Requirements Elicitation

Prioritisation of

product backlog

1 1 0 1 1 1 5/6=0.83

Prototype

development

1 1 0 1 1 0 4/6 = 0.67

III. Release and Sprint Planning

Creation of user

stories

1 1 0 1 1 1 5/6 = 0.83

Prioritisation of

Sprint tasks

1 1 0 1 1 1 5/6= 0.83

Design of

acceptance tests

1 1 0 1 1 0 4/6 = 0.67

IV. Development with Review

Coding 1 1 0 1 1 1 5/6 = 0.83

Version/change

control tracking

1 1 0 1 1 0 4/6 = 0.67

Code refactoring 1 1 1 1 1 0 5/6 = 0.83

Code review

with dummy

1 0 0 1 1 1 4/6 = 0.67

Product

validation

1 1 1 1 0 1 5/6 = 0.83

V. Sprint Review and Close

Sprint review 1 1 0 1 1 1 5/6 =0.67

Project progress

review

1 1 0 1 1 1 5/6 = 0.67

Continuous code

integration &

testing

1 1 1 1 1 0 5/6 = 0.83

Next Sprint

planning

1 1 1 1 0 1 5/6 = 0.83

VI. Evaluation

Deliverables

evaluation

1 1 1 1 0 0 4/6 = 0.67

System testing 1 1 1 1 1 0 5/6 = 0.83

Task automation 1 1 1 1 1 1 6/6 = 1

Using the adapted algorithm, with the agility degrees of the core development practices at

hand, the next thing is to determine the agility degrees of the security practices. Table 5.2

shows the selected security practices drawn from Rindell, Hyrynsalmi and Leppänen (2017)

and their computed degrees of agility based on the same approach used for the SSDM quality

122

practices. In both cases the agility degree of any practice depends on the experience and

expertise of the developer executing that practice. An experienced developer may execute a

given practice faster than a novice, and similarly find a practice simpler as compared to a

novice. In this case the research assumes average developer experience.

Table 5.2: Computing agility degrees of security practices

 Feature

Security

Practice

F
le

x
ib

il
it

y

S
p

ee
d

L
ea

n
n

es
s

L
ea

rn
in

g

R
es

p
o
n

si
v
e-

n
es

s

S
im

p
li

ci
ty

D
eg

re
e

o
f

a
g
il

it
y

Security

awareness

training

1 0 0 1 1 1 4/6 =

0.67

Security

analysis of

user roles

1 0 0 1 1 0 3/6 = 0.5

Misuse case

detailing

1 0 0 1 1 1 4/6 =

0.67

Application of

Security

design

principles

1 0 0 1 1 0 3/6= 0.5

Security test

design

1 1 0 1 1 0 4/6=0.67

Security

coding

standard

adherence

1 1 0 1 1 0 4/6 =

0.67

Source code

security

reviews

1 1 0 1 1 1 5/6 =

0.83

Security

testing

1 1 0 1 1 0 6/6=

0.67

Security

disclosure

management

1 1 0 1 1 0 4/6 =

0.67

Review of

security

repository

1 1 0 1 1 1 5/6 =

0.83

Once the degrees of agility have been determined for the two groups of practices, the next step

is to create a compatibility matrix indicating compatible and non-compatible practices

between these practices. Table 5.3 is a compatibility matrix showing the compatibility

123

between security practices and the primary SSDM quality practices. Each row shows an

SSDM practice, and each column shows a security practice. For each SSDM practice, there is

need to check its compatibility with all the identified security practices. Practices are

compatible if they appear in the same stage of the software development cycle (Sonia &

Singhal 2012), or if they can be simultaneously executed with minimal reduction of developer

productivity (Keramati & Mirian-Hosseinabadi 2008). To compile the compatibility matrix

the quality practices and the security practices were independently organised into the broad

stages of the SDLC which are requirements analysis, design, development and testing.

Security practices in the requirements analysis stage are deemed compatible with quality

practices in that stage. Reference was also made to the works of Beznosov and Kruchten

(2004), Keramati and Mirian-Hosseinabadi (2008), Sonia and Singhal 2012 as well as Rindell

et al. (2018) in determining the compatibility between practices.

 To illustrate the creation of the compatibility matrix, the first quality practice in Table 5.3 is

used. User identification is a requirements analysis practice carried out in the early stages of

the cycle. The table shows that user identification is not compatible (NC) with misuse case

detailing, application of security design principles, security test design, source code security

reviews, security testing and security disclosure management. This practice is however shown

to be compatible (C) with security awareness training, security analysis of user roles, and

review of security repository. The understanding is that while the developer is identifying

system users, they may also carry out security analysis on the kind of activities the users play

on the system, conduct security awareness training, and at the same time if there is an already

existing security repository, they may update it based on the roles users play on the system.

The rest of the entries in the table were arrived at using the same logic. However, to keep the

practices as agile as possible, only one most favourable security practice is combined with one

SSDM core practice.

124

Table 5.3: SSDM and security practices compatibility matrix

S
ec

u
ri

ty

p
ra

ct
ic

e

 S
ec

u
ri

ty
 a

w
a
r
en

es
s

tr
a
in

in
g

S
ec

u
ri

ty
 a

n
a
ly

si
s

o
f

u
se

r
ro

le
s

M
is

u
se

 c
a
se

 d
et

a
il

in
g

A
p

p
li

ca
ti

o
n

 o
f

se
cu

ri
ty

 d
es

ig
n

p
ri

n
ci

p
le

s

S
ec

u
ri

ty
 t

es
t

d
es

ig
n

S
ec

u
ri

ty
 c

o
d

in
g

st
a
n

d
a
rd

 a
d

h
er

en
ce

S
o
u

rc
e

co
d

e
se

cu
ri

ty

re
v
ie

w
s

S
ec

u
ri

ty
 t

es
ti

n
g

S
ec

u
ri

ty
 d

is
cl

o
su

re

m
a
n

a
g
em

en
t

R
ev

ie
w

 o
f

se
cu

ri
ty

re
p

o
si

to
ry

User

identification

C C NC NC NC NC NC NC NC C

User education C NC NC NC NC

NC NC NC C NC

Standards

Adoption

C NC NC NC NC C NC NC NC C

High-level user

requirements

identification

C C C NC NC NC NC NC NC NC

Prioritisation

of product

backlog

C C C NC NC NC NC NC NC NC

Prototype

development

NC NC NC C NC C NC C NC NC

Creation of

user stories

C NC C NC NC NC NC NC C NC

Prioritisation

of Sprint tasks

NC NC C NC NC NC NC NC NC NC

Design of

acceptance

tests

NC NC C C C NC NC NC NC NC

Coding

prioritised

tasks

NC NC NC NC NC C C NC NC NC

Version/change

control

tracking

NC NC NC NC NC NC NC NC NC NC

Code

refactoring

NC NC NC NC NC C C C NC NC

Code review

with dummy

NC NC NC NC NC C C NC NC NC

Product

validation

NC NC NC NC NC C C C NC NC

Sprint code and

quality review

NC NC NC NC NC NC C C C C

Project

progress

review

NC NC NC NC NC NC NC NC C NC

Quality

practice

125

S
ec

u
ri

ty

p
ra

ct
ic

e

 S
ec

u
ri

ty
 a

w
a
r
en

es
s

tr
a
in

in
g

S
ec

u
ri

ty
 a

n
a
ly

si
s

o
f

u
se

r
ro

le
s

M
is

u
se

 c
a
se

 d
et

a
il

in
g

A
p

p
li

ca
ti

o
n

 o
f

se
cu

ri
ty

 d
es

ig
n

p
ri

n
ci

p
le

s

S
ec

u
ri

ty
 t

es
t

d
es

ig
n

S
ec

u
ri

ty
 c

o
d

in
g

st
a
n

d
a
rd

 a
d

h
er

en
ce

S
o
u

rc
e

co
d

e
se

cu
ri

ty

re
v
ie

w
s

S
ec

u
ri

ty
 t

es
ti

n
g

S
ec

u
ri

ty
 d

is
cl

o
su

re

m
a
n

a
g
em

en
t

R
ev

ie
w

 o
f

se
cu

ri
ty

re
p

o
si

to
ry

Code

integration &

testing

NC NC NC NC NC C C C NC NC

Next Sprint

planning

NC NC C NC NC NC NC NC NC NC

Deliverables

evaluation

NC NC NC NC NC NC NC C C C

System

acceptance

testing

NC NC NC NC NC C NC C C C

Task

automation

NC C NC C C NC C C NC NC

Key: C – Compatible; NC- Not compatible

Having come up with the compatibility matrix, the next step using the adapted algorithm was

to produce a Secure-SSDM that incorporates security practices adapted from the literature,

without compromising the agility of the resulting method. To illustrate the use of the algorithm

during the integration process, source code security reviews is the first security practice on the

list with the highest agility degree of 0.83. Table 5.3 shows that it can be combined with:

coding prioritised tasks; code refactoring; code review with dummy; code integration testing;

and task automation. The compatible practice with the least agility degree of 0.67 is, code

review with dummy. Combining these two gives an agility degree of min (0.67, 0.83) = 0.67.

As this is greater than 0.5, these two can be combined resulting in the practice: Performing

code and security code reviews with the help of a dummy partner. This is a practice in the

Development with review phase. The rest of the security practices incorporated into the SSDM

were integrated this way. Table 5.4 gives the list of practices for the Secure-SSDM. Core

practices of the SSDM shown in Table 5.1, have been combined with security practices shown

in Table 5.2 to give the core practices of the Secure-SSDM. The other quality practices derived

from the literature remain as optional practices that are carried out to improve the quality of

the developed software.

Stage I of the Secure-SSDM is elaborated here to illustrate the interpretation of methodology

practices in Table 5.4. At the onset of the project, the developer starts off by educating users

Quality

practice

126

on how the project will be undertaken using the methodology, at the same time, users should

also be educated on issues of security. During this period, appropriate standards (both

developmental and security) determined by the type of software under development, should

be adopted. At this stage it is also important to carry out security analysis on user roles. The

security analysis here is based on a high-level user requirements list. A set of recommended

tools and techniques for executing activities in each stage of the development process is

provided. The recommended tools and techniques address concerns raised by student

participants during the first case study to evaluate the utility of the methodology. Since the

practices recommended to build security into the software were new to most participants, they

recommended the use of tools in executing these practices. Developers should refer to quality

standards relevant for their software product to assess the quality of the product under

development. An automated dashboard using MS Excel or any appropriate planning tool can

be used to capture and keep track of user requirements. Bernabé, Navia and García-Peñalvo

(2015) recommend the use of Trello or Taiga for single development environments. Trello as

a tool enables the developer to organise and manage their work so that they can easily visualise

their progress. In Trello (Atlassian 2019), a project is represented by a board, into which board

members (project team) can be added. In a solo development project, there is usually one

board member, who may work hand in hand with the user. Several boards can be created at

the same time to show the various projects the developer is working on. Associated with a

board, are lists and cards. A list is used to show the flow of work. which is entered in cards.

A card shows the smallest unit of work in a project. A developer can create their own set of

lists which they can use to visualise project progress, by moving cards across the lists. The

most basic lists are those showing what tasks are in progress, pending and done (Atlassian

2019). A menu provided with the platform helps the developer to manage the named project

processes. As a web-based tool, Trello provides portability so that the developer can access

their dashboard from anywhere. Android and iOS apps for Trello can be used to further

support portability.

Table 5.4: Secure-SSDM activities, tools and techniques

Stage Secure-SSDM activities Tools/Techniques/Standards

I. Management

Buy-in and

Standards

Adoption

 Education of users on methodology

& institution of security awareness

programs

 Software Quality

standards

127

Stage Secure-SSDM activities Tools/Techniques/Standards

 Adoption of development and

relevant security standards

 Identification of users & security

analysis of user roles

 Establishment of high-level user

requirements

 Requirements checklist

(automated, e.g. Trello or

Taiga/ manual dashboard)

II. Functional &

Security

Requirements

Elicitation

 Creation of user requirements list

 Creation of use cases and misuse

cases

 Creation of a prioritised product

backlog

 Creation of a WBS (up to

task/subtasks)

 Categorisation of subtasks

 Development of prototypes

 Meeting/ interview/

document reviews

 Requirements checklist

 User stories

 UML diagramming tools

 Product backlog

 Work breakdown

structure

 Product breakdown

structure

 Misuse case diagrams

III. Release and

Sprint Planning
 Use of story cards to explain

products

 Prioritisation of Sprint tasks

 Attachment of size and time

estimates to tasks

 Setting of the iteration duration (1 –

2 weeks)

 Designing of security and

acceptance tests

 Sprint backlog

 UML diagramming tools

 User acceptance tests

(short statements showing

what the system should do

to be acceptable)

IV. Development

with Review
 Development of code for the tasks

taking care to adhere to coding and

security standards

 Use of version/change control tools

 Refactoring of code and performing

unit tests

 Performing of code and security

code reviews with the help of a

dummy partner

 Fixing identified errors

 Reviewing time estimates using

actual times

 Product validation

 Version control system

(e.g. Git, Trello)

 Code refactoring

 Code coverage testing

tools (e.g. Jacopo)

 Code review

 Dummy partner (explain

code to a dummy, self-

dialoguing)

V. Sprint Review

and Close
 Review of sprint time & code

quality

 Movement of finished task (s) to

completed tasks

 Carrying over undone tasks to next

iteration

 Reviewing project progress

 Version control system

 White box security testing

 Continuous integration

 Self-dialoguing

128

Stage Secure-SSDM activities Tools/Techniques/Standards

 Planning for next Sprint (or close

project)

 Performing of code integration,

testing and security testing

VI. Evaluation Evaluation of product deliverables

& security repository update

 Conducting of system acceptance

test

 Identification of processes/ tasks for

automation (repeating tasks)

 Task/code automation

tools

 Security repository

 Knowledge base

As Table 5.4 shows, quality practices have been organised into the stages of the primary

SSDM derived through the metasynthesis performed in Chapter 2. Selected compatible

security practices were then integrated with the quality practices. Only those security activities

that could be performed by an individual were chosen for integration.

The foregoing integration process for designing the Secure-SSDM is summarised in Figure

5.1. First, the researcher derived the SSDM practices and security practices that could be

executed by an individual from the literature. Then agility degrees for these were derived

independently. After that, a compatibility matrix to ease the integration process was created.

With the aid of the compatibility matrix, the security practices were integrated to the SSDM

practices using a modified version of Keramati and Mirian-Hosseinabadi (2008)’s algorithm.

This section has demonstrated the rigour applied to the design of the Secure-SSDM. It has

shown how quality practices and security practices were systematically drawn from the

existing knowledge bases of SSDMs and secure software development methodologies

respectively. It has also shown the suggested improvements on the methodological aspects of

the integration process particularly with regards to the solo environment. The resulting secure

solo software development methodology is this research’s contribution to knowledge in the

solo development environment. The next section describes the Secure-SSDM together with

the tools and techniques recommended to support the developers using this methodology.

5.3 The Secure-SSDM

The version of the methodology discussed in this section is a final version. It incorporates the

suggestions raised in consensus by both academic and industry participants who participated

in the multiple case study to evaluate the methodology. The valuable suggestions of the three

129

anonymous reviewers who critiqued the submission discussed in Moyo and Mnkandla (2020)

also helped to refine the methodology.

The Secure-SSDM emphasises on knowledge management for the benefit of the developer in

future projects. While the methodology was developed iteratively, it in turn uses an iterative

approach to product development. Developers using the Secure-SSDM deliver the product in

increments. Whereas the methodology stages are shown in sequence, developers using the

Secure-SSDM may begin a subsequent stage while working on another stage, as long as the

SSDM Quality

framework

Proposed

Secure-SSDM

Agile quality

practices

definition

Agile Security

literature

Security

framework

Identify core -

SSDM quality

practices

Integrate compatible practices using

Keramati and Mirrian-Hosseinabadi’s

modified algorithm

Derive agility of

core-SSDM quality

practices

Create quality and security practices

compatibility matrix

Identify security

practices

Derive agility of

Security

practices

Figure 5.1: Secure-SSDM practices integration process

130

subsequent stages can be handled in parallel. For instance, a developer may start requirements

elicitation during the process of establishing standards to be used in the project. These two

processes may be interleaved. The following subsections elaborate on the activities carried

out in each of the development stages of the methodology.

5.3.1 Management Buy-in and Standards Adoption

This is the stage that sets the development process in motion. The aim of the stage is to

encourage user involvement in the development process. Here the developer analyses the

environment in consultation with the project owner to fully understand the users’ need. For

projects with no particular owner the developer may discuss the idea of the project with

potential users or review literature in the area or review similar software products in the

market. Once the developer establishes that a need (or an opportunity) exists, their core task

is to educate the users on how development will proceed, at the same time educating users on

security issues pertaining to the system. Educating users on security issues is a backbone for

secure software development (Rindell, Hyrynsalmi & Leppänen 2018). User training on

security encourages them to think about and also suggest security requirements when it is time

to collect user requirements at the subsequent stages.

Users also need to be educated at the project onset on the impact and costs associated with

requirements change (Bernabé, Navia & García-Peñalvo 2015, p.688). During this stage it is

also important that the developer adopts standards appropriate for the type of software under

development. As a lone developer, adopting development and security standards promotes

compliance with international standards as well as eases understanding of one’s code in the

future. These standards are shared with users as they constitute measures of both quality and

security that will be used to evaluate the system at the end of the project. For non-technical

clients, the developer may need to summarise the expected behaviour of the software product

as defined by the standard adopted.

Assuming management and users now appreciate how development will proceed, end users’

expectations from the product are identified using appropriate techniques. From the users’

expectations, a high-level list of the users’ requirements from the system is created. The output

of this stage is an initial set of high-level requirements together with adopted quality and

security standards to be used to measure both process and product success.

131

5.3.2 Functional and Security Requirements Elicitation

The standards adopted at the first stage and the high-level requirements collected in that stage

serve as input for this stage. The main aim of this stage is to perform an in-depth understanding

of system’s functional and non-functional requirements from the users’ perspective. Using

appropriate data collection techniques, such as meetings, interviews, observation and

documentation sampling, among others, the developer collects users’ expectations of the

system. These are captured as user stories describing the user’s interactions with the system.

Each user story should be accompanied by acceptance criteria (test cases) stipulated by the

user (Bernabé, Navia & García-Peñalvo 2015, p.688). The INVEST (Independent, Negotiable,

Valuable, Estimable, Small, Testable) acronym suggested by these authors can be used in

formulating manageable user stories. Acceptance criteria for user stories serve as a guide of

what is expected of the developer from the development process. During this time the

developer also identifies user roles in the system, which may be captured in a checklist to

visualise and simplify these. The checklist if created, is then used to define access levels on

the system under development (González-Sanabria, Morente-Molinera & Castro-Romero

2017, p.27). This research recommends the use of UML (Unified Modelling Language)

diagrams to model system components. These support object orientation which is the

abstraction used with the Secure-SSDM. The collected user stories are therefore translated

into use case diagrams. The latter are then used to perform security analysis on the users’

interactions with the system, leading to the definition and modelling of misuse cases (Rindell,

Hyrynsalmi & Leppänen 2017). In identifying misuse cases, users are encouraged to imagine

an intruder making use of a use case (or any system component) in an illegal way. Each use

case may therefore be associated with an intruder, whose intentions are captured as misuse

cases. Intruders may also have their independent actions not associated with use cases, and

are captured as misuse cases.

An example diagram for capturing use cases and misuse cases is shown in Figure 5.2. As

shown in the figure, the user’s intention is to log into the system. A possible identified threat

to this activity is that of an intruder who may want to steal the user’s login details to perform

malicious activities against the user’s data. In this case spoofing of the user’s login details

poses as a threat to the process of logging in. Thus, the developer needs to design security

132

features against this threat. Other threats to the system are identified and modelled in a similar

way.

Use case and misuse case diagrams can further be detailed as suggested in Sindre and Opdahl

(2005). To keep the development process lightweight, each use case description can embed

its own misuse case description within its actions. The misuse case will be defined as a threat

against the use case as illustrated in Table 5.5. In this case, in the use case action column, the

developer captures activities that can be performed by the user for the use case under

consideration. In the system services column, the developer describes the expected system

response to the user’s actions.

Customer
Intruder

Enter login details Spoof identitythreatens

Figure 5.2: Customer login use case/misuse case

Under the intruder threat column, the developer describes security threats that are associated

with each action of the user. For example, an action to prove one’s identity at system log in,

should be associated with a verified identity from the system, and could be threatened by

identity spoofing from an intruder. Such a listing of the use case enables the developer to

associate threats with user actions, so that they can build code that secures the users’ actions

by mitigating identified threats.

133

Once the user stories and use cases have been created, they are used to create a prioritised

product backlog. The developer, in agreement with the user or user’s representative creates

the backlog showing all use cases with their associated misuse cases. In resource constrained

environments, or where the development time is short, the developer needs to analyse the

misuse case impacts on the system and business, so that the security risks are classified as

low, medium and high. Priority should be given to high risk security misuse cases, while the

low risk ones may be ignored. A backlog may be made of a number of use cases. These are

prioritised to enable the delivery of high priority functionality at the beginning of the project.

Table 5.5: Embedding misuse case into use case description

(adapted from Sindre and Opdahl (2005.p.37))

Use case name: Log into user profile

User -action System services Intruder threat

Enter login details Verify details Spoof login details

……. ……. …

A product breakdown structure (PBS) for the product under development may be created from

the product backlog depending on product complexity. The PBS enables the developer to keep

track of all product components and their relationships. Using the PBS, the work to deliver

the components is enlisted. This can be organised in the form of a work breakdown structure

(WBS). The WBS promotes product completeness (Dzhurov, Krasteva & Ilieva 2009;

Pagotto et al. 2016), as it should be created using the hundred percent concept. The hundred

percent concept means the work at level n is equivalent to work at level n-1, where n and n-1

are levels of decomposition of the WBS. However, for simple products these two models can

be ignored to reduce documentation associated with the development effort. While the Secure-

SSDM suggests the use of all these models, developers should choose those tools and models

that promote quality at the same time enhancing their productivity, without compromising

developer performance. For small software products a simple checklist may suffice to keep

track of the backlog.

Using the product backlog, the developer categorises the tasks/subtasks in preparation for the

definition of sprints. A sprint is a development activity that delivers meaningful functionality

to the user. Developers designing complex systems can build prototypes to help them fully

understand the requirements for the product and sprint. The deliverable at this stage is a

prioritised product backlog with identified quality and security requirements for each

134

deliverable. The unique feature of the Secure-SSDM is the attachment of security

requirements to user functional requirements. This entails that the developer thinks of security

in advance instead of having it as an after-thought.

5.3.3 Release and Sprint planning

The prioritised product backlog from the previous stage serves as a source of items for

planning at this stage. Release and Sprint Planning creates a development plan for the sprint.

The task categories in the task list for the current sprint are used to create sub-tasks for the

current sprint. A sprint may constitute a number of iterations that deliver internal components

at the developer’s site. A WBS, if it has been created, can be used to see which sub-tasks

constitute what tasks. In such cases, associated with the WBS should be a product breakdown

structure (PBS) showing the relationship among product components. This is true for complex

projects. The PBS should be a translation of the WBS, that is, it should be clear to see how

the product is produced through the WBS (Pagotto et al. 2016). At this point security design

should be made for each deliverable associated with a task. Design should be simple enough

to facilitate changes in the event that users request for such changes. The developer may use

sequence diagrams or activity diagrams to understand the flow of events in each use case.

Sprint planning constitutes setting of small milestones for the project, so as to encourage

development focus. Milestones mark the end of a sprint and can be used to measure project

progress. For individual developers, small milestones result in frequent product delivery

which in turn help to build trust with the user, at the same time promoting visualisation of

development progress. As recommended by some SSDM authors, tasks in a sprint should be

planned to be achievable within a duration of 1 – 2 weeks. Each task in a sprint should carry

size and time estimates. This is achievable if user stories have been formulated to comply with

the INVEST acronym. Developers are advised to keep track and document their performance

in task execution, so that this serves as a historical database for reference in future projects.

Automated tools may be used for tracking purposes to keep the process light.

During sprint planning, acceptance tests and security tests for each sprint should also be

designed. These are derived from acceptance criteria formulated for the user stories. Tests are

used to evaluate the quality of the deliverables at the end of the sprint. Automating these tests

135

reduces development effort, and serves to ensure that only tested code is integrated into the

product baseline. Automated test tools such as Junit (for Java environments) or VBUnit (for

Visual Basic developers) can be used for the purpose. At the end of this stage, a clear list of

tasks and associated deliverables and both acceptance and security tests should be produced.

5.3.4 Development with code and security review

The input to this stage is a prioritised list of tasks. Once the tasks for a sprint are known, the

developer creates code for the product component to be delivered at the end of the sprint. For

enhanced productivity, developers are encouraged to use a programming language they are

familiar with. Development should be carried out to comply with coding, quality and security

standards adopted at the onset of the project. All code should be reviewed thoroughly, and a

dummy partner can be used to play the part of a pair. Here the developer explains their code

to the dummy, hoping that as they explain their code, they will identify any code that does not

make sense (Bernabé, Navia, & García-Peñalvo 2015, p. 691). Besides explaining code to the

dummy, the automated code and security checks provided by the programming environments

suggested in Section 5.3.3 should be used to detect and deal with all coding errors. Secure

coding practices such as avoidance of unsafe functions (Belk et al. 2011), as well as reviewing

of code to identify vulnerabilities in code (Rindell, Hyrynsalmi & Leppänen 2018), should

form part of the coding process. The developer should concentrate on high risk modules such

as those receiving data from the outside, interfaces with other systems and access control

points (OWASP 2017, p.53). This encourages the developer to deal with security issues during

the development process. Just as the developer performs code reviews to identify technical

debt, they should also perform source level security reviews to identify vulnerabilities in code.

For critical systems developers may need to engage a consultant to review their code for both

quality and security. This however while ensuring system quality may imply more financial

resources are needed for the project.

All errors identified during code reviews and unit testing should be fixed before code is

integrated into the baseline. At the end of the sprint, the actual and estimated times should be

compared, and any differences used to adjust estimates on remaining sprint time estimates. As

the product grows at the user’s site it should be continuously validated at the end of each

sprint, with the use of standards set during the Release and Spring Planning stage. The

136

deliverable from this stage is secure code with minimal, if not free of coding errors. This is

ready for installation at the user’s site in the next stage of Sprint Review and Close.

5.3.5 Sprint review and close

This stage marks the end of the sprint. Activities carried out at this stage transfer the developed

product (or component) to the user’s site. The new code is integrated to the existing code after

the developer has satisfied themselves that all the quality and security standards adopted at

the onset of the project have been met. The use of a version control system is highly

recommended, so is the use of automation tools discussed by Driessen (2018). These include

tools used to: quickly access all recently modified code files; correct the most recent commit;

delete the most recent commit; and divide a commit in the event the developer detects or

suspects some conflict within code components. Such tools help the developer to access the

most recent work and perform corrections without taking time to browse all files. Security

tests should be performed on all code before integration. All finished tasks should be moved

to completed tasks, while undone tasks are moved to the next iteration. At the end of each

sprint, the developer reviews project progress in consultation with the user, and adjusts plans

accordingly. If the project is not yet complete, this is the time to plan for the next sprint with

new information obtained from comparing the plan with the actual. For the last sprint this

should mark the end of the project, therefore the review is a project review.

5.3.6 Evaluation

Evaluation marks the end of the development process. Product deliverables are evaluated

against the appropriate quality and security standards adopted at project onset. A system

acceptance test is conducted, pending user sign off. At this stage developers perform the

following main tasks: evaluate the quality of product deliverables; conduct system acceptance

test; identify processes for automation (candidates for these are repeating tasks); use the just

ended project information to improve security repository. Apart from enhancing the

developer’s security skills, the repository helps to show which parts of the system need

maximum security.

The Secure-SSDM flow is shown in Figure 5.3. The key tasks performed in the various stages

are briefly summarised in the diagram. Developers identify key users who should include

project sponsors and educate them on the main processes of the methodology and on the

importance of participation during the development process. Thereafter the developers

137

working with the users identify both the functional and security requirements of the product,

and development proceeds as explained in the sections 5.3.1 to 5.3.6.

IV

Development

with Code &

Security

Review

 VI

Evaluation

 I

Management

Buy-in &

Standards

adoption

II

Functional &

Security

Requirements

Elicitation

III

Release and

Sprint

Planning

V

Sprint

Review and

Close

1 – 2 weeks

Sprint

-Identify key

users, &

educate them

on the

methodology

 -Establish &

train users on

quality and

security

standards for

use in the

development

process

-Identify

functional and

associated

security

requirements-

Create use case

and misuse

cases-Create a

prioritized

product

backlog

-Prioritize

sprint tasks-

Set quality

and security

test cases for

the tasks-

Create a

simple

design for

the sprint

-Produce

code for the

sprint using

adopted

coding

standards-

Review code

for quality

and security

compliance

Review sprint

deliverable

against user

and security

requirements,

perform

suitable tests

Evaluate

product against

user, quality

and security

requirements,

evaluate

developer

performance,

update quality

& security

knowledge

base

Figure 5.3: Secure-SSDM stages summary

138

5.3.7 Modelling the Secure-SSDM

On testing the methodology with second year Computer Science students at the National

University of Science and Technology (NUST), Zimbabwe, it was evident that there is a need

to provide a comprehensive model of the Secure-SSDM, with appropriate tools and techniques

to support each stage, particularly for security practices. Most students did not have prior

knowledge of these, neither did they have knowledge of the appropriate automation tools to

use with the methodology. In this case the student participants represent novice developers.

Such developers would need an appropriate tool and model support to enable them to

undertake the practices recommended in this methodology. Besides documenting the tools and

techniques to be used with the methodology, it is important to specify the deliverables

expected on execution of the various activities. The EPF Composer served as an ideal tool to

document the methodology, as it supports the documentation of roles, processes, and tools for

use by the various roles. It enables method engineers to package knowledge required for a

particular process so that developers can use the tool as a knowledge base (Eclipse Foundation

2018).

Modelling the Secure-SSDM with the EPF Composer facilitates usability and updatability of

the artefact, as the developer can easily update the activities defined within the methodology

after project execution, so that they document activities that work within that project

environment. EPF Composer therefor acts as a knowledge management tool in this solo

development environment. Various versions of method components, method-plug-ins and

tasks can be created and managed for the various development projects the developer works

on. Two screenshots from the Secure-SSDM are shown in Figures 5.4 and 5.5. Figure 5.4

shows the screenshot of the main page of the Secure-SSDM method library with the various

method plug-ins for the library. In this case the various stages of the Secure-SSDM were

created as method plug-ins. Each of the stages had its content defined describing the work

products of the stage, the necessary skills required and appropriate guidance showing how

specific development goals are achieved.

Figure 5.5 shows the first two stages of the Secure-SSDM defined as method plug-ins of the

main method library. The two stages are Management Buy-in and Standards Adoption, and

Functional & Security Requirements Elicitation. In the diagram the prioritised product

backlog work product is highlighted, displaying the description of the work product on the

artefact description display window on the right. The work products of the Functional &

139

Security Requirements Elicitation stage are shown as the prioritised product backlog, use

case/misuse case diagram and use case description. Two roles are defined for this stage, the

developer as an analyst, and the user as an information source. Defining the roles separately

enables the developer to differentiate their role as an analyst and their role as a developer.

The EPF Composer provides a flexible way of defining and publishing methodologies. While

for a solo developer, publishing the methodology is not an essential aspect as the developer

works alone, the tool makes it easier for the developer to communicate with the user,

reminding them of their obligation, the delivery dates of the product components and the

standards agreed upon to accept the product. Its flexibility also enables the developer to adapt

the process to suit the kind of software under development. It also helps as a knowledge

management tool in keeping the various versions of the method plug-ins.

Figure 5.4: Secure-SSDM stages definition in EPF Composer

140

The developer can revise the knowledge base as they discover new ways of executing the

practices. The newly discovered or improved practices may be created as a revised version of

the current. Figure 5.5 shows version 1.1 of the description of the prioritised backlog together

with the date of creation.

5.4 Secure-SSDM demonstration

The key success factor of DSR is the demonstration of the utility of the artefact through using

the artefact to solve a real problem in the area in which it is designed to work (Peffers et al.

2008, p. 55). Since the objective in this research is to build a methodology that enables the

development of software products that meet users’ functional and security requirements, there

Figure 5.5: Defining prioritised product backlog in Secure-SSDM

141

is need to demonstrate this claim. This should be through using the Secure-SSDM to develop

software products, and testing whether the developed software products are secure and meet

the elicited user requirements (Walls, Widmeyer & Sawy 1992). Besides testing the resulting

software products, demonstration should also prove the applicability of the methodology

practices in developing software. An appropriate demonstration of this artefact’s claim is to

use the methodology at an individual level to develop the software. To that effect, the utility

of the Secure-SSDM was demonstrated through a multiple case study. In the first case study,

thirty-nine undergraduate students participated in using the methodology to develop

individual mini-projects during the semester of January 2019 to May 2019. The students who

were in their second year of a four-year Honours Degree in Computer Science were assigned

areas from which to develop software systems of their choices to solve real-world problems

in the community. This was part of the course requirement in a course, Computing in Society

(course code SCS 2206) that they do during this year of study. The students were tasked to

identify real projects and customers in the areas of Education, Health, Business, Government

and the Environment, that they could work with to establish needs or problems that could be

solved through the development of software.

This group of students was found favourable for the case as they had already done two

programming courses, one in their first year and the other in their first half of the second year.

They had also done a course in software development methodologies, equipping them with

the skill of using software development methods in building computer software. The students

in this case therefore were taken to represent novice software developers.

Three industry developers participated in the second study. The developers had a minimum

qualification of a degree in Computing (Computer Science and Information Technology), with

an average software development experience of four years. The second study was also

designed as a summative evaluation to check the capability of the quality and security

practices embedded in the Secure-SSDM to produce both high quality and secure applications.

Two developers were working on new software products, while the third developer used the

methodology to perform an upgrade on an existing product, they had previously developed.

The methodology was explained to the developers at the onset of the study, and frequent

consultations were made on their progress. The details of the two case studies are discussed

in Chapter 6.

142

5.5 Chapter Summary

This chapter has detailed the design of the Secure-SSDM, giving explanation of the practices

in each phase of the methodology. Care was made to produce a befitting design that embeds

quality and security promoting practices within the methodology. The extant literature

provided a rich source of both quality and security practices. An adapted version of Keramati

and Mirian-Hosseinabadi (2008)’s algorithm provided a systematic means of integrating

security promoting practices with the solo software development practices, taking care to

retain the agility of the resultant methodology.

The use of the methodology by the undergraduate students provided a means for formative

evaluation, and the results of the formative evaluation provided input into improving on the

methodology design. A list of tools and techniques were discussed to address the knowledge

gap of the students, who represent novice developers. A further refinement was made based

on the feedback obtained from industry participants.

The following chapter discusses the demonstration and evaluation of the Secure-SSDM. The

demonstration section details the two case studies carried out to demonstrate the utility of the

methodology in designing and implementing quality software products. The evaluation

presents the results obtained from the multiple-case study and the theoretical evaluation.

143

6 CHAPTER 6 SECURE-SSDM DEMONSTRATION

6.1 Introduction

In Chapter 5 a blue print of the proposed Secure-SSDM was developed, followed by a detail

of the stages in the methodology and a representation of the artefact using the EPF composer.

Section 5.2 of that chapter elaborated on how quality practices from the existing SSDM

knowledge base were identified and systematically integrated with security practices drawn

from the existing secure software development methods. The Secure-SSDM was then detailed

in Section 5.3, where the methodology stages with associated tools and techniques in each

stage were described.

This chapter discusses the demonstration and evaluation processes performed to establish the

utility of the proposed methodology. As proposed in Chapter 4, the Secure-SSDM is designed

to be lightweight to encourage its uptake by independent developers. Significantly, it is

designed to enable quality and security in the developed software products. Evaluation

therefore seeks to demonstrate the utility of the methodology to that effect. The goal is to

establish the usability and effectiveness of the practices embedded in the Secure-SSDM in

designing and implementing quality and secure software products.

In demonstrating and evaluating the utility of the Secure-SSDM, a DSR perspective to

evaluation was adopted. According to the DSRM adopted in this thesis, the evaluation process

is usually conducted in parallel with the demonstration process. Evaluation may take any of

the following forms: comparing the artefact’s functionality with its originally set objectives,

carrying out a satisfaction survey from the target audience or use of logical proofs among

others (Peffers et al. 2008, p.56). In this thesis the last two forms of evaluation are conducted

to promote rigour in the evaluation process.

Characteristically, evaluation is an iterative process which starts at the design stage of the

artefact. As the researcher contemplates on what components to bring together to create the

artefact, mental evaluations of the components take place (Vaishnavi et al. 2017, p.29). The

Secure-SSDM was created incrementally and iteratively, with rigorous mental evaluations

performed on each increment. The first rigorous evaluation was undertaken in Section 2.5, of

Chapter 2. In that section a meta-synthesis was conducted to systematically integrate various

quality practices drawn from existing SSDMs. The quality practices formed the building

blocks of the primary Secure-SSDM. Meta-ethnography (Noblit & Hare 1998) was used in

144

the synthesis to interpret, and translate the study practices into each other, so as to obtain a

consensus view of the quality practices drawn from the methodologies.

The second rigorous mental evaluation of the Secure-SSDM is detailed in Section 5.2. In that

section, quality and security practices were evaluated for their agility using an algorithm

formulated for the purpose. Only those practices that had their resulting agility degrees higher

than 0.5 were incorporated into the Secure-SSDM. The 0.5 threshold used in that case is

recommended by Qumer and Henderson-Sellers (2008) as an acceptable minimum agility

value of any practice or process considered as agile, based on a scale of 0 to 1. One (1) in this

case is the maximum and zero (0) is the minimum degree of agility. A practice with a value

of 0 to less than 0.5 is heavyweight and that of 0.5 to 1 is lightweight. These mental evaluations

thus form the formative evaluation that is characteristic of DSR.

Summative evaluation of the Secure-SSDM was performed both empirically and theoretically.

A multiple case study conducted with both student and expert solo software developers was

used for empirical evaluation, while the 4-DAT model was used for theoretical evaluation.

Student developers were drawn from a university setting, while expert developers were

practicing industry developers. In the following sections and sub-sections, the demonstration

and evaluation processes of the Secure-SSDM are detailed. Section 6.2 demonstrates the use

of the Secure-SSDM in a software development project. Section 6.3 explains the academic

case study and the results obtained from the study. Section 6.4 details the industry case study

and subsequent results. Section 6.5 presents a cross-case analysis of the multiple case study

results. Section 6.6 discusses threat for validity and how these were addressed. Section 6.7

presents the theoretical evaluation of the Secure-SSDM. Section 6.8 deliberates on the results

of the evaluation and recommends improvements for the future. Section 6.8 concludes the

chapter.

6.2 Demonstrating the utility of the Secure-SSDM

Demonstration proves that the artefact works for its intended purpose. It entails using the

artefact to solve a real-world problem in the area of its application. The Secure-SSDM was

applied in varied conditions both in industry and academia to solve real world problems. This

section details a project undertaken by an industry developer to design and implement a web-

based application that facilitates the posting of announcements in an educational institution.

This application was chosen for demonstration due to its accessibility to the researcher.

145

Demonstrating the use of the artefact by a representative of the intended audience serves to

prove from the user’s perspective that the artefact works.

 In this project a lone developer used the Secure-SSDM to design and implement a software

product aimed at replacing the university email system for internal messages that require

immediate response and tracking. Apart from using phone calls, employees send email notices

to each other through the conventional emailing system hosted by Google, for both internal

and external communication. All emails go through the email server and have to comply with

both the organisational and Google standards and policies. This means the emails are subject

to Google policies which include granting Google the rights to scan the emails. The drawback

of this approach is that the notices are subject to unnecessary scrutiny at the two levels, internal

and external. Further, there may be delays in communication if the email server is down. In

some cases, some urgent messages may go unnoticed or may be ignored in busy days.

The developer sought to solve the delays and bottle necks associated with the conventional e-

mail approach by developing a web-based system that facilitates the sending of short messages

between employees. The system allows each employee to log in and check for any messages

intended for them for the purposes of responding and acting on the message. This application

is designed to facilitate communication and collaboration between various employees.

Employees can check on each other’s progress if they are jointly working on a particular task.

An employee can easily check if a certain task has been attended to, and if not generate a

reminder to the recipient. This system works more or less like an electronic task ticketing

system, but is mainly a communication platform as opposed to the task tracking focus of

ticketing systems. The version of the system detailed in this thesis has been kept simple to

demonstrate the core practices in the Secure-SSDM. The system is termed the Internal

Communication System (ICS).

6.2.1 Conceptualising the ICS

A developer using the Secure-SSDM starts by familiarising themselves with the organisation

for which the software product is developed. In this case since the developer was part of the

employees, familiarisation was an inherent process. The ICS was the developer’s idea to

improve communication among university employees. Two departments of the university

were chosen for piloting the system. Stakeholders from the selected two departments were

invited to a short meeting. The meeting was intended to share the idea that the developer had.

146

Stakeholders in the meeting included a representative of the head of the university’s

information and communications technology services (ICTS) department and two

representatives, each from one of the departments selected for the purposes of piloting the

project. The researcher took part in this meeting as an academic stakeholder. This facilitated

observation of the development process. After sharing the idea, the developer gave a summary

of the Secure-SSDM and how the stakeholders would be involved in the development process.

Stakeholders gave their suggestions on what they would require from such a communication

system.

In this case arranging for the meeting was easy for the developer since there was already a

working relationship between the two departments involved in the pilot project. As per the

developer’s advice, it was agreed that the Web-services standard and university

communication policy be adopted as the standards to be adhered to during the development

process. These would contribute towards the non-functional requirements of the ICS. During

the meeting the developer documented all the agreed upon requirements using a word

processor.

6.2.2 ICS functional and security requirements elicitation

The developer used the same meeting to capture the requirements of the system. As suggested

in the stages of the Secure-SSDM, the stages can be done in parallel depending on the

environment and type of system under development. In this project, Management buy-in and

Standards adoption (Stage I) was done in parallel with Functional and security requirements

elicitation (Stage II). To gather requirements, each meeting participant was asked to write

down their expectations from the system in the form of a story. Associated with each story

participants were also asked to imagine what an intruder would do to disturb the smooth flow

of the user’s actions. This was then put down as the however part of the story. For example, a

participant wishing to post a message to another employee produced the story:

“As a user I would like to post a message to a colleague, however an intruder may distort or

delete my message”.

The developer extracted all the stories into a template prepared for the purpose. The team

agreed that the requirements captured in the meeting were key to the functionality of such a

system. The captured requirements are shown in Table 6.1.

147

Table 6.1: Template for capturing user requirements

User Expectations for communication Identified threats to

smooth communication

User A & B Post messages Illegal posts, failure to

access system, loss of

messages, wrong posts

Update/delete messages False update, lost update,

illegal delete

Respond to messages False response, delete

response

View messages Illegal view of messages,

failure to view messages

Admin Create/register user Unauthorised user creation,

illegal access/ stealing of

user credentials

Delete message Wrong message deleted,

illegal deletion of post

Using Table 6.1, the developer created a use case/ misuse case diagram representing the

overall system requirements. Misuse cases were modelled using the threat column of the table.

Only threats from an outsider were modelled to avoid mixing user errors with security threats.

The composite use case and misuse case diagram was created on a sheet of paper during the

meeting. The agreed upon use case diagram was later refined using MS Visio, and adopted as

a set of requirements for the ICS. Figure 6.1 shows the use case diagram of the ICS.

As shown in Figure 6.1, three types of users were identified in this system. The user is any

authentic employee that may need to communicate with another employee of the organisation.

Employees can send messages, view messages, respond to messages and delete messages. A

message can be deleted if it was generated in error, or has been resolved. A message can only

be deleted by the originator, recipient or the administrator. To access the system, users have

to be registered on the system. This is so, so as to restrict any employee posting messages on

this platform. Modelling the system using use case diagrams helps the developer to identify

those use cases that may be used in other use cases. The <<extend>> and <<include>>

associations as described in (Ambler 2001, pp.190-193) facilitate this. The update use case in

this case has been modelled as an extend use case of the post message use case.

148

The second type of user in this system is the administrator. The administrator in this system

is a representative member of the ICTS department responsible for manning the ICS. The

administrator can add users into the system, view posts from any user, and delete posts from

User

Admin

Post/Respond

View Post

Register User

Delete Post

Intruder

False Post

Illegal View

Steal credentials

Illegal Delete

Threatens

Threatens

Threatens

Update Post

<<extend>>

Threatens

User

Figure 6.1: ICS use case diagram

149

the system. Any posts remaining in the system for a certain period should be archived by the

administrator. This is in compliance with the university communication policy. When the

administrator adds a user, they give them rights according to their role in the institution.

In modelling the security aspect of the ICS, a third actor in this system was identified as an

intruder. An intruder is any person that may want to access the system illegally. Some

information sent between employees can be highly confidential and needs to be protected from

both insiders and outsiders. As shown in the diagram, an intruder may render the system

insecure if they view messages not intended for them. A false post may also send false

messages to employees therefore the system needs to be protected from such.

To elaborate the use case /misuse case diagram a tabular listing of these as described in (Sindre

& Opdahl 2005) could have been produced. However, in this case since the system was small

and straight forward, the developer decided to minimise documentation. After the stakeholders

had agreed on the functional and non-functional requirements for this version of this system.

It was agreed that the developer starts by designing the database for the system. Since the

system involves sending of data, all messages sent between employees should be captured

into a database. After the database design, the administrator module was to follow and the

user modules to conclude. These served as a product backlog for this system.

6.2.3 Release and sprint planning

During this phase the developer creates a plan for executing the tasks selected for the current

sprint. The order of task priority in this case was not changed from the one agreed upon during

the stage, Release and sprint planning. The first task entailed coming up with a database to

store user credentials, and messages posted through the system. In this case, the database was

identified to have two entities, the employee and the message. There was no need to create a

work-breakdown structure for this system as the developer perceived it to be a simple system

with minimal tasks. The database was implemented using MySQL. This is the platform the

developer normally uses for most of their projects, and is a free and open source platform.

Using the product backlog, the three sprints were planned to last a week each. However, in

some cases where the developer was doing normal work after working hours, the sprints lasted

longer than planned. In planning for the sprints which were dedicated to the administrator and

users’ modules respectively, the developer designed test cases for each of the use cases. In

150

this case a word processor was used to tabulate the tests. Table 6.2 shows test cases developed

for the use cases identified in Figure 6.1.

Table 6.2: Test cases for each ICS component

No. Test Action White box test result

1 Login Use correct credentials Login success

Login Use wrong credentials Login fail

2 View Messages User with messages Messages displayed

View Messages User with no messages/

intruder

No messages displayed

3 Respond to message When no response created Allows response to be created

Respond to message When response is there Displays response

4 Create message If authentic user Create Message

Create message If not authentic user Deny access

5 Create user If admin Create user

Create user If not admin Deny access

6 Archive user If admin Archive user

Archive user If not admin Deny request

7 Archive message If message author/

recipient/admin

Archive message

Archive message If not message

author/recipient/ admin

Archive request denied

8 Update message If message author Update message

Update message If not message author Update denied

9 View system log If not admin Viewing denied

View system log If admin View log

Planning also involves coming up with simple designs of the system. As recommended in the

Secure-SSDM, the developer should always opt for the simplest design. Before implementing

each use case, the developer created sequence diagrams to depict logic of each process carried

out by user on the system. A sample of sequence diagrams for the use case modelled in Figure

6.1 are given in Figure 6.2 to 6.5. The demonstration in this section concentrates on the use

cases that are core for the functionality of the system. Figure 6.2 illustrates the sequence

diagram showing the sequence of events expected from an attempt by an authentic user with

no posting rights to post of a message in the system. Such a user while granted access into the

system, should be denied the right to post a message. To keep track of failed and successful

post attempts the developer kept a log of these. These were stored in the databases. This should

assist the administrator with the system statistics. The number of failed attempts should be an

indicator of how secure the system is, assuming the post module is working as expected.

151

User AD
Role Verification

Role

Verification

Login

Grant Assess
Send User Credentials

Authentication

time

Verification

Deny Posting Access

Data

store

Log Activity

Post Request

Send Post attempt

Figure 6.2: Denied post request sequence diagram for an authentic user

(courtesy of Participant A)

Modelling the system with sequence diagrams enables the developer to verify the logic of

processes involved in executing a given use case. A sequence diagram may model a part or a

complete scenario of a use case. Sequence diagrams serve to link the analysis and the design

stage of a system. In Figure 6.2 the sequence diagram visualises the processes what should

take place during an attempt to post an announcement or send a message by a user with no

posting rights in the system. As shown in the diagram, after a successful login, before any user

can post an announcement, a request to post is generated. Their credentials are used to check

their rights in the system through the role verification module. Since the user has no rights,

posting is denied and the attempt to post is logged in the system. This way, only authorised

users can post announcements or send a message to any user. The developer has enforced

security, through the login process and the role verification process. This two-level

authentication scheme deals with the case of an intruder who manages break into the system

with the aim of making a false post.

Figure 6.3 depicts the set of processes involved when a user with rights requests to post a

message through the ICS. The same set of processes are followed, but in this case since the

user has posting rights, these are granted and posting is successful. Similarly, a log is generated

for security purposes.

152

User
AD Role Verification

Role

Verification

Login

Grant Assess
Send User Credentials

Authentication

System

Interface

Verification

Athorisation

Create Post

Data

store

Log Activity

Post Request

Figure 6.3: Message posting by user with rights (courtesy of Participant A)

The other key feature in the ICS is that only users registered in the system can send message

posts. User registration in this case is performed by the administrator. On creating users, the

administrator grants them rights according to the university policy. Figure 6.4 depicts the

process of enrolling a user into the ICS.

Only the administrator has the right to create users. To ensure security for registered users,

each user’s credentials are encrypted. Each user has roles and rights associated with them.

These are stored in the database, and are used to grant users the various kinds of access. A

created user receives their credentials through their conventional email. These constitute the

user name and password. On reception of their credentials, users are advised to change their

passwords to enhance system security. Whereas the system facilitates the registration of users

by the administrator, it should deny non administrators the right to register users. Figure 6.5

shows the sequence of events for a user denied access to register a user. The sequence diagram

shows that no other user can add a user without the necessary credentials.

153

Admin AD Role Verification
Role

Verification

Login

Grant Assess
Send User Credentials

Authentication

System

Interface

Verification

Athorisation

Create User

Data

store

Log Activity

Create User Permissions

User creation verification

Encrypt User credentials

Figure 6.4: Creating a user by an administrator with rights (courtesy of Participant A)

Other sequence diagrams for the rest of the system were developed in a similar manner. In

this case the developer produced two sequence diagrams for each use case depicted in Figure

6.1. One use case was drawn to depict normal flow while the other was produced to depict the

intruder or unauthorised user scenario. One of the objectives in the design of the Secure-

SSDM was to keep the artefact as lightweight as possible. Using sequence diagrams to model

the system means the developer can use the same diagrams for both for analysis and

design(Ambler 2001, p.208). After the developer had produced the sequence diagrams for the

captured use cases, the next activity was to develop code to implement the processes depicted

in the diagrams.

While the developer only used sequence diagrams to depict the design of their system, other

forms of design diagrams like the activity diagrams would serve to clarify the user’s

expectation from the implementation in a similar manner. Activity diagrams can also be used

to model the flow of events in the system. These are important in cases where conditions in

the environment determine the next sequence of events. An alternative way that the developer

could have used to model the logic of posting a message is given in Figure 6.6. In this example

154

a user can only post a message after they have been authorised to do so. Otherwise the system

terminates without the user posting the message.

User AD Role Verification
Role

Verification

Login

Grant Assess
Send User Credentials

Authentication

System

Interface

Verification

Deny access

Data

store

Log Activity

Figure 6.5: Unauthorised user attempt to register a user (courtesy of Participant A)

Figure 6.6 shows that a user wishing to post a message logs onto the system, using their

credentials. If wrong details are entered, the user is asked to enter correct details. The activity

diagram in Figure 6.6 shows the events involved in posting a message. This could be posting

of a message by an administrator or any user. Activity diagrams are important in that they can

be used to depict sets of processes covering a number of use cases in the system. The activity

diagram demonstrated in this case shows a number of scenarios. In the first scenario a user

can log onto the system with correct details and request to post a message. Permission to post

is granted based on their credentials. A user with no rights is denied access and the system

stops. A user submitting wrong credentials at login is given an opportunity to re-enter these,

and if correct the system proceeds as explained before. A user supplying wrong results forces

the system to stop.

155

Log in to ICS

Request to post
message

Correct details

Post message

User credentials

Permission grated

Permission denied

Wrong details

Wrong details

Correct details

Correct details

UML Activity
digram for
posting a
message

Figure 6.6: Activity diagram for posting a message

6.2.4 Development with Code review

At this stage the developer is set to translate their design into code. As recommended in the

Secure-SSDM, developers are advised to use a development environment they are familiar

with. In this project, the developer used Visual studio 2017 as the development environment.

As an integrated development environment Visual studio offers a number of benefits to a lone

156

developer. Among the options available are those to set tests for your code, run the test and

analyse both your tests and code. The test cases defined during the stage of user stories were

set at the onset of the implementation of each user story. The code was written in C# and the

database used was MySQL.

6.2.5 Sprint close and review

This fifth stage marks the end of a sprint. Three sprints were set for the ICS project. The first

sprint was set to deliver the database which was designed and implemented using MySQL. To

enable the demonstration of the structure and functionality of the database, all user

representatives had to install MySQL on their machines. The database was up and running at

the end of the first sprint. The second sprint was dedicated to the administrator modules, which

included all use cases required for the administrator’s role. The third iteration was dedicated

to the users’ role. Some use cases like posting and update messages were the same apart from

the rights granted to each user.

6.2.6 Evaluation

The developer noted a number of lessons emanating from the ICS project. First there was need

to revisit the use case diagram at the implementation stage. The update use case was modelled

as an <<extend>> use case of post message. In the initial use case, these were stand alone. On

implementation the developer noted these could be implemented using the same set of code,

with minor adjustment for the update use case.

Section 6.2 has demonstrated the utility of the Secure-SSDM in developing individual sized

projects. It should be noted that in this project not all intermediate products were produced

during the development process. The suggested intermediate products for this methodology

are project specific. The developer should opt for that set of products that ensure maximum

productivity for their situation (Cockburn 2004, p.215). Intermediate work products serve for

the purposes of project documentation, and in this case the developer should consider both the

present and future of the project. For a developer involved in a number of projects, such

documentation eases the maintenance of their own systems as they can quickly understand the

logic of the system. This applies where there is need for system upgrade or correction in the

future. In the event that any other developer is tasked to upgrade the system in the future, they

will do so with much ease. Documentation should be sufficient for both current and future

purposes. Apart from considering the technical aspect of the documentation, the business side

157

of the development process should also be addressed. Users should be able to use available

documentation to check whether their expectations are being addressed.

6.3 Academic Case study

The first case study to evaluate the utility of the Secure-SSDM was conducted at NUST,

Zimbabwe. Undergraduate students studying towards an Honours Degree in Computer

Science, took part in the study. The participants were pursuing a four-year degree. Three years

of the degree, that is, the first; second and fourth are done in class. The third year is undertaken

in industry, where the students are expected to apply the concepts learnt in class in an industry

setting. Each academic year is divided into two semesters which are twelve weeks long. This

case study was a semester long study.

Thirty-nine second year students took part in the study. These participants were deemed

appropriate based on the courses they would have undertaken in their first two years. Students

at this level would have done a number of courses in their first and second years which equip

them with programming skills, as well as software development skills. These two types of

skills are key to the success of this case study. At the end of their second year, students would

have done the following courses among others: Systems Analysis and Design; Object-oriented

Software Concepts and Development; Software Design Methodologies; Internet and Web

Design; and Societal Computing. These five courses are highlighted in this thesis, since they

are the most relevant for the study. The following paragraphs elaborate on the content covered

in these courses. It should be noted that, the course content described in this thesis is also

available from the NUST website. The thick description of the case study environment helps

to build “trustworthiness” into this case study (Yin 2015, p.197).

In the course, Systems Analysis and Design (SAD), students cover concepts of structured

systems development. These include activities carried out in the stages of the systems

development life cycle (SDLC), and the importance of following the stages to facilitate the

delivery of quality software. Software development models such as data flow diagrams as

process modelling tools and their construction; entity relationship diagrams as data modelling

tools and their construction; databases as storage facilities and database definitions are studied.

Students also cover concepts in object-oriented analysis and design in the same course. They

are taught concepts of object hierarchy and inheritance, and associated concepts. These are

important concepts of system modelling, which are important for any participant of this case

158

study. From SAD, students are expected to undertake a mini project in software development

using the structured systems development approach. In undertaking the project, students are

expected to apply concepts learnt in their other courses such as Object-Oriented Software

Concepts and Development (OOSCD). Such concepts help the students in the coding part of

systems development.

In their OOSCD course, students are taught the concepts of software reusability and the use

of the Java virtual machine in developing software. Components of the Java virtual machine

which include the compiler and interpreter are introduced. Java application programming

interfaces are also taught at this level. Apart from the programming skills, students are also

taught the importance of software security, and how to build secure software. This research

therefore expects that this class of students would have the requisite background needed to

participate in this case study. An important background for participating in this study is the

knowledge of software development, particularly the concepts of software quality and

software security.

The course Software Design Methodologies is a related course to the Systems Analysis and

Design course discussed above. It aims at equipping students with software design concepts

from various types of software processes. In this course, students are taught how to use

software development methodologies. The types of software development methodologies

covered include representations from the traditional methods, object-oriented design methods

and agile methods. The students are also expected to apply the skills acquired in this course

in developing software in a live industry setting. At this point, students have a number of skills

to use in developing software. Apart from the programming skills obtained from the OOSCD

course, they can use skills from their Internet and Web Design course. In this course the

students are taught web programming using tools such as the Hypertext Mark-up Language

(HTML) and Cascading Style Sheet (CSS), for example. They also cover Web Content

Management using software systems such as Joomla and Drupal. Students also discuss privacy

issues for software deployed on the web. These web design skills enable participants to

develop web-based systems. In this case study participants were encouraged to develop we-

based applications in order to evaluate the utility of the Secure-SSDM. Web-based systems

were preferred as they can be developed fast, meaning they can be developed within the

semester. Security concerns associated with these applications also make these types of

applications ideal for evaluating the security component of the proposed artefact. Participants

159

were not however restricted to web-based applications only, they were free to develop any

type of software to address an identified need or problem in their allocated areas.

The academic case study was undertaken as part of the course, Societal computing. The

researcher taught the course in the second semester of the 2018 academic year. This was the

third year that the researcher had taught this course. In this course students study design and

develop computing applications that address societal needs in areas such as health, education,

business, environment (including applications that address climate change) and government

among others. Students are also taught the importance of addressing the digital divide when

developing computing applications that address societal needs. In this course students also do

a semester long project to address a societal need of their choice. In undertaking the project,

students are normally encouraged to choose an appropriate methodology as a guide, as well

as to choose appropriate platforms for implementing their projects.

These student participants were therefore deemed appropriate as they had the necessary skills

acquired from these courses, coupled with skills obtained from other courses covered in their

first year. Examples of relevant first-year courses are Software Engineering Concepts,

Database Systems and Visual Programming Concepts and Development. These give students

a grounding in software development, and make this lot of students ideal as participants to

evaluate the methodology. Further, since the participants were not engaged in a major project

(as their fourth-year counterparts) at the moment, they had ample time to participate in this

study. Importantly, participants were also readily accessible to the researcher.

Before conducting the study, the researcher obtained ethical clearance to undertake the study.

Clearance was first obtained from NUST, through the gate keeper. Further, since the research

involves humans, an ethical clearance had to be obtained from UNISA. The ethical clearance

from UNISA and the clearance from the NUST gate keeper are attached in Appendix A, as

Appendix A1 and Appendix A2 respectively. After the clearances were obtained, an invitation

to participate in the study was extended to all the second-year students at the beginning of the

semester. Thirty-nine students volunteered to participate, out of sixty-nine students.

Participants were briefed on the case study and how the results from the study were going to

be used.

In the case study, the course was conducted as usual, with participants using the Secure-SSDM

in developing software for their term projects. It was made clear to all participants that

participation was voluntary and they could choose to pull out at any stage. Pulling out in this

160

case meant using any other methodology to undertake the project, as it is mandatory for the

course. The Secure-SSDM phases and practices in each phase were explained to the

participants. After the explanation of the methodology, participants were randomly allocated

application areas through a paper raffle. They were made to blindly pick a piece of paper

written one of the following: Education; Health; Government; Environment and Business.

These are areas normally covered in their Computing in Society course, and would normally

constitute areas where they identify their term projects from. Details of the case study are

given in the following subsections.

6.3.1 Objectives of the Academic case study

Setting case study objectives helps to focus the case study. The objective of this case study

was to evaluate the utility of the Secure-SSDM in developing high-quality and secure software

products. The focus of the study was to obtain the perceptions of the solo developers on the

effectiveness of the methodology stages and practices embedded in these, in producing the

intended impact on the software product. The case study also sought to identify suggestions

for improvement from the student participants after they had used the methodology. These

would help to refine the methodology.

6.3.2 Case study design

The design of the case study should indicate what is studied (Runeson & Höst 2009, p.139).

What is studied in this case is the usability of the Secure-SSDM in designing quality software.

Each participant’s views are elicited on the effectiveness of the practices embedded in the

Secure-SSDM in building quality products. The academic case study was designed as an

explanatory case study. An explanatory case study seeks to find causality relationships among

concepts in the study (Yin 2015, p.197). At the onset of the study, the methodology, its stages

and the associated practices defined in it were explained to the participants. The multiple roles

to be played by the developer were elaborated. The user’s role in the development was

highlighted. Further, tasks and deliverables of each stage of the methodology were explained

to the developers.

6.3.3 Case study theory

A theory provides a frame in which a study is conducted. It provides means for disseminating

knowledge in a particular environment at the same time supporting decision making from a

161

practical point of view (Sjøberg et al. 2008, p.313). Ideally a theory consists of constructs,

propositions, explanations on why the propositions hold, as well as a defined scope in which

the theory holds. The theory used in this case study was derived from existing SSDMs and

secure software development methods through a literature review. Table 6.3 summarises the

theory on which this case study is based. Quality practices on the first column are expected to

enable concrete quality characteristics on the software product as shown on the second

column, which in turn enable abstract characteristics on the third column. For example, one

proposition from the theory is that if users are educated on the methodology to be used to build

the system, they will participate during the development process, and should therefore accept

the software product resulting from the development effort. Similarly, the use of small user

stories should encourage product understandability which in turn results in a simple product.

The case study seeks to ascertain that these propositions hold for the Secure-SSDM as

perceived by the solo developers.

Table 6.3: Case study theory

Quality Practices Low level characteristics High level Characteristics

User education

Use of small user stories & tasks

Refactoring

User participation

Product understandability

 “

User acceptance

Product simplicity

Development standards

Product validation

Standards adherence

 “

Consistency

Simple metaphors

Test driven development, unit testing

Use of a dummy partner

Automated code review

Task automation

Refactoring

Version control system

Product simplification

Module testability

Code quality

 “

Reusability

Product modularity

Code traceability

Maintainability

Use of a work break down structure

Product backlog

Product comprehension

 “

Product Completeness

Security awareness training

Misuse case detailing

Security design principles

Security test design

Source code security reviews

Security testing

Review of security repository

Security requirements

formulation

Misuse case design

comprehension

Secure designs

 “

Secure source code

 “

Security knowledge

management

Product security

 “

 “

 “

 “

 “

162

6.3.4 Data collection

The main methods of data collection with the student participants were class (focus group)

discussion and document analysis. The researcher also performed informal observations

during practical sessions where students worked on their projects. During these practical

sessions, it was also possible to track participants progress and answer questions pertaining to

problems they had in applying the methodology.

After the students had used the methodology to develop their systems, a focus group

discussion was held with the class to establish the views of the participants on the applicability

and effect of the practices as proposed in the case theory. The focus group discussion was held

at the end of the semester. A two-hour focus group discussion was conducted to collect the

participants’ perceptions on the applicability of the practices embedded in the methodology.

A teaching assistant attached to the course helped with the data capture of the responses.

Before the focus group discussion, the researcher went through the focus group guide and the

template prepared to help with the data capture. The teaching assistant helped to capture the

data while the researcher moderated the focus group discussion. The moderator also noted key

points. The focus group guide used for the session is attached in Appendix C, while the data

capture template with sample date for the first question is attached in Appendix D. This

research adapted Nili, Tate & Johnstone (2017)’s template for the purpose of systematic data

capture. The template was designed to capture ten participants responses per question, since

the focus group discussion had a large number of participants, thirty-nine in this case. The

responses were captured in the cells of the template designed using Microsoft Excel. After the

discussion, the researcher’s captured points were synchronised with the teaching assistant

notes.

At the end of the projects, participants were also made to submit project documentation though

their Google classroom platform. Participants were made to demonstrate their projects to the

researcher for the normal evaluation purposes. This is a normal practice for term projects. The

software products served to confirm that students had done a project. The system

demonstration marks were not included in the analysis. Thirty-five out of thirty-nine submitted

documents were analysed. Four participants had incomplete documents, and these were not

included in the analysis. Document analysis was done to extract participants comments on the

methodology. Participants were asked to include in their methodology section what they

perceived as strengths and weaknesses of the methodology. This is normal practice in this

163

section of the documentation. Students normally consider two or three methodologies and then

opt for one based on the argument for the methodology. The researcher also analysed the

documents for intermediate artefacts defined in the methodology. The intermediate artefacts

analysis was done to confirm the perceptions of the participants on the usability of the Secure-

SSDM. Intermediate artefacts analysed include: description of a meeting to educate user, or

reasons for not holding the meeting; prioritised product backlog, sprints and sprint backlogs,

use cases and misuse cases, design models, test cases, contents of the security repositories and

reasons for not having them. The sections of interest from the submitted documents were

extracted and entered into a Microsoft Excel spreadsheet for ease of analysis. In the following

subsections, results of the data collected in this case study is presented.

6.3.5 Focus group discussion results

In this research editing and template analysis as suggested by Wohlin (2012) are adopted.

These are viewed as most appropriate in this thesis as the focus group was conducted using

pre-formulated questions.

The responses collected by the researcher and the teaching assistant were synchronised into a

single document. Responses were captured per question. While Nili, Tate and Johnstone

(2017) suggest that non-verbal data be captured for completeness of data, for this research,

verbal data was the main type of data collected, and was the focus of the analysis. It was

difficult to capture non-verbal data, except in obvious cases such as show of hands or clapping

of the same in agreement. Such expressions were viewed as support for the response at hand.

These allowed the researcher to assess popular and non-popular views from the participants

regarding the utility of the practices. Table 6.4 shows participants’ general comments on the

methodology.

Table 6.4: Focus group discussion general comments

Question Responses

1.Is the Secure-SSDM a solution to

a real problem/need in the solo

software development environment

currently?

-To some extent, when working alone one needs an

appropriate guide.

-I found it to be filling a gap that exists at the moment

-It is to some extent.

2.Would you rate the practices

embedded in the methodology

adequate to build quality and secure

-Practices are adequate

-For me I would add more automated tools to support the

processes

164

software, if not what would you

add?

-It is a good methodology to think about security in

particular

-Add support for code reuse

-I would add nothing at the moment

3.How easy to follow are the

practices in the Secure-SSDM?

Which practices would you

consider helpful, and which would

you consider to be not?

- The methodology is not that easy to follow

-Following a methodology while developing software is

not an easy task

-A person (classmate) without the knowledge of the

language can play the role of a dummy, it helps.

-At times users do not have time for meetings

-Security design and testing are not easy

4. Did you at any point feel you

were asked to do more than just

developing software?

-There seems to be a lot of documentation

-Models can be used selectively

5.What available tools would you

suggest to ease the development

process at any of the methodology

stages?

-Brackets (free open source front end editing and web

development)

-Bootstrap eases website development

-IBM Watson Assistant API

-Node.js, supports both front end and bac end development

6.What practices in the Secure-

SSDM would you consider to be

key in developing quality and

secure software?

-All the practices are necessary, but that should depend on

the kind of software

-The combined use cases and misuse cases seem to be core

in this methodology

-The dummy partner was key in my case

-Secure coding to me was new, and I feel is key

-To me designing test cases seem to serve for the expected

quality

7.What improvements would you

add to the methodology if you were

given the opportunity to?

-Automate most activities

-Code reuse

-At times users are too busy for user education

-User education should only highlight the user’s roles

8.Would you consider using the

Secure-SSDM in your future

projects?

- I would use it on serious projects

-Yes, it brings order into the development process

-I would, it makes the user think I know what I am doing

-I would use it but trim some practices

9.Would you recommend the

methodology to any fellow

developers?

-I think developers should adopt the methodology,

particularly for online applications

-I think the Part IVs should consider this on their projects

10. Do you think the Secure-SSDM

can be used to develop any kind of

software system?

- To some extent

-I feel it can be adapted to any environment

Participants agree that the Secure-SSDM is a solution to a real problem. The general

perception is that the artefact can be used in solo development environments to build quality

software. The practices in the methodology are perceived as important in building quality

software. Some developers seem to have reservations on the models to be produced in the

165

various stages. This reservation was also raised by the industry developers. While developers

have these reservations on models, they agree that use case and misuse cases are important in

modelling user requirements.

On the part of user education, participants opined that the education should concentrate on

highlights of the methodology, particularly on the role of the user in the development process.

Table 6.4 also shows that developers would opt to use the methodology in future projects, and

they would also recommend the methodology to other developers. They also felt that the

methodology could be used to develop any type of software with minimal adjustments.

In the focus group discussion, a phase by phase evaluation of the methodology was made.

Table 6.5 shows the responses of the participants. As the table shows, for most phases,

participants felt that the practices were adequate. Some participants however felt that in

practice it was difficult to adhere to the practices. An example would be a situation where

users only have little time to just provide the requirements. Once the requirements are known,

they would not avail themselves for some meetings such as initial user education on how

development is to proceed, or the recommended sprint review meetings.

Table 6.5: Secure-SSDM phase by phase analysis

Phase Participants Responses

I. Management-buy-in and standards

adoption

-Adequate for environment familiarisation

-User education should focus on user roles

-Important for identifying the users and their roles

-Some projects do not have customers you may

need other developers to play that role

-Standards help to give the developer the non-

functional requirements of the system

II. Functional & Security

Requirements elicitation

-The practices are adequate for the purpose

-Consistent check of requirements with the user

helps in building the correct system.

-WBS and PBS not necessary for small projects

-Misuse cases modelling helps the developer to

understand what is expected of them in terms of

security.

III. Release & Sprint Planning -Defined practices are adequate

-Security test designs help to deal with the

identified security issues

-Automated tools ease development practices

IV. Development with code review -Automate code generation from models

-Automated testing

-Developing and testing your own code may lead

to bias

-Dummy partner works to identify errors in code

166

-Contract an outsider to perform security testing

V. Sprint Review & Close -Practices are adequate for the purpose

VI. Evaluation -Developers may not be genuine in their

evaluation of themselves, find someone to do the

evaluation

-Technical customers can help with the review

The third section of the focus group discussion sought to obtain suggestions for improvement

from the participants. Responses were guided by the concepts put across in Table 6.6.

Table 6.6: Suggestions for improvement

Concept Participant Responses

Task adjustment -Leave methodology and standard to the developer

-Automate the development process, in particular

make use of code reuse

-Get a second developer to review code for critical

systems

Provisions for some tasks Nil

Additions to the methodology Nil, instead suggested to trim activities

Activities perceived as core -Requirements elicitation (Use case and misuse

cases)

-Creating the product backlog

-Setting of test cases with user

-Continuous integration and testing

-User identification and education (on their roles)

Candidate activities for elimination -User education on methodology

-Minimise meetings with customers, they have their

own commitments

6.3.6 Focus Group discussion data analysis

Data from the focus group discussion was analysed through identifying key points and

assigning codes to these. The coded key points were put into groups. The groups were further

organised into themes. Table 6.7 shows the themes emerging from the focus group discussion.

Table 6.7: Focus group data analysis

Theme Sub-theme Data Source

Processes Practices

adequacy

Practices are adequate; All practices are necessary;

Need tools to support practices

Usability I would use it for serious clients; I would use it but trim

some practices; The methodology is not that easy to

follow; I feel it can be adapted to any environment

Time Users have no time for meetings; Models are time

consuming to build; Streamline user education.

167

Effectiveness Solo developers should adopt this methodology; Part

IVs should consider this in their projects; Creating

product backlog is core

Product Code quality Dummy partner is key; Secure coding is key; Test

driven development serves for the expected quality;

Correctness Combined use cases and misuse cases are core;

Consistent check of requirements leads to building a

correct system; Misuse cases help to understand product

security

Security Contract outsider to perform security tests; Misuse

cases modelling helps the developer to understand what

is expected of them in terms of security; Security test

designs help to deal with the identified security issues;

Secure coding …is key; Security design and testing are

not easy

Developer Credibility I would, it makes the user think I know what I am doing;

I would use it on serious projects;

Focus Standards help the developer to identify non-functional

requirements

Bias Reviewing of own code might lead to bias; Developers

may not be genuine in their evaluation of themselves,

find someone to do the evaluation; Get a second

developer to review code for critical systems

Users Education User education should only highlight the user’s roles;

At times users are too busy for user education

Availability At times users do not have time for meetings; Minimise

meetings with customers, they have their own

commitments; At times users are too busy for user

education; Some projects do not have customers you

may need other developers to play that role

Satisfaction Early user involvement supports user satisfaction

6.3.7 Document data analysis

In addition to collecting student participants’ views from the focus group discussion, students

were asked to submit documentation associated with their software products. Thirty five out

of thirty-nine students who participated in the case study submitted complete documents for

analysis. The other four students submitted incomplete documents; therefore, these were

excluded from the analysis. Table 6.8 shows the distribution of software products by area of

application as allocated at the onset of the study. The distribution of projects by application

area is important as it helps to define a scope of application for the methodology. As shown

in Table 6.8 there is a fair distribution of projects among the application areas in the course.

Table 6.8 shows that the Secure-SSDM can be used to build software in the areas of education,

168

health, government, business and the environment. Most of these areas such as health,

education, government and business handle sensitive data and would therefore benefit from

the security feature of the methodology.

Table 6.8: Project distribution according to application areas

Application area Number of participants Percentage (%)

Business 5 14

Education 6 17

Environment 8 23

Government 8 23

Health 8 23

Total 35 100

To further help with the definition of scope of the methodology, the research analysed the

types of software developed by the students. The types were desktop, web-based, mobile

applications. While the case study had focused on developing web-based applications,

participants were not restricted to these. Table 6.9 shows the types of software products

developed by the students. Eighty-eight percent (88%) of the products were web-based with

the other types distributed as shown in Table 6.9. The table shows that the Secure-SSDM can

be used to develop other types of applications besides web-based applications.

Table 6.9: Types of application systems developed

Type of Application Count Percentage

Web-based/ website 31 88%

Mobile-app 2 6%

Desktop 1 3%

Client-server application 1 3%

In the focus group discussion, participants had indicated that the practices in the methodology

were adequate to produce a quality software product. Each phase in the Secure-SSDM has

associated deliverables, which feed to the next phase. Intermediate deliverables help to guide

the developer through the project. The research expects developer participants to produce

these as they follow the methodology. Table 6.10 shows the artefacts produced by students in

the key phases of the methodology.

169

Table 6.10: Intermediate models produced by student participants

Type of

application

Functional & non-

functional requirements

analysis models

Design models Test cases

(Quality/Security)

Count % Count % Count %

Web-based 28 90 17 55 20 65

Mobile-based 1 50 0 0 0 0

Desktop 1 100 1 100 0 0

Client-server 0 0 0 0 0 0

Total 30 86 18 51 22 57

Table 6.10 shows that most students (86%) managed to document their requirements using

the key models expected. Some students however had the requirements as a listing of the

artefacts to be delivered in the methodology. Fewer students produced designs (51%) and test

cases (57%) for their systems. Perhaps this confirms some perceptions that the methodology

is not easy to follow. While the participants appreciate the importance of the artefacts, they

may not be in a position to produce the correct model for the purpose at hand.

In their methodology section of the document, participants were asked to comment on the

strengths and weaknesses of the Secure-SSDM. The following were the themes identified

from the participants regarding the artefact.

Strengths

 Accommodation of changes in requirements makes it possible to address user needs

which always evolve with time.

 Frequent customer involvement is a strength for this methodology especially for

verifying user needs.

 The promotion of security makes the methodology favourable for online applications.

 High transparency of the product under development.

 Better customer satisfaction due to early user involvement.

 The use of prototypes enables one to put across a concept to the user with much ease.

 Development with review enables developers to identify risks early enough.

 Capturing security requirements early enough gets the developer prepared to tackle

security concerns.

170

 Misuse cases simplify communicating security concerns to the user.

 Combining use cases and misuse cases gives the developer an overall picture of the

software.

 This is a low-cost methodology.

Some participants perceive the Secure-SSDM as a low-cost methodology. This addresses the

objective of designing a methodology for use in an environment like the solo development

environment where resources are limited.

While most participants had given positive feedback on the methodology, some had indicated

some negative feedback. Most of the negative feedback was centred around the difficulties

associated with incorporating the security aspect into the product. The following list gives

negatives noted of the methodology: -

Weaknesses

 A developer working alone is prone to bias in thinking their ideas are the best.

 It may be difficult to be honest with some security flaws if a developer is working

alone.

 Security practices are difficult to implement, one might have to contract specialists.

 It is difficult to identify or engage management in some cases.

 Minimal documentation makes maintenance by a different person difficult

 As a freelance developer you may not have some skills, especially those associated

with security.

 Creating some of the intermediate artefacts slows down development process.

The security aspect of the methodology seems to require expertise that may not be available

in some developers. In such cases participants recommended the contracting of security

experts after carrying out a cost-benefit analysis. Automated tools may also serve for the

purpose; therefore, developers are encouraged to spend time researching on what tools exist

for their kind of project. Apart from using tools, developers opting for freelance development

should consider acquiring some secure software development skills if they are to compete in

the software development field.

171

6.4 Industry Developers Case Study

The industry case study was conducted after the academic case study. The same objectives

and theory used for the academic case study were used for the industry case study. At the onset

of the industry case study a half-day workshop was held with the participants to explain the

methodology to the participants. A sample system for online student registration was modelled

to explain the use of the Secure-SSDM. UML diagrams were recommended as modelling

tools. The UML diagrams used at each stage for creating models and the tools for

implementing the system were dependent on the system under development. A copy of the

methodology was handed to each developer for reference purposes.

The objective of the industry case study was to obtain the perceptions of the industry

developers on the effectiveness of the Secure-SSDM in building quality and secure software.

Data was collected from the participants through interviews. From participant B who had

moved to work in another town during the data collection stage, a teleconferencing interview

was arranged using the Zoom teleconferencing tool. Zoom was chosen as a it is freely

available, particularly for the participant, as there was no budget for participation. Further,

Zoom conference participants can share documents among themselves enabling

demonstration of ideas diagrammatically (Communications 2019). Two participants were

interviewed face to face, each interview lasting an average of one hour. The researcher also

kept notes from interactions with participant A who developed the software product detailed

in the demonstration section.

In the following sub-sections, the industry case study and the software products developed are

overviewed. To maintain anonymity of the developers and the organisations for whom the

software was developed codes have been used. The three participants agreed to audio

recording. It was easy to capture their perception after the interview.

6.4.1 Participants demographic data

Three participants took part in the industry case study. Participants were made to sign consent

forms before the study. The demographic information of the participants is given in Table

6.11. Two male developers and one female developer took part in the study.

Table 6.11: Industry participants demographic data

Participants Qualification(s) Gender Age Types of Apps

Developed

Years of

Experience

172

A BSc Hons. in

Computer

Science,

Female 29

Years

Any type, web-

based, mobile-

based, and

desktop

applications

4 years

B BSc Hons. in

Computer

Science

Male 24

Years

Mobile

applications

(Android and iOS)

3 years

C BSc Hons. in

Information

Technology

Male 30

years

ERP Systems,

web-based,

mobile and

desktop

applications

4 years

6.4.2 Case study software projects overview

Participants A and C worked on web-based applications, while participant B developed a

mobile application. Participants B and C developed software originated by clients, while A’s

product was their idea of improving a system their organisation was using. Due to the nature

of the project, participant A’s project was accessible to the researcher and is used to

demonstrate the utility of the Secure-SSDM in Section 6.2. Participant B was performing an

upgrade of a mobile application to integrate a payment function. The health application is

designed to monitor a patient’s medical conditions. Users upload their health readings at time

intervals which they set for themselves. In the event that the user forgets to upload readings,

the app sends reminders to the user’s phone. Upon receiving the readings, the application

suggests remedial actions, which include linking the patient with the nearest doctor in their

region in case of such a need. Participant C used the Secure-SSDM to develop a system that

enhances security to cloud service users by screening IP addresses allowed access to the user’s

station for sending and receiving messages from the cloud. The details of the two projects

were not accessible for ethical reasons.

6.4.3 Results of the industry case study

Interviews were conducted with the three developers after they had used the Secure-SSDM to

build individual sized software projects. All the three participants agreed to being audio

recorded. Participant B’s interview was carried out using Zoom. Each interview was recorded

and the themes emanating from thereon captured in a word processor for ease of analysis. This

also allowed for member checking as the researcher used this document to confirm the data

173

captured with the interviewees. The interviewees were asked the same questions using the

interview guide, although in some cases follow up questions were asked depending on the

situation at hand. The questions in the guide were structured as follows:

Q1. General comments on the methodology

i. Would you consider the Secure-SSDM to be a solution to a real problem/need in the

solo software development environment currently?

ii. Would you rate the practices embedded in the methodology adequate to build quality

and secure software, if not what would you add?

iii. How easy to follow are the practices in the Secure-SSDM? Which practices would you

consider helpful, and which would you consider to be not?

iv. Did you at any point feel you were asked to do more than just developing software?

v. What available tools would you suggest to ease the development process at any of the

methodology stages?

vi. What practices in the Secure-SSDM would you consider to be key in developing

quality and secure software?

vii. What improvements would you add to the methodology if you were given the

opportunity to?

viii. Would you consider using the Secure-SSDM in your future projects?

ix. Would you recommend the methodology to any fellow developers?

x. Do you think the Secure-SSDM can be used to develop any kind of software system?

Table 6.12 shows the responses captured from the participants on general comments.

Table 6.12: General comments by industry participants

Question Responses from the participants

Participant A Participant B Participant C

Q1 (i) The method is a

solution to systems that

require you to secure

the data, i.e. for systems

that require the

developer to secure

data. In some cases,

Secure-SSDM is a solution to

a real problem, there is need

to develop quality and secure

systems

Yes, it covers the

whole SDLC,

promotes security, &

has tools to support

the developer

174

data security is

someone’s

responsibility

Q1. (ii) At times the use case

does not really show

how the implementation

should be, and there

may be need to change

it during

implementation

Misuse cases form the

integral part of this

methodology, everything

stems from use cases and

misuse cases

Yes; I would rate the

practices 9/10 due to

the emphasis on

security

Q1. (iii) Following the practices

was not easy, most of

the practices were new

to me.

I think at times creating

a use case is confusing

as when you get to

implementation you

may realise there is too

much unnecessary

information from the

use case

Following the methodology

first time is a daunting task,

but with time it is something

doable.

Not easy,

prototyping at early

stage is not ideal, one

might skip some of

the security issues,

requirements may

not be ideal

Q1. (iv) No suggestions I suggest the developers to

keep standards to themselves,

users may not be interested in

these

Yes, in building

security I had to go

for enhanced

cryptography, the

security part for

individuals is too

much, perhaps it

should be left for

consultancy.

Qi. (v) No suggestions I can’t think of any at the

moment

I suggest you include

project management

tools and

cryptography

software

Q1. (vi) The identification of

misuse cases is the core

function of the method,

it imposes the thought

of security

Misuse case to me are the

highlights of this

methodology

The programming

approach, use of

version control

systems, and the use

of use cases and

misuse cases to

capture requirements

Q1. (vii) At the onset of the

project, decide if there

is really need for

security, before you

implement the security

feature.

Reduce technical issues to be

shared with the user

I can’t think of any at

the moment

175

Q1. (viii) Yes, I would

recommend it as it deals

with the issue of short

cuts, it also gives you a

clear view of the

project.

I would recommend the

Secure-SSDM to other

developers

I would rather

recommend it to a

team, the security

feature may be

difficult to handle as

an individual

Q1. (ix) I would consider using

the methodology in

future projects, even for

those systems that do

not necessarily require

security. In such cases I

would then strip off the

security feature.

I would consider using the

methodology in my future

projects

Yes, I would

Q1. (x) Not really, in some

cases it might need

hybridisation

I would say the methodology

can be used to develop any

system, but it is mainly

suitable for critical systems,

in particular the banking

environment. It is appropriate

in developing the backend of

systems that handle client

data

Yes, for advanced

software

development

The three developers agree that the Secure-SSDM is a solution to a real problem. Participant

A, however feels that it is more of a solution to those situations where data security is of

concern. Two of the three participants perceive use cases and misuse cases as the core

practices in developing quality and secure software systems. Participant B noted that applying

the misuse case in the case study project had helped them identify a flaw in a system which

they would not have identified if they had not used this approach. Misuse cases have been

shown to be effective in developing secure software products by a number of authors (Sindre

& Opdahl 2005; Belk et al. 2011; Robinson & Conkin 2013; Velmourougan et al. 2014;

Agoda 2016; Ramachandran 2016). Ramachandran (2016, p.583) views misuse cases as a tool

for modelling the system requirements from an attacker’s perspective; from the author’s

perspective they form part of best practice in secure software development (p.589).

All the participants felt following the methodology in developing their software products was

not easy. This could have been compounded by the fact that from their background

information, none of the participants was using any methodology to develop their software

systems. However, as seen from participant B’s response, given the opportunity to practice

176

the use of the methodology, using the Secure-SSDM would be something “doable”.

Participants B and C felt the issue of adopting standards was rather a challenge from a user

perspective. Participant C felt the methodology was most appropriate in a team environment

where specialist security members would deal with the security part. Leaving the security

aspect to a separate security team is a traditional approach to security development. The agile

approach to software development empowers the developers to deal with the quality and hence

security issues. In the Secure-SSDM since there is only one team member, they have to deal

with both aspects of the software.

Participants opined that they would use the Secure-SSDM in their future projects and even

recommend the methodology to other developers. Participant C opined that they would rather

recommend the methodology to teams, so that the security responsibility is handled by

members dedicated to security. From the three participants’ perspective the Secure-SSDM can

be adapted to develop any kind of software. This perspective is also confirmed by the

academic case study where various types of applications were designed by the student

participants. Applications developed included web-based applications, mobile-based

applications, desktop applications and client-server applications. Participants B and C felt the

methodology would be most suitable for critical systems.

Participants were also asked to analyse the methodology phase by phase, pointing out the

impact of the practices in each phase on quality. Table 6.13 shows responses the participants

gave.

Table 6.13: Industry developers’ phase by phase perception of the Secure-SSDM

Phase Participant A Participant B Participant C

I. Management

Buy-in &

Standards

adoption

*Stage I is ok as it

is

*Stakeholders are mainly

interested in a working

system

*Standards should be kept

to developers for guidance

*Solo projects stakeholders

do not usually have a

budget for quality and

security.

*Technical aspect

should be hidden

from the client.

II. Functional

& security

requirements

elicitation

* Pin users to the

original meaning of

requirements

*Users change

requirements

meaning without

*Use case and misuse cases

are the highlights of the

methodology

*Misuse cases help the

developer to negotiate with

the user on the time

*Use case diagrams

& associated

misuse case are

important to

communicate

177

changing the

requirement

required to implement both

the use case and misuse

case

system

functionality

III. Release &

Sprint

planning

*Practices are

adequate

*Misuse cases help to

clarify requirements

*Time consuming to model

use cases

*Misuse case may instil

fear on the user

*Formulate a test for each

use case and misuse case.

*Too much documentation.

*Solo developers hate

documentation.

*Include a tool to

capture the security

issues, this will

ease the process of

dealing with

security

requirements

IV.

Development

with code

review

*Get a peer to

review your code

for critical systems.

*Bias in seeing

mistakes.

*Aim to make the misuse

case to fail the test

*Someone should

review your code

V. Sprint

review & close

*Ensure users do

not change the goal

posts.

*Users change the

meaning of

requirements.

No comment No comment

VI. Evaluation No comment No comment No comment

Asked for suggestions for improvement applicants suggested improvements in the following

themes:

 Keep documentation minimal (Participant B)

 Standards should be kept to the developer (Participant B)

 Find a way to keep the developer to their initial meaning of requirements (Participant

A)

6.5 Cross Case Study Results Analysis

In analysing the results of the multiple-case study, the research used cross-case analysis. In

cross-case analysis, the different cases are analysed separately, after which the results from

the component cases are summarised. Data from the individual cases is initially coded, and

then analysed to form themes. Codes for the data were derived from the objective of the case

study and the literature. In performing cross-case analysis the themes in the component cases

178

are compared. Similarities and differences are noted. The data are then synchronised to show

the overall meaning of data in the multiple case study. The results of the multiple case study

are shown in Table 6.14. The table shows the derived themes and sub-themes together with

the source of data associated with the sub-themes. For the industry case study, the participants

contributing the views are indicated using P.A, P.B, and P.C for participants A, B and C

respectively. For the academic case study, the participants contributing views are not cited as

the coding was not fixed to a particular participant. However, the table indicates the source of

data in the case study. D shows data is sourced from document analysis, while F.G shows the

data originates from focus group discussion.

Table 6.14: Cross-case data analysis

Theme Sub-theme Academic Industry

Requirements Clarity Frequent customer

involvement helps to

verify user needs (D)

- Misuse cases help to clarify

requirements (P.B)

-Use case diagrams &

associated misuse case are

important to communicate

system functionality (P.C)

Volatility -Accommodation of

changes in

requirements makes it

possible to address user

needs which always

evolve with time (D).

-Users change requirements

meaning without changing the

requirement (P.A)

Developer Focus -Standards help to give

the developer non-

functional requirements

(F.G)

-Standards should be kept to

developers for guidance (P.B)

Skills -Developer may not

have the necessary

skills (D, FG)

-The security feature may be

difficult to handle as an

individual (P.C)

Credibility -Transparency of the

product under

development (D)

-I would, it makes the

user think I know what

I am doing (F.G)

-Bias in testing one’s

code (F.G; D)

-It deals with issues of short

cuts (P.A)

Peer review -Get a second developer

to review code for

critical systems (F.G;

D)

-Someone should review your

code (P.C)

-Get a peer to review your

code for critical systems

(P.A).

179

Time -Developers do not have time

for excessive documentation

(P.B)

Customer Availability -Difficult to engage

management (D)

-Users have no time for

meetings (F.G; D)

User

education

-Focus on user roles

(F.G)

-Users are not interested (P.B)

-Minimise technical issues for

users (P.A; P.C)

Satisfaction -Early user

involvement supports

user satisfaction (F.G)

Processes SDLC

support

-Practices are adequate

for the purpose (F.G)

-All practices are

necessary (F.G)

-Need for tool support

(F.G)

-The dummy partner is

key in code review

(F.G; D)

- Designing test cases

serves for the expected

quality (F.G)

-Covers the whole SDLC

(P.C)

-Practices are adequate (P.A)

-Use case/misuse cases help

the developer to negotiate

schedule with client (P.B)

Usability - I would use it for

serious clients (F.G)

-Ideal for online

applications (D)

-I think the Part IVs

should consider this on

their projects (F.G)

-I would use it but trim

some practices (F.G);

-The methodology is

not that easy to follow

(F.G);

-I feel it can be adapted

to any environment

(F.G)

-Following the methodology

is something doable (P.B)

-I would consider using the

methodology in my future

projects (P.B)

-It gives you a clear view of

the project (P.A)

-I would consider using the

methodology in future

projects, even for those

systems that do not

necessarily require security

(P.A)

Security -Misuse cases simplify

communicating

security concerns to the

user (D)

-Secure coding is key

(F.G)

-Security practices

difficult to implement

(D)

-Promotes security (P.C)

-I would rate the practices

9/10 due to the emphasis on

security (P.C)

-Misuse cases impose the

thought for security (P.A)

180

Models -The combined use

cases and misuse cases

seem to be core in this

methodology (F.G; D)

-Modelling the system

through misuse cases

helps the developer to

understand what is

expected of them in

terms of security (F.G;

D)

-Prototyping eases user

communication (D)

-Intermediate models

slow down

development process

(D)

-Use case/misuse cases help

the developer to negotiate

schedule with client (P.B)

-Misuse case instil fear to the

customer (P.B)

-Use case diagrams &

associated misuse case are

important to communicate

system functionality (P.C)

Cost -Low cost methodology

(D)

-Minimal budget for quality

and security (P.B)

Product Security -Use of misuse cases

(F.G; D)

-Use of misuse cases (P.C)

Correctness -Consistent check of

requirements (F.G)

-Use of a dummy

partner (F.G)

-Use cases and misuse cases

(P.B; P.C)

Key: D- Document analysis; F.G- Focus group discussion; P.A- Participant A; P.B-

Participant B; P.C- Participant C

In analysing the multiple case study the research adopts the cross case analysis as suggested

by (Cruzes & Dybå 2011). Data from the academic and industry case studies has been analysed

separately in Sections 6.4 and 6.5 respectively. In this section data from the two case studies

is presented under the broad themes common between the two cases. The broad themes

identified in the data are requirements, developer, customer, process and product. The

following sub-sections elaborate on these themes.

6.5.1 Requirements

The data from Table 6.14 show how academic and industry participants perceive the Secure-

SSDM requirements elicitation process. Results show that both types of participants indicated

that the artefact has practices that support requirements clarity. Academic participants

perceive frequent customer involvement as promoting requirements clarification. Industry

developers perceive combined use cases and misuse cases as promoting requirements clarity.

181

With regards to requirements volatility, the participants seem to perceive the concept

differently. The academic participants perceive support for requirements volatility as a

positive aspect of the methodology as it addresses the naturally changing user requirements.

On the other hand, industry participants feel at times users unfairly change requirements by

changing the meaning of the requirements to conceal requirements changes.

6.5.2 Developer

Regarding support for the developer the following sub-themes emerge from the data; focus,

skills, credibility, time and peer review. Participants from both case studies agree that

adopting development standards help to focus the developer. However, industry developers

feel standards should be reserved to developers and not shared with users. In terms of

developer skills, participants feel the lone developer may not have the necessary skills to play

both the development and quality control practices. In such cases it is recommended that the

developer uses the time they are not running any projects to acquire the necessary skills

(González-Sanabria, Morente-Molinera & Castro-Romero 2017, p.29). The results also show

that the developer acquires credibility in their projects through the continuous delivery

practice since it enhances transparency of the product under development. The industry

developers perceive practices in the methodology as dealing with short-cuts that are common

with solo developers. On the other hand, participants feel developers could be biased in their

code reviews and tests. This could compromise the quality of the product.

To deal with the issue of bias, developers suggested that for critical systems, the developer

should get an external peer reviewer. While this is a plausible suggestion, this is dependent on

resource availability. To deliver a quality software product, the developer may need to

subcontract the security aspect to deal with the security part. Another perception from industry

developers is that the methodology requires one to create a number of models which

developers may not have time for; “Developers do not have time for excessive documentation

(Participant A)”. The models suggested in the Secure-SSDM do not necessarily mean the

developer has to design all of them. As observed by one of the academic participants, the

models can be applied on demand.

6.5.3 Customer

The perceptions of the developers regarding the customer are divided into the availability,

focus, satisfaction and technical issues sub-themes. Academic participants indicated that

182

customers are difficult to engage in some cases. This makes it difficult to educate users on the

development process, or to evaluate the intermediate artefacts with the user. This could have

been due to the fact that the projects undertaken in this case were perceived to be for learning

purposes by the customers. They may not have seen the benefit of the systems to their

organisations. If the developer perceives that the customer is not readily available in a live

systems development setting, it is suggested that the developer finds one customer

representative interested in the system and works with them during the sprint reviews.

At the same time, participants indicated that early user involvement supports user acceptance.

This is an established software engineering practice. When customer consultation takes place

at the onset of the project, they buy into the project and are likely to accept the product thereof

(González-Sanabria, Morente-Molinera & Castro-Romero 2017; Ramingwong, Ramingwong

& Kusalaporn 2017). Regarding customer education, academic developers indicated that

education is an important aspect and should focus on the role customers have to play during

the development process. Sharing the same views industry participants think education is

important, but technical aspects of the project should not be shared with customers.

6.5.4 Secure-SSDM Practices

An important theme arising from the case study is that of the practices embedded in the

Secure-SSDM. Participants from both case studies agree that the practices in the methodology

are adequate to deliver a high-quality and secure product. Industry participants indicated that

the methodology has practices that cover the whole SDLC. The academic case study

highlighted the following practices to be key in the development of quality software;

requirements elicitation (use case and misuse cases); creating the product backlog; setting of

test cases with the user; continuous integration and testing and user identification and

education (on their roles). Industry participants also confirmed the importance of the

requirements elicitation models. As noted by these participants:

Participant A;

“The identification of misuse cases is the core function of the method; it imposes the thought

of security”.

Participant B;

 “Misuse cases to me are the highlights of this methodology”

183

The quality practices highlighted as core by these participants were also highlighted as so in

the quality theory generated in Chapter 2 as promoting quality in the developed software.

Further, participants perceive the secure coding practices to be enabling security in the

developed software. While participants thought that dealing with security from an individual

point of view, was a daunting task, they also felt that the Secure-SSDM was usable with

practice. Most participants indicated that they would consider using the methodology

especially on critical systems.

Another emerging theme as perceived by these participants is that of cost. Academic

participants viewed the methodology as low cost. This addresses the concern raised by one of

the industry participants who cited that solo developers’ clients usually have no budget for

quality and security. Developers adopting this approach may develop quality software at

minimal cost. The methodology deals with quality and security issues early in the

development process, and thus minimises costs of rework.

6.5.5 Product

The perceptions of both academic and industry developers indicated that products developed

using the Secure-SSDM were of high-quality. While participants found the security practices

difficult, they acknowledged that their products were secure, as they had to pass the security

tests. Industry participants indicated that their products had correct functionality as shown by

the acceptance of their users. Participant B’s update to incorporate the international payment

feature on the mobile application had already been effected, and the product was running as

expected. Pointing out the impact of the methodology on the product, participant B had this

to say:

“If we had not considered the various ways in which the application could be misused, we

would not have noticed the possibility of customers back dating their phones, so as to continue

accessing the app services through their phones. Using the Unix atomic clock made it

impossible for customers to access services even if they were to back date their phones”.

Participants from both case studies opined that frequent checks on customer requirements with

the user helped to build a correct product. This is a well-established practice in agile methods.

Delivering the product in small increments saves the developer from building a product that

the customer may not accept at project end.

184

6.6 Threats to Validity

This research deals with threats to validity emanating from this case study using the four

validity criteria suggested in Runeson et al. (2012). The four criteria are construct, internal,

external and reliability.

Construct validity refers to the proper representation of the variables under study by the

measures of study. In a multiple case study, construct validity is inherent due to the set-up of

the study. In selecting the participants for the academic case study, an open call was made to

the class. The research worked with those participants who volunteered to do so. During the

course of the study, the researcher monitored intermediate progress to check the application

of the methodology by students. This was feasible as the researcher took the class. Students

were also asked to submit documentation showing intermediate models towards software

product design. The documentation analysis was a means of data triangulation. It also served

to confirm that the students were following the practices, so that the results obtained from the

project are due to the application of the practices.

Internal validity considers the causal relationships among variables under study. It is

important that an investigator establishes that the expected outcomes are due to the factor

under investigation and not a third factor (Runeson et al. 2012, p.71). In this study the quality

and security of the artefacts under development could come from other sources such as

developer experience and component reuse just to name a few. The monitoring of intermediate

progress to check the application of the methodology by students served to ensure that the

quality of the resultant artefacts was due to methodology practices. This was possible as the

researcher took the class therefore prolonging the engagement with the participants. At the

data collection stage, a template was prepared in advance to ease the process. A teaching

assistant attached to the course helped to collect data from the focus group discussion. This

served to ensure that all the data was collected, at the same time serving as a form of researcher

triangulation. The focus group discussion held with the academic case study participants also

provided an inherent internal validation as participants kept check of each other’s perceptions

(Nili, Tate & Johnstone 2017).

External validity pertains to the generalisation (or transferability) of the results obtained from

a study. A thick description of the academic case study environment provides for the

repeatability of the study in a similar environment. The demonstration of the application of

the methodology in developing a software product by Participant A also serves for the same

185

purpose. Since the Secure-SSDM was evaluated both in an academic and industry setting, the

results obtained are representative of the two environments.

Reliability of the results is another threat to validity in this study. The multiple case study

served to address reliability issues. Further, for the academic case study, since the researcher

was an employee of the organisation in which the study was conducted, and had taken the

course for the past two years, this means the researcher understood the environment and could

easily get access to the data (Runeson et al. 2012, p. 72). Collection of data using more than

one method also served to improve data reliability. Member checking was also used in the

industry case study to confirm the data collected. Each participant received a Microsoft Word

document of their responses against each question asked in the interview through electronic

mail. This served to confirm that the researcher had captured their views on the methodology

correctly. A feedback meeting at the end of the study also served to confirm that the

developers’ input was captured as it was.

6.7 Theoretical Evaluation of the Secure-SSDM

The evaluation process in this section is carried out to ensure completeness in the evaluation,

at the same time giving the process the necessary rigour. Theoretical evaluation started during

the design of the Secure-SSDM. The meta-synthesis carried out in Section 2.5 to build the

SSDM quality framework provided a systematic approach to the process of identifying and

extracting the quality practices used as a basis for constructing the framework. Using the

guidelines from Noblit and Hare (1998), which were refined using recommendations from

Sandelowski et al. (1997), practices from SSDMs that met the defined criteria were compared

against each other for similarities, differences, and used in the formulation of a line of

argument. The identified quality practices were analysed for their capability to build quality

software within the context of solo software development. The primary framework created

from the meta-synthesis was then presented to academics at a research seminar for their

evaluation. Feedback from the computing seminar participants was used to refine the primary

SSDM framework. Further, the primary SSDM framework was presented in a blind peer

reviewed international conference (Moyo & Mnkandla 2019). Comments from the

anonymous reviewers and conference participants were used to refine the framework.

The second phase of rigorous mental evaluation of the Secure-SSDM was conducted during

the development of the final artefact. The main aim at this phase was the identification of

186

security practices compatible with the quality practices in the primary SSDM framework.

Besides compatibility, there was also need to evaluate the agility of the practices before and

after integration. Section 5.2.2 details this process. The modified version of Keramati and

Mirian-Hosseinabadi (2008)’s algorithm provided the guide to systematically bring together

the two sets of practices without compromising the agility of the resulting secure-quality

practices. This process resulted in the Secure-SSDM. This version of the Secure-SSDM was

summarised and submitted for double blind peer review in an international journal. The

summary is presented in Moyo and Mnkandla (2020). These formative evaluations served to

build quality into the Secure-SSDM. To assess the design objectives set in Chapter 4, a

comprehensive evaluation of the artefact using a theoretical model was undertaken. Section

6.7.1 below details this summative theoretical evaluation.

6.7.1 Evaluating the Secure-SSDM using the 4-DAT model

The use of more than one evaluation approach to evaluate a software engineering artefact

increases the credibility of the evaluation. Besides the popular experiments and case studies,

formal proof in terms of property fulfilment is one of the means of evaluation acceptable in

the software engineering domain (Christos 2015, p.5). In this sub-section the final version of

the Secure-SSDM is logically evaluated using the four-dimensional analytical tool (4-DAT)

(Qumer & Henderson-Sellers 2006; Qumer & Henderson-Sellers 2008). This model was

chosen to evaluate the Secure-SSDM’s compliance with agile principles. Other researchers

(such as Leppa 2013; Ghani, Azham & Jeong 2014; González-Sanabria, Morente-Molinera &

Castro-Romero 2017) have also used the model for the same purpose. Using this model, a

methodology is assessed according to four dimensions. The four dimensions are method

scope, method agility, agile values characterisation and software process characterisation. The

4-DAT framework is a flexible framework. Method evaluators (or researchers) can choose

what dimensions to evaluate the methodology against, depending on the purpose of the

evaluation. In this thesis, all the four dimensions are applied to give a holistic approach to the

evaluation.

Method scope considers the project and team sizes, development environment and coding

styles recommended for the method, technology and the physical environments in which the

methodology is applicable. It also checks the business and abstraction culture appropriate for

the success of the method. Method scope is normally used to perform a high level analysis of

a given method (Qumer & Henderson-Sellers 2008, p.281).

187

Method agility evaluates the existence of five agility features, (i.e. flexibility, speed, leanness,

learning and responsiveness) in the method practices and phases. The framework suggests the

computation of the degree of agility of each method component as a fraction out of five, based

on whether a feature is available (1) or not (0). Degrees of agility can be computed for both

practices and phases in a methodology.

Agile values characterisation seeks to identify those components of the methodology which

portray the six agile values. The six are: individuals and interactions over processes; working

software over comprehensive documentation; customer collaboration over contract

negotiation; responding to change over following a plan; keeping the process agile; and

keeping the process cost effective (Qumer & Henderson-Sellers 2008, p.281). As can be seen,

the first four principles are drawn from the agile manifesto, while the other two principles are

the authors’ creation to evaluate a methodology’s fit for business processes.

Characterisation evaluates a methodology’s processes for their ability to support project

management as well as process management. Here a methodology is evaluated to check its

coverage of the systems development cycle (SDLC). Further, process characterisation checks

for the existence of practices focused on project management.

The main aim of this theoretical evaluation was to measure the agility of the methodology

using an established model. One of the design goals set in Chapter 4 of this thesis was to

design a lightweight agile methodology for use by solo developers. To evaluate the success of

this goal, the 4-DAT framework was used, as it focuses on evaluating the agility of a method.

The following paragraphs explicate the evaluation processes using the dimensions cited in the

framework.

First, the method scope of the Secure-SSDM is considered. This is a high-level evaluation of

the method. Table 6.14 shows this analysis performed as suggested by Qumer and Henderson-

Sellers (2008). The Secure-SSDM is built to undertake small projects, which can be handled

by an individual. Since only one person works in the project, this means the project is normally

undertaken in a collocated physical environment. However, this does not stop the developer

from developing software for clients across the globe as is the practice nowadays for mobile

applications. One of the industry developers in the industry case study worked with an

international client to upgrade their mobile-based health application system. Communication

in such cases is done online. Development style is iterative and is normally very fast. This is

fuelled by the need for survival in the market. The proposed coding style is simple, supported

188

by technology best familiar to the developer. An object-oriented abstraction mechanism is

mainly favoured for use with the methodology. Collaboration with the customer in building

the software product is key to a successful project. An object-oriented abstraction supports

development velocity. Table 6.15 summarises the Secure-SSDM scope discussed in this

paragraph.

Table 6.15: Secure-SSDM method scope evaluation

Method Scope Scope evaluation

Project size Small

Team size 1

Development style Incremental and rapid

Code style Simple

Technology environment Optional, dependent on developer experience

Physical environment Collocated

Business culture Collaborative

Abstraction mechanism Object oriented, though not restrictive

To evaluate the agility of the Secure-SSDM, this research makes reference to the literature

evaluating agile methods. The agility features used for the evaluation are as defined in the 4-

DAT framework. In this framework, flexibility measures the ease with which an object or

process accommodates emergent changes. This assesses the ability of method processes to

respond to changes. Speed refers to the time taken to undertake a process to obtain the

expected deliverables. Leanness assesses the general resources used by a process to achieve a

desired outcome. In agile methods, lean processes are preferred. Learning assesses the ability

of a process to support knowledge management. Knowledge management is an important

concept of a solo development environment as it supports developer improvement.

Responsiveness measures the process’ ability to adapt to the environment (Qumer &

Henderson-Sellers 2006, p.504). Table 6.16 shows the assessment of the Secure-SSDM phases

based on this framework. The following equations suggested by the authors were used to

compute the agility of each of the phases and the overall agility of all the phases:

Agility of a Phase = {Flexibility + Speed + Leanness + Learning + Responsiveness} …… (1)

where the variables in the brackets can either be 0 or 1.

Total Agility of Phases = Agility of {Phase 1 + Phase 2 + ... + Phase n} …………………(2)

Total Agility of Processes =

𝑇𝑜𝑡𝑎𝑙 𝑎𝑔𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑃ℎ𝑎𝑠𝑒𝑠

𝑛∗5
……………………………………………(3)

189

Table 6.16: Evaluating the Secure-SSDM phases degrees of agility

Secure-SSDM

phase

Agility Features

Flexibility Speed Leanness Learning Responsiveness Total

Management Buy-in

& Standards

adoption

1 1 0 1 1 4/5

Requirements

elicitation

1 1 0 1 1 4/5

Release & sprint

planning

1 0 0 1 1 3/5

Development with

review

1 0 0 1 1 3/5

Sprint review &

close

1 1 0 1 1 4/5

Evaluation 1 1 0 1 1 4/5

Total agility 6/6 4/6 0/6 6/6 6/6 22/30

=0.73

Using equation 1 give the agility of the phases as shown in Table 6.16. The table shows that

all the phases of the Secure-SSDM exhibit some degree of agility. None of the phases has an

agility degree of 5/5 =1. None of the method phases exhibit leanness. This is due to some

intermediate documentation necessary in building and tracking of quality concepts in the

development process. Other practices violating the leanness feature are requirements

elicitation, sprint planning, development review, and evaluation of both the sprint and the

project. These practices are associated with some documentation in one way or the other, as

models need to be created to explicitly show the processes. However, all the methodology

stages have an agility degree higher than 0.5. This characteristic is inherent from the design

process used in this research. Only practices with an agile value of more than 0.5 were

included in the methodology. Using equation 2 enables the computation of the value 22.

Applying equation 3 gives the value:
22

6∗5
 =

22

30
 = 0.73.

Drawing from the recommendations of Qumer and Henderson-Sellers (2006), the degrees of

agility for the practices were derived in a similar manner. Table 6.17 shows the measured

degrees of agility of the Secure-SSDM practices. The agility of 0.68 for all the practices

compares well with the overall methodology agility of 0.73.

190

Table 6.17: Evaluating the Secure-SSDM practices degrees of agility

Secure-SSDM

Practices

Agility Features

Flexibility Speed Leanness Learning Responsiv

eness

Total

i. Education of users

on methodology &

institution of security

awareness programs

1 0 0 1 1 3/5

ii. Adoption of

development and

security standards

1 1 0 1 1 4/5

iii. Identification of

users & user roles

1 1 0 1 1 4/5

iv. Identification of

user requirements

1 0 0 1 1 3/5

v. Creation of use

cases and misuse

cases

1 0 0 1 1 3/5

vi. Creation of a

prioritised product

backlog

1 0 0 1 1 3/5

vii. Categorisation of

subtasks

1 0 0 1 1 3/5

viii. Development of

prototypes

1 0 0 1 1 3/5

ix. Use of story cards

to explain product

characteristics

1 0 0 1 1 3/5

x. Prioritisation of

sized sprint tasks

1 1 0 0 1 3/5

xi. Setting of the

iteration duration

(1 – 2 weeks)

1 1 1 1 1 5/5

xii. Designing of

security and

acceptance tests

1 0 0 1 1 3/5

xiii. Development of

code according to

coding and security

standards

1 0 0 1 1 3/5

xiv. Use of

version/change

control tools

1 1 0 1 1 4/5

xv. Performing of

code and security

code reviews with a

dummy partner

1 0 0 1 1 3/5

191

xvi. Performing unit

tests

1 1 1 1 1 5/5

xvii. Review of sprint

time & code quality

1 0 0 1 1 3/5

xviii. Movement of

finished task (s)

1 1 0 1 1 4/5

xix. Reviewing of

project progress

1 0 0 1 1 3/5

xx. Planning for next

Sprint (or close

project)

1 0 0 1 1 3/5

xxi. Performing of

code integration,

testing and security

testing

1 0 0 1 1 3/5

xxii. Evaluation of

product deliverables

& security repository

update

1 0 0 1 1 3/5

xxiii. Conducting of

system acceptance

test

1 0 0 1 1 3/5

xxiv. Identification of

repeating processes/

tasks for automation

1 1 1 1 1 5/5

Total 24/24 8/24 3/24 23/24 24/24 82/

(24*5)

= 0.68

To benchmark the Secure-SSDM practices’ degree of agility against existing SSDMs, this

research uses agility values computed for DeSoftIn (González-Sanabria, Morente-Molinera

& Castro-Romero 2017, p. 31). Table 6.18 shows that the Secure-SSDM’s degree of agility is

slightly lower than that of DeSoftIn. Both the phases and practices degrees differ by 0.03. It

is expected that DeSoftIn would have a higher degree of agility as it does not include security

practices which tend to have a negative impact on the agility of a methodology.

Table 6.18: Comparing the agility of the Secure-SSDM to that of DeSoftIn

Methodology Agility degree of Phases Agility degree of Practices

i. DeSoftIn 0.76 0.71

ii. Secure-SSDM 0.73 0.68

Difference - 0.03 -0.03

192

In evaluating the Secure-SSDM against the third dimension of the 4-DAT framework of the

artefact, the research uses the six agile characteristics as proposed in the framework. These

are: individuals and interactions over processes and tools; working software over

comprehensive documentation; customer collaboration over contract negotiation; keeping the

process agile; and keeping the process cost effective (Qumer & Henderson-Sellers 2006,

p.506). The evaluation process requires that the evaluator indicates practices that support the

value under consideration in the method being evaluated. Table 6.19 shows the results of the

evaluation. As the table shows, the value, individuals and interactions over processes and tools

is supported by these practices in the Secure-SSDM: user education on methodology and

security, identification of users and security analysis of user roles, and use of story cards to

explain product expectations.

Table 6.19: Evaluating the Secure-SSDM support for agile values

Agile Values Practices in the Secure-SSDM supporting

the values

Individuals and interactions over processes

and tools

i. User education on methodology & security

ii. Identification of users & security analysis of

user roles

iii. Use of story cards to explain products

Working software over comprehensive

documentation

i. 1 – 2 weeks iteration duration

ii. Use of prototypes

iii. Continuous code integration, testing and

security testing

Customer collaboration over contract

negotiation

i. Creation of a prioritised product backlog

ii. Conducting of system acceptance test

Responding to change over following a plan i. Reviewing time estimates using actual times

ii. Review of sprint time & code quality

iii. Adoption of development & security

standards

iv. Reviewing sprint deliverables with user

Keeping the process agile i. Sprint review

ii. Task automation

iii. Review of project progress

Keeping the process cost effective i. Task automation

Lastly, dimension 4 of the 4-DAT framework is considered. This dimension evaluates the

methodology’s processes ability to support the product life cycle and the project life cycle.

Table 6.20 shows the evaluation of the Secure-SSDM using this dimension. From the table it

can be seen that the artefact has practices to support the four specified processes. Most of the

193

practices however, are concentrated on the development process to enhance developer

productivity in this environment where resources are scarce.

Table 6.20: Secure-SSDM characterisation using the 4-DAT Framework

Software Process characterisation Practices in the Secure-SSDM supporting the

values

Development process i. Standards adoption

ii. User education

iii. Product backlog

iv. Sprint

v. Continuous integration

vi. Testing (quality & security)

vii. Code review with dummy

Project management process i. Release & sprint planning

ii. Security repository update

Software configuration control

process/Support process

i. Use of version control systems

iv. Process management process i. Evaluation

The evaluation of the Secure-SSDM based on the four characteristics of the 4-DAT framework

is summarised as shown in Figure 6.7. The four quadrants showing the four characteristics

indicate that for agile values support and process characterisation there are practices for the

purpose. Each of the agile values defined in this framework, has at least one practice in the

Secure-SSDM supporting the value. Responding to change over following a plan, has the

highest number of practices. Similarly, each process in process characterisation has at least

one practice in support of the process. The greatest number of practices (seven in this case) is

for the development process.

The quantitative evaluation of the agility of the practices and phases shows that these two

comply with agile expectations as defined in the framework. The framework accepts 0.5 as

the minimum value for agility. 0.6 is the least agility value or both practices and phases. The

overall agility value of the phases is 0.73, while that of practices is 0.68. The method scope of

the Secure-SSDM is that of small projects, with team size of one. Development is incremental

as is characteristic of agile methods. Development is inherently set for a collocated physical

environment. Collaboration with the customer is highly encouraged.

194

Section 6.7 has demonstrated the theoretical rigour applied during the formative and

summative evaluation processes of the Secure-SSDM respectively. In the following sub-

section, the results of the theoretical evaluation are discussed.

Small projects Phases minimum agility = 0.6

Team size of 1 Phases maximum agility = 0.8

Incremental development Phases overall agility = 0.73

Optional technology environment

Collocated physical environment Practices minimum agility = 0.6

Collaborative business culture Practices maximum agility = 1

Object oriented abstraction Practices overall agility = 0.68

*Individuals & interactions over *Development process ⇒ 7practices

processes & tools ⇒3 practices *Project mngt. practices ⇒2practices

*Working software over *S/W configuration ⇒ 1 practice

comprehensive documentation *Process management ⇒ 1practice

 ⇒3 practices
*customer collaboration over contract

negotiation ⇒ 2 practices

*Responding to change over

following a plan ⇒ 4 practices

*Keeping process agile ⇒3 practices

*Keeping the process cost effective

⇒1 practice

Figure 6.7: Summary of evaluation of the Secure-SSDM using the 4 DAT-Framework

195

6.7.2 Theoretical Evaluation Discussion

The evaluation in Sub-section 6.7.1 shows that the Secure-SSDM has all the characteristics

expected of an agile methodology. The method scope evaluation indicates that the Secure-

SSDM supports small teams, in this case, an individual. Further the methodology is iterative,

with fast development speed. It has simple practices, and pursues simplicity where decisions

are to be made by users, with regards design decisions. Designed for a team of one, the

methodology is inherently collocated, with customer collaborations driving the development

process. These characteristics are also seen in agile methods like Scrum and XP (Qumer &

Henderson-Sellers 2008, p.284).

Both the practices and stages of the Secure-SSDM have agile degrees greater than 0.5, with

the stages of the methodology having an agility degree of 0.73. A value of greater than 0.5 is

regarded as agile. In addition, the analysis of the practices embedded in the Secure-SSDM

shows that all the agile values are supported by at least one practice in the methodology. The

practices: individuals and interactions over processes and tools; working software over

comprehensive documentation; responding to change over following a plan; and keeping the

process agile are each supported by three or more practices. Customer collaboration over

contract negotiation is supported by two practices, while keeping the process cost effective is

supported by one practice. This evaluation therefore serves to show that the Secure-SSDM

fulfils one of its objective set in Sub-section 4.4.1, that is, the methodology is designed to be

a lightweight methodology (agile).

Regarding the Secure-SSDM process characterisation, these practices are embedded in the

methodology to ensure life cycle coverage: standards adoption; user education; product

backlog formulation; sprint planning; continuous integration; testing (quality & security); and

code review with dummy; sprint review. This confirms the perception of one of the industry

developers, that the Secure-SSDM has practices covering the complete SDLC. At the

maintenance phase the developer can go over the development process as was the case with

Participant B who performed an upgrade using the methodology. Further, there is at least one

practice each in support of the following: project management process; software configuration

control process/ or support process; and process management process.

The discussion in this section has shown that the Secure-SSDM exhibits most of the

characteristics defined in the 4-DAT framework as important for an agile methodology to

have. The research has therefore achieved to design a solo software development methodology

196

targeted at individual developers. It can be concluded that the Secure-SSDM is a usable agile

method that can be used to design high quality software.

6.8 Chapter Summary

Chapter 6 has given a detailed description of the demonstration and evaluation of the utility

of the Secure-SSDM. The demonstration through application of the artefact in Section 6.2 has

proved that the methodology practices are usable in designing and implementing quality

software products. The perceptions of both academic and industry developers confirm the

usability of the Secure-SSDM in building quality products. Developers have confirmed the

utility of both the quality and security practices for the purpose.

While some developers raised concerns on the number of models produced in applying the

Secure-SSDM, most of the developers applaud the importance of such models. Key among

the models is the compound use case and misuse case model. Developers perceive the model

to be important in portraying both the functional and security requirements of the product

under development. The product backlog was also perceived as an important tool in showing

the importance that the user attaches to the product. Another important feature highlighted in

this evaluation was the test cases. These were highlighted as improving quality and security

of the developed software product.

The theoretical evaluation of the Secure-SSDM has shown that the methodology complies

with the expectation of agile methods. Build to support a team of one, the methodology is

iterative and delivers the software product incrementally. Both the practices and phases have

an agility greater than 0.5, qualifying to be classified as agile (Qumer & Henderson-Sellers

2006, 2008). Further practices embedded in the Secure-SSDM support the four agile values.

197

7 CHAPTER 7 CONCLUSION

7.1 Introduction

Chapter 6 presented a demonstration of the application of the Secure-SSDM in designing and

implementing high-quality and secure software products. An example software product

developed for a university setting was demonstrated. Further the Secure-SSDM was used in a

multiple-case study and perceptions of the participants on the utility of the methodology were

collected. Study participants concurred on the utility of the artefact in building quality

software. A theoretical evaluation of the artefact carried out to enable rigour in the evaluation

process, proved that the methodology was compliant with most of the characteristics defined

in the model used for the purpose. This chapter presents results and contributions of this thesis.

It summarises the answers to the questions posed at the onset of the research and shows

outstanding work in the area.

7.2 Answering the Research Questions

The main research question (RQ) that this thesis sought to answer was:

RQ. How can a lightweight solo software development methodology be designed to use

as minimum resources as possible, at the same time conforming to the best practice for

delivering secure, high-quality software products?

The answer to this main question can be summarised as follows: In defining the lightweight

methodology, agile principles as defined in the agile manifesto were adopted. Using Qumer

and Henderson-Sellers (2008)’s definition of agility, flexibility, speed, leanness, learning,

responsiveness and simplicity were deemed key features for a lightweight methodology. The

Secure-SSDM was therefore designed to exhibit these features.

Based on Laporte et al. (2006)’s characterisation of the very small-scale software development

environment and review of the existing SSDMs, characteristics of the solo software

development environment were derived. These characteristics guided the development of a

methodology appropriate for such an environment.

In designing the methodology, quality practices were drawn from solo software development

methodologies and related literature, while lightweight secure software development practices

were drawn from existing secure software development methods. Based on the proposition by

a number of researchers (Keramati & Mirian-Hosseinabadi 2008; Sonia &Singhal 2012;

198

Ghani, Azham & Jeong 2014), that lightweight quality practices can be integrated with

existing traditional security practices without compromising the agility of the resulting

practices, Keramati and Mirian-Hosseinabadi’s algorithm was adapted for the purpose of

integrating the identified practices. Although some researchers have integrated security

practices into agile methods designed for teams, this research is unique in that it integrates

security practices into a solo development environment.

The summary given in this sub-section is elaborated through the answers provided to the five

sub-questions (SQ) posed to help provide an answer to this question. The first sub-question

posed was:

SQ1. What methodologies exist for lightweight solo software development?

To answer this question a rigorous literature review was conducted using meta-ethnography

as presented in Chapter 2 and revisited in Chapter 4. From this literature review, seven

methodologies emerged as leaders in lightweight solo software development. These were

Freelance as a Team (Faat); Personal Extreme Programming (PXP1); Personal Extreme

Programming (PXP2); Go – Scrum; Scrum Solo; DeSoftIn and MIDS Adaptation.

The identified methodologies have one main focus; to improve the quality of software

products, at the same time keeping the process as lightweight as possible, to be undertaken by

an individual. This small number of the identified studies confirms the view by a number of

authors (Dzhurov, Krasteva & Ilieva 2009; González-Sanabria, Morente-Molinera & Castro-

Romero 2017; León-sigg et al. 2018) that minimal research exists on SSDMs. While the

number is slowly growing, the growth has not fully addressed the improvement of quality in

the developed software. Security as a quality feature was found to be missing in the existing

SSDMs (Moyo & Mnkandla 2019). These methodologies were however deemed important in

this study as they provided this research with a source of quality practices to draw from in

order to formulate a higher quality methodology. The pool of methodologies enabled this

research to answer the second question formulated as:

SQ2. What software development strategies and techniques in the identified

methodologies promote quality in the developed software?

Using meta-ethnography, the quality practices in the identified methodologies were

synthesised into a set of themes. The identified practices and themes were as follows:

199

At software project initiation, the adoption of development standards and user education were

found to be key in developing quality software. User education is an established principle in

software development. When users are informed about the development process, they

participate in the process and will therefore accept the developed product (Ramingwong,

Ramingwong & Kusalaporn 2017).

In eliciting user requirements, formulation of user stories using the INVEST (independent,

negotiable, valuable, estimable, small and testable) acronym (Bernabé, Navia & García-

Peñalvo 2015), design of use cases from these and the subsequent creation of a product

backlog to prioritise tasks emerged as key practices to promote requirements understanding

and user participation. INVEST is an acronym popularised by Wake (2003), used to assess

the quality of user stories. This acronym is now mainly used as an agile guide in most

development environments (Lucassen et al. 2016; Heck & Zaidman 2018). Use of a

prioritised product backlog is also a proven effective way of keeping track of the product

components defined in Scrum and is meant to give control of the product under development

to the user (Schwaber & Sutherland 2013). In a solo development environment these are key

as they give both the developer and the user a complete view of expectations from the project.

The same product backlog serves as an input to the planning stage, where sprint tasks are

drawn from the list in the order defined by the user. Sprint tasks are recommended to last 1 –

2 weeks.

At the development stage, adoption of test-driven development and the use of a dummy

partner to review code were seen to reduce errors and promote code quality. At the same time

refactoring complex code, unit testing and the use of version control systems during code

implementation were seen to promote product maintainability. Most of these practices are not

unique to the solo environment. The use of a dummy partner to review code was however

found to be a unique practice for solo development. This replaces the well accepted practice

of pair programming. A developer explaining their own code to a dummy partner, is likely to

discover errors in code during the process (Bernabé, Navia & García-Peñalvo 2015).

The research also identified continuous integration as a well-established practice in the solo

development environment. This is an important agile practice which supports development

visibility at the same time supporting frequent delivery of software. In a solo development

environment such a practice minimises loss of resources by keeping the customer informed of

200

project progress. Task automation in this environment was also seen to promote productivity,

given the minimal resources available.

SQ3. What lightweight practices and techniques in the software development life cycle

promote security in the developed software?

Security practices identified in the literature were organised to fit the various stages of the

primary-SSDM derived from the metasynthesis performed to provide the answer in SQ2.

Adoption of appropriate security standards and security awareness training were deemed

important for initiating a secure software development project. These help the developers to

think about security at the onset of the project. Apart from equipping developers with security

development skills, these practices were found important in creating security awareness in

project stakeholders, so that they participate in identifying security threats in their

environment (Microsoft 2008). Rindell, Hyrynsalmi and Leppänen (2018) suggest that in

order to keep the practice agile, security items for training can be aligned with the product

backlog items.

Practices identified for the planning stage include the use of abuser stories to collect possible

system threats and the use of misuse cases to model those threats. Detailing of the misuse case

using appropriate models such as sequence diagrams were deemed appropriate for designing

a secure system. These show the flow of the unwanted events enabling the solo developer to

enact appropriate measures to counter these. Misuse cases can be modelled using UML the

same way use cases are modelled. This makes this practice the most favourable in this research

as use case modelling is a common practice in software engineering.

Secure source code review was identified as the practice most suitable during system coding.

It fitted well with the practice, code review with the help of a dummy partner found in the list

of quality practices provided as an answer to SQ2. To enhance productivity, automated code

review was deemed most appropriate as a complement to manual code review, for the solo

development environment.

SQ4. How can quality and security practices from lightweight software development

methodologies be synthesised into a solo software development methodology that

promotes quality and security in the developed software?

The answers to the first three questions provided this research with building blocks for use in

the design of the Secure-SSDM. These answers were necessary for answering the fourth

201

question. To answer the fourth question, an algorithm was used to systematically integrate the

quality and security practices. The research adapted Keramati and Mirian-Hosseinabadi

(2008)’s algorithm for the purpose. The adapted algorithm starts by computing agility degrees

for the identified quality and security practices. Once the agility degrees are computed, a

compatibility matrix is formulated to determine pairs of practices that can be combined

resulting in minimal loss of agility. Before compatible practices are integrated, their resulting

degree of agility is tested for optimality. Only those practices with the agility degree greater

than 0.5 were integrated. The 0.5 threshold is suggested by Qumer and Henderson-Sellers

(2008) as an acceptable measure of agility on a 0 to 1 scale. The integrated practices were then

organised into the resulting Secure-SSDM with the following stages: Management-buy-in and

standards adoption; Functional and security requirements elicitation; Release and sprint

planning; Development with code review; Sprint review and close; Evaluation.

SQ5. How can the resulting methodology be evaluated?

The utility of the Secure-SSDM was empirically evaluated using a multiple case study. One

case study was conducted in an academic setting using undergraduate students studying

towards a Bachelor of Science honours degree in Computer Science. Participants were asked

to use the methodology in designing and implementing their three months mini projects. At

the end of the semester participants’ perceptions on the usability of the methodology were

collected through focus group discussion. Project documents describing how the methodology

was used were analysed for the purposes of data triangulation.

For the industry case study three developers in and around Bulawayo, Zimbabwe, participated

in the evaluation of the Secure-SSDM. These were identified through a snowballing approach.

Developers were asked to use the methodology to develop software products of their choice,

preferably for their current clients. Perceptions of these expert developers were collected

through face to face interviews and analysed qualitatively.

 In evaluating the Secure-SSDM’s compliance with agile principles, the 4-DAT framework

was used. The framework evaluates a methodology using four agile values, which are: method

scope, method agility, agile values characterisation and software process characterisation. In

terms of method scope, the Secure-SSDM has been built to support a team of one, uses an

iterative approach to software development and delivers the software product incrementally.

202

What software development

strategies and techniques in the

identified methodologies

promote quality in the developed

software?

Meta-synthesis

Chapter 2

Secure-SSDM

Primary

framework with

quality practices

What lightweight practices and

techniques in the software

development life cycle promote

security in the developed

software?

Literature review

Chapter 4

Secure software

development

practices

How can quality and security

practices from lightweight SDMs be

synthesised into an SSDM that

promotes quality and security in the

developed software?

How can the resulting

methodology be evaluated?

Intermediate

Secure-SSDM

Multiple case study

4-DAT Framework

Chapter 6

Integration algorithm

Chapter 5

Proposed Secure-

SSDM

What methodologies exist for

lightweight solo software

development?

In-depth literature

review

Chapter 2

Seven SSDMs

listing

Research Question How and Where provided Answer

Figure 7.1: Answers to the research questions

203

An analysis of the Secure-SSDM’s method agility has shown that both its practices and phases

have an agility degree greater than 0.5, qualifying to be classified as agile (Qumer &

Henderson-Sellers 2006, 2008). Agile values characterisation shows that practices embedded

in the Secure-SSDM support the four agile values. The answers described in the forgoing

paragraphs are summarised in Figure 7.1.

7.3 Unexpected findings from this research

At the evaluation stage of the Secure-SSDM, some surprise findings were noted. The first

surprise was the perception by solo developers, that their customers do not value the security

of their software products. In interviewing participant B, it was noted that most of the clients

they had dealt with were not prepared to invest in the quality and security of their software.

The developer related how the client who had approached them for an insurance application,

decided to settle for just advertising the insurance premiums, as opposed to advertising and

facilitating for payment of the same through the platform. Incorporating the payment platform

in this case would mean that security features be incorporated into the platform lengthening

the development process at the same time increasing development budget. Participant C

concurred on the aspect of security, recommending that security development be left to teams.

This participant related how in incorporating security into the platform they had developed in

this case study they had to use encryption algorithms which they would not use under normal

circumstances. Participants view security coding as a practice for large teams.

The implication of such perceptions is that clients doing business through platforms developed

by solo developers remain vulnerable to security threats and possible loss of data and

resources. Both solo developers and their customers need to consider secure training as a key

aspect in software development.

Another exception in the findings is that some solo developers do not like change in the

development process. Participant A passionately shared how disturbing it was for users to

continue changing their requirements. Put in their own words:

“At times users change the meaning of the requirements without changing the requirements.”

They related how they thought that even after adopting such a methodology, and using the use

cases in agreeing on certain requirements and modelling these, users would still come and

explain the model in a different way. Responding to change as opposed to following a plan is

one of the principles in the agile manifesto. Solo developers need to develop a way of

204

responding to user requests for changes without compromising the quality of their products,

and their relationship with customers. A practice recommended in this thesis is the use of

prototypes to promote understanding of requirements by all stakeholders in the project.

7.4 Knowledge Contributions

One of the important outputs of DSR is knowledge contribution to the existing knowledge

base of the area of study. Throughout the research process, knowledge was generated and

contributed to the solo software development environment. In the following sub-sections

knowledge contribution in various forms is overviewed.

7.4.1 The Secure-SSDM

The main contribution in this thesis is an artefact in the form of the Secure-SSDM. This

research has managed to propose and design a lightweight solo software development

methodology with optimum security practices. The security practices had to be optimum to

encourage methodology uptake by its intended audience. The Secure-SSDM has been fully

documented to show activities, tools and techniques for use at each stage. The utility of the

artefact has been evaluated though a multiple case study with developers confirming its

usability.

Solo developers can benefit from this methodology, by using it to develop quality and secure

products. Given the upsurge in the numbers of solo developers in the software industry, the

use of the methodology to develop software by these software developers would also improve

the quality of software in the industry.

Researchers on the other hand can improve on the methodology by adding or refining the

current quality practices. Further, researchers can perform quantitative evaluation on the

defined practices to prove their impact on the designed software products.

7.4.2 Framework of quality practices in the SSD environment.

The second contribution to knowledge was the development of a framework that depicts

quality practices in the SSD environment and the outcomes expected when these are applied.

This was carried out in Chapter 2. Developers seeking to build quality into their software

products can refer to the framework in designing quality software. Researchers intending to

205

design new methods can build on the framework or refine it as new practices are added to the

environment.

7.4.3 Adapted algorithm for integrating quality and security practices.

A third contribution in this research is the adaptation of a quality and security practices

integration algorithm for the purpose of using it in a generic environment. This research

managed to adapt Keramati and Mirian-Hosseinabadi (2008)’s algorithm designed for use in

an organisational setting and applied the resulting algorithm in a generic setting. Researchers

wishing to integrate quality practices and security practices in a similar setting, can further

adapt the algorithm to suit their purpose.

7.4.4 Research Publications

Communication is one of the stages of DSR. The output of DSR research needs to be packaged

and communicated to the intended audience. An important audience during such a research is

the academic audience. These serve to prove that the researcher used the right approach in

designing the artefact. Two paper publications were made during the course of this thesis. In

their chronological order they were:

1. Moyo, S. & Mnkandla, E. (2019) ‘A Meta-synthesis of Solo Software Development

Methodologies’, in International Multidisciplinary Information Technology and Engineering

Conference 2019 (IMITEC 2019). Johannesburg.

2. Moyo, S. & Mnkandla, E. (2020) ‘A Novel Lightweight Solo Software Development

Methodology with Optimum Security Practices’, IEEE Access.

The third form of communication is this thesis, titled:

3. A Software development methodology for solo software developers: leveraging the product

quality of independent developers

7.5 Limitations of the study

The first limitation in this study is that the meta-ethnography process used to develop the

primary framework might have missed some SSDM studies that were not published in the

electronic sources used. This would mean that some quality practices were not included in the

framework. The other limitation is that this research did not define metrics to measure the sub-

206

characteristics that define the quality characteristics expected of the products designed using

this methodology. The utility of the Secure-SSDM in building quality products was only

evaluated based on the developers’ perceptions. This means the internal quality of the

resulting product could not be measured. This was considered out of scope since the research

sought to identify and use practices that have been used by other authors for the purpose and

therefore practices were assumed to be of the quality claimed.

Another limitation of the study is that a few participants took part in the industry case study.

Further, for the industry case study, there were no measures of ascertaining the developers’

adherence to the methodology. As a result, the generalisation of the results from the multiple

case study is questionable.

7.6 Research Implications

The Secure-SSDM introduces security promoting practices into a solo software development

environment where the developer is responsible for both quality and security practices. In

secure software development, seperation of duty is a key aspect of security. A developer using

the proposed methodology designs, implements and tests both the quality and security of the

software product. This gives the developer full control of the software artefact which may

compromise the quality and security of the product. Embedding several roles in the same

person calls for developers to uphold software development ethics so that they are honest on

evaluating the quality and security of their products.

The implication to practice is that solo developers have to be multi-skilled. A solo developer

adopting the Secure-SSDM for their software development projects needs to also acquire the

security skills besides the quality promoting skills that most developers have. At the

implementation stage developers are discouraged from reusing code which they do not

understand. While this practice is viewed as increasing developer productivity and is prevalent

among solo developers, they have to be willing to create their own code base that will ensure

quality and trustworthy software code.

From a busines point of view the results of this study give solo developers a competitive

advantage in satisfying their clients. Haq et al. (2018) indicate that security is the highest-

ranking satisfaction factor that clients look for in web-based applications ahead of ease of use,

user interface and information. Therefore, solo developers adopting practices embedded in

207

the Secure-SSDM stand to improve the quality and security of the software products resulting

in improved client satisfaction rates which may in turn lead to improved client following.

While freelance software development has been considered as an alternative cheap source of

software products, as indicated by one of the industry participants in Section 7.3, the pricing

gap may be reduced. Clients of solo developers may need to be prepared to absorb the cost

that comes with secure software development. To fully benefit from the proposed

methodology, software champions need to be willing to provide a budget commensurate with

the security expected from the software product.

7.7 Recommendations for further work

This research provided answers for most of the questions asked as detailed in Section 7.2.

However, the research did not perform an internal evaluation of the quality and security of the

products designed by the developers. In this research, this was assumed to be inherent based

on the practices used to design the Secure-SSDM. The perceptions of the developers were

used for the purpose. Further research can build on this research by conducting controlled

experiments to evaluate the quality of products built using the methodology.

There are other quality practices that were shown to be missing in the quality framework when

compared with the IEE/IEC 25010 quality model. These include product characteristics

portability and efficiency. Further research can be conducted to introduce quality practices

that support these characteristics.

208

8 REFERENCES

Abrahamsson, P. et al. (2002) ‘Improving Software Developer’s Competence: Is the Personal

Software Process Working?’, in Empirical Software Engineering. Rovaniemi, Finland, pp.

1–8. Available at: http://arxiv.org/abs/1311.0228. (Accessed: 18 August 2017)

Abrantes, J. F. & Travassos, G. H. (2011) ‘Common Agile Practices in Software Processes’,

in 2011 International Symposium on Empirical Software Engineering and Measurement.

IEEE, pp. 355–358. doi: 10.1109/ESEM.2011.47.

Agarwal, R. & Umphress, D. (2008) ‘Extreme programming for a single person team’, in 46th

Annual Southeast Regional Conference on XX. Auburn, AL, USA.: ACM, pp. 82–87.

Available at: http://dl.acm.org/citation.cfm?id=1593105.1593127. (Accessed: 27 August

2017)

Aguda, O. A. (2016) Effectiveness of Security Requirements Engineering in Agile/Scrum

Software Development Projects. Colorado Technical University.

Ahmed, M. A. & Hoven, J. van den (2010) ‘Agents of responsibility-freelance web developers

in web applications development’, Information Systems Frontiers, 12(4), pp. 415–424. doi:

10.1007/s10796-009-9201-0.

Al-amin, S. et al. (2018) ‘Toward effective adoption of secure software development

practices’, Simulation Modelling Practice and Theory, 85, pp. 33–46. doi:

https://doi.org/10.1016/j.simpat.2018.03.006.

Al-Tarawneh, M. Y., Abdullah, M. S. & Ali, A. B. M. (2011) ‘A proposed methodology for

establishing software process development improvement for small software development

firms’, Procedia Computer Science. Elsevier, 3, pp. 893–897. doi:

10.1016/j.procs.2010.12.146.

Albadarneh, A., Albadarneh, I. & Qusef, A. (2015) ‘Risk management in Agile software

development: A comparative study’, 2015 IEEE Jordan Conference on Applied Electrical

Engineering and Computing Technologies (AEECT), pp. 1–6. doi:

10.1109/AEECT.2015.7360573.

Alexander, I. (2003) ‘Misuse Cases : Use Cases with Hostile Intent’, IEEE Software, pp. 58–

66.

209

Almomani, M. A. et al. (2016) ‘An Empirical Analysis of Software Practices in Malaysian

Small and Medium Enterprises’, in 3rd International Conference On Computer And

Information Sciences (ICCOINS). Kuala Lumpar, Malaysia: IEEE, pp. 442–447.

Ambler, S. W. (2001) ‘Determining What to Build: Object-Oriented Analysis’, in The Object

Primer. 2nd edn. Cambridge, United Kingdom: Cambridge University Press, pp. 181–240.

Amjad, S. et al. (2017) ‘Calculating Completeness of Agile Scope in Scaled Agile

Development’, IEEE Access, 6, pp. 5822–5847. doi: 10.1109/ACCESS.2017.2765351.

Anacona, D. et al. (2015) ‘Innova-Procedure : A procedure to guide the innovation of software

development processes in VSEs Innova-Procedure : Un procedimiento para guiar la

innovación de procesos de desarrollo software en VSEs’, pp. 108–115.

Atlassian (2019) Trello. Available at: https://trello.com (Accessed: 25 September 2019).

Ayalew, T., Kidane, T. & Carlsson, B. (2013) ‘Identification and Evaluation of Security

Activities in Agile Projects’, in H., N. R. and Gollmann, D. (eds) NordSec 2013. Berlin:

Springer-Verlag Berlin Heidelberg, pp. 139–153.

Ayalew, Y. & Motlhala, K. (2014) ‘Software Process Practices in Small Software Companies

in Botswana’, in 2014 14th International Conference on Computational Science and Its

Applications. IEEE Computer Society Press, pp. 49–57. doi: 10.1109/ICCSA.2014.20.

Baca, D. et al. (2015) ‘A Novel Security-Enhanced Agile Software Development Process

Applied in an Industrial Setting’, in 2015 10th International Conference on Availability,

Reliability and Security. IEEE, pp. 11–19. doi: 10.1109/ARES.2015.45.

Baca, D. & Carlsson, B. (2011) ‘Agile development with security engineering activities’, in

Proc. 2011 Intl. Conference on Software and Systems Process. Honolulu: ACM, pp. 149–

158. doi: 10.1145/1987875.1987900.

Barafort, B. et al. (2018) ‘A software artefact to support standard-based process assessment :

Evolution of the TIPA ® framework in a design science research project’, Computer

Standards & Interfaces. Elsevier, 60(February), pp. 37–47. doi: 10.1016/j.csi.2018.04.009.

Barbara, K. & Pfleeger Lawrence, S. (1996) ‘Software quality: The Elusive target’, IEEE

Software, 13(1), pp. 12–21.

Baskerville, R. et al. (2018) ‘Design Science Research Contributions : Finding a Balance

210

between Artifact and Theory’, Journal of the Association for Information Systems, 19(5),

pp. 358–376. doi: 10.17705/1jais.00495.

Basri, S. Bin & O’Connor, R. V. (2010) ‘Organizational Commitment towards Software

Process Improvement: An Irish Software VSEs Case Study’, in Proceedings 2010

International Symposium on Information Technology - System Development and

Application and Knowledge Society, ITSim’10, pp. 1456–1461. doi:

10.1109/ITSIM.2010.5561489.

Beck, K. (2000) Extreme Programming Explained: Embrace Change, Addison-Wesley.

Boston, MA, USA: Addison - Wesley. doi: 10.1136/adc.2005.076794.

Beck, K. et al. (2001) ‘Manifesto for Agile Software Development’, pp. 2–3. Available at:

https://www.researchgate.net/file.PostFileLoader.html?id=57d055b593553b11467ddd59

&assetKey=AS%3A403742915612673%401473271220194. (Accessed 20 September

2017)

Beck, K. & Andres, C. (2004) Extreme Programming Explained: Embrace Change. 2nd edn.

Adison Wesley.

Belk, M. et al. (2011) Fundamental Practices for Secure Software Development. 2nd edn.

Edited by S. Simpson. Software Assurance Forum for Excellence in Code (SAFECode).

Bernabé, R. B. ., Navia, Á. . & García-Peñalvo, J. . (2015) ‘Faat - Freelance as a Team’, in

Third International Conference on Technological Ecosystems for Enhancing

Multiculturality-TEEM ’15. Porto, Portugal: ACM, pp. 687–694. doi:

http://dx.doi.org/10/1145/2808580.2808685.

Beznosov, K. & Kruchten, P. (2004) ‘Towards Agile Security Assurance’, in New Security

Paradigms Workshop 2004. White Point Beach Resort, Nova Scotia, Canada: ACM, pp.

47–54.

Boehm, B. (2006) ‘A view of 20th and 21st century software engineering’, in Proceedings of

the 28th International Conference on Software Engineering SE - ICSE ’06. Shanghai:

ACM, pp. 12–29. doi: doi: 10.1145/1134285.1134288.

Boehm, B. & Turner, R. (2009) Balancing Agility and Discipline, A Guide for the Perplexed.

7 th. Boston: Pearson Education, Inc.

211

Brereton, P. et al. (2007) ‘Lessons from applying the systematic literature review process

within the software engineering domain’, Journal of Systems and Software. Elsevier Inc.,

80(4), pp. 571–583. doi: 10.1016/j.jss.2006.07.009.

Cahill, M. et al. (2018) ‘Qualitative synthesis: A guide to conducting a meta-ethnography’,

British Journal of Occupational Therapy, 81(3), pp. 129–137. doi:

10.1177/0308022617745016.

Calvo-Manzano, J. A. et al. (2012) ‘Methodology for process improvement through basic

components and focusing on the resistance to change’, Journal of software: Evolution and

Process, pp. 511–523.

Christos, K. (2015) ‘A Taxonomy of Evaluation Approaches in Software Engineering’, in

BCI’15. Craiova, Romania: ACM, pp. 1–8. doi:

http://dx.doi.org/10.1145/2801081.2801084.

Cockburn, A. (2004) Crystal Clear : a human-powered methodology for small teams. Pearson

Education, Inc.

Coleman, G. & O’Connor, R. V. (2008) ‘An investigation into software development process

formation in software start‐ups’, Journal of Systems and Software, 81(5), pp. 772–778. doi:

10.1108/17410390810911221.

Communications, Z. V. (2019) Zoom Pricing. Available at: https://zoom.us (Accessed: 10

October 2019).

Crispin, L. (2006) ‘Driving Software Quality : How Test-Driven Development Impacts

Software Quality’, Software, IEEE, 23(6), pp. 70–71. doi: 10.1109/MS.2006.157.

Cruzes, D. S. & Dybå, T. (2011) ‘Research synthesis in software engineering: A tertiary

study’, Information and Software Technology, 53(5), pp. 440–455. doi:

10.1016/j.infsof.2011.01.004.

Davis, N. (2013) Secure Software Development Life Cycle Processes. Pittsburgh. Available

at: http://resources.sei.cmu.edu/asset_files/whitepaper/2013_019_001_297287.pdf.

(Assessed: 28 May 2018)

Dent, A. (2008) ‘From Scrum to Solo: How Small is Too Small a Team to Still Call it Software

Engineering?’, in Aitken, A. and Rosbotham, S. (eds) 19th Australian Software

212

Engineering Conference:ASWEC 2008. Barton, ACT:Engineers, Australia, pp. 152–159.

Available at: http://www.aswec2008.curtin.edu.au/IndustryReport/Dent - SCRUM to

Solo.pdf. (Accessed: 24 August 2017)

Diaz, A. et al. (2016) ‘The ISO/IEC 29110 Implementation on two Very Small Software

Development Companies in Lima. Lessons Learned’, IEEE Latin America Transactions,

14(5), pp. 2504–2510. doi: 10.1109/TLA.2016.7530452.

Dingsøyr, T. et al. (2018) ‘Exploring software development at the very large-scale: a

revelatory case study and research agenda for agile method adaptation’, Empirical Software

Engineering. Empirical Software Engineering, 23(1), pp. 490–520. doi: 10.1007/s10664-

017-9524-2.

Dingsøyr, T., Faegri Erland, T. & Itkonen, J. (2014) ‘What is Large in Large-Scale ? A

Taxonomy of Scale for Agile Software’, in Jedlitschka, A. et al. (eds) Product-Focused

Software Process Improvement. Springer International Publishing, pp. 1–5. doi:

10.1007/978-3-319-13835-0.

Dittrich, Y. (2016) ‘What does it mean to use a method ? Towards a practice theory for

software engineering’, Information and Software Technology. Elsevier B.V., 70, pp. 220–

231. doi: 10.1016/j.infsof.2015.07.001.

Doyle, M. et al. (2014) ‘Agile Software Development in Practice’, in XP 2014. Switzerland:

Springer International Publishing, pp. 32–45. doi: 10.4018/978-1-59904-927-4.ch001.

Driessen, V. (2010) A Successful Git Branching Model, 05 January. Available at:

https://nvie.com/posts/a-successful-git-branching-model/ (Accessed: 16 November 2018).

Driessen, V. (2018) Git power tools for daily use, 08 November. Available at:

https://nvie.com/posts/git-power-tools/ (Accessed: 16 November 2018).

Dybå, T. & Dingsøyr, T. (2008) ‘Empirical studies of agile software development: A

systematic review’, Information and Software Technology, 50(9–10), pp. 833–859. doi:

10.1016/j.infsof.2008.01.006.

Dzhurov, Y., Krasteva, I. & Ilieva, S. (2009) ‘Personal Extreme Programming–An Agile

Process for Autonomous Developers’, in International Conference SOFTWARE,

SERVICES & SEMANTIC TECHNOLOGIES (S3T). Sofia, Bulgaria, pp. 252–259.

213

Easterbrook, S. et al. (2008) ‘Selecting Empirical Methods for Software Engineering

Research’, in Shull, F., Singer, J., and Sjøberg, D. I. K. (eds) Guide to Advanced Empirical

Software Engineering. Springer, pp. 285–311.

Eclipse Foundation (2018) ‘Eclipse Process Framework: EPF 1.5.2 Release’. Available at:

https://www.eclipse.org/epf/ (Accessed: 10 August 2018).

Elvesæter, B., Benguria, G. & Ilieva, S. (2013) ‘A comparison of the Essence 1.0 and SPEM

2.0 specifications for software engineering methods’, Proceedings of the Third Workshop

on Process-Based Approaches for Model-Driven Engineering - PMDE ’13, pp. 1–10. doi:

10.1145/2489833.2489835.

Fayad, M. E., Laitinen, M. & Ward, R. P. (2000) ‘Software Engineering in the Small’,

Communications of the ACM, 43(3), pp. 115–118. Available at:

http://portal.acm.org/citation.cfm?doid=330534.330555. (Accessed: 18 October 2017)

Fioravanti, F. (2011) ‘eXtreme Programming’, Skills for Managing Rapidly Changing IT

Projects, (February), pp. 108–133. doi: 10.4018/978-1-59140-757-7.ch009.

Firdaus, A., Ghani, I. & Jeong, S. R. (2014) ‘Secure Feature Driven Development (SFDD)

Model for Secure Software Development’, in International Conference on Innovation,

Management and Technology Research. Malaysia: Elsevier B.V., pp. 546–553. doi:

10.1016/j.sbspro.2014.03.712.

Fitzgerald, B. & Stol, K. J. (2017) ‘Continuous software engineering: A roadmap and agenda’,

Journal of Systems and Software. Elsevier Ltd., 123, pp. 176–189.

Fowler, M. & Highsmith, J. (2001) The Agile Manifesto.

Fuggetta, A. (2000) ‘Software Process : A Roadmap’, in Future of Software Engineering.

Limerick: ACM, pp. 1–12. doi: 10.1145/336512.336521.

Galvan, S. et al. (2015) ‘A Compliance Analysis of Agile Methodologies with the ISO/IEC

29110 Project Management Process’, Procedia Computer Science. Elsevier Masson SAS,

64, pp. 188–195.

García-Mireles, G. A. et al. (2012) ‘Towards the harmonization of process and product

oriented software quality approaches’, Communications in Computer and Information

Science, 301 CCIS, pp. 133–144. doi: 10.1007/978-3-642-31199-4_12.

214

García-Mireles, G. A. et al. (2015) ‘Approaches to promote product quality within software

process improvement initiatives: A mapping study’, Journal of Systems and Software, 103,

pp. 150–166.

Garg, K. (2017) Case Study Oriented Learning Environment for Software Engineering.

International Institute of Information Technology, Hyderabad, India.

Ghani, I., Azham, Z. & Jeong, S. R. (2014) ‘Integrating software security into agile-Scrum

method’, KSII Transactions on Internet and Information Systems, 8(2), pp. 646–663. doi:

10.3837/tiis.2014.02.019.

Gherib, B., Baghdadi, Y. & Kraiem, N. (2015) ‘A method engineering perspective for service-

oriented system engineering’, International Journal of Web Information Systems, 11(4),

pp. 62–99. doi: 10.1108/IJWIS-03-2015-0004.

González-Sanabria, J. S., Morente-Molinera, J. A. & Castro-Romero, A. (2017) ‘DeSoftIn :

A methodological proposal for individual software development’, Revista Facultad de

Ingeniería (Rev. Fac. Ing.). Pedagogical and Technological University of Colombia

(UPTC), 26(45), pp. 23–32. doi: http://doi.org/10.19053/01211129.v26n44.2017.5768.

Gregor, S. (2006) ‘The Nature of Theory in Information Systems’, MIS Quarterly, 30(3), pp.

611–642.

Hakim, H., Sellami, A. & Abdallah, H. Ben (2016) ‘Evaluating Security in Web Application

Design Using Functional And Structural Size Measurements’, in Joint Conference of the

International Workshop on Software Measurement and the International Conference on

Software Process and Product Measurement, pp. 182–190. doi: 10.1109/IWSM-

Mensura.2016.16.

Hap (2020) Hireaprogrammer. Available at: https://www.hireaprogrammer.co.za/ (Accessed:

26 August 2020).

Haq, N. U. et al. (2018) ‘Determinants of client satisfaction in web development projects from

freelance marketplaces’, International Journal of Managing Projects in Business, 11(3),

pp. 583–607. doi: 10.1108/IJMPB-02-2017-0017.

Hayes, W. & Over, J. (1997) The Personal Software Process (PSP): An Empirical Study of

the Impact of PSP on Individual Engineers, CMU/SEI-97-TR001.

215

Heck, P. & Zaidman, A. (2018) ‘A systematic literature review on quality criteria for agile

requirements specifications’, Software Quality Journal. Springer US, 26, pp. 127–160. doi:

10.1007/s11219-016-9336-4.

Hevner, A. et al. (2004) ‘Design Science Research in Information Systems’, MIS quarterly,

28(1), pp. 75–105. doi: 10.2307/25148625.

Hevner, A. R. et al. (2004) ‘Design Science in Information Systems Research’, MIS Quarterly,

28(1), pp. 75–105. doi: 10.2307/25148625.

Hollar, A. B. (2006) Cowboy: An Agile Programming Methodology for a Solo Programmer.

Virginia Commonwealth University.

Homaei, H. & Shahriari, H. R. (2019) ‘Athena : A framework to automatically generate

security test oracle via extracting policies from source code and intended software

behaviour’, Information and Software Technology, 107, pp. 112–124.

Howard, M., LeBlanc, D. & Viega, J. (2010) 24 Deadly Sins of Software Security:

Programming Flaws and How to Fix Them. McGraw Hill.

Hsieh, J. & Hsieh, Y. (2013) ‘Appealing to Internet-based freelance developers in smartphone

application marketplaces’, International Journal of Information Management. Elsevier

Ltd, 33(2), pp. 308–317. doi: 10.1016/j.ijinfomgt.2012.11.010.

Hughes, B. & Cotterrell, M. (2012) Software Project Management. 5th edn. Berkshire,

England: McGraw- Hill Higher Education.

Humphrey, W. S. (1995) A Discipline for Software Engineering. Addison-Wesley Longman

Publishing Co Inc.

Humphrey, W. S. (2000) The Personal Software Process (PSP) The Personal Software

Process SM (PSP SM), TECHNICAL REPORT CMU/SEI-2000-TR-022 ESC-TR-2000-

022.

Idri, A. et al. (2017) ‘ISO/IEC 25010 Based Evaluation of Free Mobile Personal Health

Records for Pregnancy Monitoring’, Proceedings - International Computer Software and

Applications Conference, 1, pp. 262–267. doi: 10.1109/COMPSAC.2017.159.

IEEE Computer Society (2014) IEEE Standard for Software Quality Assurance Processes,

IEEE Std 730-2014 (Revision of IEEE Std 730-2002). doi:

216

10.1109/IEEESTD.2014.6835311.

Iqbal, J. et al. (2016) ‘Software SMEs’ unofficial readiness for CMMI®-based software

process improvement’, Software Quality Journal. Springer US, 24(4), pp. 997–1023. doi:

10.1007/s11219-015-9277-3.

ISO/IEC (2014) TECHNICAL REPORT ISO / IEC TR 29110-5-6-2 Systems and software

engineering — Lifecycle profiles for Very Small and engineering guide : Generic profile

group : Basic profile. Switzerland.

ISO/IEC (2018) ‘INTERNATIONAL STANDARD ISO / IEC Information technology —

Security techniques — Information security management systems — Overview and’.

Switzerland: ISO/IEC, pp. 1–27.

ISO (2010) ISO/IEC FCD 25010: Systems and software engineering–system and software

product quality requirements and evaluation(SQauRE)–System and software quality

models.

Janus, A. et al. (2012) ‘The 3C approach for Agile Quality Assurance’, in 3rd International

Workshop on Emerging Trends in Software Metrics (WETSoM). Zurich, Switzerland:

IEEE, pp. 9–13.

Kabbedijk, J. & Jansen, S. (2011) ‘Steering insight: An exploration of the Ruby software

ecosystem’, Lecture Notes in Business Information Processing, 80 LNBIP, pp. 44–55.

Kadi, I., Idri, A. & Ouhbi, S. (2016) ‘Quality evaluation of cardiac decision support systems

using ISO 25010 standard’, 2016 IEEE/ACS 13th International Conference of Computer

Systems and Applications (AICCSA), (1), pp. 1–8. doi: 10.1109/AICCSA.2016.7945657.

Karim, N. S. A. et al. (2016) ‘The practice of secure software development in SDLC: an

investigation through existing model and a case study’, Security and Communication

Networks, 9(18), pp. 5333–5345. doi: 10.1002/sec.1700.

Keramati, H. & Mirian-Hosseinabadi, S.-H. (2008) ‘Integrating Software Development

Security Activities with Agile Methodologies’, in 2008 IEEE/ACS International

Conference on Computer Systems and Applications. Doha: IEEE, pp. 749–754. doi:

10.1109/AICCSA.2008.4493611.

Keshta, N. & Morgan, Y. (2017) ‘Comparison between traditional plan-based and agile

217

software processes according to team size & project domain (A systematic literature

review)’, in 2017 8th IEEE Annual Information Technology, Electronics and Mobile

Communication Conference (IEMCON). IEEE, pp. 567–575. doi:

10.1109/IEMCON.2017.8117128.

Kruchten, P. (2002) A Software Development Process for a Team of One. Available at:

http://www.ibm.com/developerworks/rational/library/content/RationalEdge/feb02/Proces

sForOneFeb02.pdf (Accessed: 14 August 2017).

Laporte, C., Alexandre, S. & O’Connor, R. (2008) ‘A Software Engineering Lifecycle

Standard for Very Small Enterprises’, in Springer-Verlag (ed.) Software Process

Improvement. Berlin, Heidelberg, pp. 129–141. doi: 10.1007/978-3-540-85936-9_12.

Laporte, C., April, A. & Renault, A. (2006) ‘Applying ISO / IEC Software Engineering

Standards in Small Settings : Historical Perspectives and Initial Achievements’, in

Proceedings of SPICE 2006 Conference. Luxembourg, pp. 1–6.

Laporte, C., Renault, A. & Alexandre, S. (2008) ‘The Application of International Software

Engineering Standards in Very Small Enterprises’, in Oktaba, H. and Piattini, M. (eds)

Software Process Improvement for Small and Medium Enterprises : Techniques and Case

Studies. IGI Global, pp. 42–70.

Laporte, C. Y. et al. (2017) ‘Systems engineering and management processes for small

organizations with ISO/IEC 29110: An implementation in a small public transportation

company’, in 11th Annual IEEE International Systems Conference, SysCon 2017 -

Proceedings, pp. 1–8. doi: 10.1109/SYSCON.2017.7934718.

Larrucea, X. et al. (2016) ‘Software Process Improvement in Very Small Organizations’,

IEEE Software, 33(April), pp. 85–89. doi: 10.1109/MS.2016.42.

Laukkanen, E., Itkonen, J. & Lassenius, C. (2017) ‘Problems, causes and solutions when

adopting continuous delivery—A systematic literature review’, Information and Software

Technology. Elsevier B.V., 82, pp. 55–79. doi: 10.1016/j.infsof.2016.10.001.

León-sigg, M. De et al. (2018) ‘Adaptation of the Initial Software Development Method for a

Single Developer’, in 6th International Conference in Software Engineering Research and

Innovation. San Luis Potosi, Mexico: IEEE, pp. 35–41. doi:

10.1109/CONISOFT.2018.00013.

218

Leppa, M. (2013) ‘A Comparative Analysis of Agile Maturity Models’, in Pooley, R. (ed.)

Information Systems Development:Reflections, Challenges and New Directions. New

York: Springer Science + Business Media, pp. 329–343. doi: 10.1007/978-1-4614-4951-5.

Lew, P. (2012) ‘An Enterprise Framework for Evaluating and Improving Software Quality’,

in PNSQC 2012. PNSQC.ORG, pp. 1–11.

Lucassen, G. et al. (2016) ‘Improving agile requirements: the Quality User Story framework

and tool’, Requirements Engineering. Springer London, 21(3), pp. 383–403. doi:

10.1007/s00766-016-0250-x.

Lucia, A. De & Qusef, A. (2010) ‘Development Requirements Engineering in Agile Software

Development’, Journal of Emerging Technologies in Web Intelligence, 2(3), pp. 212–220.

doi: 10.4304/jetwi.2.3.212-220.

Magdaleno, A. M., Werner, C. M. L. & Araujo, R. M. De (2012) ‘Reconciling software

development models: A quasi-systematic review’, Journal of Systems and Software, 85(2),

pp. 351–369.

Malik, U. M., Nasir, H. M. & Javed, A. (2014) ‘An Efficient Objective Quality Model for

Agile Application Development’, International Journal of Computer Applications, 85(8),

pp. 975–8887.

Marchewka, J. T. (2015) Information Technology Project Management: providing

measurable organisational value. 5th edn. Hobken: John Wiley and Sons.

Maxim, B. R. & Kessentini, M. (2016) ‘An introduction to modern software quality

assurance’, in Software Quality Assurance. Elsevier Inc., pp. 19–46. Available at:

http://dx.doi.org/10.1016/B978-0-12-802301-3.00002-8.

McCall, J. a., Richards, P. K. & Walters, G. F. (1977) ‘Factors in software quality: Concept

and Definitions of Software Quality’, I(November), p. 188.

McGraw, G. (2005) The 7 Touchpoints of Secure Software.

Microsoft (2008) ‘MICROSOFT SECURITY DEVELOPMENT LIFECYCLE (SDL)’.

Microsoft Corporation, pp. 1–78.

Mnkandla, E. (2016) A META-SYNTHESIS ON THE USABILITY OF SOCIAL MEDIA

BLENDS IN E-LEARNING, University of South Africa. Univeristy of South Africa.

219

Mohammad, A., Alqatawna, J. & Abushariah, M. (2017) ‘Secure software engineering:

Evaluation of emerging trends’, in ICIT 2017 - 8th International Conference on

Information Technology, Proceedings, pp. 814–818. doi:

10.1109/ICITECH.2017.8079952.

Mohammed, M. A., Moles, R. J. & Chen, T. F. (2016) ‘Meta-synthesis of qualitative research:

the challenges and opportunities’, International Journal of Clinical Pharmacy. Springer

International Publishing, 38(3), pp. 695–704. doi: 10.1007/s11096-016-0289-2.

Moyo, S. & Mnkandla, E. (2019) ‘A Metasynthesis of Solo Software Development

Methodologies’, in International Multidisciplinary Information Technology and

Engineering Conference 2019 (IMITEC 2019). Johannesburg.

Moyo, S. & Mnkandla, E. (2020) ‘A Novel Lightweight Solo Software Development

Methodology with Optimum Security Practices’, IEEE Access, 8, pp. 33735–33747. doi:

10.1109/ACCESS.2020.297100.

Mtsweni, J. S. (2013) iSEMSERV: A FRAMEWORK FOR ENGINEERING INTELLIGENT

SEMANTIC SERVICES. University of South Africa.

Napoleão, B. M. & Rodrigo, P. (2018) ‘Using meta-ethnography to synthesize research on

knowledge management and agile software development methodology’, in Brazil

Symposium on Software Quality (SBQS), October 17–19. Curtiba, Brazil: ACM. doi:

https://doi.org/10.1145/3275245.3275270.

Naur, P. & Randell, B. (1968) Software Engineering, Report on a conference sponsored by

the NATO SCIENCE COMMITTEE. doi: 10.1111/j.1432-1033.1992.tb16798.x.

Nili, A., Tate, M. & Johnstone, D. (2017) ‘A framework and approach for analysis of focus

group data in information systems research’, Communications of the Association for

Information Systems, 40(Article 1), pp. 1–21. doi: 10.17705/1cais.04001.

Nistala, P. V. et al. (2016) ‘Quality management and Software Product Quality Engineering’,

in Software Quality Assurance. Elsevier Inc., pp. 133–150. doi: 10.1016/B978-0-12-

802301-3.00006-5.

Noblit, G. W. & Hare, R. D. (1998) ‘Meta-Ethnography : Synthesizing Qualitative Studies’,

in Particularities: Collected Essays on Ethnography and Education. Peter Lang AG, pp.

93–123.

220

Nurdiani, I. et al. (2019) ‘Understanding the order of agile practice introduction : Comparing

agile maturity models and practitioners ’ experience’, The Journal of Systems & Software.

Elsevier Inc., 156, pp. 1–20. doi: 10.1016/j.jss.2019.05.035.

Nwasra, N., Basir, N. & Marhusin, M. F. (2016) ‘A framework for evaluating QinU based on

ISO/IEC 25010 and 25012 standards’, in 2015 9th Malaysian Software Engineering

Conference, MySEC 2015, pp. 70–75. doi: 10.1109/MySEC.2015.7475198.

O’Connor, R. V. & Laporte, C. Y. (2014) ‘An Innovative Approach to the Development of an

International Software Process Lifecycle Standard for Very Small Entities’, International

Journal of Information Technologies and Systems Approach, 7(1), pp. 1–22. doi:

10.4018/ijitsa.2014010101.

Oates, B. J. (2006) Researching Information Systems and Computing. London: SAGE

Publications Ltd.

Object Management Group Inc. (2011) Business Process Model and Notation (BPMN).

Available at: http://www.omg.org/spec/BPMN/2.0. (Accessed: 18 May 2018)

Osterweil, L. J. (1997) ‘Software processes are software too, revisited’, Proceedings of the

19th international conference on Software engineering ICSE 97, Boston, Ma, pp. 540–548.

doi: 10.1145/253228.253440.

Othmane, L. et al. (2014) ‘Extending the Agile Development Process to Develop Acceptably

Secure Software’, IEEE Transactions on Dependable and Secure Computing. IEEE, 11(6),

pp. 497–509. doi: 10.1109/TDSC.2014.2298011.

Oueslati, H., Rahman-Masudar, M. & Othmane-ben, L. (2015) ‘Literature Review of the

Challenges of Developing Secure Software Using the Agile Approach’, in 10th

International Conference on Availability, Reliability and Security. Toulouse, France:

IEEE, pp. 540–547. doi: 10.1109/ARES.2015.69.

OWASP (2006) OWASP CLASP. Available at: https://owasp.org/ (Accessed: 26 December

2019).

OWASP (2017) Software Assurance Maturity Model. Mountain View, USA.

Pagotto, T. et al. (2016a) ‘Scrum Solo’, in 11th Iberian Conference on Information Systems

and Technologies (CISTI). Las Palmas, Spain: IEEE, pp. 1–6. doi:

221

10.1109/CISTI.2016.752155.

Pagotto, T. et al. (2016b) ‘Scrum Solo’, in I1th Iberian Conference on Information Systems

and Technologies (CISTI). Las Palmas, Spain: IEEE, pp. 1–6. doi:

10.1109/CCISTI.2016.752155.

Palsetia, N. et al. (2016) ‘Securing native XML database-driven web applications from

XQuery injection vulnerabilities’, The Journal of Systems & Software. Elsevier Inc., 122,

pp. 93–109. doi: 10.1016/j.jss.2016.08.094.

Pardo, C. et al. (2011) ‘Harmonizing quality assurance processes and product characteristics’,

Computer, 44(6), pp. 94–96. doi: 10.1109/MC.2011.178.

Paternoster, N. et al. (2014) ‘Software Development in Startup Companies : A Systematic

Mapping Study’, Information and Software Technology, 56(20), pp. 1200–1218.

Pedreira, O. et al. (2007) ‘A systematic review of software process tailoring’, ACM SIGSOFT

Software Engineering Notes, 32(3), pp. 1–6. doi: 10.1145/1241572.1241584.

Peffers, K. et al. (2008) ‘A Design Science Research Methodology for Information Systems

Research’, Journal of Managenet Information Systems, 24(3), pp. 45–77. doi:

10.2753/MIS0742-1222240302.

Pohl, C. & Hof, H.-J. (2015) Secure Scrum: Development of Secure Software with Scrum. doi:

10.1109/UBMK.2017.8093383.

Porres, I. et al. (2013) ‘Authoring IEC 61508 Based Software Development Process Models’,

in 14th International Conference on Product-Focused Software Process Improvement

(PROFES 2013). Berlin Heidelberg: Springer-Verlag, pp. 268–282. doi: 10.1007/978-3-

642-39259-7_22.

Pressman, R. & Maxim, B. (2015a) Software Engineering: A Practitioner’s approach. 8th

edn. New York: McGraw Hill.

Pressman, R. & Maxim, B. (2015b) Software Engineering: A Practitioner’s Approach. 8th

edn. New York, New York, USA: McGraw Hill,Education.

Qumer, A. & Henderson-Sellers, B. (2006) ‘Measuring Agility and Adoptability of Agile

Methods : A 4-Dimensional Analytical Tool’, in IADIS International Conference Applied

Computing. IADIS Press, pp. 503–507.

222

Qumer, A. & Henderson-Sellers, B. (2008) ‘An evaluation of the degree of agility in six agile

methods and its applicability for method engineering’, Information and Software

Technology, 50(4), pp. 280–295. doi: 10.1016/j.infsof.2007.02.002.

Rafi, U. et al. (2015) ‘US-Scrum: A Methodology for Developing Software with Enhanced

Correctness, Usability and Security’, International Journal of Scientific & Engineering

Research, 6(9), pp. 377–383. Available at: http://www.ijser.org. (Accessed: 20 August

2019)

Rafique, Y., Mišić, V. B. & Misic, V. B. (2013) ‘The effects of test-driven development on

external quality and productivity: A meta-analysis’, IEEE Transactions on Software

Engineering, 39(6), pp. 835–856. doi: 10.1109/TSE.2012.28.

Ragunath, P. et al. (2010) ‘Evolving A New Model (SDLC Model-2010) For Software

Development Life Cycle (SDLC)’, International Journal of Computer Science and

Network Security, 10(1), pp. 112–119.

Ramachandran, M. (2016) ‘Software security requirements management as an emerging cloud

computing service’, International Journal of Information Management, 36, pp. 580–590.

Ramingwong, L., Ramingwong, S. & Kusalaporn, P. (2017) ‘Solo Scrum in Bureaucratic

Organization: A Case Study from Thailand’, in Kim, K. J., Kim, H., and Baek, N. (eds) IT

Convergence and Security, 2017. Gateway East, Singapore: Springer Verlag, pp. 341–348.

Raunak, M. S. & Binkley, D. (2017) ‘Agile and other trends in software engineering’, in 2017

IEEE 28th Annual Software Technology Conference (STC). Gaithersburg, MD, USA:

IEEE, pp. 1–7. doi: 10.1109/STC.2017.8234457.

Raymund, S. et al. (2005) ‘Personal Software Process (PSP) Assistant’, in Software

Engineering Conference. Taipei, Taiwan: IEEE, pp. 687–694.

Richardson, I. & Gresse von Wangenheim, C. (2007) ‘Guest Editors’ Introduction: Why are

Small Software Organizations Different?’, IEEE Software, 24(1), pp. 18–22. doi:

10.1109/MS.2007.12.

Rindell, K., Hyrynsalmi, S. & Leppänen, V. (2017) ‘Busting a Myth :Review of Agile Security

Engineering Methods’, in Availability, Reliability and Security - ARES ’17. Reggia

Calabria, Italy: ACM, pp. 1–10. doi: 10.1145/3098954.3103170.

223

Rindell, K., Hyrynsalmi, S. & Leppänen, V. (2018) ‘Aligning Security Objectives With Agile

Software Development’, in XP ’18 Companion. Porto, Portugal: ACM, New York,

NY,USA, pp. 1–9.

Robinson, G. & Conkin, L. (2013) Code review guide 2.0.

Runeson, P. et al. (2012) CASE STUDY RESEARCH IN SOFTWARE ENGINEERING. 1 st.

New York, USA: John Wiley and Sons.

Runeson, P. & Höst, M. (2009) ‘Guidelines for conducting and reporting case study research

in software engineering’, Empirical Software Engineering, 14(2), pp. 131–164. doi:

10.1007/s10664-008-9102-8.

Sandelowski, M., Docherty, S. & Emden, C. (1997) ‘Focus on qualitative methods.

Qualitative metasynthesis: issues and techniques.’, Research in nursing & health, 20(4),

pp. 365–371. doi: 10.1002/(SICI)1098-240X(199708)20:4<365::AID-NUR9>3.0.CO;2-E.

Santos, R. E. S., Magalhãe, C. V. C. & da Silva, F. Q. B. (2017) ‘Member Checking in

Software Engineering Research : Lessons Learned from an Industrial Case Study’, in 2017

ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement Member. IEEE Computer Society, pp. 187–192. doi:

10.1109/ESEM.2017.29.

Schwaber, K. (1997) ‘SCRUM Development Process’, in Business Object Design and

Implementation. London: Springer, pp. 117–134. Available at:

http://link.springer.com/10.1007/978-1-4471-0947-1_11. (Accessed: 12 July 2018)

Schwaber, K. & Sutherland, J. (2013) The Scrum Guide, Scrum.Org and ScrumInc. doi:

10.1053/j.jrn.2009.08.012.

Schwalbe, K. (2012) Information Technology Management. 7 th. Boston: Course Technology,

Cengage Learning.

Seaman, C. B. (1999) ‘Qualitative Methods in Empirical Studies of Software Engineering’,

IEEE Transactions on Software Engineering, 25(4), pp. 557–572.

Selleri Silva, F. et al. (2015) ‘Using CMMI together with agile software development: A

systematic review’, Information and Software Technology. Elsevier B.V., 58, pp. 20–43.

Sfetsos, P. et al. (2016) ‘Integrating user-centered design practices into agile Web

224

development: A case study’, in 2016 7th International Conference on Information,

Intelligence, Systems & Applications (IISA), pp. 1–6. doi: 10.1109/IISA.2016.7785424.

Sfetsos, P. & Stamelos, I. (2010) ‘Empirical studies on quality in agile practices: A systematic

literature review’, in Proceedings - 7th International Conference on the Quality of

Information and Communications Technology, QUATIC 2010. IEEE, pp. 44–53. doi:

10.1109/QUATIC.2010.17.

Siau, K. & Long, Y. (2005) ‘Synthesizing e‐government stage models – a meta‐synthesis

based on meta‐ethnography approach’, Industrial Management & Data Systems, 105(4),

pp. 443–458. doi: 10.1108/02635570510592352.

Sillitti, A. and Succi, G. (2006) ‘Requirements Engineering for Agile Methods’, Engineering

and MaNanaging Software Requirements.

Sindre, G. & Opdahl, A. L. (2005) ‘Eliciting security requirements with misuse cases’,

Requirements Engineering, 10(1), pp. 34–44. doi: 10.1007/s00766-004-0194-4.

Sjøberg, D. I. K. et al. (2008) ‘Building Theories in Software Engineering’, in Shull, F.,

Singer, J., and Sjøberg, D. I. K. (eds) Guide to Advanced Empirical Software Engineering.

London: Springer-Verlag, pp. 312–320. doi: 10.1007/978-1-84800-044-5.

Solyman, A. M., Ibrahim, O. A. & Elhag, A. A. M. (2015) ‘Project management and software

quality control method for small and medium enterprise’, in 2015 International Conference

on Computing, Control, Networking, Electronics and Embedded Systems Engineering

(ICCNEEE), pp. 123–128. doi: 10.1109/ICCNEEE.2015.7381442.

Sommerville, I. (2011) Software Engineering. 9th edn. Pearson Education, Inc.

Sonia & Singhal, A. (2012) ‘Integration Analysis of Security Activities from the perspective

of agility’, in Agile India. Bengaluru, India: IEEE Computer Society, pp. 40–47. doi:

10.1109/AgileIndia.2012.9.

Sonia, Singhal, A. & Banati, H. (2014) ‘Fisa-Xp’, ACM SIGSOFT Software Engineering

Notes, 39(3), pp. 1–14. doi: 10.1145/2597716.2597728.

Steiner, D. (2015) The Best Freelancer Websites for Finding Developers, Business.com.

Stewart, J. et al. (2012) ‘A qualitative metasynthesis of activity theory in SIGDOC

proceedings 2001-2011’, in Proceedings of the 30th ACM international conference on

225

Design of communication - SIGDOC ’12, p. 341. doi: 10.1145/2379057.2379120.

Suryn, W. (2014) ‘Software Quality Engineering: Making it Happen’, in Software Quality

Engineering: A practioner’s Approach, pp. 35–138. doi: 10.1002/9781118830208.

Suteeca, K. & Ramingwong, S. (2017) ‘A framework to apply ISO/IEC29110 on SCRUM’,

20th International Computer Science and Engineering Conference: Smart Ubiquitos

Computing and Knowledge, ICSEC 2016. doi: 10.1109/ICSEC.2016.7859884.

Sutton, S. M. (2000) ‘The Role of Process in a Software Start-up’, IEEE Software, 17(4), pp.

33–39.Available at:

https://pdfs.semanticscholar.org/0e53/13231a32191482ca484d80d6a51a95ec7b54.pdf.

Trienekens, J., Kusters, R. & Van Solingen, R. (2002) ‘Product Focused Software Process

Improvement: Concepts and Experiences from Industry’, Software Quality Journal, 9(4),

pp. 269–281. doi: 10.1023/A:1013715203889.

Uikey, N. (2015) ‘A Lifecycle Model for Web-based Application Development: Incorporating

Agile and Plan-driven Methodology’, International Journal of Computer Applications,

117(19), pp. 28–36. doi: 10.5120/20664-3400.

Vaishnavi, V., Kuechler, B. & Petter, S. (2017) DESIGN S CIENCE R ESEARCH IN

INFORMATION SYSTEMS, Association for Information Systems. Available at:

http://www.desrist.org/design-research-in-information-systems (Accessed: 20 June 2019).

Velmourougan, S. et al. (2014) ‘Software development Life cycle model to build software

applications with Usability’, in International Conference on Advances in Computing,

Communications and Informatics (ICACCI), pp. 271–276.

Venable, J., Pries-Heje, J. & Baskerville, R. (2016) ‘FEDS: A Framework for Evaluation in

Design Science Research’, European Journal of Information Systems, 25(1), pp. 77–89.

doi: 10.1057/ejis.2014.36.

Viega, J. (2005) The clasp application security process, Training Manual. Available at:

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+CLASP+Applicat

ion+Security+Process#0.

Wagner, S. et al. (2015) ‘Operationalised product quality models and assessment: The

Quamoco approach’, Information and Software Technology. Elsevier B.V., 62(1), pp. 101–

226

123. doi: 10.1016/j.infsof.2015.02.009.

Wahyuni, D. (2012) ‘The Research Design Maze: Understanding Paradigms, Cases, Methods

and Methodologies’, Journal of applied management accounting research, 10(1), pp. 69–

80.

Wake, B. (2003) INVEST in Good Stories, and SMART Tasks. Available at:

https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/ (Accessed: 27 June

2019).

Walls, J. G., Widmeyer, G. R. & Sawy, O. A. El (1992) ‘Building an Information System

Design Theory for Vigilant EIS’, Information Systems Research, 3(1), pp. 36–59.

Wäyrynen, J., Bodén, M. & Boström, G. (2004) ‘Security Engineering and eXtreme

Programming: An Impossible Marriage?’, in Conference on Extreme Programming and

Agile Methods. Springer-Verlag, pp. 117–128. doi: 10.1007/978-3-540-27777-4_12.

Wesslén, A. (2000) ‘A Replicated Empirical Study of the Impact of the Methodsin the PSP

on Individual Engineers’, Empirical Software Engineering, 5(2), p. 93. Available at:

http://portal.acm.org/citation.cfm?id=594384.594473.

Wieringa, R. & Daneva, M. (2015) ‘Six strategies for generalizing software engineering

theories’, Science of Computer Programming. Elsevier B.V., 101, pp. 136–152. doi:

10.1016/j.scico.2014.11.013.

Wohlin, C. (2012) ‘Case Studies’, in Experimentation in software engineering. Springer-

Verlag Berlin Heidelberg. doi: 10.1007/978-3-642-29044-2.

Wongsai, N., Siddoo, V. & Wetprasit, R. (2015) ‘Factors of influence in software process

improvement: An ISO/IEC 29110 for very-small entities’, in Proceedings - 2015 7th

International Conference on Information Technology and Electrical Engineering:

Envisioning the Trend of Computer, Information and Engineering, ICITEE 2015, pp. 12–

17. doi: 10.1109/ICITEED.2015.7408904.

Yin, R. K. (2015) Case Studies. Second Edi, International Encyclopedia of the Social &

Behavioral Sciences: Second Edition. Second Edi. Elsevier. doi: 10.1016/B978-0-08-

097086-8.10507-0.

Zarour, M. et al. (2015) ‘An investigation into the best practices for the successful design and

227

implementation of lightweight software process assessment methods: A systematic

literature review’, Journal of Systems and Software. Elsevier Ltd., 101, pp. 180–192. doi:

10.1016/j.jss.2014.11.041.

228

9 APPENDICES

Appendix A1 UNISA Ethical Clearance

229

Appendix A2. NUST Gate Keeper Clearance letter

Appendix B. Focus Group discussion guide

230

Time 2hrs

Having used the Secure-SSDM to design and implement your software product, this

discussion seeks to establish your views on the applicability of the methodology in building

quality and secure software. Feel free to air out your views as observed during the project.

Your views are important in the construction of a quality software development methodology.

Ground Rules: Introduction, formulation and adoption of ground rules 5 mins

Every idea is important

No idea is meaningless

To contribute (or support) an idea, show by a raise of hand

Only the person given the platform talks

The discussion will be directed by a set of question questions, participants are free to seek

clarification on any issues pertaining to the discussion.

General Comments on the Methodology 40 mins

1. Would you consider the Secure-SSDM to be a solution to a real problem/need in the

solo software development environment currently?

2. Would you rate the practices embedded in the methodology adequate to build quality

and secure software, if not what would you add?

3. How easy to follow are the practices in the Secure-SSDM? Which practices would you

consider helpful, and which would you consider to be not?

4. Did you at any point feel you were asked to do more than just developing software?

5. What available tools would you suggest to ease the development process at any of the

methodology stages?

6. What practices in the Secure-SSDM would you consider to be key in developing

quality and secure software?

7. What improvements would you add to the methodology if you were given the

opportunity to?

8. Would you consider using the Secure-SSDM in your future projects?

231

9. Would you recommend the methodology to any fellow developers?

10. Do you think the Secure-SSDM can be used to develop any kind of software system?

Phase by phase analysis: 30 mins

What can you say about the adequacy of practices in these phases? -

i. Management-buy-in and standards adoption

ii. Requirements elicitation

iii. Sprint planning

iv. Development with code review

v. Sprint review and close

vi. Evaluation

Suggestions for Improvement 30 mins

i. Did you make any changes to any activity while performing a certain task?

ii. Did you make some provisions to perform a certain task because it was not clear how

you were supposed to build a certain deliverable?

iii. If you were to add some activities to the methodology what would you add?

iv. Which activities do you think are core for the methodology?

v. What activities do you think are not necessary?

Appendix C Interview Guide – Industry developers

Title: A Software Development Methodology for Solo Software Developers: Leveraging

the Product Quality of Independent Developers

Interview Guide Time: 1 hour

232

1. Introduction 5 minutes

i. Researcher introduction

ii. Explanation of the case study, and what information is of interest, assuring the

interviewee of anonymity.

iii. Explanation of the use of the data being collected, indicating the possibility of

generating some publications from the data.

2. Comment on the Methodology as a whole 20 minutes

i. Would you consider the Secure-SSDM to be a solution to a real problem/need in the

solo software development environment currently?

ii. Would you rate the practices embedded in the methodology adequate to build quality

and secure software, if not what would you add?

iii. How easy to follow are the practices in the Secure-SSDM? Which practices would you

consider helpful, and which would you consider to be not?

iv. Did you at any point feel you were asked to do more than just developing software?

v. What available tools would you suggest to ease the development process at any of the

methodology stages?

vi. What practices in the Secure-SSDM would you consider to be key in developing

quality and secure software?

vii. What improvements would you add to the methodology if you were given the

opportunity to?

viii. Would you consider using the Secure-SSDM in your future projects?

ix. Would you recommend the methodology to any fellow developers?

x. Do you think the Secure-SSDM can be used to develop any kind of software system?

Phase by phase analysis: 20 minutes

i. What can you say about the adequacy of practices in these phases?

ii. Management-buy-in and standards adoption

233

iii. Requirements elicitation

iv. Release & sprint planning

v. Development review

vi. Sprint review and close

vii. Evaluation

3. Suggestions for improvement 10 minutes

i. Did you make any changes to any activity while performing a certain task?

ii. Did you make some provisions to perform a certain task because it was not clear how

you were supposed to build a certain deliverable?

iii. If you were to add some activities to the methodology what would you add?

iv. What activities do you think are not necessary?

4. Comment on the Quality of the Delivered Software product 3 minutes

i. Does your Web-application have the required functionality?

ii. Do you think your component modules can be used to build applications in future

projects?

iii. How did you test the security of your system?

iv. How secure is your system?

5. Conclusion 2 minutes

i. What else can you say about the methodology and its intended audience?

ii. Thank the interviewee and promise to give feedback on the interview once data

transcription is complete.

234

Appendix D Focus Group discussion data capture template

Focus group data capturing template, adapted from Nili, Tate and Johnstone (2017)

Time

⇩

Moderator

Question:

Participant Responses

 A B C D E F G H I J

