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Abstract
Periods	 of	 sleep	 and	wakefulness	 can	 be	 estimated	 from	wrist-	locomotor	 activity	
recordings	via	algorithms	that	identify	periods	of	relative	activity	and	inactivity.	Here,	
we	evaluated	the	performance	of	our	Munich	Actimetry	Sleep	Detection	Algorithm.	
The	Munich	 Actimetry	 Sleep	 Detection	 Algorithm	 uses	 a	moving	 24–	h	 threshold	
and correlation procedure estimating relatively consolidated periods of sleep and 
wake.	The	Munich	Actimetry	Sleep	Detection	Algorithm	was	validated	against	sleep	
logs	and	polysomnography.	Sleep-	log	validation	was	performed	on	 two	 field	 sam-
ples	collected	over	54	and	34	days	(median)	in	34	adolescents	and	28	young	adults.	
Polysomnographic validation was performed on a clinical sample of 23 individuals un-
dergoing	one	night	of	polysomnography.	Epoch-	by-	epoch	analyses	were	conducted	
and	comparisons	of	sleep	measures	carried	out	via	Bland-	Altman	plots	and	correla-
tions.	Compared	with	sleep	logs,	the	Munich	Actimetry	Sleep	Detection	Algorithm	
classified	sleep	with	a	median	sensitivity	of	80%	(interquartile	range	[IQR]	=	75%–	
86%)	and	specificity	of	91%	(87%–	92%).	Mean	onset	and	offset	times	were	highly	
correlated (r =	 .86–	.91).	 Compared	with	 polysomnography,	 the	Munich	Actimetry	
Sleep	Detection	Algorithm	reached	a	median	sensitivity	of	92%	(85%–	100%)	but	low	
specificity	of	33%	(10%–	98%),	owing	to	the	low	frequency	of	wake	episodes	in	the	
night-	time	 polysomnographic	 recordings.	 The	 Munich	 Actimetry	 Sleep	 Detection	
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1  | INTRODUC TION

Sleep	is	characterized	by	reduced	or	absent	consciousness,	percep-
tual disengagement, immobility and a characteristic sleep posture 
(Grandner	&	Rosenberger,	2019).	The	current	gold	standard	to	ob-
jectively detect and monitor sleep in humans is polysomnography 
(PSG),	based	on	characteristic	electroencephalogram	(EEG)	patterns,	
muscle tone and eye movements. Despite its usefulness in many 
clinical and research settings and its rich detail, PSG recordings and 
analyses are laborious and expensive, and thus rarely performed 
over	 several	 nights	 on	 the	 same	 person,	 and	 consequently	 not	
well	 suited	 to	 studying	habitual	 sleep–	wake	patterns	 (Grandner	&	
Rosenberger,	2019;	Van	de	Water	et	al.,	2011).

In	 turn,	 actigraphy	 or	 actimetry	 (as	we	 prefer	 to	 call	 it)	moni-
tors states of immobility through the detection of movements by 
wrist-	worn	devices	(Conley	et	al.,	2019;	Dick	et	al.,	2010;	Grandner	
&	Rosenberger,	2019;	Marino	et	al.,	2013;	Roenneberg	et	al.,	2015;	
Toon	et	al.,	2016).	Pioneering	work	in	the	1970s	and	1980s	has	made	
long, continuous recordings possible and demonstrated that sleep 
times and duration can be estimated from such records by identify-
ing	periods	of	relative	immobility	(Borbély,	1986;	Kripke	et	al.,	1978).	
Thus,	 sleep–	wake	 patterns	 can	 be	 captured	 over	 days,	months	 or	
even	years	 (Borbély	et	al.,	2017)	and	analysed	for	sleep	regularity,	
weekly	or	even	seasonal	patterns,	effects	of	interventions,	or	sleep–	
wake rhythm disturbances resulting from circadian rhythm disorders 
(Ancoli-	Israel	et	al.,	2003;	Dick	et	al.,	2010;	Kantermann	et	al.,	2007;	
Roenneberg	et	al.,	2015;	Sadeh,	2011;	Smith	et	al.,	2018).	 In	addi-
tion	 to	 providing	 long-	term	 records	 of	 sleep–	wake	 patterns	 that	
are	 a	 prerequisite	 for	 circadian	 analyses,	 actimetry	 is	 less	 expen-
sive and less sleep disturbing than PSG and captures sleep where it 
normally	occurs	(Ancoli-	Israel	et	al.,	2003;	Conley	et	al.,	2019;	Dick	
et	al.,	2010;	Marino	et	al.,	2013;	Toon	et	al.,	2016;	Tryon,	2004).	The	
easy	handling	and	at-	home	applicability	may	also	result	in	higher	par-
ticipation	rates	than	in	PSG	studies	(Marino	et	al.,	2013).	Actimetry	
even poses an advantage over sleep logs, which can be cumbersome 
to	fill	in	over	a	long	period	and	require	literacy,	but	have	often	been	
the	only	practical	alternative	to	investigate	the	long-	term	structure	
of	sleep–	wake	rhythms	(Girschik	et	al.,	2012).

The performance of actimetry in comparison to sleep logs and 
PSG	 in	 sleep–	wake	detection	 depends	 on	 the	 sleep–	wake	 scoring	
algorithm, the recording device, the study population and, of course, 
the	question	at	hand.	Generally,	validations	against	PSG	indicate	ad-
equate	estimation	of	time	and	duration	of	sleep	episodes	as	long	as	
individuals do not have severe sleep fragmentation or severe sleep 
disorders	 (Ancoli-	Israel	et	al.,	2003;	Sadeh,	2011).	 In	such	studies,	
actimetry was repeatedly shown to be highly sensitive in detecting 
sleep	(sensitivity)	but	quite	insensitive	in	detecting	wake	(specificity),	
thus	indicating	a	tendency	for	movement-	based	sleep–	wake	scoring	
to	overestimate	sleep	and	underestimate	wake	(Conley	et	al.,	2019;	
Grandner	&	Rosenberger,	2019;	Marino	et	al.,	2013;	Sadeh,	2011;	a	
et	al.,	2011).	Importantly,	these	studies	were	mainly	based	on	night-	
time	recordings,	where	sleep	 (not	wake)	 is	 the	most	abundant	and	
probable state. Therefore, the underestimation of wake reflects the 
underestimation of wake close to sleep onset and of wake disrup-
tions	 of	 sleep	 (i.e.,	wake	 after	 sleep	 onset	 [WASO]),	when	 people	
may	are	 relatively	 immobile	 in	 their	 beds-		 and	not	necessarily	 the	
underestimation of wakefulness during the day when people tend 
to	move	more.	Accordingly,	in	validations	against	sleep	logs	that	in-
cluded	wakefulness	during	the	day,	actimetric	sleep–	wake	detection	
performed well in both sleep and wake detection and thus allowed 
monitoring changes in sleep patterns over time (Iwasaki et al., 2010; 
Lockley	et	al.,	1999;	Santisteban	et	al.,	2018).

Here,	 we	 present	 the	 validation	 of	 our	 sleep–	wake	 scoring	
algorithm	 called	 Munich	 Actimetry	 Sleep	 Detection	 Algorithm	
(MASDA;	sometimes	previously	referred	to	as	bin-	sleep	method;	
Roenneberg	 et	 al.,	 2015).	 Like	 the	many	 other	 algorithms	 intro-
duced	since	the	first	validated	algorithm	by	Webster	et	al.,	(1982),	
MASDA	 weighs	 the	 movement	 values	 within	 an	 epoch	 of	 in-
terest	 against	 previous	 and	 subsequent	 epochs	 (Grandner	 &	
Rosenberger,	 2019).	 However,	 the	 MASDA	 was	 specifically	 de-
signed	from	a	circadian	perspective	to	prioritize	the	detection	of	
general	 sleep–	wake	 patterns	 over	 the	 detection	 of	 sleep–	wake	
in	 each	 individual	 short	 epoch.	 Hence	 it	 operates	 on	 a	 10-	min	
resolution	 of	 movement	 counts	 (10-	min	 analysis	 epochs),	 which	
we commonly use in circadian actimetry analyses (Roenneberg 
et	 al.,	 2015),	 employs	 a	 24-	h	 moving	 threshold	 for	 primary	

Algorithm	overestimated	sleep	onset	(~21	min)	and	underestimated	wake	after	sleep	
onset (~26	min),	while	not	performing	systematically	differently	from	polysomnogra-
phy in other sleep parameters. These results demonstrate the validity of the Munich 
Actimetry	Sleep	Detection	Algorithm	in	faithfully	estimating	sleep–	wake	patterns	in	
field	studies.	With	 its	good	performance	across	daytime	and	night-	time,	 it	enables	
analyses	 of	 sleep–	wake	 patterns	 in	 long	 recordings	 performed	 to	 assess	 circadian	
and sleep regularity and is therefore an excellent objective alternative to sleep logs 
in field settings.

K E Y W O R D S

accuracy,	actigraphy,	automated	sleep	analysis,	PSG,	sleep	diary,	sleep–	wake	rhythms
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sleep–	wake	detection	and	yields	relatively	consolidated	sleep	ep-
isodes via a secondary, dedicated correlation procedure. This was 
intended to enable easier analyses and better pattern recognition 
on	a	24-	h	scale	and	long-	range	recordings	than	the	more	common	
short	epoch-	by-	epoch	approach	used	in	most	standard	algorithms	
(e.g.	Cole-	Kripke's,	Scripps',	Oakley's,	Sadeh's)	 (Cole	et	al.,	1992;	
Kripke	et	al.,	2010;	Oakley,	1997;	Sadeh	et	al.,	1994).

In	this	study,	we	validated	the	sleep–	wake	scoring	results	of	the	
MASDA	against	sleep-	log	entries	from	two	samples	collected	over	
multiple weeks in the field as well as against PSG during single labo-
ratory nights in a clinical sample.

2  | METHODS

2.1 | Sleep log sample

2.1.1 | Participants

For	the	validation	against	sleep	logs,	we	used	two	samples	from	pre-
vious studies, an adolescent sample and one young adult sample. 
The	adolescent	 sample	was	 collected	over	9	weeks	 in	45	German	
high-	school	students	(mainly	Caucasians),	of	whom	34	participants	
(22	females,	mean	[M]	=	16.7	years,	standard	deviation	[SD]	= 1.2 , 
range =	14–	19	)	provided	high-	quality	data	in	both	their	sleep	logs	
and	actimetry	records	(median	of	54	days)	and	were	used	for	further	
analyses	(Winnebeck	et	al.,	2020).	The	young	adult	sample	was	col-
lected	over	4–	6	weeks	in	30	German	participants	(mainly	Caucasians),	
of	whom	28	(13	females,	M =	22.8	years,	SD = 3.6, range =	19–	33)	
provided	 complete	data	 across	both	methods	 (median	of	34	days)	
and	made	up	the	final	adult	sample	(Ghotbi	et	al.,	2020).	Approval	
for both studies was obtained by the Ethics Committee of the LMU 
Medical	 Faculty	 (517–	15,	 774–	16),	 and	 all	 participants	 (and	 their	
guardians	if	applicable)	provided	informed	consent.

2.1.2 | Actimetry

Activity	 was	 recorded	 with	 wrist-	worn	 devices	 (Daqtometer	 2.4,	
Daqtix)	that	were	worn	continuously	on	the	wrist	of	the	dominant	
or	non-	dominant	hand	(participants'	choice).	This	choice	was	possi-
ble as we did not aim to estimate general physical activity for meta-
bolic	monitoring	but	 to	estimate	activity	patterns.	These	dual-	axis	
accelerometers were set to sample static and dynamic acceleration 
at	1	Hz.	Activity	counts	 (the	sum	of	 the	 linear	differences	of	 sub-
sequent	readings	for	each	axis)	were	stored	by	the	devices	at	30–	s	
intervals as the mean of all counts in this interval.

2.1.3 | Sleep	log

The sleep logs for both samples were based on the μMCTQ	
(Ghotbi	 et	 al.,	 2020),	 a	 short	 version	 of	 the	 Munich	 ChronoType	

Questionnaire.	 Instead	of	 asking	participants	 to	 record	 their	 aver-
age	sleep	times	for	the	last	weeks	separately	for	work	and	work-	free	
days,	as	this	questionnaire	normally	does,	the	µMCTQ	was	applied	
daily	 via	 an	online	platform	 (limesurvey.org)	 to	 record	 initial	 sleep	
onset and final sleep offset of the previous night.

2.2 | Polysomnography sample

2.2.1 | Participants

For	the	validation	against	laboratory	PSG,	a	dedicated	dataset	was	
recorded at the CENC Sleep Medicine Center, Lisbon, Portugal. 
The	original	sample	consisted	of	50	participants.	However,	because	
of	 software	 and	 signal	 synchronization	 issues	 (n = 11 and 16, re-
spectively),	 records	 from	only	23	of	 these	participants	 (9	 females,	
M = 40.1 years, SD = 13.7, range =	21–	80	)	could	be	used	for	analysis.	
Of these, 11 subjects were diagnosed based on the PSG recording 
as	without	any	clinical	 sleep	pathology	 (healthy),	 four	with	 insom-
nia,	 one	 with	 parasomnia	 (rapid	 eye	 movement	 [REM]	 Behaviour	
Disorder),	 four	 with	 circadian	 rhythm	 sleep–	wake	 disorder	 (two	
delayed	 sleep–	wake	 phase	 disorder	 and	 two	 shift	 work	 disorder),	
and three with sleep related breathing disorder (obstructive sleep 
apnea).	The	study	was	approved	by	the	Lisbon	Medical	School	Ethics	
Committee and all participants gave their written consent.

2.2.2 | Actimetry

Participants	wore	wrist	actimeters	≥24	h	before	and	after	the	labora-
tory	PSG	night	for	a	total	of	14	days.	For	the	majority	of	participants,	
ActTrust	devices	 (Condor	 Instruments)	were	used;	 for	 two	partici-
pants	 the	 Actiwatch	 2	 (Phillips	 Respironics)	 was	 used.	 Sensitivity	
analyses	without	data	from	Actiwatch-	2	participants	yielded	equiva-
lent results, indicating that device differences did not drive results. 
For	both	devices,	activity	was	sampled	every	second	and	stored	in	
30-	s	bins.

Adequate	 temporal	 synchronization	between	PSG	and	actime-
try was established via event markers in both recordings: a marker 
button	signal	for	the	actimeters	and	the	lights-	off	signal	for	the	PSG.	
When there was a mismatch of >10	min	between	the	marker-	time	
stamps (indicative of an error at the time of recording rather than a 
temporal	mismatch	between	the	devices),	manual	matching	via	the	
actimetric light profile was attempted, and otherwise the records ex-
cluded from analysis (n =	16).

2.2.3 | Polysomnography

Overnight	 PSG	was	 performed	 with	 the	 Nicolet	 System	 (Viasys	
Healthcare)	 or	 the	 Domino	 Somnoscreen	 Plus	 (Somnomedics).	
The recorded parameters included: electroencephalography 
(F3-	M2,	 F4-	M1,	 C3-	M2,	 C4-	M1,	 O1-	M2,	 O2-	M1);	 left	 and	 right	
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electrooculogram; submental electromyogram; bilateral tibial 
electromyogram;	electrocardiogram;	oronasal	airflow	with	three-	
pronged thermistors; nasal pressure with a pressure transducer; 
rib cage and abdominal wall motion via respiratory impedance ple-
thysmography; arterial oxygen saturation with pulse waveform; 
and digital video and audio. The recording was scored from “lights 
off” to “lights on,” with lights off scheduled as close as possible to 
participants'	normal	 sleep	schedule,	 aiming	 for	a	 sleep	period	of	
8	h.	In	the	case	of	an	interfering	work	schedule	or	a	sleep	disorder	
that	 prevented	 participants	 from	 staying	 asleep	 (e.g.,	 insomnia),	
a	 sleep	 period	 of	 fewer	 than	 8	 h	was	 tolerated.	 The	 recordings	
were	manually	scored	in	30-	s	epochs	by	trained	sleep	technicians	
according	to	the	American	Academy	of	Sleep	Medicine	specifica-
tions	(AASM	version	2.3,	2016).

To	match	 the	 10-	min	 resolution	 underlying	 the	MASDA	 (see	
below),	 the	 PSG	 scoring	 at	 30-	s	 resolution	was	 aggregated	 into	
10-	min	intervals	via	the	mode	(i.e.,	the	most	prevalent	sleep	stage	
over	20	consecutive	30-	s	epochs	was	assigned	to	each	10-	min	in-
terval).	These	were	subsequently	converted	to	a	binary	categori-
zation	(0	= wake, 1 =	sleep).	The	median	length	of	the	series	was	
47.0	10-	min	 intervals	 (IQR	=	 42.5–	51.0)	 (i.e.,	 7.8	h).	 Participants	
spent	 41.0	 (37.5–	44.5)	 intervals	 asleep	 and	 5.0	 (2–	8.5)	 intervals	
awake.

2.3 | The Munich Actimetry Sleep 
Detection Algorithm

The	 Munich	 Actimetry	 Sleep	 Detection	 Algorithm	 (Roenneberg	
et	al.,	2015),	formerly	also	referred	to	as	bin	sleep	method,	is	a	two-	
step	procedure	for	binary	sleep–	wake	scoring	from	activity	counts,	
heuristically designed to yield relatively consolidated stretches 
of sleep or wake. If it is desired to use it with raw accelerometry 
data, the data have to be converted to counts prior to analyses, 
using	approaches	such	as	the	te	Lindert	method	(te	Lindert	&	Van	
Someren,	2013).

The first step of sleep detection is a threshold procedure in 
which	 all	 epochs	 (usually	 10	min	 long)	with	 activity	 counts	 below	
a	given	percentage	of	the	24-	h-	centred	moving	average	are	classi-
fied	as	putative	sleep.	The	default	percentage	we	use	is	15%,	but	it	
can	be	adapted	from	10%–	25%	for	specific	populations	or	individu-
als with particularly low or high activity during wake or sleep. The 
second	step	of	the	MASDA	is	a	“cleaning”	procedure	consisting	of	a	
duration filter and a correlation procedure. The filter reclassifies any 
sleep epoch not part of a stretch of at least 30 min as wake to avoid 
misclassification of short periods of inactivity. This is followed by a 
correlation procedure that joins adjacent stretches of sleep epochs 
based	on	a	test	series	of	sleep	episodes	of	varying	lengths.	For	more	
details on the correlation procedure, please refer to Roenneberg 
et	al.	(2015).	The	algorithm	was	originally	implemented	in	C++ in the 
software ChronoSapiens (© 2020 Chronsulting UG; Roenneberg 
et	al.,	2015),	but	has	also	been	included	in	the	Python	package	pyAc-
tigraphy	(Hammad	et	al.,	2020).

2.4 | Activity data processing

Actimetry	 data	 were	 analysed	 via	 our	 in-	house	 software	
ChronoSapiens	 (Version	10).	All	activity	records	were	analysed	via	
our	standard	10-	min	resolution	(Roenneberg	et	al.,	2015);	the	data	
were aggregated into intervals of 10 min via the arithmetic mean 
upon	import	into	the	program.	Periods	of	non-	wear	were	identified	
based	on	participants'	self-	reports	(actimetry	logs)	as	well	as	based	
on	stretches	of	consecutive	zeros	exceeding	100	min	and	excluded	
from	the	analysis	(i.e.,	set	to	“not	available”	[NA]).	If	these	stretches	
occurred at the beginning of the inactive period on multiple days in 
the same individual, these were taken to be sleep with hardly any 
movement	and	not	replaced	with	NA.

Sleep	detection	via	MASDA	was	performed	with	a	15%	threshold	
(20%	for	the	adolescent	sample),	and	the	setting	to	perform	correla-
tion	series	for	four	10-	min	bins	past	the	last	rmax	was	4.	The	15%	and	
4-	rmax-	settings	are	our	default	 settings	and	 should	be	 the	 starting	
point for any algorithm tuning to a specific population. We suggest 
tuning	the	threshold	between	10%	and	25%	and	the	rmax between 3 
and	5.	The	difference	between	a	15%	and	a	20%	threshold	is	negli-
gible	in	most	populations	and	usually	only	mildly	affects	sleep–	wake	
detection in a few individuals. We therefore advise starting with the 
default settings and, in the case of an obvious mismatch between 
visual	 and	algorithm-	based	 sleep	detection	 in	 some	 individuals,	 to	
change first the threshold across all participants to identify if there 
is	a	better	setting	for	the	entire	sample	(reason	for	the	20%	setting	
in	our	adolescent	sample).	 If	specific	 individuals	cannot	be	accom-
modated with a general population setting, one can also consider 
participant-	specific	 settings,	 particularly	 in	 diverse	 or	 severely	
sleep-	disrupted	samples	(e.g.,	shift	workers;	Vetter	et	al.,	2015).

Because	 the	 MASDA	 incorporates	 information	 from	 the	 sur-
rounding	24	h	via	the	24-	h	moving	average,	it	can	be	influenced,	to	
a certain extent, by stretches of missing data. To avoid systematic 
effects	on	the	sleep–	wake	scoring,	sleep	bouts	in	the	sleep-	log	sam-
ples, where we can afford stricter criteria given the large amount 
of	data,	were	excluded	from	the	analysis	 (i.e.,	epochs	set	to	NA)	 if	
(a)	≥1	h	of	missing	data	was	present	within	3	h	or	(b)	≥4	h	of	missing	
data	was	present	within	15	h	before	or	 after	 the	 sleep	bout.	Any	
sleep bouts within the first or last 15 h of the recording were also 
excluded.	This	led	to	a	mean	proportion	of	3.5%	(SD	3.0)	epochs	of	
NA	per	sleep-	log	record.

2.5 | Method comparisons

2.5.1 | Epoch-	by-	epoch	agreement

Sensitivity, specificity, predictive values and overall accuracy served 
as	measures	of	agreement	between	the	MASDA	and	sleep	logs/PSG.	
Sensitivity means the proportion of “true” sleep epochs (according 
to	sleep	 log/PSG)	 that	are	also	 identified	as	sleep	by	 the	MASDA.	
Specificity is defined as the proportion of “true” wake epochs (ac-
cording	to	sleep	log/PSG)	that	are	also	rated	as	wake	by	the	MASDA.	
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Whereas sensitivity and specificity relate the classification of the 
MASDA	to	the	ground	truth	(sleeplogs/PSG),	the	predictive	values	
describe	the	probability	that	a	classification	obtained	by	the	MASDA	
is correct, taking the relative prevalence of sleep versus wake into 
account:	the	positive	predictive	value	(PPV)	quantifies	accurate	rat-
ings	of	sleep;	 the	negative	predictive	value	 (NPV)	quantifies	accu-
rate ratings of wake. Overall accuracy is defined as the proportion 
of	all	sleep	log/PSG	bins	that	are	correctly	classified	by	the	MASDA.	
Analyses	were	based	on	pairwise-	complete	epochs;	that	is,	epochs	
with	invalid	or	missing	data	(NA)	in	either	of	the	two	methods	under	
comparison were disregarded during the analysis.

2.5.2 | Sleep	parameter	agreement

Summary sleep parameters calculated from the epoch time courses 
included sleep onset, offset and duration (called total sleep time, 
TST,	 for	 the	PSG	sample)	 for	both	the	sleep	 log	and	PSG	samples,	
as	well	as	 sleep	period	 time	 (SP),	WASO,	and	sleep	efficiency	 (SE)	
for	the	PSG	sample.	For	the	sleep-	log	sample,	which	encompassed	
multiple weeks of recordings, the average sleep onset and offset 
times and durations per person over the entire recording were used. 
These averages were calculated after eliminating naps and fusing 
adjacent sleep bouts to obtain a daily onset and offset of the main 
sleep episode; for duration, interim wake periods were subtracted 
(see	Winnebeck	et	al.	(2020)	for	details).	For	the	PSG	sample,	sleep	
onset was defined as the first bin scored as sleep after PSG record-
ing started and sleep offset as the last bin scored as sleep before the 
PSG scoring ended. Sleep period time was defined as the elapsed 
time between sleep onset and sleep offset. Wake after sleep onset 
was calculated via the number of wake bins within a sleep episode. 
Total	 sleep	 time	was	 defined	 as	 SP	minus	 the	 amount	 of	WASO.	
Sleep efficiency was the proportion of TST relative to time in bed 
(i.e.,	time	between	lights	off	and	lights	on).

Correlation analysis of sleep parameters from PSG and the 
MASDA	 was	 performed	 either	 via	 Pearson	 product	 moment	 cor-
relations or via Spearman rank order correlations if parameters were 
non-	normally	 distributed	 according	 to	 the	 Shapiro-	Wilk	 test.	 The	
alpha	 level	was	 set	 to	0.05.	Additionally,	Bland-	Altman	plots	were	
created to visually examine the systematics of potential deviations 
between the sleep parameters derived from the two methods.

All	 analyses	 were	 conducted	 using	 R	 3.5.1	 and	 4.0.2	 (R	
Core	 Team,	 2020)	 with	 special	 packages	 including	 psych	
(Revelle,	 2020),	 tidyverse	 (Wickham	 et	 al.,	 2019)	 and	 data.table	
(Dowle	 &	 Srinivasan,	 2020).	 Plots	 were	 generated	 using	 ggplot2	
(Wickham,	2016)	in	R	and	matplotlib	(Hunter,	2007)	in	Python	2.7.16	
(Python	Software	Foundation,	2001–	2019).

3  | RESULTS

For	 our	 validation	 of	 the	 Munich	 Actimetry	 Sleep	 Detection	
Algorithm,	we	made	 use	 of	 three	 different	 samples.	 Two	 samples	

with	long	continuous	field	recordings	(medians	of	54	and	34	days),	
one of adolescent students (n =	34)	and	one	of	young	adults	(n =	28),	
provided	 the	basis	 for	 assessing	 the	MASDA	against	 sleep-	log	 re-
cords.	A	clinical	sample	with	overnight	PSG	(n =	23)	including	both	
patients with various sleep disorders as well as healthy sleepers was 
used	to	assess	the	algorithm	against	PSG.	Validation	included	both	
assessment	of	epoch-	by-	epoch	agreement	as	well	as	comparisons	of	
standard summary parameters.

3.1 | Validation against sleep logs

3.1.1 | Epoch-	by-	epoch	agreement

For	each	individual	of	the	adolescent	and	young	adult	samples,	the	
sleep/wake	classification	for	each	10-	min	epoch	was	compared	be-
tween	the	MASDA	and	sleep	logs.	Over	all	participants,	the	MASDA	
reached	a	median	accuracy	of	87%	(IQR	=	84%–	89%),	sensitivity	of	
80%	(75%–	86%),	specificity	of	91%	(87%–	92%),	positive	predictive	
value	of	80%	(76%–	85%)	and	a	median	negative	predictive	value	of	
90%	(88%–	92%;	Figure	1a).	The	Munich	Actimetry	Sleep	Detection	
Algorithm	 thus	 performed	 adequately	 in	 recognizing	 sleep:	 80%	
of	 sleep-	log-	rated	 sleep	 epochs	 were	 correctly	 identified	 by	 the	
MASDA	(sensitivity),	and	80%	of	algorithm-	determined	sleep	epochs	
were	also	rated	as	sleep	epochs	in	the	logs	(positive	predictive	value).	
In these long, continuous recordings, the algorithm performed even 
better	 in	 recognizing	 consolidated	 wake	 epochs:	 sleep-	log-	rated	
wake	was	identified	as	wake	by	the	MASDA	in	91%	of	epochs	(speci-
ficity),	and	90%	of	epochs	classified	as	wake	by	the	MASDA	were	
sleep-	log-	rated	wake	as	well	(negative	predictive	value).	Importantly,	
we identified no systematic differences between the two samples in 
any	of	the	metrics	(Table	S1).

3.1.2 | Agreement	in	summary	sleep	parameters

Agreement	in	sleep	onset,	offset	and	duration	between	the	MASDA	
and	sleep	logs	was	assessed	via	correlations	and	Bland-	Altman	plots	
in	the	adolescent	sample	(Figures	2	and	3).	The	summary	statistics	of	
the parameters themselves are listed in Table S2.

Correlation analyses revealed strong positive associations be-
tween both methods in all three summary parameters (Ronset =	.92,	
Roffset =	.86,	Rduration = .62; all p <	.001).	These	associations	remained	
strong when differentiating between schooldays (Ronset =	 .89,	
Roffset =	.80,	Rduration =	.78;	all	p <	.001)	and	weekends	(Ronset =	.91,	
Roffset =	.86,	p <	.001),	albeit	with	a	moderate	association	for	dura-
tion on weekends (R = .46, p <	.01).

The	 Bland-	Altman	 analyses,	 which	 assess	 potential	 system-
atic	disagreements	between	 log	 and	MASDA-	determined	parame-
ters,	show	that	both	mean	sleep	onset	(Figure	3a)	and	offset	times	
(Figure	 3b)	 were	 on	 average	 21	 min	 earlier	 from	 MASDA.	 Mean	
sleep	 durations	 (Figure	 3c)	 were	 quite	 similar	 for	 both	 methods,	
with	MASDA-	derived	durations	being	on	average	6	min	shorter	than	
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those from logs. The differences in sleep duration between the two 
methods showed more variability than those of the other parame-
ters. No systematic differences with later onset or offset times or 
longer durations emerged from the analyses.

3.2 | Validation against PSG

3.2.1 | Epoch-	by-	epoch	agreement

Using	the	PSG	sample,	the	sleep/wake	classification	of	the	MASDA	
was	 compared	 to	 the	 PSG	 classification	 for	 each	 10-	min	 analysis	
epoch	 within	 each	 individual.	 Over	 all	 participants,	 the	 MASDA	
reached	a	median	accuracy	of	83%	(IQR	=	78%–	92%),	sensitivity	of	
92%	(85%–	100%),	specificity	of	33%	(10%–	98%),	positive	predictive	
value	of	92%	(87%–	99%)	and	negative	predictive	value	of	37%	(22%–	
85%;	Figure	1b).	Of	note,	specificity	and	negative	predictive	value	
both	spanned	the	complete	range	from	0%	to	100%	(Figure	1b).	In	
the	PSG	validation,	where	only	night-	time	sleep–	wake	states	were	
assessed,	 the	MASDA	 performed	 best	 in	 detecting	 sleep:	 epochs	
considered sleep in the PSG scoring were identified as sleep by the 
MASDA	in	92%	of	cases	(sensitivity);	sleep	epochs	identified	by	the	
MASDA	were	also	PSG-	identified	sleep	epochs	in	92%	of	cases	(pos-
itive	predictive	value).	However,	the	MASDA	showed	more	difficulty	
in	detecting	wake:	only	33%	of	epochs	that	were	considered	wake	by	
PSG	were	identified	as	wake	by	the	MASDA	(specificity),	and	those	
that	were	classified	as	wake	by	the	MASDA	were	correct	in	only	37%	
of	cases	(negative	predictive	value).	The	lowest	values	for	specificity	

and	negative	predictive	value	were	in	individuals	with	very	few	PSG-	
determined	wake	 epochs.	Here,	misclassification	 by	 the	 algorithm	
weighed particularly strongly by definition.

3.2.2 | Agreement	in	summary	sleep	parameters

In	 addition	 to	 the	 epoch-	by-	epoch	 comparisons,	we	 also	 analysed	
agreement in common summary sleep parameters (for descriptives 
see	Table	S2).	Spearman	correlation	analyses	between	 the	param-
eters of both methods revealed a strong relationship for sleep onset 
(rho = 0.63, p =	 .01;	 Figure	 4a)	 and	 for	 sleep	 offset	 (rho = 0.76, 
p <	.001;	Figure	4b).	In	contrast,	sleep	period	duration,	TST,	WASO	
and sleep efficiency, which more heavily depend on wake detection 
during the sleep episode, showed no statistically significant relation-
ship	 between	 the	 actimetry-	determined	 and	 the	 PSG-	determined	
values	(Figure	4c–	g).

Furthermore,	 Bland-	Altman	 plots	were	 used	 for	 visual	 inspec-
tion	 of	 potential	 systematic	 disagreements	 between	 actimetry-	
determined	 and	 PSG-	determined	 summary	 measures	 (Figure	 5).	
Bland-	Altman	analysis	of	sleep	onset	(Figure	5a)	showed	that	onset	
times	 from	 the	MASDA	were	 on	 average	 21	min	 later	 than	 those	
from PSG. This pattern became more pronounced the later the sleep 
onset	 occurred	 (in	 relation	 to	 the	 start	 of	 the	 PSG	 recording).	 In	
contrast,	sleep	offset	times	for	both	methods	(Figure	5b)	were	very	
similar, regardless of the relative timing of the sleep offset, with the 
bin	 sleep-	detected	offset	deviating	on	average	by	 less	 than	1	min	
from	PSG-	determined	values.	In	accordance	with	these	later	onset	

F I G U R E  1  Epoch-	by-	epoch	agreement	between	the	Munich	Actimetry	Sleep	Detection	Algorithm	(MASDA)	versus	sleep	logs	and	
MASDA	versus	polysomnography.	(a)	Agreement	of	the	sleep–	wake	scoring	between	MASDA	and	sleep	logs,	with	sleep	log	scoring	as	
the ground truth; assessed across multiple weeks in an adolescent and a young adult sample (total n =	62).	See	Table	S1	for	the	individual	
results	of	each	sample.	(b)	Agreement	of	the	sleep–	wake	scoring	between	MASDA	and	PSG,	with	PSG	as	the	ground	truth;	assessed	in	single	
nocturnal recordings from a clinical sample (n =	23).	Results	are	displayed	as	a	combination	of	violin	and	Tukey	boxplots	to	illustrate	data	
distribution.	NPV,	negative	predictive	value;	PPV,	positive	predictive	value;	PSG,	polysomnography
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and similar offset times, the duration of the sleep period (from ini-
tial	 sleep	onset	 until	 final	 sleep	offset;	 Figure	5c)	was	on	 average	
20	min	shorter	in	the	MASDA.	MASDA	also	underestimated	WASO	
(Figure	5d),	as	was	expected	from	the	 lower	specificity	values	ob-
tained	in	the	epoch-	by-	epoch	analyses.	Wake	after	sleep	onset	from	
the	MASDA	was	on	average	26	min	shorter	 than	 from	PSG,	nota-
bly showing outliers in both directions and no obvious relationships 
between	 WASO	 amount	 and	 method	 deviance.	 Lastly,	 both	 TST	
(Figure	5e)	and	SE	 (Figure	5f)	deviated	on	average	only	marginally	
between	 the	 two	 methods.	 MASDA	 equally	 under-		 and	 overesti-
mated TST and SE, whereas the deviance did not show any depen-
dency on the amount of TST and SE.

Taken together, despite differences between the two methods, 
the	Bland-	Altman	plots	 suggest	 that	 the	MASDA	did	 not	 perform	
systematically	worse	than	PSG	 in	 this	one-	night	 recording	 in	most	
sleep	parameters,	except	for	sleep	onset	and	WASO	estimation.	A	
few	outliers	in	the	difference	between	the	MASDA	and	PSG	scores	
can be detected in most parameters, especially from one individual 
with	 delayed	 sleep–	wake	 phase	 disorder	 (DSWPD).	 Nonetheless,	

sleep disorders do not seem to have systematically affected the 
MASDA	results	as	far	as	can	be	judged	from	this	small	sample	(see	
colour	coding	in	Figure	5).

4  | DISCUSSION

In	our	comparison	of	the	MASDA	to	sleep	logs	and	PSG	in	three	sam-
ples,	we	observed	adequate	rates	of	agreement	throughout.	In	ref-
erence	to	sleep	logs,	the	MASDA	performed	well	in	detecting	both	
consolidated	sleep	as	well	as	consolidated	wake	states	in	epoch-	by-	
epoch analyses. The summary parameters sleep onset, offset and 
duration	 from	 the	MASDA	 and	 sleep	 logs	 correlated	 highly,	 with	
onsets	 and	 offsets	 from	 the	 MASDA	 systematically	 earlier	 than	
log-	derived	values.	In	reference	to	a	single	night	of	PSG	recordings,	
the	MASDA	correctly	 identified	sleep	in	most	cases,	yet	showed	a	
lower performance in detecting wake (i.e., the short, more unsta-
ble	states	of	wake	right	before	and	after	sleep	onset).	The	Munich	
Actimetry	Sleep	Detection	Algorithm	deviated	most	from	PSG	in	the	

F I G U R E  2  Correlation	of	summary	sleep	parameters	from	the	Munich	Actimetry	Sleep	Detection	Algorithm	(MASDA)	and	sleep	logs.	
Mean	sleep	onset	times	(a,	b),	sleep	offset	times	(c,	d)	and	sleep	duration	(e,	f)	of	each	participant	from	the	adolescent	sample	(n =	34)	as	
determined	via	the	MASDA	(x-	axes)	against	those	from	sleep	logs	(y-	axes).	In	panels	(a),	(c)	and	(e),	means	across	all	assessment	days	are	
compared,	and	in	(b),	(d)	and	(f)	the	comparison	is	differentiated	into	means	from	schooldays	(red)	and	weekends	(blue).	Results	of	Pearson	
correlations are provided (**p < .01; ***p <	.001);	dashed	line	represents	a	1:1	relationship
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F I G U R E  3  Bland-	Altman	analysis	of	summary	sleep	parameters	from	the	Munich	Actimetry	Sleep	Detection	Algorithm	(MASDA)	and	
sleep	logs.	Bland-	Altman	plots	for	(a)	sleep	onset,	(b)	sleep	offset	and	(c)	sleep	duration	for	the	adolescent	sample	(n =	34).	In	each	panel,	
the	mean	between	the	sleep	log	and	the	MASDA	is	plotted	on	the	x-	axis,	the	absolute	difference	(log-	MASDA)	on	the	y-	axis.	The	mean	
difference	is	denoted	by	the	dashed	line	in	the	middle,	upper	and	lower	boundaries	of	the	95%	confidence	interval	by	the	upper	and	lower	
dashed lines

Log
higher

Log
lower

(a) (b) (c)

F I G U R E  4  Correlation	of	summary	sleep	parameters	from	the	Munich	Actimetry	Sleep	Detection	Algorithm	(MASDA)	and	
polysomnography.	For	each	participant	from	the	polysomnography	(PSG)	sample	(n =	23),	the	MASDA-	determined	sleep	parameter	(x-	axes)	
is	plotted	against	the	polysomnography-	determined	parameter	(y-	axes).	(a)	Sleep	onset,	(b)	sleep	offset,	(c)	sleep	period,	(d)	WASO,	(e)	total	
sleep	time,	(f)	sleep	efficiency.	Results	of	Spearman	correlations	are	provided	(p-	values	adjusted	for	multiple	testing	using	the	Benjamini-	
Hochberg	correction;	***p < .001; **p <	.01).	SE,	sleep	efficiency;	TST,	total	sleep	time;	WASO,	wake	after	sleep	onset

0

50

100

150

200

250

0 50 100 150 200 250
Sleep onset (min since PSG start)

MASDA

Sl
ee

p 
on

se
t (

m
in

 s
in

ce
 P

SG
 s

ta
rt)

P
S

G

350

400

450

500

550

600

350 400 450 500 550 600
Sleep offset (min since PSG start)

MASDA

Sl
ee

p 
of

fs
et

 (m
in

 s
in

ce
 P

SG
 s

ta
rt)

200

300

400

500

600

200 300 400 500 600
Sleep period (min)

MASDA

Sl
ee

p 
pe

rio
d 

(m
in

)

0

100

200

300

0 100 200 300
WASO (min)

MASDA

W
AS

O
 (m

in
)

P
S

G

200

300

400

500

600

200 300 400 500 600
TST (min)
MASDA

TS
T 

(m
in

)

0

25

50

75

100

0 25 50 75 100
SE (%)
MASDA

SE
 (%

)

Sleep onset Sleep offset

rho = 0.63**

Sleep period

WASO Total sleep time Sleep efficiency

(a) (c)(b)

(d) (f)(e)

rho = 0.76***
rho = 0.25
p = 0.44

rho = 0.28
p = 0.41

rho = 0.39
p = 0.20

rho = 0.06
p = 0.89



     |  9 of 12LOOCK et aL.

assessment	of	sleep	onset,	WASO,	and	sleep	period,	whereas	sleep	
offset, TST and SE were not systematically different between the 
two methods.

The	good	agreement	of	the	MASDA	and	sleep	logs	in	epoch-	by-	
epoch assessments supports previous findings suggesting a reason-
able validity between actimetry and sleep logs (Iwasaki et al., 2010; 
Santisteban	 et	 al.,	 2018;	 Usui	 et	 al.,	 1999).	 Validation	 of	MASDA	
against PSG was also in line with other validation studies, both in 
terms of actual performance values as well as the overestimation 
of sleep and underestimation of wake in nocturnal recordings (e.g. 
Conley	et	al.,	2019;	Marino	et	al.,	2013).	Specifically,	high	sensitivity	
and overall accuracy rates have been reported in numerous valida-
tion	studies	(e.g.	Marino	et	al.,	2013;	Van	de	Water	et	al.,	2011).	Poor	
specificity	has	frequently	been	reported	as	a	problem	of	actimetry	
as	well	 (Dick	et	 al.,	 2010)	 and	 is	 thus	only	partly	due	 to	 the	 algo-
rithm's	 design	 favouring	 consolidated	 stretches	 of	 sleep.	 Notably,	

we	observed	specificity	and	NPV	rates	ranging	from	extremely	poor	
performance to perfect concordance with the PSG ratings.

Our results suggest that the comparison of actimetry to a 
night of PSG is not necessarily appropriate to evaluate the meth-
od's	24-	h	performance.	The	poor	specificity	rates	obtained	in	the	
validation	 of	 various	 actimetry	 sleep-	detection	 algorithms	 have	
often	been	brought	up	as	a	weakness	of	the	method.	However,	as	
we show here, actimetry is not by definition worse at detecting 
wake	states.	In	the	sleep-	log	samples,	which	include	both	daytime	
and	night-	time	data	across	many	days,	our	algorithm	demonstrated	
good performance in detecting both consolidated sleep (i.e., good 
sensitivity/PPV)	 and	 consolidated	 wake	 periods	 (i.e.,	 excellent	
specificity/NPV).	The	low	specificity/NPV	rates	in	the	PSG	sample	
likely	 result	 from	 the	 analysis	 of	 only	 about	 8	 h	 that	 are	 almost	
exclusively spent in bed, containing mainly sleep epochs, and very 
few wake epochs, where the wake epochs are marked by little 

F I G U R E  5  Bland-	Altman	analysis	of	summary	sleep	parameters	from	the	Munich	Actimetry	Sleep	Detection	Algorithm	(MASDA)	and	
polysomnography.	Bland-	Altman	plots	for	(a)	sleep	onset,	(b)	sleep	offset,	(c)	sleep	period	(SP),	(d)	wake	after	sleep	onset	(WASO),	(e)	total	
sleep	time	(TST)	and	(f)	sleep	efficiency	(SE)	of	the	polysomnography	(PSG)	sample	(n =	23).	In	each	panel,	the	mean	between	PSG	and	
MASDA	is	plotted	on	the	x-	axis	and	the	absolute	difference	(PSG-	MASDA)	on	the	y-	axis.	Negative	values	indicate	lower	values	in	PSG	
than	MASDA	(for	times,	this	means	earlier).	The	mean	difference	is	denoted	by	the	dashed	line	in	the	middle,	and	the	upper	and	lower	
boundaries	of	the	95%	confidence	interval	by	the	upper	and	lower	dashed	lines.	Colours	indicate	the	primary	sleep	disorder	diagnosed	after	
the	recording	night.	DWSPD,	delayed	sleep-	wake	phase	disorder;	RBD,	rapid	eye	movement	behaviour	disorder;	SWD,	shift	work	disorder
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activity. Indeed, if we assume the plausible scenario that all indi-
viduals from the PSG sample were continuously awake 3 h prior to 
the start of the PSG recording and add these 3 h of wake to the ac-
timetry	and	PSG	records,	the	rates	for	sensitivity	and	PPV	remain	
the	same,	but	median	specificity	increases	drastically	from	33%	to	
86%	 (IQR	=	81%–	99%)	and	NPV	from	37%	to	86%	 (77%–	100%).	
Although	we	cannot	be	sure	that	all	additional	wake	epochs	would	
have	 been	 recognized	 as	 such	 by	 the	MASDA,	 this	 thought	 ex-
periment	illustrates	the	inherent	bias	towards	low	wake-	detection	
if only nocturnal recordings are analysed. Poor specificity values 
obtained under such conditions may accurately represent the 
method's	difficulty	 in	 identifying	brief	wake	 interruptions	during	
sleep	but	not	the	method's	ability	to	identify	longer	wake	episodes	
marked by more activity, as occur during the day.

The difficulty of correctly identifying wake interruptions 
during	sleep	was	also	evidenced	by	the	underestimation	of	WASO	
by	the	MASDA.	In	line	with	previous	research	stating	that	actim-
etry tends to overestimate sleep and underestimate wake during 
a	 sleep	 episode	 (e.g.,	 Ancoli-	Israel	 et	 al.,	 2003;	 Van	 de	 Water	
et	 al.,	 2011),	 this	 finding	 was	 particularly	 expected	 considering	
the	 24-	h	 moving-	average	 threshold	 employed	 by	 the	 MASDA.	
The threshold heavily depends on daytime activity levels and thus 
trades the underestimation of short sleep interruptions for a high 
sensitivity	for	consolidated	sleep–	wake	classification	(Roenneberg	
et	al.,	2015).	 In	addition,	 the	MASDA's	design	 favouring	consoli-
dated	stretches	of	sleep	is	also	likely	to	contribute	to	WASO	un-
derestimation.	 In	 line	with	Marino	et	 al.	 (2013),	we	also	noted	a	
systematic increase in this underestimation with a longer average 
WASO.

Likewise, the observed delay in sleep onset classification by the 
MASDA	 in	 comparison	 to	 PSG	 and	 the	 advance	 in	 comparison	 to	
sleep	 logs	 is	 likely	 not	 random.	 Tryon	 (2004)	 introduced	 the	 idea	
of systematic differences between onset scorings because sleep 
onset has to be understood as a gradual change from wake to sleep. 
Actimetry	 typically	 marks	 the	 beginning	 of	 a	 sleep	 period	 by	 im-
mobility	 (three	 10–	min	 bins	 of	 immobility	 under	 the	 threshold	 in	
the	MASDA),	whereas	PSG	considers	stereotypical	changes	 in	 the	
electrical brain activity measured at the scalp, which can occur later 
(Marino	 et	 al.,	 2013;	 Tryon,	 2004)	 or	 earlier;	 in	 log	 data,	 it	 is	 the	
subjective	perception	and	recall	quality	that	determines	onset	and	
offset	 times.	Whether	the	opposite	findings	for	 the	MASDA	sleep	
onsets in comparison to sleep logs and PSG originates only from sys-
tematic differences between the three methods or also from sample 
differences cannot be concluded from our study.

Several limitations have to be put forward in interpreting our 
results.	 First,	 the	 PSG	 assessment	was	 conducted	 in	 a	 laboratory	
environment, which can influence individual sleeping patterns. 
This	 setting	 also	 called	 for	 clearly	 defined	 in-	bed	 intervals,	which	
can	 limit	 the	 generalizability	 of	 the	 validation	 results	 (Grandner	&	
Rosenberger,	2019),	especially	the	high	agreement	in	regard	to	sleep	
offset. Second, the validation was performed in rather homogeneous 
samples,	so	the	results	may	not	generalize	to	other	populations,	par-
ticularly	people	who	move	very	little	during	the	day	(bed-	ridden	or	

elderly	people).	The	sleep-	log	validation	was	carried	out	 in	young,	
likely healthy sleepers, whereas the PSG validation was performed 
in a clinical sample where >50%	of	participants	were	diagnosed	with	
sleep disorders. Unfortunately, the PSG sample was diminished from 
50	to	23	individuals	due	to	software	and	synchronization	issues,	and	
hence we could not analyse effects of particular sleep disorders on 
the	 algorithm's	 performance.	 Third,	 our	 analyses	were	 performed	
on a resolution of 10 min, so each analysis epoch was only labelled 
with	 the	most	 abundant	 state	 (sleep	 or	wake)	 from	 the	 PSG	30-	s	
epochs underlying it. This removed information about the relative 
proportion of sleep and wake within each analysis epoch, precluding 
the differentiation of performance between clear epochs and “swing 
epochs”.	The	10-	min	filtering	that	we	generally	apply	to	our	human	
activity	 analyses	 has	 proven	 valuable	 when	 long-	term,	 in-	context	
measures	of	daily	sleep–	wake	behaviour	are	investigated	in	contrast	
to	the	high-	resolution	architecture	of	single	nights.	Fourth,	our	diary	
did	not	enquire	about	daytime	naps	or	night-	time	awakenings.	We	
can	 only	 speculate	 how	 this	 might	 have	 influenced	 the	MASDA’s	
performance	in	our	sample.	MASDA	can	in	principle	detect	naps,	so	
we would assume that nap information from diaries would have im-
proved	the	MASDA’s	performance	unless	the	majority	of	naps	were	
shorter	than	the	30-	min	minimum	required	by	the	MASDA.	We	also	
assume	 that	 information	 on	 night-	time	 awakenings	 could	 have	 in-
fluenced	 the	MASDA’s	 performance	 -		 negatively	 or	 positively	 de-
pending on the type of awakenings reported. Information on short 
awakenings	that	are	unlikely	to	be	picked	up	by	the	MASDA	might	
have reduced performance; long periods with significant tossing and 
turning or visits to the toilet, which are more likely to be picked up 
by	the	MASDA,	might	have	improved	performance.

In conclusion, whilst PSG is undeniably richer in detail and 
more sensitive than the mere monitoring of body movements 
(Pollak	et	al.,	2001),	actimetry	can	be	seen	as	an	objective	method	
of	estimating	sleep–	wake	patterns	outside	the	 laboratory	 (Meltzer	
et	al.,	2012),	supporting	large-	scale,	population-	level	sleep	research.	
Polysomnography	and	actimetry	are	suited	for	very	different	ques-
tions and settings, and thus are not in competition but should be 
seen as complementary to each other. By monitoring sleep longitu-
dinally in natural settings, actimetry can help to detect sleep phase 
alterations, and may assist in the diagnosis of circadian rhythm disor-
ders	(Ancoli-	Israel	et	al.,	2003;	Smith	et	al.,	2018)	or	the	discovery	of	
altered sleep patterns in individuals with sleep or neurobehavioural 
disorders	(Sadeh,	2011).	It	can	also	provide	objective	data	on	treat-
ment	 effects	 of	 non-	pharmacologic	 and	 pharmacologic	 interven-
tions	 (Ancoli-	Israel	 et	 al.,	 2003;	 Brooks	 et	 al.,	 1993;	 Roenneberg	
et	al.,	2015;	Sadeh,	2011;	Tryon,	2004).	Especially	when	PSG	mea-
surements or sleep logs cannot be obtained, actimetry can contrib-
ute	greatly	to	the	understanding	of	individual	sleep–	wake	patterns	
(Ancoli-	Israel	et	al.,	2003;	Sadeh,	2011;	Smith	et	al.,	2018).	We	even	
use it to extract coarse patterns of sleep physiology from wrist 
movements	 to	 assess	NREM–	REM	 cycles	 in	 the	 field	 (Winnebeck	
et	 al.,	2018).	Actimetry	 is	 thus	a	utile	 tool	 to	measure	 sleep	 in	di-
verse populations if conducted using validated algorithms (Smith 
et	al.,	2018).
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With our sleep detection algorithm, we hope to provide an ad-
ditional useful and valid tool for studying sleep in the field. In our 
samples,	 the	MASDA's	validity	 for	 sleep–	wake	scoring	was	 in	 the	
same range as that for most other algorithms; how it performs in 
direct comparisons in various study populations needs to be de-
termined	in	dedicated	future	studies.	What	sets	the	MASDA	apart	
from	most	other	algorithms,	is	its	design	to	prioritize	the	detection	
of	consolidated	stretches	of	sleep	over	detecting	frequent	changes	
in	the	sleep–	wake	state.	Although	this	is	by	definition	a	disadvan-
tage	for	detailed	monitoring	of	WASO	or	sleep	fragmentation,	it	is	
advantageous for circadian analyses striving to assess sleep timing 
and regularity. There are very few other algorithms with similar de-
signs,	but	they	operate	on	other	principles	(e.g.,	Crespo's	or	HDCZA	
in	GGIR)	 (Crespo	et	al.,	2012;	van	Hees	et	al.,	2018).	 Importantly,	
the	MASDA	is	free	of	assumptions	relating	to	timing,	duration	and	
number	of	sleep	bouts	per	day,	so	by	design,	the	MASDA	is	suited	
to detect sleep at any time of day as often as it occurs (within the 
limits	of	its	minimum-	duration	criterion	of	30	min).	Therefore,	the	
MASDA	lends	 itself	particularly	to	studying	shift-	working	popula-
tions,	populations	with	circadian	disruption	such	as	jetlag	or	Non-	
24, or those with multiphasic sleep.
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