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Abstract 

 

  Whole-brain networks have been used to study the connectivity paths within the brain, 

constructed using information from diffusion magnetic resonance imaging (dMRI) data and white matter 

fiber tractography (FT). These techniques can detect alterations in the white matter integrity and changes 

in axonal connections, whose alterations can be due to the presence of small vessel disease (SVD). 

 However, there is a lack of consensus in network reconstruction methods and therefore no gold-

standard model of the human brain network. Moreover, dMRI data are affected by methodological issues 

such as scan noise, presence of false-positive and false-negative connections. Consequently, the 

reproducibility and the reliability of these networks is normally very low.  

  A potential solution to deal with the low reproducibility of brain networks is to analyze only its 

backbone structure. This backbone is assumed to represent the building blocks of structural brain 

networks and thus composed by a set of strong connections and voided of spurious connections. Such 

backbone should be reproducible in scan-rescan scenarios and relatively consistent between healthy 

subjects, while still being sensitive to disease-related changes. Several types of backbones have been 

proposed, constructed using white matter tractography, with dMRI data. However, no study has directly 

compared these backbones in terms of reproducibility, consistency, or sensitivity to disease effects in a 

patient population. 

  In this project, we examined: (1) whether the proposed backbones can be applied to clinical 

datasets by testing if they are reproducible over two time-points and consistent between groups; (2) if 

they are sensitive to disease effects both in a cross-sectional and longitudinal analysis. We evaluated our 

research questions on a longitudinal cohort of patients with cerebral SVD and age matched controls, as 

well as a validation dataset of healthy young adults. Our cohort contained 87 elderly memory clinic 

patients with SVD recruited via the UMC Utrecht, scanned twice with an inter-scan time between 

baseline and follow-up of 27 ± 4 months. We also included baseline scans of 45 healthy elderly, matched 

in age, sex and education level, to be used as controls. Data from 44 healthy young adults was used as 

validation data. For each subject, we reconstructed brain structural networks from the diffusion MRI 

data. Subsequently, we computed 4 types of network backbone, previously described in literature: the 

Minimal Spanning Tree (MST), the Disparity Core, the K-Core, and Hub-Core.  

We compared these backbones and tested their reproducibility within subjects, and their 

consistency across subjects and across groups. Moreover, we performed a cross-sectional analysis 

between controls and patients at baseline, to evaluate if these backbones can detect disease effects and a 

longitudinal analysis with patient data over time, to test if they can detect disease progression. Regarding 

our first objective, our results show that overall MST is the backbone that shows the best reproducibility 

between repeated scans, as well as the highest consistency among subjects, for all of the three brain 

templates that we used. Secondly, the MST was also sensitive to network alterations both on a cross-

sectional analysis (patients vs. controls) and on a longitudinal analysis (baseline vs. follow-up). 

  We therefore conclude that, the use of these network backbones, as an alternative of the whole-

brain network analysis, can successfully be applied to clinical datasets as a novel and reliable way to 

detect disease effects and evaluate disease progression.  

 

  Key-words: small vessel disease, diffusion tensor imaging, fiber tractography, white matter, 

neural network, brain connectivity, network backbone. 
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Resumo 

 

A demência vascular cerebral (SVD) é a segunda principal causa de demência, depois da doença 

de Alzheimer. Este tipo de demência está relacionado com patologias vasculares cerebrais, assim como 

com perda de funcionalidades cognitivas. Vários estudos explicam que a degradação da atividade 

cognitiva característica desta doença pode dever-se à diminuição da integridade da substância branca e 

a alterações nas conexões axonais. O estudo da conectividade cerebral tem sido uma forte aposta no 

estudo das causas e da forma como a demência vascular cerebral evolui. 

A construção de mapas neuronais é uma das práticas que mais tem sido usada para estudar e 

entender os mecanismos principais da conectividade cerebral: representar o cérebro como um conjunto 

de regiões e as ligações entre elas. Para isso, utiliza-se informação proveniente de imagens de ressonância 

magnética por difusão (dMRI), especificamente de imagens por tensor de difusão (DTI), capazes de 

medir a magnitude de difusão das moléculas de água no cérebro in vivo, através de gradientes aplicados 

em pelo menos seis direções no espaço. Desta forma, é possível estimar a direção principal do movimento 

das moléculas de água que compõem as microfibras da substância branca cerebral, e reconstruir os 

percursos de neurónios que conectam as várias regiões do cérebro. Este processo é chamado de 

tractografia de fibras (FT), que proporciona um modelo a três dimensões da arquitetura tecidular cerebral, 

permitindo a visualização e o estudo da conectividade e da continuidade dos percursos neuronais. Assim, 

é possível obter informação quantitativa acerca do sistema nervoso in vivo e contruir mapas de 

conectividade cerebral. 

No entanto, existe falta de consenso sobre as regras de reconstrução destes mapas neuronais, 

fazendo com que não haja um modelo-base para o estudo dos mesmos. Além disto, os dados provenientes 

das imagens de dMRI são facilmente afetados e podem diferir da realidade. Alguns exemplos mais 

comuns são a presença de ruído e existência tanto de conexões falsas como a ausência de conexões que 

deviam estar presentes, chamadas respetivamente de falsos-positivos e falsos-negativos. 

Consequentemente, os modelos de conectividade não podem ser comparados entre diferentes aparelhos 

de ressonância, nem mesmo entre diferentes momentos temporais, por terem uma baixa 

reprodutibilidade, tornando estes métodos poucos fiáveis. 

As soluções propostas para lidar com esta falta de consenso quanto à reconstrução de mapas ou 

redes neuronais e a presença de conexões falsas podem ser agrupadas em duas categorias: normalização 

e redução da rede neuronal através da aplicação de um limiar (threshold, em inglês). Contudo, os 

processos de normalização para remover certas tendências erradas destas redes não eram suficientes e, 

por vezes, introduziam outras dependências. Quanto à aplicação de limiares, mesmo que alguns estudos 

mostrem que a sua utilização no mapa neuronal do cérebro todo pode efetivamente eliminar alguns 

efeitos, a própria escolha de um limiar pode conduzir a modificações nas redes neuronais através de 

eliminação de certas comunicações fundamentais. 

Como uma extensão da redução destas redes neuronais com o objetivo de lidar com a sua baixa 

reprodutibilidade, vários estudos têm proposto uma nova abordagem: analisar apenas uma espécie de 

esqueleto das mesmas. O objetivo deste “esqueleto-neuronal” é o de representar as ligações mais 

importantes e estruturais e estar isento de falsas conexões. Idealmente, este “esqueleto-neuronal” seria 

reprodutível entre diferentes dispositivos e consistente entre indivíduos saudáveis, enquanto se manteria 

fiel às diferenças causadas pela presença de doenças. Assim sendo, o estudo da extração de um esqueleto-

neuronal, visa encontrar estruturas fundamentais que evitem a perda de propriedades topológicas. Por 
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exemplo, considerando pacientes com SVD, estes esqueletos-neuronais devem fornecer uma melhor 

compreensão das alterações da conectividade cerebral ao longo do tempo, permitindo uma comparação 

sólida entre diferentes pontos no tempo e a identificação de alterações que sejam consequência inegável 

de doença. Alguns tipos destas redes neuronais foram já propostos em diversas publicações científicas, 

que podem ser construídos utilizando FT de substância branca com informação proveniente de dMRI. 

Neste estudo, utilizamos o Minimum Spanning Tree (MST), o K-Core, o Disparity Core e o Hub-Core, 

que são redes-esqueleto já existentes na literatura. A eficácia tanto do uso do MST como do K-Core já 

foram comprovadas tanto a nível de deteção de alterações da conectividade cerebral, como na medida 

em que conseguem manter as conexões mais importantes do esqueleto cerebral, eliminando conexões 

que podem ser consideradas duvidosas. No entanto, até agora, nenhum estudo se focou na comparação 

dos diferentes esqueletos-neuronais existentes quanto à sua reproducibilidade, consistência ou 

sensibilidade aos efeitos de doença ao longo do tempo. 

Neste estudo, utilizamos os quatro modelos-esqueletos mencionados anteriormente, avaliando: 

(1) se estes esqueletos-neuronais podem ser efetivamente aplicados a dados clínicos, testando a sua 

reproducibilidade entre dois pontos de tempos distintos e a sua consistência entre grupos de controlos 

saudáveis; (2) se são sensíveis a efeitos causados por doença, tanto entre controlos e pacientes, como na 

evolução de alterações de conectividade em pacientes ao longo do tempo. Os dados longitudinais 

utilizados provêm de imagens ponderadas em T1 de 87 pacientes idosos com SVD, assim como de um 

grupo controlo de 45 idosos saudáveis coincidentes em idade com estes pacientes, e de um grupo de 

validação constituído por 44 jovens saudáveis. Para cada um dos objetivos, testamos os 4 tipos de 

esqueletos-neuronais, baseados primeiramente num modelo que divide o córtex cerebral em 90 regiões 

de interesse (ROIs) e posteriormente em modelos de 200 e 250 regiões. No pós-processamento, foram 

construídas e comparadas matrizes de conectividade que representam as ligações entre as várias regiões 

em que dividimos o córtex. Com estas matrizes foi possível calcular valores de conectividade como a 

força nodal (NS) e a eficiência global (GE). Também foram comparadas matrizes que diziam respeito a 

parâmetros específicos de DTI como a anisotropia fracionada (FA) e a difusividade média (MD). A 

análise estatística foi feita utilizando testes paramétricos t-test e ANOVA. 

Os resultados indicam que, no geral, estas redes podem ser utilizadas como forma de analisar e 

estudar mapas de conectividade cerebral de forma mais precisa, pois são reprodutíveis entre controlos 

saudáveis em tempos diferentes, e conseguem detetar as diferenças de conectividade devidas a doença. 

Além disso, representam as ligações mais importantes da rede de conectividade neuronal, criando uma 

base para comparações fiáveis. A maior parte dos esqueletos-neuronais mostraram ser consistentes 

dentro de cada grupo de estudo, e apresentaram diferenças de conectividade entre controlos e pacientes. 

Neste caso, comparando sujeitos saudáveis com pacientes, os valores das componentes de FA e de MD 

destes esqueletos neuronais, e as suas alterações, vão de encontro com a literatura sobre a evolução do 

estado das ligações neuronais no desenvolvimento de demência. Quanto à análise longitudinal dos 

pacientes, concluímos que a NS representa uma medida mais fiável de análise das alterações ao longo 

do tempo da doença do que a GE. Finalmente, e ainda que algumas destes esqueletos-neuronais tenham 

mostrado melhor desempenho do que outros em diferentes abordagens, concluímos que o MST é a rede-

esqueleto que dispõe dos melhores resultados utilizando o modelo de 90 e 200 ROIs, do cérebro todo, 

assim como usando o modelo de 250 ROIs aplicado só ao hemisfério esquerdo. 

Em suma, conclui-se que a utilização destes tipos de redes-esqueleto pode vir a tornar-se uma 

melhor alternativa em relação à utilização das redes neuronais originais do cérebro completo, visto que 
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podem ser eficazmente aplicadas à análise de dados clínicos como forma fiável de detetar presença e 

evolução de doenças. 

 

Palavras-chave: demência vascular, tractografia, substância branca, conectividade cerebral, 

esqueleto-neuronal. 
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1. Introduction 
 

Diffusion Magnetic Resonance Imaging (dMRI) is an advanced neuroimaging technique and can detect 

brain lesions by identifying alterations in white matter integrity and changes in axonal properties1. These 

alterations are associated with cognitive dysfunction and dementia2, leading to neurodegenerative 

processes such as cerebral small vessel disease (SVD), which is a vascular brain pathology3–5. Diffusion 

tensor imaging (DTI), as an extension of diffusion-weighted imaging (DWI), is a magnetic resonance 

(MR) technique capable of measuring the magnitude of diffusion of water molecules within tissues. By 

using diffusion information, it is possible to use tractography to map intra- and inter-cortical pathways 

and model the human brain as networks or graphs in vivo6. Thus, DTI can be used to study connectivity 

changes, specifically white matter microstructure changes due to small vessel disease2,7–9. 

However, despite these advances in neuroscience, there are still methodological issues that remain 

unsolved10,11. Brain networks are widely used to describe the brain as a set of regions, called nodes, and 

the connections between them, called edges. Moreover, representing the brain as a network as already 

been proved to be efficient in detecting cognitive changes due to cognitive impairment, by studying the 

network measures12–15. Nevertheless, there is a lack of consensus in network reconstruction methods and 

therefore no gold-standard model of the human brain network. Researchers use different tractography 

algorithms and different brain parcellations16,17, which makes it difficult to harmonize results from 

different studies10,18. Moreover, dMRI provides indirect measurements, and the accuracy of white matter 

tractography is very dependent on methodological factors19, such as noise and other artefacts, leading to 

the presence of false-positive and false-negative connections. The above mentioned issues have limited 

comparability among experimental conditions, cohorts and studies20. 

The solutions proposed to deal with the lack of consensus in network reconstruction and the presence of 

spurious connections can be grouped into two categories: 1) normalization and 2) network reduction by 

applying a threshold. Normalization typically involves comparison of estimated network characteristics 

to a reference network with the same density (percentual number of connections), and sometimes also 

the same degree distribution (number of connections of the network nodes) 20; whilst network reduction 

involves removing potential false positive connections from the network by means of thresholding. 

However, normalization can sometimes introduce other dependencies18, and although some studies show 

that thresholding applied to the whole brain network can actually eliminate size and density effects21–23, 

choosing threshold conditions may lead to modifications of the network by enforcing or ignoring 

connections18. 

In order to solve this problem, studies have proposed a new approach: to only analyze the backbone 

structure of the network10,24. Network backbones are types of brain networks that do not use the entire 

information of the whole-brain connectivity network. The backbone should represent the building blocks 

of structural brain networks and could be used as a null model of connections, in order to provide a 

reference model for brain analysis and detect disease-related changes. Considering patients with SVD, 

these backbones should provide a better understanding of altered connectivity over time, allowing a 

robustly comparison between time-points and identifying alterations due to disease. 
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Several types of backbones have been proposed in literature. Analysis of the Minimum Spanning Tree 

(MST) has shown to be a viable method to directly compare structural brain networks of different 

populations20. The MST is defined as the sub-network that connects all nodes within the network, as 

efficiently as possible, without forming any loops20. Previous studies have shown that MST analysis can 

be used to capture network alterations due to aging and disease in both functional and structural imaging 

data13,20,25,26. The K-Core decomposition consists in identifying particular subsets of the graph, called 

k-cores, obtained by removing all the nodes of degree smaller than k, until the degree of all remaining 

nodes is larger than or equal to k. Nodes with larger degree and more central position in the structure of 

the network correspond to larger values of the index k27. The K-Core was found to be a useful extraction 

of the overall brain network14 compared to the full connectivity matrix, eliminating the least reliable 

connections which can arise due to tract tracing errors. Its anatomical correspondence with regions of 

high metabolic activity and with some elements of the human default network suggests that this backbone 

may be an important structural basis for shaping large-scale brain dynamics28. 

The third backbone is called Disparity Core, that is a local filter. It goes to each node individually, and  

it proceeds by identifying which connections for each node should be preserved in the network, based 

on the local identification of the statistically relevant weight heterogeneities, and is able to filter out the 

backbone of dominant connections in weighted networks with strong disorder, maintaining structural 

properties and hierarchies at all scales24. Finally, the Hub Core is a network backbone based on high-

centrality nodes16, called hubs. This sub-network uses the strongest network hubs, maintaining all their 

connections. Detailed information about these backbones, can be found in Section 2.5.3. Excluding the 

Disparity Core, all the others have already been applied to the study of the brain. 

Our goal focuses on evaluating which of these network backbones are a better representation of the brain 

structure and if they can be applied to clinical datasets. This thesis focuses on the following questions: 

1) Are these backbones reproducible over time?  2) Are they sensitive to disease effects in cross-sectional 

analysis and to disease progression in longitudinal analysis? Moreover, we compare weighted graph 

measures of global and local connectivity, by using a test-retest dataset of 87 elderly memory clinic 

patients with SVD, from Parelsnoer study29; 44 young healthy subjects, used as validation data, provided 

by the Human Connectome Project30, also from two distinct time-points; and we also included baseline 

scans of 45 healthy elderly, matched in age, sex and education level, provided by the Utrecht Diabetic 

Encephalopathy Study (UDES)31, to be used as controls. In order to define the brain regions used for the 

analysis, we primarly used a subset of the 90 non-cerebellarregions-of-interest composing the automated 

anatomical labelling (AAL) parcellation atlas17 for all of our subject groups on both time-points. 

Afterward, we performed the analysis with a 200-nodes whole-brain parcellation and a 250-nodes left 

hemisphere parcellation based on a study by Schaefer et al32., used only for the validation data at baseline. 

This manuscript is divided in 6 chapters. The theoretical background necessary to understand this work 

is introduced in chapter 2, including concepts such as SVD, DWI and DTI, fiber tractography, brain 

connectomics, network reconstruction and graph theory. Then, in the methods (chapter 3), it is explained 

how the network backbones were reconstructed for each template, of 90, 200 and 250 nodes, as well as 

all the techniques used. The results of this study are presented in chapter 4 and discussed in chapter 5. 

General conclusions are provided in chapter 6. 
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2. Background 
 

2.1. VASCULAR COGNITIVE IMPAIRMENT 

 

Vascular cognitive impairment (VCI) refers to the spectrum of vascular brain pathologies that contribute 

to any degree of cognitive impairment, ranging from subjective cognitive decline to dementia5. VCI can 

be caused by stroke affecting large blood vessels, but is mainly caused by small vessel disease3,33,34. For 

that reason, deterioration can be slow and gradual, that is, stepwise deterioration and focal cognitive 

deficits are often not observed5. 

2.1.1. Small Vessel Disease 

 

Cerebral small vessel disease affects the small blood vessels deep within the brain, causing damage to 

deep (subcortical) areas. SVD is responsible for 10%–30% of stroke cases and 50%–70% of vascular 

cognitive impairment35. This damage to the blood vessel walls can be a consequence of untreated high 

blood pressure or diabetes leading to vascular disease. 

The main cerebrovascular pathologies in VCI are infarcts and white matter hyperintensities (WMHs)5, 

that are types of small vessel lesions seen on neuroimaging where the brain is most damaged. The 

resulting brain damage can also include lacunes (small strokes resulting in fluid-filled spaces)3 and 

cerebral microbleeds (flow voids in pial blood vessels in cortical sulci)36. These lesions (Figure 2.1) 

might be clinically silent individually, as many affected people do not have symptoms. However, 

increasing numbers of both individual lesions and combinations of SVD lesion types are associated with 

cognitive impairment, dementia, depression, mobility problems, increased risk of stroke37 and worse 

outcome after stroke38. Fortunately, brain scanning techniques such as magnetic resonance imaging 

(MRI) or computerized tomography (CT) can detect the presence of these vascular injuries. 

 

 

Figure 2.1 - Conventional MRI Brain lesions can include white matter hyperintensities (A), lacunes (B) and microbleeds (C). 

Image from a paper of van der Holst39. 

 

In terms of diagnosis of VCI, the key requirements are (1) demonstration of a cognitive deficit by 

neuropsychological testing and (2) presence of cerebrovascular disease.  In the first place, a cognitive 

test has to be performed, involving a minimum of 4 cognitive domains: executive/attention, memory, 
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language, and visuospatial functions33. Equally important is the presence of cerebrovascular pathologies, 

which can be determined by the extent, location and type of vascular lesions, with MRI and CT 

techniques. MRI should include T1-weighted imaging to detect atrophy, T2-weighted imaging to detect 

lacunar infarcts and fluid-attenuated inversion recovery (FLAIR) sequences to detect WMHs5. In 

addition, diffusion tensor imaging (DTI) can detect changes in the white matter (WM) tracts5. 

Some types of nerves damage include demyelination, in which the myelin sheath of neurons is damaged, 

impairing the conduction of signals in the affected nerves; and gliosis, that involves the proliferation or 

hypertrophy of glial cells in response to damage to the central nervous system (CNS). Histopathological 

examination of WMHs in a study by Gouw et al.40, showed different degrees of demyelination, gliosis 

and loss of nerve fibers. Therefore, as the white matter tracts are crucial for information transfer between 

brain regions, it may result in a lower structural network efficiency, and consequently, worse cognitive 

performance. A presumed mechanism is that SVD disturbs the structural connectivity within a large-

scale brain network, thereby impairing the ability of the brain to integrate the neural processes 

efficiently41. Several MRI studies have looked at the relationship between vascular lesions, structural 

connectivity, and cognitive function, with most work done in patients with cerebral SVD. These studies 

consistently found an association between the burden of SVD-related brain lesions and reduced global 

network efficiency41–43, a parameter that will be explored in the Section 2.5.1. Therefore, studying the 

brain connectivity can be crucial to understand the mechanisms through which SVD lesions affect 

cognition, and eventually lead to cognitive impairment. 

 

Furthermore, the aforementioned conventional MRI techniques, coarsely dichotomize tissue between 

normal and abnormal, and do not reliably reflect the degree of demyelination44, while quantitative 

imaging techniques, including DTI, can provide a detailed evaluation of the underlying tissue alterations 

at the voxel level34,39.  

 

Thus, recently, dMRI, fiber tractography and brain network analysis have been applied to explore and 

understand the underlying mechanisms of VCI. 
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2.2.    DIFFUSION TENSOR IMAGING (DTI) 

 

Diffusion tensor imaging is an MRI technique that is sensitive to microstructural tissue changes as it 

measures the magnitude and direction of diffusion of water molecules. Therefore, it is popular for 

imaging the white matter fiber tracts of the brain, and it has been applied to a variety of neuroscientific 

studies including autism45, schizophrenia46, dementia47 and aging48.  

 

2.2.1. Principles of Diffusion 

 

Water molecules, in our body, undergo random translational motion. In physics, this motion is called 

Brownian Motion, as Robert Brown49 discovered in 1827 that all molecules in a fluid warmer than 

absolute zero have thermal energies that cause them to show random motion. This movement, also called 

diffusion, was later described by Einstein50 with the well-known diffusion equation: 

 

〈𝑥2〉 = 2𝐷𝑡𝑑                                                                  (2.1) 

explaining the relation between the mean-squared displacement 〈𝑥2〉 (𝑚2) of the particle during a 

diffusion  time 𝑡𝑑  (𝑠) and the diffusion coefficient 𝐷 (𝑚2 ∙  𝑠−1). 

However, in this example, the mean-squared displacement 〈𝑥2〉 is independent of the direction in which 

particles move (isotropic diffusion), that is, the diffusion would be the same in all directions. In an 

inhomogeneous medium (ie, structured in some way), the particles do not diffuse equally in all directions, 

so the diffusion measured in tissue varies with direction (anisotropic diffusion). In white matter, diffusion 

anisotropy is primarily caused by cellular membranes, with some contribution from myelination and the 

packing of axons51,52. Therefore, anisotropic diffusion can indicate the underlying tissue orientation. 

Diffusion MRI can make this distinction, by replacing 𝐷 in the equation by the apparent diffusion 

coefficient (ADC) for each measured direction. 

 

2.2.2. Measurement of diffusion with MRI 

 

Diffusion-weighted imaging (DWI) was then introduced in the mid-1980s53, as a magnetic resonance 

imaging technique for evaluating tissue pathophysiology in vivo based on the measure of the random 

motion of water molecules54. In order to understand the principles of dMRI, we first need a brief 

introduction to MRI and the way the measurement is done. 

Hydrogen, present in water molecules, is naturally abundant in humans, and its protons can be excited 

by magnetic fields. To produce a typical image, an MRI scanner starts with the alignment of the spin of 

protons in water molecules to the magnetic field 𝐵0 of the equipment, making them rotate with a 

frequency directly proportional to the field strength. 

Then, the excitation of the nuclei radiofrequency (RF) pulse, rotates the magnetization vector into the 

plane normal to the main magnetic field (90º pulse), or into an antiparallel position (180º pulse), creating 

a state of disequilibrium. When the RF pulse is turned off, the orientation of the spins realigns with the 

magnetic field 𝐵0 via an exponential decay. This process is called Relaxation. During this process, as 

protons are returning to equilibrium, they release energy that can be detected by the scan sensors. The 
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amount of energy released, and the recovery time, will be characteristic of the tissue it is part of. 

Furthermore, by varying the excitation and dephasing of the nuclei, it is possible to measure tissue 

properties like the local change in oxygenation (functional MRI) and the diffusion of water molecules 

(diffusion MRI). 

Stejskal and Tanner introduced in 1964 a description of a DW-MR sequence, called Pulsed gradient spin 

echo (PGSE). This MRI sequence is based on the normal spin echo (SE) sequence, including a 180º RF 

pulse following a 90º pulse, with an additional pair of high-amplitude diffusion gradients, in order to 

dephase and, after a spin-echo 180º pulse has been delivered, rephase stationary spins (Figure 2.2).  

 

 

Figure 2.2 - Representation of Spin Echo Diffusion Weighting Sequence and water spins behavior. As in the classical PGSE 

sequence, the 90º and 180º RF pulses are applied. In this case, to probe the diffusion behavior of water molecules, two 

diffusion gradient pulses are applied (top section). In the absence of motion (middle section) the phase offset introduced by 

the first gradient is cancelled by the second. In the presence of diffusion (bottom section), the second gradient does not cancel 

the phase offset, producing a signal loss. Image adapted from a paper of Bastiani et al.55. 

. 

After 180º pulse, if there were no changing in the position of the molecule, the only signal loss that will 

be measured is due to T2 relaxation process. However, if there is motions due to diffusion in the direction 

of the applied gradients, the individual positions will differ between the application of the first and 

second diffusion gradients. Therefore, spins that are moving along the direction of the applied diffusion 

gradient will show bulk dephasing and, consequently, phase loss. This phase loss, due to the diphase of 

the water molecules in movement, is detected as signal loss, and will be proportional to the amount of 

diffusion, independent of the T2 relaxation. This phase dispersion characterizes the degree of diffusion 

weighting, often called b-value, is expressed as: 

𝑏 = 𝛾2𝛿2|𝐺|2 (∆ −
𝛿

3
)                                                        (2.2) 

where b is the b-value measured in 𝑠/𝑚𝑚2, 𝛾 is the gyromagnetic ratio, 𝛿 (𝑠) is the duration of the 

diffusion pulse, |𝐺| (𝑇 ∙ 𝑚−1) is the amplitude of the diffusion gradient and ∆ (𝑠) is the time interval 

between the two diffusion gradients (Figure 2.3). 
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Figure 2.3 - Schematic representation of the two diffusion gradient pulses. They are characterized by amplitude ( |𝑮| ), 
duration (𝜹) and time between their application (∆). Image adapted from the paper of Johansen-Berg, H. & Behrens,T.56 

 

The decreased signal (𝑆𝑘) is compared to the original signal (𝑆0), when no diffusion gradients are applied, 

to calculate the diffusion tensor (𝐷) by solving the Stejskal-Tanner equation (2.3). In a 3D case, it is the 

diffusion gradient vector G = (Gx, Gy, Gz) that determines the direction along which diffusion is 

measured. Moreover, the information contained in the value b considers the directions over which the 

gradient is applied. Therefore, in this case, the b is a matrix with the information of the directions of the 

gradients. This equation describes how the signal intensity at each voxel decreases in the presence of 

Gaussian diffusion: 

𝑆𝑘 = 𝑆0  ∙ exp(−𝑏𝐷)                                                                   (2.3) 

In order to create an image that is sensitized to diffusion in a particular direction, a concept of diffusion 

tensor (DT) was introduced as an extension of DWI, proposed by Peter Basser in 199457. By repeating 

this process in multiple directions, a three-dimensional diffusion model (the tensor) is estimated: 

𝐷 = [

𝐷𝑥𝑥 𝐷𝑦𝑥 𝐷𝑧𝑥

𝐷𝑥𝑦 𝐷𝑦𝑦 𝐷𝑧𝑦

𝐷𝑥𝑧 𝐷𝑦𝑧 𝐷𝑧𝑧

]                                                          (2.4) 

This symmetric 3x3 matrix contains six independent components (note that the tensor is symmetric, so 

𝐷𝑥𝑦 = 𝐷𝑦𝑥, 𝐷𝑧𝑥 =  𝐷𝑥𝑧, 𝐷𝑦𝑧 = 𝐷𝑧𝑦), as D is measured in at least 6 directions (in addiction to a b0 

image), that summarize the diffusion properties of water molecules within a voxel. The diagonal 

elements are the diffusion variances along axes x,y and z, and, by diagonalizing this diffusion tensor we 

obtain the eigenvalues (𝜆1, 𝜆2, 𝜆3) and the corresponding eigenvectores (𝑒1, 𝑒2, 𝑒3)55. 

 

𝐷 = [

𝑒1𝑥 𝑒2𝑥 𝑒3𝑥

𝑒1𝑦 𝑒2𝑦 𝑒3𝑦

𝑒1𝑧 𝑒2𝑧 𝑒3𝑧

]

𝑇

∙  [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] ∙ [

𝑒1𝑥 𝑒2𝑥 𝑒3𝑥

𝑒1𝑦 𝑒2𝑦 𝑒3𝑦

𝑒1𝑧 𝑒2𝑧 𝑒3𝑧

]                               (2.5) 

 

The diffusion tensor can be visualized as an ellipsoid (Figure 2.4), showing the probability of the 

molecules’ displacement due to diffusion. The eigenvectors define the directions of the principal axes 

and the eigenvalues represent the diffusivities in these three directions, respectively. Diffusion is 

considered isotropic when the eigenvalues are nearly equal (i.e. 𝜆1 ≈  𝜆2 ≈  𝜆3).  

The major diffusion eigenvector (𝑒1, direction of greatest diffusivity) is assumed to be parallel to the 

tract orientation in regions of homogeneous white matter58, with 𝜆1 representing its amplitude. 
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Figure 2.4 - Schematic representation of the diffusion displacement distributions of the DT. Left: Fiber tracts have an 

arbitrary orientation with respect to scanner geometry (x,y,z axes) and impose directional dependence (anisotropy) on 

diffusion measurements. Right: The 3D ellipsoid is based on the values of eigenvectors and eigenvalues, expressing the 

overall dominant direction of diffusion in that image voxel. Image from Alexander et al.58. 

 

This three-dimensional (3D) representation of the diffusion in each voxel, is the basis of diffusion tensor 

imaging. The information contained in the tensor is represented into 4 numbers (to give an R,G,B color 

and a brightness value). Consequently, is possible to reconstruct a whole-brain DTI image (Figure 2.5). 

 

2.2.3. DTI measurements 

 

Whilst DTI contains a wealth of information from water diffusion in vivo, analysis often focuses on the 

extraction of two diffusion metrics: Mean Diffusivity (MD), that reflects the average amount of water 

diffusion in a voxel59 , equivalent to ADC, is given by: 

𝑀𝐷 =
𝜆1+ 𝜆2+ 𝜆3

3
                                                             (2.6) 

Fraction Anisotropy (FA), that determines for each voxel of the image the privileged direction of 

diffusion, is given by: 

𝐹𝐴 = √
3

2

√(𝜆1−𝑀𝐷)2+(𝜆2−𝑀𝐷)2+(𝜆3−𝑀𝐷)2

√𝜆1
2+𝜆2

2+𝜆3
2

                                             (2.7) 

FA represents the fraction of the diffusion tensor that can be assigned to anisotropic (directional) 

diffusion. Values for FA range between 0 and 1, with higher values reflecting increased directionality of 

diffusion, independently of the magnitude of diffusion. Lower values are indicating that diffusion is  

almost the same in all directions (as in Cerebrospinal fluid, CSF) whereas values close to 1 are common 

along a single direction, such as a fiber tract1. 

In white matter, changes in tissue orientation patterns inside a voxel can result in a change in the degree 

of anisotropy60. Anisotropy measurements may highlight more subtle anomalies in the organization of 

white matter tracks, e.g., functional disorders that do not necessarily have an anatomical basis60. White 

matter changes such as loss of myelin sheaths and axons are common in Alzheimer’s Disease (AD) and 

may diminish anisotropy47. 
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Figure 2.5 - Diffusion Tensor Imaging. The non-diffusion weighted scan (b0) is shown on the left, followed by the fractional 

anisotropy (FA) image demonstrating higher values in white matter tracts then the mean diffusivity (MD) image with elevated 

values in the CSF. The final column shows the direction of principal eigenvector (Eig1) both in color-coded form (red = 

left/right, green=anterior/posterior, blue=superior/inferior) and in vector form (line segments). Image from Winston et al., 

201261. 

As shown in the study of Reijmer et al. 2, diffusion MRI can detect changes in WM microstructure and 

give insight about the type of microstructural damage by looking at changes in MD and FA. Moreover, 

Bozzali et al.7 showed that white matter hyperintense lesions were detected on scans from patients with 

Alzheimer’s disease. The study explains that diffusion MRI can detect these changes in WM 

microstructure and give insight about the type of damage by looking at changes in MD and FA. Mayo 

et. al.62 published a paper which results revealed that individuals with AD, in a longitudinal analysis, had 

shown reduced FA and increased MD, reflecting loss in myelination and axonal integrity, as a 

consequence of neurodegeneration8,9,63. Furthermore, a study by Selnes et al.64 including 66 dementia 

patients and 28 normal controls, revealed that FA and MD have been shown to be even better predictors 

of disease progression in a small patient population, than the levels of tau protein and amyloid beta-42. 

Diffusion MRI (dMRI) is then the first noninvasive in vivo imaging modality with the potential to detect 

these microstructural changes and to generate fiber-tract trajectories in soft fibrous tissues65, such as 

white matter of the brain, as explained in the next section. 

 

2.3. FIBER TRACTOGRAPHY  

 
Understanding the anatomy of WM can be very useful to study VCI. By measuring the dMRI signal for 

each voxel, the local fiber orientations can be pieced together to infer long-range pathways connecting 

regions of the brain66, a process known as fiber-tracking or fiber tractography (FT). This provides a three-

dimensional reconstruction of the tissue architecture such as the trajectories of white matter fiber 

bundles67, by sequentially piecing together the estimates of fiber orientation from the directionality of 

individual voxels. Thus, FT allows the visualization and study of connectivity and continuity of neural 

pathways by providing quantitative data of nervous systems in vivo65. Two types of tractography have 

been developed, distinguished by the sampling of fiber directions for streamline propagation. 

Deterministic tractography involves propagating a streamline that follow the principal direction of 

water diffusion per voxel. This algorithm is based on: (1) user-specified seed point(s), (2) the principal 

eigenvector of diffusion, as determined by the tensor at each voxel, and (3) user-specified thresholds that 

restrict the trajectory of the tract68. Seed points are voxels of interest where the desire tract is set to start. 
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Users can choose voxels to be set as these starting points as well as mid and end points. A tract will then 

start at this seed point and follow the principal eigenvector direction to the next adjacent voxel, until the 

terminal voxel (Figure 2.6). However, this method is unable to account for inherent uncertainty in 

estimates of fiber orientations69 and is susceptible to noise. 

Probabilistic Tractography, in contrast, provides a probability distribution of fiber orientations for each 

voxel. This type of methods are more computationally expensive, but concede the estimation of 

uncertainty in the trajectory of a given tract, making it possible to determine the likelihood of a streamline 

to propagate in any particular direction70 (Figure 2.7). With these techniques, one can infer global fiber 

trajectories. 

 

 

Figure 2.6 - Vector field of local predominant fiber orientations (deterministic tractography) and two of its streamlines 

depicted on a coronal view of the human brain66. 

 

Figure 2.7 - Visual representation of the differences between deterministic (A) and probabilistic (B) approaches to 

tractography. Probabilistic approaches are considerably more extensive and computationally demanding, as they track all 

orientations in all voxels adjacent to the seed point (grey)68. 

 

Several studies66,71 suggest that in order to understand how the brain operates as a whole, not only do we 

need to understand which cortical regions are active, but it is also important to map out the physical 

connections that mediate information transfer between the regions. Thus, this ability to describe white 

matter fiber pathways of the brain non‐invasively offers enormous potential for the study of brain 

anatomy and function, as well as raising new possibilities for clinical applications. 
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2.3.1. DTI and CSD-based tractography 

 

There are some disadvantages concerning streamline count and diffusion-based measures of axonal 

structure. One primary problem is that these measures are normally sensitive to factors such as axonal 

number, density, caliber, or myelination, that are not necessarily related with meaningful characteristics 

of anatomical connectivity strength. These tissue properties can be problematic in the interpretation of  

connection weights derived from diffusion MRI due to complex fiber geometries within a voxel, changes 

in the signal-to-noise of different voxels due to head motion, or other imaging artifacts70. For example, 

crossing fibers within a voxel have important implications for tractography in particular, as the 

proportion of multiple fibers within WM voxels in the brain has been demonstrated to be at least 90%72. 

The problem with diffusion tensor it that it is only capable of distinguishing a single fiber population per 

voxel (see Fig. 2.8) and it is often a poor representation of the underlying fiber orientations with complex 

architecture. Consequently, it can cause false negatives, in which tracking can terminate prematurely73,74, 

or false positives, in which tracking can switch to an unrelated adjacent tract74,75. Therefore, a further 

problem regarding DTI-based tractography is the difficulty on reconstructing long-range pathways 

because they present streamlines with more opportunities to deviate from the normal course and are thus 

the most challenging to accurately reconstruct70, which hinders the investigation of structural brain 

connectivity. 

Recently, more sophisticated methods such as Constrained Spherical Deconvolution (CSD), introduced 

by Tournier and colleagues76, have been developed in order to estimate the full fiber orientation 

distribution function (fODF)77. CSD aims at modeling the actual fODF, rather than water displacement. 

The fODF reflects the actual orientations of distinct fiber populations by modeling complex fiber 

configurations as linear combinations of Dirac’s delta functions77. As the major limitation of DTI-based 

tractography is the inability to correctly describe complex fiber configurations such as crossing fibers, 

CSD seems a better option to optimize this technique (Figures 2.8 and 2.9).   

 

Figure 2.8 - Example of three-dimensional (3D) profiles obtained using DTI and CSD methods in the case of single fiber 

configuration and two fibers crossing at 90º. When using DTI, the single fiber case is reconstructed accurately. When two 

fibers are crossing, it loses the possibility to discriminate the two main orientations. However, CSD reconstructs the 3D 

orientation distribution functions more accurately. Regarding fibers crossing, CDS technique is very precise. 
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This allows for tractography to continue through regions with complex fiber configurations74, and takes 

into account more than one direction per voxel, which enables a more accurate investigation of structural 

connectivity in vivo23 (see Figure 2.9). 

 

 

Figure 2.9 - Fiber orientation distribution profiles estimated with the CSD method. a) two crossing fiber populations in 

voxels in the superior longitudinal fasciculus. b) one fiber population in the corpus callosum. 

Image from Reijmer, Y. D. et al. 2012 78. 

 

The majority of tractography studies still employ DTI-based tractography lacking the ability to recognize 

complex fiber configurations. Only a few studies23,78 have already specifically used CSD-based 

tractography for investigating the reproducibility of different brain network metrics, connectivity 

weights or reconstruction parameters.  

CSD-based tractography reconstruction is slowly becoming one of the more popular strategies to 

investigate brain connectivity, since it has been developed to mitigate the adverse effects of ‘‘crossing 

fibers’’ on DTI based FT78. 

 

2.4. DIFFUSION-BASED CONNECTOMICS 
 

In 2005, the term Connectome was simultaneously suggested by Sporns and Hagmann, to refer to a map 

of the neural connections within the brain79,80. Since then, "Connectomics", also known as brain network 

analysis, has been defined as the science concerned with assembling and analyzing connectome data sets. 

The whole-brain structural connectivity can then be modeled as a network with diffusion-MRI and 

tractography, to study the white-matter fibers connecting brain areas. Tractography can reveal the 

trajectories of white matter pathways in vivo and infer the underlying structural connectome of the 

human brain. As the connectome term refers to a brain network of connections, network nodes are 

associated with distinct grey-matter regions, while white-matter fiber bundles serve as interconnecting 

network edges. Therefore, fiber tractography claims a central role in the field of Connectomics, as it 

allows the study and building of comprehensive maps of the complex network of connections within the 

brain66. 
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2.4.1. Defining Nodes 

 

A graph is an abstract representation of a network, consisting of a set of nodes (vertices) and edges 

(connections). Nodes are commonly defined as populations of neurons. Nodes can also correspond to 

individual voxels in an MRI dataset, but often thousands of neurons confined in a single MRI voxel may 

contain cells from different populations70. In connectomics, the four most common strategies for node 

definition are: (1) Anatomical, based on a priori anatomical information such as sulcal and gyral 

landmarks; (2) Random, by defining discrete nodes of similar size based on a random parcellation of the 

brain; (3) Functional, by using functional information such as coordinates of peak activations; and (4) 

Voxel-based, where each image voxel represents a distinct node11. 

One of the most used parcellations is the Automated Anatomical Labeling (AAL)17 which is an atlas of 

the human brain. The AAL atlas was constructed through the identification of major and minor sulci on 

a T1 MRI with subsequent labeling based on anatomical location (see Figure 2.10). It also includes the 

whole brain gray matter and is consistent with other that used sulci as landmarks for regions delineation17. 

 

 

Figure 2.10 - Automated anatomical labeling (AAL) parcellation. Image from Prefrontal Cog Neuro MRI, Brain Art: AAL 

Patchwork, 2008, accessed 28 November, <http://prefrontal.org/blog/2008/05/brain-art-aal-patchwork/>. 

 

2.4.2. Defining Edges 

 

Described as the connections between nodes, edges can be defined by different types of connectivity: 

Direction, Weigh and Heterogeneity. Directed edges denote that each anatomical connection emerges 

from a source region and links to a target, whilst undirected edges only have the information about the 

existence of the connection, yet the direction is unknown. Weighted edges assume that the connections 

between regions vary (i.e., are weighted) according to the strength of their interaction. Lastly, 

heterogeneity distinguishes regions that make different types of connections (e.g, excitatory, inhibitory, 

modulatory) with other parts of the brain11. 

A matrix that represents the connections between brain regions is a directed graph or network if the 

element 𝐶𝑖𝑗 does  not necessarily have the same value as the element 𝐶𝑗𝑖, and the matrix is asymmetric 

(Figure 2.11-A and 2.11-B). These matrices allow us to map the influence that on node has on another. 

Different authors have different ways of representing the directionality, and sometimes, efferent 

projections are listed down the columns and afferent projections along the rows, or reversed, and this 

must be precisely indicated. For example, as depicted in Figure 2.11-A and 2.11-B, the element 𝐶𝐹,𝐶 
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encodes the edge projecting from node C to F, as illustrated on the graphs above the matrices. Figure 

2.11-A corresponds to directed graph, with directionality represented using arrowheads (upper panel), 

as well as a weighted graph, as connection strengths are represented as variations in edge thickness of 

the arrows. The corresponding connectivity matrix (lower panel) uses colors to represent variations in 

edge weights. The corresponding unweighted graph is presented in Figure 2.11-B, where all edges have 

the same thickness (upper panel), and all connectivity weights of the matrix (lower panel) have a value 

of zero or one, indicating the absence or presence of a connection. 

In contrast, if the connectivity matrix has identical upper and lower triangles, we have 𝐶𝑖𝑗 =  𝐶𝑗𝑖. This 

means that the matrix represents an undirected graph. This type of networks allows us to identify which 

connections exist between specific pair of network nodes, but do not give information about the 

directions of those connections. An example of an undirected graph is shown in Figure 2.11-C and 2.11-

D. Arrowheads are no longer required in the graph representation (upper panel) as there is no 

directionality, and upper and lower triangles of the connectivity matrix (lower panel) are mirror images 

of each other. 

 

 

Figure 2.11 - The equivalence between graphs and matrices. (A) A weighted, directed network graph (upper panel)  

and its corresponding connectivity matrix (lower panel). (B) A binarized or unweighted version of the directed network 

depicted in (A). (C) An undirected version of the weighted network depicted in (A). The corresponding adjacency matrix is 

symmetric, such that Cij = Cji. (D) A binarized and undirected version of the network in (C). 

Image from the book of Fornito et al. 70. 
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2.5. BRAIN NETWORK ANALYSIS 

 

In 2009, Bullmore and Sporns suggested that a brain network study involves the following four steps81 : 

• Defining the network nodes by subdividing the cortex into several brain regions. This can be achieved 

by performing fine parcellation or atlas based parcellation, such as the Automated Anatomical Labeling 

(AAL) atlas15,17. 

• Estimate the edges, as a measure of association between nodes. For example, the fiber tracts generated 

with DTI that connect a pair of regions. 

• Create an association matrix by compiling all pairwise associations between nodes and (usually) apply 

a threshold to each element of the matrix to produce a binary adjacency matrix or a brain graph. 

• Use graph theory to calculate the network parameters of interest in this graph theoretical model of a 

brain network and compare them to the equivalent parameters of a population of random networks. 

 

Figure 2.12 - Flow chart of constructing a diffusion weighted imaging-based network: (A) With a whole-brain fiber tract 

reconstruction and a subcortical brain regions parcellation (B) is possible to obtain a brain network and its representation by 

a connectivity matrix (C). The application of an threshold creates a binary matrix (D), which can be used to study some brain 

properties (E). Image adapted from the work of Reijmer et al.82 and Telesford83. 

 

Many existing studies in the broader literature15,70,84 have followed this pipeline to analyze brain networks 

(Figure 2.12). Brain imaging data are first processed and analyzed to produce a matrix that denotes the 

strength of connection between nodes. This matrix then offers a compact description of the pairwise 

connectivity between all nodes of a network. Then, a threshold is commonly applied to the matrix to 

generate a binary adjacency matrix, where the weights associated with the remaining edges are omitted, 

leaving only information about whether edges are absent (0 in connectivity matrix) or present (1 in 

connectivity matrix). From this binary matrix, various graph metric analyses can be performed. Both 

weighted and binary connectivity matrices can be used to apply graph theory to study and analyze the 

connectivity matrices. 

 

2.5.1. Graph Theory and Graph Measures 

 

The field of graph theory was propelled forward when Watts and Strogatz85 introduced their small-world 

network model, which described a network that provided regional specialization with efficient global 

information transfer15. Once nodes and edges are accurately defined, graph theory can be used to 
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characterize a wide array of network properties. This kind of approach has gained popularity in the past 

decades because it seems to provide an adequate, yet simple model of a complex system as the brain86. 

When used thoughtfully, these methods can provide novel insights into brain organization11 as graph 

topology can be quantitatively described by a wide variety of measures. In studies of clinical and 

technical neuroscience, complex network theory is particularly appealing as many emotional and 

cognitive disorders have been already characterized as dysconnectivity syndromes. This is due to the 

presence of unusual phenotypic profiles of anatomical/functional connectivity between brain regions87, 

concluding that disconnection leads to dysfunction88. 

It is possible to study a wide range of graph measures. The degree of a node is defined as the number of 

edges connecting that node to the rest of the brain graph (Figure 2.13-A), and degree centrality has been 

used to discriminate between nodes in the system that are well connected, i.e., so-called hubs, and nodes 

that are less well connected, or nonhubs (Figure 2.13-C). The indicators of centrality identify the most 

influential nodes within a network. In a social network, it is used to identify the most influential person87. 

Regarding brain networks, a hub is a regional node with high centrality that plays an important role in 

the dynamics of the system, as it is involved in many of the shortest paths between other regions of the 

whole brain network89. For a weighted graph, node strength represents the sum of weighted edges to 

the node. 

The Watts–Strogatz small-world model (1998) introduces two other important measures: clustering 

coefficient and characteristic path length85. The clustering coefficient is a measurement of the efficiency 

of local connectivity89 and quantifies the number of connections that exist between the nearest 

neighbours of a node as a proportion of the maximum number of possible connections. Moreover, if the 

nearest neighbors of a node are also directly connected to each other they form a cluster (Figure 2.13-

B)81. The characteristic path length is the average of the minimum number of edges required to link any 

two nodes in the network (Figure 2.13-D)87. A related and often more sensitive measure is betweenness 

centrality, defined as the fraction of all shortest paths in the network that pass through a given node90. 

Path length is commonly used to determine the global efficiency of information transfer within a 

network86. Global efficiency is defined as the average of efficiency for all node pairs, as it is a measure 

of parallel information processing ability82. A network with high global efficiency will have a short 

characteristic path length and will be more optimized as a cognitive workspace89. 

These last two metrics also enable us to define the small-world property, as the combination of high 

clustering and short characteristic path length89, since shorter average path length results in more rapid 

and efficient integration across a network87. The “small-world” phenomenon is based on real-world 

networks85,91, describing the simultaneous presence of locally clustered connectivity and short path 

lengths between regions. This network organization provides a topological basis for the dual properties 

of functional segregation and functional integration, are key principles of the organization of the 

brain92,93. 

Finally, modularity is a measure that describes the fact that many networks are divided in modules 

(Figure 2.13-E). Each module contains several densely interconnected nodes, and there are relatively 

few connections between nodes in different modules. Connector hubs are nodes that make the connection 

between modules94. Mathematical definitions of these network measures can be found in the Appendix. 
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Figure 2.13 - Representation of the basic network properties. The measures are illustrated with a simple undirected graph 

with 12 nodes and 23 edges. (A) Node degree. The node a has a degree of 6, and the peripheral node b has the degree of 1. 

(B) Clustering coefficient. In this example, the central node c has 6 neighbors, and these neighbors maintain 8 out of 14 

possible edges. Thus, the clustering coefficient is 0.57 (8 of 14). (C) Centrality. In this example, node d contributes more to 

the centrality because all nodes on the right-side pass through the node d to reach the other nodes in the left side. (D) Path 

length. The shortest path length between the nodes f and g is three steps that pass through two intermediate nodes. (E) 

Modularity. In the example, the network forms two modules interconnected by the single hub node h. Image from the paper of 

Sporns95. 

 

A study by Tuladhar et al. (2016), found that SVD-severity (indicated by higher WMH load, number of 

lacunes and microbleeds, and lower total brain volume) was related to networks with lower density, 

connection strengths, and network efficiency, and consequently to lower scores on cognitive 

performance41. The study also explains the importance of network analysis in the understanding of SVD-

related cognitive impairment in addition to conventional MRI markers for SVD, suggesting that it might 

provide a useful tool as disease marker. 

Other reports show that disease related changes in topological properties of brain graphs can be related 

to other aspects of the disorder in question. For example, reductions in network efficiency have been 

associated with greater white matter lesion load in 330 patients with multiple sclerosis96, and reductions 

in nodal efficiency have been associated with greater severity of local amyloid deposition in patients 

with Alzheimer’s disease, as shown in a study by Buckner et al.97. This study, with 127 participants, 

shows the importance of hubs in brain networks, as it explains that high amyloid-deposition in the 

locations of cortical hubs, while acting as critical regions for information processing, may also augment 

the underlying pathological cascade in AD. 

In a study by Reijmer et al.2, they constructed the structural network of fifty patients with mild cognitive 

impairment (MCI) or dementia and examined correlations between measures of local and global network 

connectivity and cognitive performance on several cognitive domains. Secondly, they examined whether 

network parameters can provide information that is complementary to abnormalities visible on 

conventional MRI (i.e., cerebral atrophy and SVD). The results showed that a less efficient organization 

of the WM network is related to worse memory and executive functioning. Additionally, measures of 

network efficiency explained a substantial proportion of the variance in cognitive functioning on top of 



18 
 

markers of brain atrophy and SVD, indicating that network measures provide information that is clearly 

complementary to widely used conventional MRI biomarkers. 

Graph theory thus provides a common language for the analysis of complex systems in general, and 

allows the description of the key topological properties of nervous systems from the cellular scale of the 

neuronal connectome89, to the whole-brain scale of human neuroimaging data. 

However, despite the potential of network analysis and to quantify topological modifications, the 

methodology is significantly vulnerable regarding the comparison of networks with different densities 

and degree distributions11,18. This is due to the topological metrics being highly dependent on the network 

density98. 

 

2.5.2. Thresholding Problem 

 

Due to the noisy and indirect measurement of water diffusion combined with the nature of probabilistic 

tractography, the resulting structural brain networks are known to contain a substantial percentage of 

spurious connections10,70,86. Therefore, network thresholding methods are widely used to remove 

spurious connections, but it is not yet clear how different thresholding strategies affect basic network 

properties21. Some network studies have employed thresholding strategies, such as, absolute‐

thresholding which applies a uniform threshold to retain only connections above a set weight6 and 

density‐thresholding which applies a relative threshold (Figure 2.14) on the connection weights such 

that the weakest connections are remove to match the same number of connections across subjects90. 

This last type of thresholding tries to remove the effect of network density on graph measures18,98, that 

is defined by the percentage of connections available (i.e. the number of detected edges divided by the 

number of all possible edges). 

Buchanan et al. (2019), explains that network thresholding methods are already widely used to remove 

ostensibly false connections, however, is not yet clear how different thresholding strategies affect basic 

network properties, or whether crucial connections can be incorrectly removed21. A study by de Brito 

Robalo et al. (2020), suggests that fixed-density thresholding might improve the detection of between-

group differences99. 

 

Figure 2.14 - Thresholding process regarding brain network (percentage numbers refer to the density value on each point of 

thresholding process).Thresholding increases to the left, causing the density to decrease. 

 

However, although brain connectivity graphs are being used to study the properties and evolution of 

some diseases, the clinical differences in brain graphs can be challenging to interpret. This is mainly due 

to the complex patterns of adaptive responses, as well as the progressive nature of connectivity deficits 

in many brain diseases. Moreover, analysis of brain graphs in clinical populations requires care in the 
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attribution of biological meaning to some network measures, that is based on many assumptions. For 

example, in a brain graph, path length measures assume that neural information is transmitted via the 

shortest paths70,100, as they allow more direct transmission of neural signals101, however this remains to 

be established so that these models based on diffusion processes may be considered reasonable84. 

The choice of a threshold plays an important role in network analysis, as it affects the density of 

connections and impacts network topology.  It would be argued that thresholding can mask true group 

differences or introduce artificial group differences that are not present in the first place. Network 

thresholding presents a difficult challenge, as there is no consensus on what strategy to use. Within the 

literature, it is common to show how graph metrics change over various thresholds18,25,102. 

Proposed normalization procedures to correct for these biases in both unweighted and weighted network 

analyses do not provide an equate solution. Normalization typically involves comparison of estimated 

network characteristic to those for reference network with the same density, and sometimes also the same 

degree distribution. A study by van Wijk et al. (2010), shows that this normalization step may reduce 

the bias but does not solve it completely, as it introduces other bias that were absent before18. 

Therefore, due to the lack of rules about how these networks should be reconstructed, there is no gold 

standard model of the human brain network yet. Adding this to the fact that the diffusion MRI is a very 

indirect measurement, the accuracy of the fiber tractography turns out to be very dependent on 

methodological aspects. Consequently, networks have low reproducibility over time, and it can be 

difficult to distinguish real network changes only due to disease from artificial changes caused by these 

methodological issues. 

Thus, how can we compare and study brain networks correctly? 

 

2.5.3. Brain Network Backbones 

 

One proposed solution to reconstruct a standard brain network model in order to create a reliable and 

robust method for comparison is found in the literature10,24,103. The idea is to perform network analysis 

using a backbone of the network instead of the whole-brain network. This backbone should be a structure 

with strong connections over which the network is built on. The aim is to build a network to reduce the 

noise due to methodological issues, while keeping the main characteristics of the network and still being 

a reliable way to detect disease-related changes. Increasing evidence suggests that structural brain 

networks, particularly their backbone, are altered in neurological and psychiatric disorders, and 

heterogeneity in these alterations is evident between diseases81,94,98. It is of clinical interest that many of 

these network changes (in clustering and path length) and connectivity loss, are associated with cognitive 

deficits and behavioural changes2,104–108. 

Therefore, a reference network could serve as a null-model to characterize network alterations in 

individual subjects10, and to develop theoretical models of altered connectivity patterns during 

maturation or due to disease11. Although this concept is still quite new, from literature review we found 

that are 4 main concepts of backbones that had already been proposed: Minimum Spanning Tree10,20, 

Disparity Core24,  K-Core28 and Hub-Core16. Excluding the Disparity Core, all the others have already 
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been applied to the study of the brain. Nevertheless, there is a lack of a reference for the human brain 

network even if scanning and preprocessing conditions remain unchanged11,26. 

Minimum Spanning Tree (MST) is a backbone based on the Kruskal algorithm109, that ensures that every 

node is linked to the rest of the network without forming loops, comprising the strongest connections. In 

graph theory, a tree is a undirected graph in which any two vertices are connected by exactly one path 

or, equivalently, a connected acyclic undirected graph110. This facilitates network comparisons without 

normalization or standardization steps13. The usefulness of the MST method has been proved in weighted 

network studies20,111, aging alterations in connectivity brain studies13,112 and in the comparison of healthy 

and diseased groups, in capturing subtle developmental brain network changes26,113. 

Disparity Core, introduced by Serrano et al. in 2009, or multiscale backbone, is a particular technique 

that operates at all the scales defined by the weighted network structure. The disparity filter proceeds by 

identifying which links for each node should be preserved in the network. This method is based on the 

local identification of the statistically relevant weight heterogeneities. The algorithm can sufficiently 

reduce the network without destroying the multi-scale nature of the network, by filtering out the 

backbone of dominant connections in weighted networks with strong disorder and preserving structural 

properties and hierarchies at all scales. 

The K-core decomposition consists in identifying particular sub-graphs, called k-cores. This is done by 

identifying subsets of graphs by recursively removing all the vertices of degree smaller than k, until the 

degree of all remaining vertices is larger than or equal to k27,28. Vertices with larger degree and more 

central position in the structure of the network, correspond to larger values of the index k. 

Finally, the Hub-Core is defined by high-centrality nodes, called Hubs. It has been noted that some of 

these hubs play a central role in the overall network organization, as indexed by a high degree, low 

clustering, short path length, high centrality and participation in multiple communities across the 

network114. In addition to being individually highly connected (“rich”), brain hubs exhibit a strong 

tendency to link to each other, forming a structural core or Rich-Club16. A rich club is defined as a subset 

of nodes with high-centrality, maintaining a large number of connections across the network (i.e., high 

degree), and their tendency, as the dominant elements of the system, to form a tightly interconnected 

community115, establishing more links among themselves than randomly expected116. This sub-network 

uses the strongest network hubs, maintaining their connections while removing weaker ones, used to test 

the preservation of hub locations103. 

In a study by van Dellen et al. (2018)10,  MST was used as an empirical reference network in order to 

form the backbone structure of the human brain, and the results show that MST provides an elegant and 

straightforward approach to analyze structural brain networks, and to test network topological features 

of individual subjects in comparison to empirical null models. However, since the MST only contains a 

small fraction of the original network (Figure 2.15), it becomes difficult to study the network at a local 

level. Nevertheless, recent studies13,112,113 have shown that MST analysis can be used to capture network 

alterations due to aging and disease in both functional and structural imaging data. 
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Figure 2.15 - Thresholding process regarding the adjacency matrix. The un-thresholded image represents the binary matrix 

before the application of any threshold. MST method is computed with a network density of 2.2%. See section 3.1.5. for 

backbone reconstruction. 

 

Some other papers suggest81,98 that structural brain networks, particularly their backbone, are altered in 

neurological disorders, and heterogeneity in these alterations is evident between diseases10.  However, 

no study has investigated if these backbones are reproducible over time (in scan-rescan scenarios) or if 

they can be used to study disease effects in clinical populations. 
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3. Methods 

3.1. DATASET 

3.1.1. Participants 

 

Patients included in this study were 87 individuals from the Parelsnoer study29. Patients who were 

referred to the memory-clinic of the UMC Utrecht for evaluation of cognitive problems, with a clinical 

dementia rating scale (CDR)117 score of 0, 0.5, or 1, and a Mini-Mental State Examination (MMSE)118 

20 or higher were eligible for the study. Patients were eligible for the current analysis if they had an 

MRI-DTI scan at baseline and after ~2 years follow up visit date (N=90). We additionally excluded three 

patients with cognitive complaints due to a diagnosis other than SVD or Alzheimer’s disease (AD). Thus, 

the total number of subjects included in the analysis was 87 (59 % male). These patients had an average 

age of 72 +/- 7 years, scanned twice with and inter-scan time between baseline and follow-up of 27 +/- 

4 months. From these patients, 53% were diagnosed with MCI, 36% with dementia, and most of them 

had some form of SVD injury, presence of lacunes and microbleeds. 

In addition, 45 age- and education-matched elderly without dementia or other known neurological 

disorder that could affect cognition, and a MMSE score between 28 and 30, were included as a control 

group. Control participants were recruited from Utrecht Diabetic Encephalopathy Study (UDES)31 study, 

with DTI data only from baseline. 

A Validation data group was also included in the study, consisting of high-quality scans of healthy young 

adults, to test the effects of network backbones on a ‘clean’ dataset without the presence of disease 

effects. These scans were obtained from the Human Connectome Project30. We included 44 healthy 

participants (32% male) with a test-retest DWI and T1-weighted images. The interval between the two 

scans ranged between 5.5 +/- 4 months, and the age of the participants varied between 22 and 35 years 

old. As the age of the validation dataset did not match the Patients, their data was only used to examine 

whether the same pattern of network backbone reproducibility could be found between these two 

datasets. This validation data was not used to operate as controls for the longitudinal disease-progression 

analysis. Characteristics of the study population are given in Table 3.1. 

 

 

3.1.2. MRI acquisition 

 

MRI data of patients and UDES controls were acquired on a 3 tesla Philips scanner (Achieva, Philips, 

Best, the Netherlands) using a standardized protocol that included a 3D T1-weighted image and a 

diffusion weighted sequence. T1-weighted scans were acquired with the following parameters: isotropic 

acquisition voxel size of 1𝑚𝑚3, a flip angle of 8º, echo time (TE): 4,5 ms and repetition time (TR):7,9 

ms. DWI scans had an isotropic acquisition voxel size of 2.50 mm3, 45 diffusion-sensitizing gradients 

with a b-value of 1200 𝑠/𝑚𝑚2, and 1 b=0 𝑠/𝑚𝑚2. 
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Table 3.1 - Characteristics of the study population. Data presented as mean ± SD, absolute number (percentages) or median 

[interquartile range]. Abbreviations: MMSE = Mini Mental State Examination; ICV = Intracranial volume; WMH = White 

matter hyperintensities; SVD = Small Vessel Disease. 

 

Validation data scans were acquired on a Siemens Skyra 3 tesla scanner (Siemens, Erlangen, Germany). 

The T1-weighted images had an isotropic voxel size of 1.25 mm3. The multi-shell DWI were acquired 

with an isotropic voxel size of 1.25 mm3 and three diffusion weightings (b-values: 1000, 2000 and 3000 

s/mm2). For each b-value, 90 diffusion-sensitizing gradients directions were measured. Additionally, 18 

images with no diffusion weighting (b-values = 0 s/mm2) were obtained. Here, we selected only a single 

shell (b-value 1000 s/mm2) since it was more comparable to the patient dataset described above. 

Furthermore, a fluid-attenuated inversion recovery sequence (FLAIR; TR/TE/Inversion time = 1,000 

/125/2800ms) was acquired to rate neuroimaging markers of SVD (i.e., brain volumes, WMH volume, 

and lacunes) (Table 3.1). 

 

3.1.3. Image Processing 

 

Diffusion-weighted data were processed using ExploreDTI119, running on MATLAB R2014b 

(MATLAB and Statistics Toolbox Release 2014b; The MathWorks, Inc., Natick, MA). Data were 

corrected for signal drift, subject motion, eddy current, and susceptibility artifacts, including rotation of 

the B-matrix before the estimation of the diffusion tensors. The diffusion tensors were computed using 

robust estimators120 followed by whole brain tractography. Then, the tractography model was created. 

Each streamline was propagated using integration over fiber orientation distributions (FODs). 

Streamlines were guided by fiber orientations inferred using CSD with a maximum harmonic order of 6. 

Streamlines were terminated when they entered a voxel with FOD<0.1, or when  the deflection angle 

between two successive steps was >45º. These tractography parameters were chosen according to 

recommendations from the previous literature66. 

 
Patients with SVD 

N=87 (two time-points) 

Controls 

N=45 (one time-point) 

Validation data 

N=44 (two time-points) 

 

Demographic Characteristics 

   

Baseline age, in years 72.6 ± 7.5 72.0 ± 4.6 31 ± 4 

Sex, female 41% 47% 68% 

MMSE 26 [20-30] 29 [28,30] - 

Imaging markers    

Fazekas score (0-3) 1 (0-3) -  

WMH volume (%ICV) 1.1 [0.4,2.2] 0.4 [0.2,0.8]  

Lacunes (present) 31 (36%) 2 (4%)  

Microbleeds (present) 18 (21%) -  
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3.1.5. Network reconstruction 

 

The T1-weighted data were pre-processed using SPM tool CAT12. The pipeline, as illustrated in Figure 

3.3, included brain extraction and parcellation of the gray matter volume into 90 cortical and subcortical 

regions of interest (ROIs), using the automated anatomical labeling (AAL) template17. The parcellation 

was performed in the native space, with the AAL template being warped to the T1 image of each 

subject121. The cerebellum was excluded from the analysis since most subjects had insufficient scan 

coverage of this structure. 

For network definition, each ROI represented a node in the network. Two nodes were considered to be 

connected if they contained the end-points of at least one streamline, resulting in a 90 × 90 binary 

connectivity matrix. We also obtained weighted connectivity matrices for each subject, in which the 

previously defined edges were weighted by several diffusion properties, as explained in the next section. 

 

 

Figure 3.1 - Flowchart of the structural network reconstruction. 

 

3.1.4. Testing weighted network reproducibility 

 

Before proceeding to our main analysis, we investigated which network weight should be the best one 

to test reproducibility and to compare disease progression over time and between cohorts. The node 

degree, i.e. the number of edges that each node has, also called Number of Streamlines (NOS), is 

frequently used in this approach. The NOS-weighted matrix is typically used for thresholding. However, 

since there is no consensus on which DTI property provides the best representation of the structural brain 

network, we examined several weighted networks, based on average FA, average MD, variance of FA-

variance and variance of MD. 

In the connectivity matrix, due to the indirect nature of diffusion measurements, some voxels might 

contain extreme values of FA and MD (e.g. very close to 1 or 0), which is not plausible in true white 

matter. Thus, when we define the weight of a connection based on the mean FA or mean MD of that 

fiber bundle, it is likely to be affected by these methodological issues. 
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Similar to the peak skeletonized mean diffusivity measure by Baykara et al.4, we propose the same 

approach but regarding also FA measures. First, we compute the histogram of FA values of all voxels 

connecting the pair of ROIs. Then we take the difference between the 95th and 5th percentile of the 

histogram peak. Finally, we create FA and MD variance matrices based on the “edge-homogeneity” 

measure, where each element represents how homogeneous and robust a connection is. Note that the 

higher the variance, the lower the edge homogeneity. 

 

Figure 3.2 - On the left is the histogram from Baykara et al.4, to analyze mean diffusivity (MD) data, with calculation of the 

Peak width of Skeletonized Mean diffusivity (PSMD). On the right is our example of all FA values within a voxel from one 

subject that is, as expected, a normal distribution. 

 

We compared the reproducibility of the network weights (NOS/FA/MD/FA and MD variance) matrices, 

only on the common nodes between both time-points. We used Pearson Correlation to obtain the results 

for the reproducibility between both time-points. The boxplots presented in Figure 3.2 highlight that the 

best network weight to study reproducibility is the Number of Streamlines. Therefore, for the following 

analysis, we used the NOS as the network weight. 
 

 

 

Figure 3.3 – Reproducibility values between time-point 1 and time-point 2, regarding different network weights. The first 

boxplot concerns the reproducibility of the network regarding the number of streamlines. The second and third are related to 

the FA and MD weighted networks reproducibility. The last two are related to the FA variance and MD variance network 

weights. 
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3.1.5. Backbone reconstruction 

 

To reconstruct each backbone, we applied a specific algorithm to the NOS-connectivity matrix of the 

whole-brain network (Figure 3.4). We therefore used 4 backbones: Minimum spanning Tree (MST), 

Disparity-Core, K-Core and Hub-Core (Figure 3.5).  

Each backbone algorithm was based on the literature. Regarding MST, as it is a sub-network of the 

original weighted network that connects all nodes in the network without forming loops, MSTs are 

constructed based on the weighted networks with Kruskal's algorithm. In our case, based on the paper 

by Tewarie et al.20, we started the algorithm with the largest edge weights since we are interested in the 

strongest connections in the network. This algorithm first sorts the weights of all edges in a descending 

order and starts the construction of the minimum spanning tree with the largest edge weight and adds the 

following largest edge weights until all nodes N are connected in an acyclic sub-network that consists of 

M=N−1 connections, i.e. a fixed density. If the addiction of an edge forms a loop, this edge is ignored. 

After construction of the MST, all link weights are assigned a value of one, creating a binary matrix, as 

shown in the scheme of Figure 3.4. 

 

Figure 3.4 - Backbone matrix creation. From the original connectivity matrix, a backbone reconstruction method is applied 

to obtain the backbone matrix. 

 

K-core decomposition reduces a graph into a maximal connected subgraph of nodes with a minimum 

degree of k. Therefore, to compute the “18-core” (for example) of the connectivity matrix, all nodes that 

have a degree 18 or higher are retained; nodes that do not satisfy this condition are removed. Thus, in 

this example, 18 represents an arbitrary cut-off (k-value) to define which nodes will constitute the 

backbone. For this study, we defined our k-value for the K-Core backbone, based on the first quartile of 

the degree distribution. Thus, the k-value varies for each individual, but it is always based on this 

condition. The quartile vector of the degree distribution of some connectivity matrix is, for example: 

[16,22,28]. And in this case, we would use the 16-core to threshold the matrix in order to construct the 

k-core backbone. These are the steps to construct the K-Core backbone, for a particular sum of weights 

k: 

1. Remove all nodes of degree <k, resulting in a reduced connectivity matrix M’. 
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2. From the remaining set of nodes, compute the connectivity strength k for each node. If nodes 

are found that have a lower level of connectivity than k, step 1 is repeated to obtain a new M’; 

otherwise, proceed to step 3. 

3. The remaining subset of nodes forms the k-core of the network. 

The disparity core identifies which edges for each node should be preserved in the network. Firstly, we 

calculated the betweenness centrality122 (BC) of the connectivity matrix (see Appendix for further 

information), which is the fraction of all shortest paths in the network that contain a given edge. Thus, 

edges with high betweenness centrality participate in a large number of shortest paths. 

Regarding the Hub-Core, in order to preserve the hub locations103, the algorithm aims to find a sub-

network composed by the strongest network hubs, maintaining their connections while removing weaker 

ones. To build this backbone, we followed these steps:  

1. Calculation of the betweenness centrality and the degree (D) for each node, resulting in a matrix 

with the Hubscore (HS) value of each node, where HS = BC x D. 

2. Were considered Hubs all nodes that had the HS values higher than the average plus standard 

deviation of the total Hubscores. HS > average (HS) + SD (HS). 

3. Those hubs and their connections were used to build the backbone. 

In Figure 3.5 are shown the different backbones built with 90-nodes AAL template, and the original 

network. As we see, they are all very different between them, and have distinct particularities. 

  

Figure 3.5 - Network backbones used for the analysis using a 90-node template. 

 

3.1.6. 200-node and 250-node templates 

 

We also wanted to look at other brain templates to understand whether the choice of parcellation scheme 

could affect the results of our backbone analysis. Thus, we performed the same analysis with a 200-

nodes whole-brain parcellation and a 250-nodes left hemisphere parcellation based on a study by 

Schaefer et al32., used only for the validation data at baseline. Figure 3.6 presents the network backbones 

reconstructed with the whole-brain 200-nodes template, and figure 3.7 shows the same network 

backbones reconstructed with the left hemisphere 250-nodes template. Shown in Table 3.2 are the 

number of nodes and edges from the average group backbone (see Section 3.2.2.) of each template. 
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Figure 3.6 - Network backbones used for the analysis using a 200-node template 

 

Figure 3.7 - Network backbones used for the analysis using a 250-node template of the left hemisphere. 

 

Table 3.2 - Number of nodes and connections regarding the group average backbone of each brain network, from Validation 

data at baseline. 

 90-node template 200-node template 250-node template 

(left hemisphere) 

 Nr. of nodes Nr. of edges Nr. of nodes Nr. of edges Nr. of nodes Nr. of edges 

Original network 90 30952 200 72501 250 26323 

MST 90 89 200 199 250 249 

Disparity Core 41 30 146 163 107 212 

K-Core 49 664  94 1600 158 1724 

Hub-Core 76 260 185 1103 206 565 
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3.2. NETWORK ANALYSIS 

 
To analyze the backbone networks, we compared the binary backbone matrices from different time-

points (within-subjects comparison), different subjects within the same group (across-subjects 

comparison), and between different groups (across-groups). In order to examine the structural similarity 

of each pair of networks, we used three approaches: whole-backbone overlap, occurrence backbone 

overlap and group average backbone overlap.  Moreover, we also compared MST measures within 

subjects and across-groups. 

Finally, to test sensitivity to disease effects, we compared networks between controls and patients at 

baseline (cross-sectional analysis), and between patients at baseline and follow-up (longitudinal 

analysis). For this part of the analysis, we used node strength and global efficiency 

 

3.2.1.  Network overlap 

 

As aforementioned, the NOS-weighted matrices are transformed into unweighted backbone matrices 

(i.e., binary graph containing edge weights of 0 and 1 only). The similarity between backbone networks 

was quantified by calculating the fraction of edges present in both backbone binary matrices ranging 

between 0 and 1, with 0 indicating no overlap and 1 representing a complete overlap between the two 

sets of edges10 (Figure 3.8). This overlap parameter was calculated as the mean between the dice overlap 

and a measure that we called “topology zeros overlap”. 

 

Figure 3.8 - Schematic representation of network backbone overlap. 

 

The dice overlap, also called Sørensen–Dice coefficient, is a statistic parameter used to quantify the 

similarity of two samples. It was independently developed by the botanists Thorvald Sørensen123 and 

Lee Raymond Dice124, and given two sets X and Y, is defined as: 

dice = 
2|𝑋∩𝑌|

|𝑋|+|𝑌|
                                          (3.1)          

In this study, |𝑋| and |𝑌| represent the number of positive edges (1 in the binary matrix) in each set, 

whereas |𝑋 ∩ 𝑌| represent the edges in common between the two matrices. The topology zeros overlap 

is calculated in the same way but represents the percentage of zeros that are common in both matrices, 

thus |𝑋| and |𝑌| represent the number of zeros in the binary matrix and |𝑋 ∩ 𝑌| represent the zeros in 

common between the matrices. 
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3.2.2.  Occurrence backbone and group average backbone 

 

The occurrence backbone is based on the common edges of 75% of the subjects. An example with MST 

is shown in Figure 3.9. Firstly, we compute the MST for every subject, then we calculate the mean MST 

connectivity matrix of all subjects, with values that range from 0 to 1, representing frequency of that 

connection of all the subjects. Finally, a threshold is applied in order to keep only the values > 0.75, 

which means that those connections are present in at least 75% of the subjects. 

 

Figure 3.9 - Pipeline for the reconstruction of the occurrence backbone matrix. Example with MST. 

 

On the other hand, the group average backbone is calculated by a different approach. Using the individual 

NOS connectivity matrices from all subjects, we compute the average matrix of all NOS matrices, to 

obtain a NOS group average matrix. Lastly, we apply the backbone algorithm to that group average 

matrix, a group average backbone. An example with MST is shown in Figure 3.10. 

 

Figure 3.10 - Pipeline for the reconstruction of the group average backbone matrix. Example with MST. 
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3.2.3.  MST measures 

 

The MST has specific measures that can be calculated and used for further analysis. Therefore, to study 

the behavior of MST measures over two different time-points, we computed the following metrics that 

characterize MST: Diameter, Leaf Fraction, Degree Divergence and Tree Hierarchy10,20,112. A schematic 

image is shown in Figure 3.11. 

The degree is the number of edges connected to a node. Therefore, the degree is a measure of regional 

importance, and as mentioned before, nodes with a high degree may be considered Hubs i.e., crucial 

regions on the functional brain network. Consequently, Degree Divergence is a measure of broadness of 

the degree distribution. 

The Diameter is considered the longest shortest path of the MST, characterizing the largest distance 

between any two nodes, normalized for the total number of connections, 𝐷 = 𝑑/𝑀, where M is the total 

number of connections. It measures the efficiency of global network organization. In a network with a 

low diameter, information is efficiently processed between remote brain regions. 

Leaf Fraction is the fraction of nodes that have only one connection (degree = 1), also called Leaf number 

(L), divided by the maximum possible number of connections (M): 𝐿𝑡 = 𝐿/𝑀. When the Leaf number 

is high, communication is essentially dependent on hub nodes. 

Tree Hierarchy characterizes a hypothesized optimal topology of efficient organization while preventing 

information overload of central nodes. For a line-like topology Th = 0, for a star-like topology Th = 0.5, 

and for trees with a configuration between these 2 extreme situations, tree hierarchy can have values of 

Th ≈ 1.  

 

Figure 3.11 - Example of a simple minimum spanning tree (MST) and its characteristics. V1, v4 and v6 are Leaf nodes, as 

they have a degree of 1. The diameter is the longest distance between any two nodes. In this tree, node v1 and v6 are most 

distant and the diameter has value of 4. Node v2 has the highest degree since it is connected to three other nodes. Image 

adapted from the paper of Boerma M.112 

 

In the case of MST measures, as the values between those measures are very distinct, we transformed 

every value x in a z-score value125, that is calculated using: 

𝑧 =
𝑥−𝜇

𝜎
                                              (3.2) 

where μ is the mean of the data set and σ its standard deviation. An absolute value of z represents the 

distance between that raw score x and the data set mean in units of the standard deviation. z is negative 

when the raw score is below the mean, positive when above. In our study, when comparing baseline vs 



32 
 

follow-up or controls vs patients, the Z-scores were always based on the mean and SD of 

baseline/controls values, to test the relative differences from that initial group. 

 

3.2.4. Detection of SVD-related network impairments 

 

The second question we addressed was whether our backbones can be sensitive to disease effects and if 

they are able to detect disease progression over time. For this approach we need to use graph metrics to 

perform backbone comparison between patients and controls. 

In this study we therefore obtained measures of global connectivity (e.g. global efficiency) and local 

connectivity (e.g. node strength) from the FA- and MD-weighted networks. These weighted networks 

are frequently used to examine structural aspects of brain connectivity in patients and have been shown 

to be sensitive to the effects of SVD41,43,126. Global efficiency was defined as the inverse of the shortest 

path lengths (i.e. the minimum number of connections between each pair of brain regions), and expresses 

the extent to which information is exchanged over the network90. Connectivity strength was defined as 

the mean value of the FA- and MD- weighted matrices for each backbone network. 

All graph measures mentioned in this manuscript were calculated using the brain connectivity toolbox90 

(https//sites.google.com/site/bcnet). 

 

3.3. STATISTICAL ANALYSIS 

 

Statistical analysis was performed using IBM SPSS statistics version 25 (IBM Corp. Released 2017. 

IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp). A p-value < 0.05 was 

considered significant.  

For the binary MST measures analysis, we used two approaches: (1) paired-samples t-test for the within-

subjects analysis, in Section 4.1.1 for the 90-nodes template and in Section 4.3.1., for the other two brain 

templates, and (2) independent-samples t-test for across-groups analysis, in Section 4.1.3. 

For the cross-sectional analysis (Section 4.2.1), we analyzed between-group differences (SVD versus 

controls) in weighted graph metrics such as node strength (Section 4.2.1-a) and weighted global 

efficiency (Section 4.2.1.-b), using independent-samples t-test. 

Finally, for the longitudinal analysis (Section 4.2.2.), we analyzed changes in patients’ backbones 

weighted graph metrics (global efficiency and strength) over time, using ANOVA repeated measures, 

respectively in Sections 4.2.2-a and 4.2.2-b. 
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4. Results 

4.1. TESTING REPRODUCIBILITY 

 
This first part of the results concerns the 90-nodes template and is divided in three parts: (1) 

Reproducibility within subjects, where we compare scan-rescan backbones of controls and patients, 

separately, at different time-points; (2) Consistency across-subjects, where networks from baseline from 

each control subject are compared with an occurrence baseline network from all subjects; (3) Consistency 

across-groups, where we use  two approaches: the first one is comparing the mean matrix with a 

minimum of 75% common edges between controls and patients at baseline; the second one is comparing 

the group average backbone matrix between controls and patients, also at baseline. As aforementioned, 

the comparison of the networks referred ahead was performed by calculating the mean between the dice 

overlap with the topology zeros overlap, giving a number between 0 and 1, that represents the edge-edge 

overlap. 

 

4.1.1. Within-subject reproducibility 

 

To compare the reproducibility of the backbones within-subjects, we overlapped the whole backbone 

networks of each subject from both time-points and used the values to build the plots from Figure 4.1. 

These boxplots show the network overlap between backbones reconstructed at baseline and follow-up 

for each subject, representing the reproducibility values on an individual level. Data of validation (left) 

and patients (right) were analyzed separately. The reproducibility mean and standard deviation (SD) 

values are shown in Table 4.1. 

 

 

Figure 4.1 - Backbone reproducibility of network backbones over two time-points: baseline and follow-up regarding 

validation data (left) and patient (right) data. 
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Table 4.1 - Network reproducibility (mean and SD) between baseline and follow-up. 

 

 

 

 

Regarding the MST backbone, we also examined how the characteristic binary MST metrics vary 

between time-points. The values of the MST measures on each time point are shown in Figure 4.2.  

Validation data is displayed on the left plot whereas data of SVD patients is shown on the right. 

 

 

To analyze the relationship between MST measures over time in more detail we performed paired-sample 

t test for validation data and for patients. Regarding validation data reproducibility (Table 4.2), none of 

the MST measures differed statistically from baseline to follow-up, whereas considering patients (Table 

4.3), Leaf Fraction was considered statically different between baseline (M = 0.468, SD = 0.029) and 

follow-up (M = 0.484, SD = 0.03), t (84) = -3.784, p < 0.001, and Degree Divergence was marginally 

significant (t (84) = -1.950 ,  p  = 0.055). 

 

Table 4.2 - Results from paired sample t-test for validation data, using MST measures z-score values (mean ± SD) for time-

points comparison. 

 

 

 

Backbone Validation data Patients 

MST 0.805 ± 0.040 0.746 ± 0.037 

Disparity Core 0.613 ± 0.068 0.544 ± 0.038 

K-Core 0.772 ± 0.039 0.705 ± 0.043 

Hub-Core 0.688 ± 0.069 0.602 ± 0.056 

MST measures Baseline (Mean ± SD) Follow-up (Mean ± SD) p-value 

Diameter 0.271 ± 0.037 0.278 ± 0.049 0.360 

Leaf Fraction 0.470 ± 0.029 0.464 ± 0.031 0.268 

Degree Divergence 2.675 ± 0.091 2.649 ± 0.091 0.120 

Tree Hierarchy 1.101E-05 ± 1.659E-06 1.112E-05 ± 2.13E-06 0.752 

Figure 4.2 - Binary MST measures comparison between baseline and follow-up for validation data (left) and patients (right). 

All z-scores are based on the mean and SD values at baseline. 
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Table 4.3 - Results from paired sample t-test for patients, using MST measures z-score values (mean ± SD) for time-points 

comparison. 

MST measures Baseline Follow-up p-value 

Diameter 0.263 ± 0.038 0.268 ± 0.035 0.343 

Leaf Fraction 0.467 ± 0.028 0.484 ± 0.031 < 0.01 

Degree Divergence 2.682 ± 0.121 2.715 ± 0.101 0.042 

Tree Hierarchy 1.08E-05 ± 1.591E-06 1.109E-05 ± 1.441E-06 0.185 

 

 

 

4.1.2. Consistency across-subjects 

 

To compare backbone consistency across subjects (within the Control group and the Validation data 

group), we calculated one occurrence backbone for each network backbone. Then, we overlapped the 

matrix of each subject with the occurrence matrix. For example, the MST matrix of each subject was 

compared with the MST occurrence backbone for that group. The results are shown in Figure 4.3. 

 

 

 

 

Table 4.4 - Reproducibility across-subjects regarding control and validation data group. 

Occurrence backbone 

( >75% edges correspondence) 
Controls Validation data 

MST 0.712 ± 0.017 0.708 ± 0.017 

Disparity Core 0.500 ± 0.000 0.500 ± 0.000 

K-Core 0.731 ± 0.018 0.721 ± 0.018 

Hub-Core 0.679 ± 0.048 0.627 ± 0.053 

 

Besides the observation of the boxplots shown in Figure 4.3, the values displayed on Table 4.4 support 

that K-Core is the most consistent backbone across subjects at baseline for both groups. The Disparity 

Figure 4.3 – Reproducibility results of the comparison across-subjects for controls (left) and validation data (right) at 

baseline. Comparison with the occurrence matrix that has edges common in at least 75% of the subjects. 
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Core showed poor consistency across subjects because the 75% common-edges matrix had an 

insufficient number of connections, therefore, the correspondence values with the rest of the group 

backbone matrices are inconclusive. 

 

4.1.3. Consistency across-groups 

 

To analyze the consistency across groups (controls and patients), we compared the values at the same 

time-point: baseline. Therefore, we created one occurrence backbone matrix for each group, and we 

tested the similarity between these two matrices. Alternatively, group average backbones were also 

calculated for both groups. On both methods, we applied the network overlap, using only two backbone 

matrices: one from controls and the other from patients. For example, the MST occurrence backbone of 

the controls was compared with the MST occurrence backbone of the patients and the same was done 

with every group average backbone. That is why there is only one number in the values of Table 4.5. 

 

Table 4.5 - Similarity between patients and controls. Overlap between controls and patients at baseline. 

 

 
 
 
 
 
 
In order to study the behavior of MST measures across both groups, we performed MST metrics 

comparison at baseline between control and patient data. Figure 4.4 shows the z-scores of each measure 

for both groups. Table 4.6 shows the statistic parameters of independent samples t-test. As all the p-

values are higher than 0.05, none of the MST metrics differ statistically between controls and patients at 

baseline. 

 
Figure 4.4 - Binary MST measures z-score values across groups at baseline. All z-scores are based on the mean and SD of 

controls. 

Backbone 
“occurrence backbone”  

( >75% edges correspondence) 
Group average backbone 

MST 0.8332 0.8391 

Disparity Core 0.000 0.5000 

K-Core 0.8259 0.7573 

Hub-Core 0.8211 0.7811 
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Table 4.6 - Results from independent samples t-test for baseline, using MST measures z-score values (mean ± SD) for group 

comparison 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MST measures Controls Patients p-value 

Diameter 0.272 ± 0.036 0.262 ± 0.038 0.173 

Leaf Fraction 0.470 ± 0.029 0.464 ± 0.031 0.631 

Degree Divergence 2.676 ± 0.092 2.68 ± 0.12 0.749 

Tree Hierarchy 1.105E-05 ± 1.652E-06 1.08E-05 ± 1.57E-06 0.417 
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4.2. TESTING SENSITIVITY TO DISEASE EFFECTS AND PROGRESSION 

4.2.1. Cross-sectional analysis  

 

a) Node Strength 

To test whether these backbones are sensitive to disease effects, we compared Fractional Anisotropy 

(FA), Mean Diffusivity (MD) weighted networks between controls and patients at baseline, using node 

strength. Figure 4.5 shows the z-score values of MST network weights and its comparison between 

groups. The information about the other backbones’ network weights can be found on the results from 

the independent samples t-test in Table 4.7. The differences between controls and patients are all 

significantly different between baseline and follow-up (p < 0.01). 

 

 

Figure 4.5 - MST network weights (FA and MD using node strength)  comparison between controls and patients at baseline. 

All Z-scores are based on the mean and SD of controls. 

 
 

Table 4.7 - Results from independent samples t-test for baseline, using node strength (mean ± SD) backbone weights 

comparison. 

 

 

 

 

 

 

Network weights 

(Node Strength) 
Controls Patients p-value 

FA (MST) 0,307 ± 0,016 0,236 ± 0,021 <0.01 

MD (MST) 0,826E-3 ± 4,34E-05 1,021E-3 ± 7,232E-05 <0.01 

FA (Disparity Core) 0,345 ± 0,034 0,280 ± 0,042 <0.01 

MD (Disparity Core) 0,833E-3 ± 5,29E-05 1,001E-3 ± 0,0001 <0.01 

FA (K-Core) 0,342 ±0,013 0,278 ± 0,019 <0.01 

MD (K-Core) 0,856E-3 ± 5,29E-05 1,034E-3 ± 7,190E-05 <0.01 

FA (Hub-Core) 0,359 ± 0,016 0,292 ± 0,021 <0.01 

MD (Hub-Core) 0,835E-3 ± 4,83E-05 0,994E-3 ± 7,420E-05 <0.01 
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b) Weighted Global Efficiency 

The same approach was applied but this time based on global efficiency. Figure 4.6 shows the 

comparison between groups, using z-score values of MST network weights. The independent samples t-

test results for MST and the other backbones are shown in Table 4.8. patients had a lower GE than 

controls in every backbone (p < 0.01), except the MD-weighted GE in K-Core (p = 0.012). 

 

 

Figure 4.6 – Comparison of global efficiency z-scores of MST network weights (FA and MD) between controls and patients at 

baseline. 

 

 

Table 4.8 - Results from independent samples t-test for baseline, using global efficiency (mean ± SD) backbone weights 

comparison. 

 

 

 

 

 

 

 

 

Network weights 

(Global efficiency) 
Controls Patients p-value 

FA (MST) 0,048 ± 0,004 0,035 ± 0,004 <0.01 

MD (MST) 195,084 ± 14,863 161,190 ± 13,609 <0.01 

FA (Disparity Core) 0,002 ± 0,002 0,001 ± 0,001 <0.01 

MD (Disparity Core) 8,229 ± 4,810 4,927 ± 2,963 <0.01 

FA (K-Core) 0,106 ± 0,020 0,093 ±  0,018 <0.01 

MD (K-Core) 345,688 ± 69,302 314,308 ± 57,824 0.012 

FA (Hub Core) 0,201 ± 0,011 0,155 ± 0,016 <0.01 

MD (Hub Core) 653,306 ± 43,557 540,852 ± 49,428 <0.01 
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4.2.2. Longitudinal analysis 

 

In this part of the project, we tested the differences between baseline and follow-up for patients in order 

to understand which backbone is more sensitive to disease progression. Statistical analysis was done 

with repeated measures in SPSS. 

 

a) Changes in Node Strength 

Changes in node strength regarding FA and MD are shown on figures 4.7 and 4.8, respectively. We used 

Repeated measures ANOVA to test the disease progression. Tables 4.9 and 4.10 summarize the results 

regarding FA-weighted and MD-weighted networks for each backbone. The node strength of all 

backbones decreased significantly between baseline and follow-up (p-value < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.9 -Repeated measures ANOVA regarding FA-weighted network node strength changes. 

 

 

 

 

Network backbone Effect df1 df2 F p-value 

MST Time 1 86 671.415 < .001 

Disparity Core Time 1 86 33.888 < .001 

K-Core Time 1 86 69.962 < .001 

Hub Core Time 1 86 174.464 < .001 

Figure 4.7 - Changes in node strength regarding FA, analyzed on the backbone networks of patients between 

baseline and follow-up. 
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Figure 4.8 - Changes in node strength regarding MD, analyzed on the backbone networks of patients between  

baseline and follow-up. 

 

 

Table 4.10 - Repeated measures ANOVA regarding MD-weighted network node strength changes. 

 

 

 

 

 

 

 

 

 

 

 

 

Network backbone Effect df1 df2 F p-value 

MST Time 1 86 231.008 < .001 

Disparity Core Time 1 86 12.245 < .001 

K-Core Time 1 86 5.303 0.024 

Hub Core Time 1 86 64.481 < .001 
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b) Changes in Global Efficiency 

Changes in global efficiency regarding Fractional Anisotropy and Mean Diffusivity are shown on figure 

4.9 and 4.10, respectively. We also used Repeated measures ANOVA to test the disease progression. 

The results regarding FA-weighted and MD-weighted networks for each backbone are summarized on 

table 4.11 and 4.12, respectively. The global efficiency of all backbones decreased significantly between 

baseline and follow-up (p-value < 0.05), except for the Hub-Core that increased. 

 

 

Figure 4.9 - Changes in global efficiency regarding FA-weighted networks, analyzed on the backbone networks of patients 

between baseline and follow-up. 

 

 

Table 4.11 - Repeated measures ANOVA regarding FA-weighted network global efficiency changes. 

 

 

 

 

Network backbone Effect df1 df2 F p-value 

MST Time 1 86 396.274 < .001 

Disparity Core Time 1 86 9.749 <.01 

K-Core Time 1 86 41.784 < .001 

Hub-Core Time 1 86 27.425 < .001 
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Figure 4.10 - Changes in global efficiency regarding MD-weighted networks, analyzed on the backbone networks of patients 

between baseline and follow-up. 

 

 

Table 4.12 - Repeated measures ANOVA regarding MD-weighted network global efficiency changes. 

 

 

 

 

 

 

 

 

 

 

 

 

Network backbone Effect df1 df2 F p-value 

MST Time 1 86 118.160 < .001 

Disparity Core Time 1 86 2.329 < .001 

K-Core Time 1 86 28.257 < .001 

Hub-Core Time 1 86 107.508 < .001 
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4.3. COMPARING DIFFERENT BRAIN LABELS (90, 200 AND 250 NODES)  

 
In this part of the project, we compared the 90-nodes with the 200-nodes whole-brain backbones as well 

as with the 250-nodes backbones for the left hemisphere. Due to time constrains in image processing, 

we only computed the 200 and 250-node networks (from baseline and follow-up) for the validation 

dataset. Thus, our analysis regarding these networks was restricted to within- and across-subjects 

comparisons, and not across groups. Therefore, we performed three tests: the reproducibility within-

subjects, that is, the comparison between time-points for each backbone; the MST measures 

reproducibility between time-points and, finally, the consistency across-subjects, at baseline. 

 

 

4.3.1. Within-subjects reproducibility 

 

As previously done with the 90-nodes only, we also performed a comparison of the reproducibility 

within-subjects with the 200 whole-brain and 250 left hemisphere nodes templates. Accordingly, we 

overlapped the networks of each subject from both time-points and used the reproducibility values to 

build the plots shown in Figure 4.11 and 4.12. The dataset from validation data group with 90 nodes 

(left) and 200 nodes (right) were analyzed separately. 

 

 

Figure 4.11 - Backbone reproducibility of network backbones over two time-points: baseline and follow-up regarding 

validation data 90-nodes (left) and 200-nodes (right) data. 
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Figure 4.12 - Backbone reproducibility of left-hemisphere network backbones between baseline and follow-up 

regarding 250-nodes (right) data. 

 

To analyze the data from this comparison, we used edge-edge overlap and group average backbone 

approaches. The results shown on Table 4.13 are based on Figures 4.11 and 4.12 and represent the 

reproducibility values on an individual level. On the other hand, Table 4.14 presents the values of the 

similarity between these group average backbones (baseline average backbone vs follow-up average 

backbone). 

 

Table 4.13 - Network reproducibility (mean ± SD) between baseline and follow-up. 

Backbone 
90-nodes template 

(whole-brain) 

200-nodes template 

(whole-brain) 

250-nodes template 

(left-hemisphere only) 

MST 0.805 ± 0.040 0.813 ± 0.045 0.742 ± 0.046 

Disparity Core 0.613 ± 0.068 0.559 ± 0.023 0.556 ± 0.026 

K-Core 0.772 ± 0.039 0.787 ± 0.035 0.764 ± 0.034 

Hub-Core 0.688 ± 0.069 0.651 ± 0.043 0.610 ± 0.048 

 

Table 4.14 - Group average backbone similarity between baseline and follow-up. 

 

Interestingly, on average the group-level backbone is very reproducible between time points. Besides 

that, the K-Core is the best backbone regarding one-hemisphere reproducibility over time, whilst whole-

brain reproducibility has the MST as the better one either by using the 90 nodes as well as the 200 nodes 

labels. 

Average backbone 

reproducibility 
90-nodes template 

(whole-brain) 

200-nodes template 

(whole-brain) 

250-nodes template 

(left-hemisphere only) 

MST 0.948 0.959 0.915 

Disparity Core 0.750 0.549 0.556 

K-Core 0.909 0.645 0.907 

Hub-Core 0.508 0.582 0.626 
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Regarding MST metrics, the results of the reproducibility from each time point are shown in Figure 4.13 

comparing the consistency over time regarding the 90-nodes (left) and the 200-nodes (right) backbones 

from the validation data. The results using 250-nodes template of the left hemisphere is shown in Figure 

4.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similar to the 90-nodes template where we compared the validation data group with the patients group, 

here we analyzed the relationship between MST measures over time regarding the other two templates, 

and compared the results with the ones obtained previously with the 90-nodes. In order to perform this 

comparison, we performed paired sample t-test for each group. The results of the tests are shown in 

Tables 4.15 to 4.17, where it is clear that the MST measures don’t differ significantly between time-

Figure 4.13 – Binary MST measures comparison between baseline and follow-up for 90-nodes (left) and 200-nodes (right) 

templates for validation data. All z-scores are based on the mean and SD values at baseline. 

Figure 4.14 – Binary MST measures comparison between baseline and follow-up for the 250-nodes left hemisphere 

network. Z-scores are based on the mean and SD values at baseline.  
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points regarding a stable group like this validation data group, which means that these are consistent 

measures for both 90 and 200-nodes template, as well as for the 250-nodes from the left hemisphere. 

 

Table 4.15 - Results from paired sample t-test applied to the MST measures z-score values (mean ± SD) of the 90-nodes 

validation data, for time-points comparison. 

 

 

 

 

Table 4.16 - Results from paired sample t-test applied to the MST measures z-score values (mean ± SD) of the 200-nodes 

validation data, for time-points comparison. 

MST measures Baseline Follow-up p-value 

Diameter 0.441 ± 0.055 0.437 ± 0.053 0.236 

Leaf Fraction 0.405 ± 0.022 0.410 ± 0.022 0.191 

Degree Divergence 2.578 ± 0.066 2.596 ± 0.069 0.204 

Tree Hierarchy 1.604E-07 ± 2.223E-07 1.578E-07 ± 1.980E-07 0.533 

 

Table 4.17 - Results from paired sample t-test applied to the MST measures z-score values (mean ± SD) of the 250-nodes left 

hemisphere of validation data group, for time-points comparison. 

MST measures Baseline Follow-up p-value 

Diameter 0.452 ± 0.128 0.447 ± 0.108 0.838 

Leaf Fraction 0.465 ± 0.019 0.469 ± 0.022 0.359 

Degree Divergence 2.804 ± 0.089 2.813 ± 0.088 0.613 

Tree Hierarchy 8.561E-07 ± 2.572E-07 8.334E-07 ± 2.109E-07 0.651 

 

 

 

 

 

 

 

 

 

 

MST measures Baseline Follow-up p-value 

Diameter 0.271 ± 0.037 0.278 ± 0.049 0.360 

Leaf Fraction 0.470 ± 0.029 0.464 ± 0.031 0.268 

Degree Divergence 2.675 ± 0.091 2.649 ± 0.091 0.120 

Tree Hierarchy 1.101E-05 ± 1.659E-06 1.112E-05 ± 2.13E-06 0.752 
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5.3.2. Consistency across-subjects 

To compare backbone consistency across subjects, we calculated the occurrence backbone for each 

backbone of the validation data group at baseline. Then, using this matrix as a comparison term to test 

the reproducibility across subjects, we overlap the matrix of each subject with this occurrence matrix, as 

we did before just for the 90-nodes template. The results for this analysis are shown in Figure 4.15 and 

4.16, and in Table 4.18. 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 4.16 - Reproducibility for the consistency of backbones at baseline. Validation data using the 250-nodes left 

hemisphere template. Comparison with the occurrence matrix that has edges common in at least 75% of the subjects. 

 

Table 4.18 - Consistency given by reproducibility (mean ± SD) across subjects on control group and validation data group. 

“occurrence backbone” 

( >75% edges 

correspondence) 

90-nodes backbone 200-nodes backbone 
250-nodes left-hemisphere 

backbone 

MST 0.708 ± 0.017 0.651 ± 0.016 0.571 ± 0.007 

Disparity Core 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000 

K-Core 0.721 ± 0.018 0.736 ± 0.027 0.681 ± 0.015 

Hub-Core 0.627 ± 0.053 0.637 ± 0.031 0.629 ± 0.046 

Figure 4.15 - Reproducibility for the consistency of backbones at baseline. Validation data with 90-nodes template (left) and 200-

nodes template (right). Comparison with the occurrence matrix that has edges common in at least 75% of the subjects. 
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5. Discussion 
 

In this study, we investigated whether network backbones can be used in clinical datasets as a structural 

architecture of the human brain network, by testing if they are reproducible over time and sensitive to 

disease effects and disease progression in patients with SVD. Our results suggest that network backbones 

can be used in clinical approaches due to their reproducibility and sensitivity to disease effects. MST is 

the backbone that presents the best results and therefore the best one to be used in these cases. 

5.1. Reproducibility within- and across- subjects and consistency across groups 

In the first part of our analysis (Section 4.1.), we started by testing the reproducibility and consistency 

of the 90-nodes network backbones, performing within-subjects, across-subjects and across-groups 

analysis. Regarding within-subject reproducibility (Section 4.1.1.), we first analyzed the whole-network 

backbone reproducibility and then the differences between baseline and follow-up of the MST measures. 

Analyzing the values of network reproducibility between baseline and follow-up presented in Figure 4.1 

and Table 4.1, it is easily noticed that the best overall reproducibility values are achieved by validation 

data compared to the group of patients. We can hypothesize that the healthy subjects have more similarity 

between them concerning the most important and structural connections of the brain than the group of 

patients diagnosed with SVD. This can be explained by the differences of connectivity alterations, 

expected by different SVD markers within the group. Furthermore, the best reproducibility values are 

achieved using MST, with 0.805 ± 0.040 and 0.746 ± 0.037, for both validation and patient data 

respectively, whereas Disparity Core has apparent limitations compared to the rest of the backbones, 

with a reproducibility of 0.613 ± 0.068 and 0.544 ±0.038 for each group respectively. Accordingly, MST 

seems to be the backbone that better represents the structural connections that are common between time-

points within the same subject. Regarding MST backbone measures values, displayed in Figure 4.2, it is 

possible to conclude that they are consistent within subjects, as they do not change statistically between 

time-points. However, although none of the MST measures in validation data suffer significant changes 

over time (Table 4.2), Leaf Fraction shows a significant difference between baseline and follow-up in 

patients (Table 4.3), from which we can infer that, in patients with SVD, the number of nodes with a 

degree of one can increase over time, as connections are becoming weaker due to disease. 

Studying the reproducibility across-subjects of the four backbones at baseline (Section 4.1.2.), over the 

set of controls and validation data groups, it is possible to conclude that K-Core is the most consistent 

backbone, by looking at Figure 4.3 and Table 4.4. K-Core presents a reproducibility of 0.731 ± 0.018 

and 0.721 ± 0.018, followed by MST with 0.712 ± 0.017 and 0.708 ± 0.017, for controls and validation 

data groups respectively. K-Core and MST have a good stability when comparing the backbone of each 

subject with the backbone that has only connections present in 75% of the subjects. The Disparity Core 

has poor results: the network overlap given by the reproducibility between each subject and the 

occurrence backbone is 0.500 ± 0.000, as the dice overlap is null (0) and the topology zeros overlap, or 

the overlap of zeros between two matrices, is total (1). This happens because the 75% common-edges 

occurrence matrix for Disparity Core had no edges at all, therefore the values of correspondence between 

the occurrence backbone and each subject’s backbone are meaningless. 

In order to compare the consistency across groups (Section 4.1.3.), firstly we performed network analysis 

between controls and patients at baseline using occurrence backbone and group average backbone, and 
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then we studied MST measures changes between controls and patients at baseline. Thus, we started by 

creating four occurrence backbone matrices (with more than 75% common edges) for controls and 

patients and tested the similarity between each of these four pairs of matrices, at baseline. Similarly, we 

compared the four pairs of group average backbones between controls and patients, also at baseline. The 

values of reproducibility are shown in Table 4.5. We conclude that, except Disparity Core (it has 

insufficient number of nodes in its occurrence matrix), all backbones have a good consistency across 

groups. Moreover, the differences shown in Table 4.5 indicate that K-Core is the one that shows the less 

similarity between group average backbones of controls and patients; therefore, it can be a useful 

backbone to distinguish these two groups. Furthermore, as the overall occurrence backbone similarity 

values of all backbones are higher than the group average backbone values, we can conclude that the 

nodes and connections that are present in at least 75% of the subjects are more representative of the 

common network structure between healthy subjects and SVD-patients. This is important to highlight 

because the weaker connections might disappear due to disease, explaining the lower similarity between 

the average connections of these groups. Regarding the MST measures between controls and patients 

presented in Figure 4.4, they show virtually no significant differences. In Table 4.6 it is visible that these 

values do not differ statistically, and again we conclude that MST metrics are consistent across controls 

and patients. Therefore, it is not advantageous to use MST metrics to see differences between these 

groups.  

5.2. Testing sensitivity to disease effects and disease progression 

For the second part of our analysis (Section 4.2.), we studied the detection of disease effects in a cross-

sectional way, by analyzing networks of patients and controls at baseline; and lastly we studied the 

detection of disease progression, in a longitudinal analysis, to compare the backbone network changes 

on patients over time, between baseline and follow-up. 

In the cross-sectional analysis (Section 4.2.1.), the changes between controls and patients using FA and 

MD matrices are visible in Figures 4.5 and 4.6, regarding both node strength and weighted global 

efficiency, respectively. Every backbone has significant differences between controls and patients 

(Tables 4.7 and 4.8). Additionally, every backbone showed practically the same behavior about these 

network weights: regarding average node strength, as expected, FA decreases from baseline to follow-

up, while MD increases. This is expected from the literature, because decreases in FA and increases in 

MD values are indicative of loss of tissue integrity, supporting the concept that white matter 

microstructural changes are likely to contribute to the decline in cognitive function8,9,63. With respect to 

global efficiency values of FA and MD-weighted matrices, the results show that they are always lower 

at follow-up. This supports the hypothesis that SVD condition diminishes global efficiency in the brain 

network, as the neuronal pathways lose structure and white matter becomes disrupted. Moreover, we 

verify that the values of global efficiency for the Hub Core are very high compared to the other 

backbones. We hypothesize that this happens because it is composed by hubs, that are nodes with higher 

centrality and importance, evidencing that hubs can increase the efficacy of the communications on the 

network16,114. Finally, from these results it is clear that FA and MD node strength and global efficiency 

are good predictors of disease effects. These alterations of FA and MD values due to vascular dementia, 

had already been proved by literature, but have never been tested in network backbones. 

In the longitudinal analysis (Section 4.2.2.), we wanted to test if the changes in node strength and global 

efficiency on patients regarding FA and MD, were significantly different between baseline and follow-
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up. The goal was to test if the network backbones can detect disease progression in a reliable way. Figures 

4.7 and 4.8 show the changes of node strength regarding FA and MD-weighted matrices, respectively. 

Tables 4.9 and 4.10 confirm that its values are significantly different between baseline and follow-up, 

for patients. These evidences show that it is possible detect disease progression by analyzing the node 

strength alterations in FA and MD-weighted matrices of backbone networks over time. Once again, as 

expected, FA values decreased and MD values increased between baseline and follow-up, due to the 

anomalies in the organization of the white matter tracts. Furthermore, concerning global efficiency, 

Figures 4.9 and 4.10 show the FA- and MD- weighted networks changes over time. Tables 4.11 and 4.12 

present the values of these changes, where it is clear that global efficiency decreases significatively over 

time, due to disease development, except for Hub-Core, where global efficiency increases between 

baseline and follow-up. That might be due to the dependence of global efficiency on network density or 

number of connections, while node strength is independent of these conditions. This dependency on 

network density might cause some ambiguous results, illustrated, in this case, by the increased global 

efficiency in Hub-Core of patients over time, making global efficiency a less reliable predictor of disease-

related network changes than node strength. 

5.3. Comparing different brain labels 

In the last part of our analysis (Section 4.3.), we used different brain parcellation schemes, of 200 and 

250 nodes, to test if they would influence our results. Thus, using these two templates only for validation 

data (due to time constrains), we were able to perform within-subjects analysis, MST measures changes 

between time-points and consistency across-subjects, at baseline. Firstly, considering the whole-brain 

template of 200 nodes presented in Figure 4.11, it is visible that the reproducibility results within-subjects 

are consistent with the 90 nodes template, supporting that MST is the most reproducible backbone 

between time-points, with reproducibility values of 0.805 ± 0.040  and 0.813 ± 0.045 for 90 and 200 

nodes templates respectively (Table 4.13). Disparity Core continues to present the lowest values of 

reproducibility: 0.613 ± 0.068 and 0.559 ± 0.023 for both templates, respectively. We can then conclude 

that MST is the most reproducible whole-brain backbone in terms of structure, and the most appropriate 

for this kind of analysis. However, regarding only the left hemisphere using the 250-nodes template 

(Figure 4.12), the K-Core shows the best reproducibility between time-points, with 0.764 ± 0.034, 

surpassing MST values of 0.742 ± 0.046. These results lead to the hypothesis that the connectivity 

concerning the left hemisphere is supported on sub-graphs of connectivity with more importance (higher 

degree). Furthermore, the group average similarity between baseline and follow-up (Table 4.14) shows 

very good results for MST concerning every template, with 0.948, 0.959 and 0.915 for 90, 200 and 250 

nodes respectively; and K-Core regarding 90-nodes and 250-nodes, with values of 0.909 and 0.907 

respectively. Once again, the MST backbone is the best backbone regarding reproducibility over time, 

followed by K-Core. Concerning the MST measures changes over time (Figures 4.13 and 4.14), as 

previously seen regarding the 90-nodes template, they all remain constant, regarding both the whole-

brain templates and the left hemisphere 250-nodes template. Tables 4.15 to 4.17 shows that they do not 

change statistically between time-points. This supports once again the hypothesis that MST is a good 

backbone for reproducibility over time-points, as it maintains the stability of the network over time, and 

is not so influenced by noise and other artifacts or external factors caused by the inaccuracy of the 

diffusion MRI technique. Finally, the consistency across-subjects is tested comparing every network 

with the occurrence backbone for validation data at baseline for all three templates, shown in Figures 

4.15 and 4.16. The values of correspondence between every subject and the occurrence backbone are 
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shown in Table 4.18, revealing that K-Core remains the best one regarding the connections that are 

present in 75% of the subjects, followed by MST with 90 and 200 nodes template, whereas  Hub-Core 

has the second better reproducibility values regarding the 250 left hemisphere nodes template. Once 

again, we can hypothesize that brain connectivity concerning the left hemisphere is supported on sub-

graphs of connectivity with more importance (higher degree). For all three templates, the Disparity Core 

keeps on having inconclusive results. 

5.4. Final Remarks 

Overall, our results answer the questions asked in the introduction of this study: we show that network 

backbones can be used in clinical approaches, as they are reproducible over time, and able to detect 

disease effects and progression. In terms of consistency and reproducibility over time within the same 

group of subjects, we demonstrated that MST and K-Core have the best results as they represent the 

structural connections and the connectivity core of the brain network. 

Besides, we strengthen the notion that DTI parameters are advantageous in the study of the changes in 

the connectivity of the brain. FA and MD components of these backbones and their alterations through 

time, are directly in line with previous findings concerning changes in neuronal pathways due to disease 

development. The white matter disorganization is translated to the network backbone as a decreased 

anisotropy and increased mean diffusivity, due to the loss of structured diffusion. This supports the idea 

that network analysis can be very useful to study the evolution of SVD effects. Remarkably, we were 

able to detect disease progression using only a backbone of brain connections, that is not only sensitive 

to disease effects and progression, but also consistent within- and across-subjects. We therefore propose 

the use of MST as a reference network or standard backbone of the human connectome. As it is consistent 

within- and across- validation data subjects, it indicates that the majority of MST connections are similar 

in healthy adults, but individual connections may vary between subjects. 

Together, the present findings confirm that the Minimum Spanning Tree is the best backbone regarding 

reproducibility between time-points and detection of disease effects, whereas node strength is the best 

approach to detect disease effects on the network backbone.  
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6. Conclusions 
 

Modern network analysis is a rapidly growing field in neuroscience, but the lack of a proper methodology 

for network comparison between studies, and between conditions within studies, is increasingly 

becoming an important obstacle to further progress. In this study, we investigated whether network 

backbones can be used in clinical datasets as a structural architecture of the human brain network, by 

testing if they are reproducible over time and sensitive to disease effects and disease progression in 

patients with SVD. 

Our results suggest that there are brain network backbones that can be applied to clinical datasets as they 

can detect disease changes and disease progression, while are also a reliable way to compare brain 

connectivity between time-points. Minimum Spanning Tree is the best backbone overall. It concedes a 

unique and consistent representation of a weighted network, while offering an adequate model to be used 

in a clinical situation, as it is reproducible either within and across-subjects, and the more stable backbone 

across groups at baseline. This goes along with some studies showing that MST provides an elegant and 

straightforward approach to analyze structural brain networks10,20. Besides, the strengths of using MST 

for brain network analysis rely in its properties: it is a mathematically defined, unbiased sub-network 

that reflects the most fundamental network properties, allowing for an unbiased comparison between 

networks of equal size in empirical studies. Moreover, in this study, it is demonstrated the efficacy of K-

Core and MST to detect disease effects between controls and patients, as well as disease progression in 

patients between baseline and follow-up. However, at the same time, the uniqueness of the MST is also 

an advantage over K-Core, as the construction of the MST is independent of arbitrary thresholds or link 

weight transformations. Therefore, the present findings can help researchers to make a well-informed 

choice when selecting an appropriate network backbone for future clinical dataset studies. 

The use of graph-theoretical network approaches is a relatively young scientific field in the context of 

neuroscience research. Although promising, this approach can be related with some methodological 

problems. Apart from the thresholding problem, there are other limitations associated with practical 

issues. First of all, the parcellation of the brain regions might influence the network properties. We used 

the AAL atlas that consists of unequal-sized 90 brain regions to parcel the brain for network construction. 

Thus, in order to achieve more comprehensive results, we also used two more templates. However, 

defining these brain regions remains challenging, and the extent to which different parcellation strategies 

might improve the results remains, however, unclear127. 

Moreover, our results corroborate studies showing that the vascular damage (indicated by conventional 

MRI markers for SVD) might be related to neurological dysfunction via reduced structural network 

efficiency43,126: the majority networks of our patients had lower global efficiency over time and lower 

node strength. Moreover, our results show that node strength was the strongest predictor for the loss of 

integrity over time. This analysis of disease progression over time is crucial, because besides the effects 

of focal damage by SVD on a single region, the cumulative effects of the SVD-related lesions distributed 

over the brain may also affect the integration of information communication (or the efficiency) between 

brain regions41, which might lead to cognitive impairment over time. Therefore, these results highlight 

the relation between network efficiency and cognitive performance in participants with SVD, indicating 
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a significant role for network analysis in SVD-related cognitive deficits, in addition to conventional MRI 

markers. 

Nonetheless, this study opens several innovative investigation possibilities. Firstly, it allows the study of 

brain connectivity not only locally but also globally by characterizing the topological features of this 

large-scale network. Mainly, we can use the individual tract properties or network statistics to globally 

characterize brain connectivity in an individual living subject. Such global characterizations are 

fundamental for a better understanding of brain communication. Second, our approach is non-invasive, 

efficient, individual and of relatively high-resolution. Our study may then contribute to the discovery of 

the general principles regulating communication, evolution, and development of the brain in a more 

reliable way; in clinical neuroscience it may shed new light into diseases of disorders that include 

disruptions of anatomical brain connectivity. 
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8. Appendix 
 

Table A.1 - Mathematical definitions of complex network measures. From the paper of Tewarie et al.20. The Brain Connectivity 

Toolbox contains Matlab functions to compute most measures in this table. 
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Table A.2 – Mathematical definitions of shortest path length and global efficiency measures, from Rubinov and Sporns90. The 

Brain Connectivity Toolbox contains Matlab functions to compute the measures in this table. 

 

 

  


